

A FPGA-based Soft Multiprocessor System for JPEG Compression

Sun Wei Technical University Eindhoven, the Netherlands
sunwei388@gmail.com

Abstract

To achieve a balance between high performance and

energy efficiency embedded systems often use

heterogeneous multiprocessor platforms tuned for a well-

defined application domain. However, due to extremely

high design cost and NRE for deep submicron IC, not

many applications can afford that [1]. An alternative

solution is FPGA-based multiprocessor system. In this

way, both high programmability and low risk can be

obtained. Recent research shows such a system which

loses only 2.6X in performance (normalized) compared to

a dedicated ASIP for IP packet forwarding application

[2]. In this paper, we demonstrate the design flow of an

FPGA-based multiprocessor system for high performance

multimedia application and explore different on-chip

interconnects for multiprocessor system. We construct a

JPEG encoder on multiprocessor on Xilinx Virtex-II Pro

FPGA. The design can compress a BMP image into a

JPG image in high speed. We also implement different

interconnects between processors, including bus, dual-

port memory, FIFO and DMA controller, and explore the

trade-off between them.

1. Introduction

FPGA is a programmable device consisting of logic
blocks, memory blocks, programmable interconnections
and sometimes processor cores. A soft processor is a
programmable processor made from these programmable
elements on the FPGA and a soft multiprocessor system is
a network of soft processors. So the user can customize
the processing unit, memory layout, interconnections and
dedicated hardware accelerator for a specific application.

Xilinx provides tools and libraries for developing soft
multiprocessor system on the Virtex family of FPGAs [3].
It enable user to integrate IBM PowerPC 405 cores,
Microblaze soft processors, peripherals and customized
hardware onto an FPGA chip. However, Inter-processor
interconnections are not immediately available.

The soft multiprocessor solution proposes to
implement a multiprocessor platform on FPGA instead of
designing a new chip. The advantage of FPGA approach
is (1) low design cost and turnaround time which means
low investment and risk. (2) Designers can customize the

multiprocessor system for a target application, especially
by interconnection and hardware accelerators. (3) Retains
multiprocessor programming model and provides an easy
way to map application from existing code base. (4)
Support for system iteration design method. Designers can
iteratively optimize the system on the real, existing system
instead of simulation and estimation. The disadvantage of
FPGA approach is that soft multiprocessor system would
lose a performance factor compared to ASIP if the ASIP
fits well for the application. So it depends on the volume.
For high volume ASIP is the preferred choice and for low
volume FPGA is chosen. There is a ‘break-even volume’
where production cost compensates for the NRE DSM
design cost. Since the latter increases rapidly there is a
trend that the ‘break-even volume’ shifts to larger volumes
which makes FPGAs more attractive. Furthermore, as the
market changing faster and faster, it’s getting more and
more difficult to design ASIPs fit very well the market a
few years later.

We address the following questions in this paper: (a)
What’s the design flow of soft multiprocessor system on
FPGA. (b) What’s the impact of different types of
communication on FPGA? To demonstrate the design
flow and interconnections, we build up a JPEG encoder as
a multiprocessor system on a Xilinx Virtex-II Pro FPGA.
In the second part of the study, different types of
interconnections are evaluated and compared.

2. Experimental Study: JPEG Encoder on a

Soft Multiprocessor Platform

2.1 Microblaze Soft Processor

Microblaze is a soft, 32-bit RISC processor designed

by Xilinx for their FPGAs. Compared to other general
purpose processors, it’s quite flexible with a few
configurable parts and capable of being extended by
customized co-processors. There are a number of on-chip
communication strategies available including a variety of
memory interfaces. Following is the core block diagram of
Microblaze processor. [4]

Fig.1. Microblaze processor core block diagram

Similar to most of RISC processors, Microblaze

processor has an instruction decoding unit, 32x32b
general purpose register file, arithmetic unit and special
purpose registers. In addition, it has an instruction pre-
fetch buffer. The arithmetic unit is configurable, as shown
in core block diagram. The Barrel Shift, Multiplier,
Divider and FPU are optional features. Microblaze
processor has a three- stage pipeline: fetch, decode and
execute. For most of instructions, each stage takes one
clock cycle. There is no branch prediction logic. Branch
with delay slot is supported to reduce the branch penalty.

 Microblaze is a Harvard-architecture processor, with
both 32-bit I-bus and D-bus. Cache is also an optional
feature. Three types of buses, FSL, LMB and OPB are
available. FSL bus is a fast co-processor interface. LMB is
one-clock-cycle, on-chip memory bus while OPB is a
general bus with arbitration. A typical single-core
Microblaze system is as follows and a JPEG encoder has
been mapped onto it [11]. A cache can be put between
processor and external SDRAM. It’s not shown on the
following diagram because cache is considered as part of
the Microblaze processor component in EDK.

Fig.2. Typical single-core Microblaze system

2.2 Soft Multiprocessor System on Xilinx FPGA

We implement JPEG encoder on a Xilinx Virtex-II Pro

2VP30 FPGA with Xilinx Embedded Development Kit
(EDK). For the entire system, including I/O, we use
Xilinx XUP2Pro board, with Compact Flash (CF) card
interface and external memory [5]. The 2VP30 FPGA
consist of 13696 slices and 2448Kbits on-chip Block
RAM (BRAM), 136 hardware multiplier and two

PowerPC 405 cores. The estimated price for the chip is
$557 @ 100pcs. [6]

The Microblaze soft core takes around 450 slices
(3.2% of 2VP30 area) [4]. Nevertheless, one Microblaze
processor typically needs at least 8KByte on-chip BRAM
as data and instruction memory and a few memory
controllers. It takes some slices and BRAMs in addition.
Due to project schedule, the IBM PowerPC cores are not
used in this design.

The soft multiprocessor system consists of four
Microblaze processors, BRAMs, peripherals, external
memory and interconnections as shown below. Besides
FIFO interconnection, three other types of inter-
connections, OPB bus, dual port memory and DMA, are
evaluated later.

F

I

F

O

1

2

F

I

F

O

3

0

FSL

FSL FSL2s

FSL1m

FIFO01FSL0m FSL1sMicroBlaze 0 MicroBlaze 1

Local DMem0

MicroBlaze 2MicroBlaze 3

CF Card

UART OPB Bus

SDRAM

controller

External

SDRAM

Local IMem0

ILMB0

Local IMem1ILMB1

Local DMem1

Local IMem2

ILMB2

Local DMem2

Local IMem3

Local DMem3

ILMB3

DLMB0

DLMB1

FIFO23FSL2s FSL2m

DLMB2

DLMB3

Fig.3. A soft multiprocessor system

Microblaze 0 in the system is used for I/O, external

memory access and debugging while the rest three
processors do the computation. External DDR memory is
used as image buffer because CF card access is slow. The
system runs at 100Mhz due to the limitation of OPB bus.

2.3 JPEG Encoder Application

We implement a baseline JPEG encoder application

with color conversion and subsampling on the
multiprocessor platform. The software reference code for
the algorithm is written by Joris van Emden and Marcel
Lauwerijssen from Technical University Eindhoven [7].

Except for file I/O and bootstrap, the JPEG encoder
algorithm includes BMP and JPG header parsing, color
conversion, DCT, zigzag scan, quantization and variable-
length encoding. Following is the data flow of JPEG
encoder.

Fig.4. JPEG encoder data flow

2.4 Partitioning

These tasks are partitioned onto four processors, for

instance in FIFO interconnection, as follows.

Fig.5. JPEG task partitioning

The table is a detailed description including input and

output of every processor.

P# Function Input Output

0 dedicated I/O JPG bitstream BMP macro block
(RGB) +
image size +
end of image
indication

1 color
conversion

BMP macro block
(RGB)

BMP macro block
(YUV) +
image size +
end of image
indication

2 DCT BMP macro block
(YUV)

f-domain macro
block+
image size +
end of image
indication

3 ZZ/Q + VLC f-domain macro
block

JPG bitstream

Table1. Detailed task partitioning with input and output

The advantage of this partitioning is (a) low memory
requirement. Actually Microblaze 1, 2 and 3 needs to
store only a few macro blocks which is 16x16 pixels each.
(b) easy to improve performance by dedicated hardware
accelerators because every processor is dedicated to a
well-defined task.

2.5 Streaming Programming Model

The programming model is modified from a shared

memory model to a streaming model. In the reference
code, all tasks share the same address space and
communicate via shared memory. However, in order to
maximize the throughput, these four processors need to
run in parallel and therefore a streaming model is better.
The inter-processor communication is adapted to a
message-oriented model as well. Compared to shared
memory, explicit message passing is easier to deploy,
monitor and debug. The code now looks in this way:

processor 1 (color conversion)

for (…) {
 wait message from processor 0

get message
 do color conversion
 generate a message containing the converted macro block
 check if there is space in the output FIFO
 send current message to processor 1
 ……
 }

processor 2 (DCT)

for (;;) {
 wait message from processor 1
 get message
 do DCT
 generate a message containing the transformed macro block
 check if there is space in the output FIFO
 send current message to processor 2
 ……
}

In addition, the communication link between BMP file

operation and VLC is removed. Because there is only a
small amount of data for image configuration transferred
through this link, it doesn’t make sense to make one more
link for that. Instead, it is forwarded by processor 2 and 3.
FIFO drivers are used to drive FIFO between processors
and provide synchronization. For other interconnections,
different drivers are employed.

3. Design Tools and Flow

Design tools and flow is an important factor with
respect to design cost and time. Most of work is done with
Xilinx EDK and ISE tools. EDK supports high level
component based design. The design flow is also
straightforward. There is little dependence between
hardware flow and software flow so they can be designed
and iterated independently.

3.1 System Design Flow

The system design flow is shown as follows.

Fig.6. System Design Flow

On the hardware side (left), designers need to specify

all needed hardware components, including components
provided by Xilinx, like processor and memory and
customized hardware components, like dma_controller
and fifo_link component in this project. For customized
hardware, designers need to provide source code or
netlist. Within EDK, all these components are synthesized
and invoke ISE afterwards to implement and generate a
bitstream. Nevertheless, this bitstream is not the bitstream
downloaded to FPGA because it contains hardware only.
At the same time, on the software side, all needed
software components, like drivers or operating system
need to be specified as well. Based on these definition
and hardware components definition, EDK can generate
libraries for this system which is later linked to object files
compiled from application code. The result is an ELF file.
The detailed hardware and software flow is described in
the following section.

The last step is to integrate software and hardware.
Xilinx provides a tool called data2mem which can insert
the binary software code in the ELF file into the bitstream
generated from hardware flow. The setting of location and
inserting method is already extracted during hardware
flow. The resulting bitstream contains both hardware and
software. It can therefore be downloaded into FPGA to
run and debug.

3.2 Hardware Design Flow

The hardware system is defined on the component

level with a Xilinx proprietary language in a .MHS file
[3]. Basically it lists all components of the system,
parameters and interconnections. A component can be a
processor, a bus, a memory controller, a memory block,
some peripheral or a custom hardware component. In
EDK, Xilinx provides libraries for the Microblaze
processor as well as a rich set of bus, memory and
peripherals. In most of cases, it’s enough to build a
system. Most of them are provided in a netlist with a

wrapper provided. Connections can be defined on both
bus level and port level. On bus level, a group of signals
are connected together. It’s always preferable if possible.
On port level, a signal is connected one by one. Every
connection is called a port and defined a port name. For
all memory components or memory-mapped peripherals,
it’s necessary to specify an address range. The next step is
to synthesize. All components, both Xilinx provided and
customized are synthesized together to generate a netlist
for the whole system. Afterwards, the designer can start to
implement and he can generate a bitstream consisting of
the hardware configuration. A few more files are
generated after synthesis, for instance, a memory mapping
file. They are used for the software flow and the system
flow later.

It’s also practical to extend EDK by customized
hardware components. To define a new component, the
designer needs to specify the interface as well as the
component entity. In EDK, there is a tool to generate the
component template and the bus interface. Except for
editing MHS file manually, there is a GUI interface,
called “Base system generator” to generate XHS file for a
simple system. For a multiprocessor system or complex
system, it can be used as a good starting point.

3.3 Software Design Flow

The software is defined in a similar way. At the top

level, components are specified. Designers can also
specify bootstrap, operating system, file system, network
stack, drivers and board support package if necessary. If
some components are not provided by Xilinx, it’s
designer’s responsibility to write them. Normally it’s no
longer written as a component like in hardware flow. It
can be part of the application code.

In EDK package, Xilinx provides an alternative way to
develop software with Eclipse initiated by IBM. Eclipse is
nowadays becoming more and more popular and
somehow industry standard of development environment.
The Eclipse tool in EDK has been already customized for
Microblaze processor or PowerPC and ready to use. The
compiler and linker in EDK is a customized version of
gcc tool chain. All gcc tools are available with mb- prefix.
In some cases, especially in multiprocessor system, it’s
necessary to specify linkscripts to define heap and stack
size, mapping of different component.

3.4 Debugging

After downloading the bitstream to the FPGA board,

debugging starts. It’s important and usually takes most of
the design time. There are three ways of debugging,
hardware debugging, software debugging and co-
debugging.

For hardware debugging, there is a tool from Xilinx
called Chipscope [8]. Basically Chipscope is an on-chip
logical analyzer plus a user interface on PC. It can record
timing information of multiple connections on chip. This
information is read by the PC program afterwards via the
JTAG port of the FPGA. A variety of triggers is available.
The depth of trace is actually limited by the available
memory on FPGA. To use Chipscope, the first step is to
add a Chipscope component in the MHS file and to
specify the connections. Normally at least two Chipscope
components are required, chipscope_icon and
chipscope_ila. The first one is the Chipscope controller
and interface to the JTAG chain. The other one is the
analyzer itself. The trace pins of the analyzer need to be
connected to the ports to trace. After a bitstream is
downloaded into the FPGA, the designer can start
Chipscope Analyser on PC. This program is the interface
to the user. It shares the JTAG connection with EDK and
gets connected to the on-chip chipscope_icon
automatically. By setting the necessary trigger condition,
the designer can trace the signal he is interested in.
Because the designer needs to go through the whole
hardware flow if he adds some signals to trace, it’s better
to connect all possible signals to Chipscope as long as
there is enough area left on the FPGA.

For software debugging, Xilinx provides a customized
tool based on GNU gdb. To debug, simply start XMD, a
backend server for gdb. After it connects to on-chip
processor via JTAG, start gdb. Then you have full control
of the processor. A customized version of Insight, a
graphical shell of gdb is also available. Designers can also
debug with Eclipse with a better interface. However, the
mechanism is the same. To use gdb, it’s necessary to
enable the hardware debug module of the Microblaze
processor. The debug module is connected to the JTAG
interface of the FPGA and connected to XMD finally. For
multiprocessor debugging, it’s necessary to enable the
debug module to every processor of interest. When
starting XMD, you can choose the processor you like to
debug and attach to it.

An easy alternative for software debugging is to add
“printf “inside the software code. The information is
dumped to a UART. The disadvantages are (a) printing on
UART is slow; (b) only one processor can dump via
UART due to the conflict of UART drivers between
processors.

Co-debugging is often the most difficult part. In
general we need to use Chipscope and gdb together.
Moreover, designers need to synchronize hardware tracing
and software debugging. He can use software to trigger
Chipscope tracing and read the tracing data.

4. Interconnection Exploration

On-chip interconnection between processors is getting
more and more important as the technology goes to deep-
submicron because wires become dominant in delay and
energy consumption. Four types of interconnections are
implemented and compared afterwards [9].

4.1 Bus Interconnection

An easy way to connect four processors is via a bus.

Xilinx provides OPB bus with arbitration. All processors,
external memory and peripherals can just be connected to
the OPB bus and it works. The hardware architecture of
four-processor system connected by bus is as follows.

Fig.7. Hardware architecture of four-processor system

connected by bus

The bus is shared by four processors, peripherals and

external memory. Therefore it’s a bottleneck of the
system. It’s very difficult for four processors to archive
full-parallel running with bus interconnection. It may be
used for a starting point for multiprocessor platform
design.

4.2 Dual Port Memory Interconnection

Because all on-chip memory blocks on Xilinx FPGA

are dual port memories, it’s easy and efficient to employ
dual port memory as communication channel between
processors. The hardware and software architecture of
four-processor system connected by dual port memory
blocks is as follows.

Fig.8. Hardware architecture of four-processor system

connected by dual port memory blocks

Fig.9. Software architecture of four-processor system

connected by dual port memory block

Similar to the general architecture, every processor has

two LMB buses, I-LMB bus and D-LMB bus. However,
the data LMB bus here is connected to two dual port
memory blocks in addition to data memory block. Each
port of every dual memory block is connected to the data
LMB bus of two different processors and therefore
constitutes a communication channel. Every dual port
memory is assigned to its dedicated address space as well.
Processors can access dual port memory via normal
memory access. The access is one-cycle-access and
predictable because it’s connected to LMB bus.

There is no inter-processor synchronization directly
supported by dual port memory interconnection. It needs
to be implemented through additional code, for instance, a
flag. A flag can be a word in dual port memory. The
pseudo code for a binary flag manipulation is as follows.
If the flag is set more than once before it’s cleared, it’s
only counted as once.

#define FLAG_UNSET 0
#define FLAG_SET 1

void flagSet (int* flag) {
 *flag++;
 }

flagClear (int* flag) {
 *flag=0;
}

flagWait (int* flag) {
 for (;;*flag) dummy_op();
}

The flag provides one-directional synchronization. If

two-directional synchronization is needed, two flags can
be used. The advantage of this implementation is
simplicity. In fact it’s quite straightforward. The
disadvantage is that it can lock the processor and consume
unnecessary energy because processor is still running
when waiting for flag (busy-wait). An alternative is to
design an additional hardware handshake component for
synchronization.

4.3 FIFO Interconnection

Another often-used communication channel in a

multiprocessor system is a FIFO. Compared to the last
implementation, dual port memory blocks are replaced by
FIFOs. The hardware and software architecture of four-
processor system connected by FIFO is as follows.

F

I

F

O

1

2

F

I

F

O

3

0

FSL

FSL FSL2s

FSL1m

FIFO01FSL0m FSL1sMicroBlaze 0 MicroBlaze 1

Local DMem0

MicroBlaze 2MicroBlaze 3

CF Card

UART OPB Bus

SDRAM

controller

External

SDRAM

Local IMem0

ILMB0

Local IMem1ILMB1

Local DMem1

Local IMem2

ILMB2

Local DMem2

Local IMem3

Local DMem3

ILMB3

DLMB0

DLMB1

FIFO23FSL2s FSL2m

DLMB2

DLMB3

Fig.10. Hardware architecture of four-processor system

connected by FIFO

Fig.11. Software architecture of four-processor system

connected by FIFO

FIFO is connected to processor via FSL bus. So there

are two more buses for every processor, FSL master and
FSL slave. FSL has build-in FIFO capacity. It’s an ideal
solution for FIFO implementation. Furthermore, there is
hardware synchronization mechanism build in which is
easy and efficient. If there is no data in the FIFO, the
processor can be stopped without any extra energy

consumption.
In software, DPRAM driver is replaced by FIFO

driver, which provides the same communication and
synchronization mechanism. The partitioning and
architecture of the application code is intact.

4.4 DMA Interconnection

DMA controller has its advantage in multiprocessor

systems and is getting more and more deployed [10].
Compared to dual port memory and FIFO, it’s an active
component. So it can move data in parallel to processors
without any attention from processor. Furthermore, all
memory blocks on Xilinx FPGA are dual port memory
blocks. That means the DMA controller can be simple and
efficient because there is no need for complex arbitration
circuit. The hardware and software architecture of four-
Microblaze system connected by FIFO and DMA is as
follows.

 Fig.12. Hardware architecture of four-processor system
connected by FIFO and DMA

 Fig.13. Software architecture of four-processor system
connected by FIFO and DMA

Compared to the previous system, the FIFO between

processor 0 and processor 1 is replaced by a DMA
controller. The DMA controller has two sets of interfaces,
to processor 0 and processor 1 respectively. For each
interface, there is a memory bus connected directly to

local data memory of the processor. It reads directly from
the local data memory or writes directly to it. Besides that,
the processor can configure and read back status via FSL
master and slave bus. There is one channel inside the
DMA controller. The processor only needs to set starting
address, ending address, size of data block and go. It can
move data autonomously. No CPU intervention need.
After data is moved, a status byte can be read back by
processor to indicate the result. Synchronization is also
provided by controller and if no data moved by DMA, the
processor can stop as well.

The software is similar to software in the previous
system. The only modification is that DMA driver is
added for the code running on processor 0 and 1.
However, FIFO driver on the two processors have to be
kept because there is still FIFO connection to other
processors.

5. Conclusions

Fast design of high performance embedded systems
based on soft multiprocessor cores with off-the-shelf tools
is feasible. The tools and the flow are efficient. The
software flow can be separated from the hardware flow.
So a software update doesn’t need re-implementing the
whole chip. Most of the software code can be reused on
the multiprocessor platform while it may require some
modification for the programming model. Design cost and
time can be significantly reduced.

There is a trade-off between different types of on-chip

interconnections and therefore they should be deployed
depending on application. (a) a bus is easiest to implement
but poor in performance. It’s not scalable either. It may be
used for fast system prototyping and verification; (b) dual
port memory is easy to implement. It’s efficient and
supports bidirectional communication. The disadvantage
is that its resource consuming, inflexible due to the fixed
topology, not scalable and that it needs an additional
synchronization mechanism. (c) FIFO is also easy to
implement and it uses build-in synchronization
mechanism. But it’s inflexible due to the fixed topology
and not scalable either. Furthermore it’s less efficient
because it requires the processor to copy data into the
FIFO. (d) DMA controller is flexible, scalable, and
efficient. The controller actually can move data in parallel
to processor. The disadvantage is the complexity of the
controller.

Because of the after-manufacturing programmability of
FPGA, the best interconnection is a combination of these
interconnection types in a topology that targets for the
application.

6. Acknowledgements

We thank Prof. Jef van Meerbergen for his guidance

and reviewing of this paper. We thank Joris van Emden
and Marcel Lauwerijssen for providing high quality JPEG
encoder reference code and support afterwards. Prof.
Henk Corporaal provides Xilinx board and FPGA for
practical work. That’s very important for our project. We
also thank Jos Huisken, Akash Kumar and other members
in ES group for their comments and discussions.

7. References

[1] Dr. Handel H. Jones, “How to Slow the Design Cost
Spiral”, Electronics Design Chain, 2002.

[2] Kaushik Ravindran, … “An FPGA-based Soft
Multiprocessor System for IPv4 Packet Forwarding”,
2005

[3] Xilinx Inc., “Platform Studio and EDK”,
http://www.xilinx.com/ise/embedded_design_prod/platfor

m_studio.html

[4] Xilinx Inc., “Microblaze Microcontroller Reference
Design User Guide”, Sep, 2005.

[5] Xilinx Inc., “Xilinx XUP Virtex-II Pro Development
System”, http://www.xilinx.com/univ/xupv2p.html.

[6] Avnet Inc., www.avnet.com.

[7] Joris van Emden, Marcel Lauwerijssen, Sun Wei,
Cristina Tena, “Embedded JPEG Codec Libarary”,
http://sourceforge.net/projects/mb-jpeg/.

[8] Xilinx Inc., “Xilinx Chipscope Pro”,
http://www.xilinx.com/ise/optional_prod/cspro.htm.

[9] Jeroen A. J. Leijten, Jef van Meerbergen, … “Stream
Communication between Real-Time Tasks in a High
Performance Multiprocessor”

[10] James Allan Kahle, IBM, “DMA Prefetch”, US

Patent 7010626, Mar, 2006.

[11] Joris van Emden, Marcel Lauwerijssen, Sun Wei,
Cristina Tena, “JPEG Codec Libarary base don
Microblaze processor”,
http://www.opencores.org/projects.cgi/web/mb-

jpeg/overview

