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Abstract 
 

To achieve a balance between high performance and 

energy efficiency embedded systems often use 

heterogeneous multiprocessor platforms tuned for a well-

defined application domain. However, due to extremely 

high design cost and NRE for deep submicron IC, not 

many applications can afford that [1]. An alternative 

solution is FPGA-based multiprocessor system. In this 

way, both high programmability and low risk can be 

obtained. Recent research shows such a system which 

loses only 2.6X in performance (normalized) compared to 

a dedicated ASIP for IP packet forwarding application 

[2]. In this paper, we demonstrate the design flow of an 

FPGA-based multiprocessor system for high performance 

multimedia application and explore different on-chip 

interconnects for multiprocessor system. We construct a 

JPEG encoder on multiprocessor on Xilinx Virtex-II Pro 

FPGA. The design can compress a BMP image into a 

JPG image in high speed. We also implement different 

interconnects between processors, including bus, dual-

port memory, FIFO and DMA controller, and explore the 

trade-off between them.   

 

1. Introduction 
 

FPGA is a programmable device consisting of logic 
blocks, memory blocks, programmable interconnections 
and sometimes processor cores. A soft processor is a 
programmable processor made from these programmable 
elements on the FPGA and a soft multiprocessor system is 
a network of soft processors. So the user can customize 
the processing unit, memory layout, interconnections and 
dedicated hardware accelerator for a specific application.  

Xilinx provides tools and libraries for developing soft 
multiprocessor system on the Virtex family of FPGAs [3]. 
It enable user to integrate IBM PowerPC 405 cores, 
Microblaze soft processors, peripherals and customized 
hardware onto an FPGA chip. However, Inter-processor 
interconnections are not immediately available. 

The soft multiprocessor solution proposes to 
implement a multiprocessor platform on FPGA instead of 
designing a new chip. The advantage of FPGA approach 
is (1) low design cost and turnaround time which means 
low investment and risk. (2) Designers can customize the 

multiprocessor system for a target application, especially 
by interconnection and hardware accelerators. (3) Retains 
multiprocessor programming model and provides an easy 
way to map application from existing code base. (4) 
Support for system iteration design method. Designers can 
iteratively optimize the system on the real, existing system 
instead of simulation and estimation. The disadvantage of 
FPGA approach is that soft multiprocessor system would 
lose a performance factor compared to ASIP if the ASIP 
fits well for the application. So it depends on the volume. 
For high volume ASIP is the preferred choice and for low 
volume FPGA is chosen. There is a ‘break-even volume’ 
where production cost compensates for the NRE DSM 
design cost. Since the latter increases rapidly there is a 
trend that the ‘break-even volume’ shifts to larger volumes 
which makes FPGAs more attractive. Furthermore, as the 
market changing faster and faster, it’s getting more and 
more difficult to design ASIPs fit very well the market a 
few years later. 

We address the following questions in this paper: (a) 
What’s the design flow of soft multiprocessor system on 
FPGA. (b) What’s the impact of different types of 
communication on FPGA? To demonstrate the design 
flow and interconnections, we build up a JPEG encoder as 
a multiprocessor system on a Xilinx Virtex-II Pro FPGA. 
In the second part of the study, different types of 
interconnections are evaluated and compared. 
 

2. Experimental Study: JPEG Encoder on a 

Soft Multiprocessor Platform 
 

2.1 Microblaze Soft Processor 

 
Microblaze is a soft, 32-bit RISC processor designed 

by Xilinx for their FPGAs. Compared to other general 
purpose processors, it’s quite flexible with a few 
configurable parts and capable of being extended by 
customized co-processors. There are a number of on-chip 
communication strategies available including a variety of 
memory interfaces. Following is the core block diagram of 
Microblaze processor. [4] 

 



 
Fig.1. Microblaze processor core block diagram 

 
Similar to most of RISC processors, Microblaze 

processor has an instruction decoding unit, 32x32b 
general purpose register file, arithmetic unit and special 
purpose registers. In addition, it has an instruction pre-
fetch buffer. The arithmetic unit is configurable, as shown 
in core block diagram. The Barrel Shift, Multiplier, 
Divider and FPU are optional features. Microblaze 
processor has a three- stage pipeline: fetch, decode and 
execute. For most of instructions, each stage takes one 
clock cycle. There is no branch prediction logic. Branch 
with delay slot is supported to reduce the branch penalty. 

 Microblaze is a Harvard-architecture processor, with 
both 32-bit I-bus and D-bus. Cache is also an optional 
feature. Three types of buses, FSL, LMB and OPB are 
available. FSL bus is a fast co-processor interface. LMB is 
one-clock-cycle, on-chip memory bus while OPB is a 
general bus with arbitration. A typical single-core 
Microblaze system is as follows and a JPEG encoder has 
been mapped onto it [11]. A cache can be put between 
processor and external SDRAM. It’s not shown on the 
following diagram because cache is considered as part of 
the Microblaze processor component in EDK.  

 

 
Fig.2. Typical single-core Microblaze system 

 

2.2 Soft Multiprocessor System on Xilinx FPGA 

 
We implement JPEG encoder on a Xilinx Virtex-II Pro 

2VP30 FPGA with Xilinx Embedded Development Kit 
(EDK). For the entire system, including I/O, we use 
Xilinx XUP2Pro board, with Compact Flash (CF) card 
interface and external memory [5]. The 2VP30 FPGA 
consist of 13696 slices and 2448Kbits on-chip Block 
RAM (BRAM), 136 hardware multiplier and two 

PowerPC 405 cores. The estimated price for the chip is 
$557 @ 100pcs. [6] 

The Microblaze soft core takes around 450 slices 
(3.2% of 2VP30 area) [4]. Nevertheless, one Microblaze 
processor typically needs at least 8KByte on-chip BRAM 
as data and instruction memory and a few memory 
controllers. It takes some slices and BRAMs in addition. 
Due to project schedule, the IBM PowerPC cores are not 
used in this design.  

The soft multiprocessor system consists of four 
Microblaze processors, BRAMs, peripherals, external 
memory and interconnections as shown below. Besides 
FIFO interconnection, three other types of inter-
connections, OPB bus, dual port memory and DMA, are 
evaluated later.   
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Fig.3. A soft multiprocessor system 

 
Microblaze 0 in the system is used for I/O, external 

memory access and debugging while the rest three 
processors do the computation. External DDR memory is 
used as image buffer because CF card access is slow. The 
system runs at 100Mhz due to the limitation of OPB bus.  

 

2.3 JPEG Encoder Application 

  
We implement a baseline JPEG encoder application 

with color conversion and subsampling on the 
multiprocessor platform. The software reference code for 
the algorithm is written by Joris van Emden and Marcel 
Lauwerijssen from Technical University Eindhoven [7].  

Except for file I/O and bootstrap, the JPEG encoder 
algorithm includes BMP and JPG header parsing, color 
conversion, DCT, zigzag scan, quantization and variable-
length encoding. Following is the data flow of JPEG 
encoder. 

 

 



Fig.4. JPEG encoder data flow 
 

2.4 Partitioning 

 
These tasks are partitioned onto four processors, for 

instance in FIFO interconnection, as follows.  
 

 
Fig.5. JPEG task partitioning 

 
The table is a detailed description including input and 

output of every processor. 

 
P# Function Input Output 

0 dedicated I/O  JPG bitstream BMP macro block 
(RGB) + 
image size +  
end of image 
indication 

1 color 
conversion 

BMP macro block 
(RGB) 

BMP macro block 
(YUV) + 
image size +  
end of image 
indication 

2 DCT BMP macro block 
(YUV) 

f-domain macro 
block+ 
image size +  
end of image 
indication 

3 ZZ/Q + VLC f-domain macro 
block 

JPG bitstream 

Table1. Detailed task partitioning with input and output 
 

The advantage of this partitioning is (a) low memory 
requirement. Actually Microblaze 1, 2 and 3 needs to 
store only a few macro blocks which is 16x16 pixels each. 
(b) easy to improve performance by dedicated hardware 
accelerators because every processor is dedicated to a 
well-defined task.  

 

2.5 Streaming Programming Model  

 
The programming model is modified from a shared 

memory model to a streaming model. In the reference 
code, all tasks share the same address space and 
communicate via shared memory. However, in order to 
maximize the throughput, these four processors need to 
run in parallel and therefore a streaming model is better. 
The inter-processor communication is adapted to a 
message-oriented model as well. Compared to shared 
memory, explicit message passing is easier to deploy, 
monitor and debug.  The code now looks in this way: 

 
processor 1 (color conversion) 

 
for (…) { 
 wait message from processor 0 

get message 
 do color conversion 
 generate a message containing the converted macro block 
 check if there is space in the output FIFO 
 send current message to processor 1 
 …… 
 } 
 

processor 2 (DCT) 

 
for (;;) { 
 wait message from processor 1 
 get message 
 do DCT 
 generate a message containing the transformed macro block 
 check if there is space in the output FIFO 
 send current message to processor 2 
 …… 
} 

 
In addition, the communication link between BMP file 

operation and VLC is removed. Because there is only a 
small amount of data for image configuration transferred 
through this link, it doesn’t make sense to make one more 
link for that. Instead, it is forwarded by processor 2 and 3. 
FIFO drivers are used to drive FIFO between processors 
and provide synchronization. For other interconnections, 
different drivers are employed.  

 

3. Design Tools and Flow 
 

Design tools and flow is an important factor with 
respect to design cost and time. Most of work is done with 
Xilinx EDK and ISE tools. EDK supports high level 
component based design. The design flow is also 
straightforward. There is little dependence between 
hardware flow and software flow so they can be designed 
and iterated independently. 

 

3.1 System Design Flow 

 
The system design flow is shown as follows. 
 



 
Fig.6. System Design Flow 

 
On the hardware side (left), designers need to specify 

all needed hardware components, including components 
provided by Xilinx, like processor and memory and 
customized hardware components, like dma_controller 
and fifo_link component in this project. For customized 
hardware, designers need to provide source code or 
netlist. Within EDK, all these components are synthesized 
and invoke ISE afterwards to implement and generate a 
bitstream. Nevertheless, this bitstream is not the bitstream 
downloaded to FPGA because it contains hardware only. 
At the same time, on the software side, all needed 
software components, like drivers or operating system 
need to be specified as well.  Based on these definition 
and hardware components definition, EDK can generate 
libraries for this system which is later linked to object files 
compiled from application code. The result is an ELF file. 
The detailed hardware and software flow is described in 
the following section. 

The last step is to integrate software and hardware.  
Xilinx provides a tool called data2mem which can insert 
the binary software code in the ELF file into the bitstream 
generated from hardware flow. The setting of location and 
inserting method is already extracted during hardware 
flow. The resulting bitstream contains both hardware and 
software. It can therefore be downloaded into FPGA to 
run and debug. 

 

3.2 Hardware Design Flow 

 
The hardware system is defined on the component 

level with a Xilinx proprietary language in a .MHS file 
[3]. Basically it lists all components of the system, 
parameters and interconnections. A component can be a 
processor, a bus, a memory controller, a memory block, 
some peripheral or a custom hardware component. In 
EDK, Xilinx provides libraries for the Microblaze 
processor as well as a rich set of bus, memory and 
peripherals. In most of cases, it’s enough to build a 
system. Most of them are provided in a netlist with a 

wrapper provided. Connections can be defined on both 
bus level and port level. On bus level, a group of signals 
are connected together. It’s always preferable if possible. 
On port level, a signal is connected one by one. Every 
connection is called a port and defined a port name. For 
all memory components or memory-mapped peripherals, 
it’s necessary to specify an address range. The next step is 
to synthesize. All components, both Xilinx provided and 
customized are synthesized together to generate a netlist 
for the whole system. Afterwards, the designer can start to 
implement and he can generate a bitstream consisting of 
the hardware configuration. A few more files are 
generated after synthesis, for instance, a memory mapping 
file. They are used for the software flow and the system 
flow later.  

It’s also practical to extend EDK by customized 
hardware components. To define a new component, the 
designer needs to specify the interface as well as the 
component entity. In EDK, there is a tool to generate the 
component template and the bus interface. Except for 
editing MHS file manually, there is a GUI interface, 
called “Base system generator” to generate XHS file for a 
simple system.  For a multiprocessor system or complex 
system, it can be used as a good starting point. 

 

3.3 Software Design Flow 

 
The software is defined in a similar way. At the top 

level, components are specified.  Designers can also 
specify bootstrap, operating system, file system, network 
stack, drivers and board support package if necessary. If 
some components are not provided by Xilinx, it’s 
designer’s responsibility to write them. Normally it’s no 
longer written as a component like in hardware flow. It 
can be part of the application code.  

In EDK package, Xilinx provides an alternative way to 
develop software with Eclipse initiated by IBM. Eclipse is 
nowadays becoming more and more popular and 
somehow industry standard of development environment. 
The Eclipse tool in EDK has been already customized for 
Microblaze processor or PowerPC and ready to use. The 
compiler and linker in EDK is a customized version of 
gcc tool chain. All gcc tools are available with mb- prefix. 
In some cases, especially in multiprocessor system, it’s 
necessary to specify linkscripts to define heap and stack 
size, mapping of different component.  

 

3.4 Debugging 

 
After downloading the bitstream to the FPGA board, 

debugging starts. It’s important and usually takes most of 
the design time. There are three ways of debugging, 
hardware debugging, software debugging and co-
debugging.   



For hardware debugging, there is a tool from Xilinx 
called Chipscope [8]. Basically Chipscope is an on-chip 
logical analyzer plus a user interface on PC. It can record 
timing information of multiple connections on chip. This 
information is read by the PC program afterwards via the 
JTAG port of the FPGA. A variety of triggers is available. 
The depth of trace is actually limited by the available 
memory on FPGA. To use Chipscope, the first step is to 
add a Chipscope component in the MHS file and to 
specify the connections. Normally at least two Chipscope 
components are required, chipscope_icon and 
chipscope_ila.  The first one is the Chipscope controller 
and interface to the JTAG chain. The other one is the 
analyzer itself. The trace pins of the analyzer need to be 
connected to the ports to trace. After a bitstream is 
downloaded into the FPGA, the designer can start 
Chipscope Analyser on PC. This program is the interface 
to the user. It shares the JTAG connection with EDK and 
gets connected to the on-chip chipscope_icon 
automatically. By setting the necessary trigger condition, 
the designer can trace the signal he is interested in. 
Because the designer needs to go through the whole 
hardware flow if he adds some signals to trace, it’s better 
to connect all possible signals to Chipscope as long as 
there is enough area left on the FPGA.   

For software debugging, Xilinx provides a customized 
tool based on GNU gdb. To debug, simply start XMD, a 
backend server for gdb. After it connects to on-chip 
processor via JTAG, start gdb. Then you have full control 
of the processor. A customized version of Insight, a 
graphical shell of gdb is also available. Designers can also 
debug with Eclipse with a better interface. However, the 
mechanism is the same. To use gdb, it’s necessary to 
enable the hardware debug module of the Microblaze 
processor. The debug module is connected to the JTAG 
interface of the FPGA and connected to XMD finally. For 
multiprocessor debugging, it’s necessary to enable the 
debug module to every processor of interest.  When 
starting XMD, you can choose the processor you like to 
debug and attach to it. 

An easy alternative for software debugging is to add 
“printf “inside the software code. The information is 
dumped to a UART. The disadvantages are (a) printing on 
UART is slow; (b) only one processor can dump via 
UART due to the conflict of UART drivers between 
processors. 

Co-debugging is often the most difficult part. In 
general we need to use Chipscope and gdb together. 
Moreover, designers need to synchronize hardware tracing 
and software debugging. He can use software to trigger 
Chipscope tracing and read the tracing data. 

 

4. Interconnection Exploration 
 

On-chip interconnection between processors is getting 
more and more important as the technology goes to deep-
submicron because wires become dominant in delay and 
energy consumption. Four types of interconnections are 
implemented and compared afterwards [9].  

 

4.1 Bus Interconnection 

 
An easy way to connect four processors is via a bus. 

Xilinx provides OPB bus with arbitration. All processors, 
external memory and peripherals can just be connected to 
the OPB bus and it works. The hardware architecture of 
four-processor system connected by bus is as follows. 

 

 
Fig.7. Hardware architecture of four-processor system 

connected by bus 
 
The bus is shared by four processors, peripherals and 

external memory. Therefore it’s a bottleneck of the 
system. It’s very difficult for four processors to archive 
full-parallel running with bus interconnection. It may be 
used for a starting point for multiprocessor platform 
design.  

 

4.2 Dual Port Memory Interconnection 

 
Because all on-chip memory blocks on Xilinx FPGA 

are dual port memories, it’s easy and efficient to employ 
dual port memory as communication channel between 
processors. The hardware and software architecture of 
four-processor system connected by dual port memory 
blocks is as follows. 

 
 



  
Fig.8. Hardware architecture of four-processor system 

connected by dual port memory blocks 
 

 
Fig.9. Software architecture of four-processor system 

connected by dual port memory block 
 
Similar to the general architecture, every processor has 

two LMB buses, I-LMB bus and D-LMB bus. However, 
the data LMB bus here is connected to two dual port 
memory blocks in addition to data memory block. Each 
port of every dual memory block is connected to the data 
LMB bus of two different processors and therefore 
constitutes a communication channel. Every dual port 
memory is assigned to its dedicated address space as well. 
Processors can access dual port memory via normal 
memory access. The access is one-cycle-access and 
predictable because it’s connected to LMB bus.  

There is no inter-processor synchronization directly 
supported by dual port memory interconnection. It needs 
to be implemented through additional code, for instance, a 
flag. A flag can be a word in dual port memory. The 
pseudo code for a binary flag manipulation is as follows. 
If the flag is set more than once before it’s cleared, it’s 
only counted as once. 

 
#define FLAG_UNSET 0 
#define FLAG_SET  1 
 
void flagSet (int* flag) { 
 *flag++; 
 } 
 
flagClear (int* flag) { 
 *flag=0; 
} 
 

flagWait (int* flag) { 
 for (;;*flag) dummy_op(); 
} 

  
The flag provides one-directional synchronization. If 

two-directional synchronization is needed, two flags can 
be used.  The advantage of this implementation is 
simplicity. In fact it’s quite straightforward. The 
disadvantage is that it can lock the processor and consume 
unnecessary energy because processor is still running 
when waiting for flag (busy-wait). An alternative is to 
design an additional hardware handshake component for 
synchronization. 

 

4.3 FIFO Interconnection 

 
Another often-used communication channel in a 

multiprocessor system is a FIFO.  Compared to the last 
implementation, dual port memory blocks are replaced by 
FIFOs. The hardware and software architecture of four-
processor system connected by FIFO is as follows. 
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Fig.10. Hardware architecture of four-processor system 

connected by FIFO 
 

 
Fig.11. Software architecture of four-processor system 

connected by FIFO 
 
FIFO is connected to processor via FSL bus. So there 

are two more buses for every processor, FSL master and 
FSL slave. FSL has build-in FIFO capacity. It’s an ideal 
solution for FIFO implementation. Furthermore, there is 
hardware synchronization mechanism build in which is 
easy and efficient. If there is no data in the FIFO, the 
processor can be stopped without any extra energy 



consumption.  
In software, DPRAM driver is replaced by FIFO 

driver, which provides the same communication and 
synchronization mechanism.  The partitioning and 
architecture of the application code is intact.  

 

4.4 DMA Interconnection 

 
DMA controller has its advantage in multiprocessor 

systems and is getting more and more deployed [10]. 
Compared to dual port memory and FIFO, it’s an active 
component. So it can move data in parallel to processors 
without any attention from processor. Furthermore, all 
memory blocks on Xilinx FPGA are dual port memory 
blocks. That means the DMA controller can be simple and 
efficient because there is no need for complex arbitration 
circuit. The hardware and software architecture of four-
Microblaze system connected by FIFO and DMA is as 
follows.  

 

 Fig.12. Hardware architecture of four-processor system 
connected by FIFO and DMA 

 

 Fig.13. Software architecture of four-processor system 
connected by FIFO and DMA 

 
Compared to the previous system, the FIFO between 

processor 0 and processor 1 is replaced by a DMA 
controller. The DMA controller has two sets of interfaces, 
to processor 0 and processor 1 respectively. For each 
interface, there is a memory bus connected directly to 

local data memory of the processor. It reads directly from 
the local data memory or writes directly to it. Besides that, 
the processor can configure and read back status via FSL 
master and slave bus. There is one channel inside the 
DMA controller. The processor only needs to set starting 
address, ending address, size of data block and go. It can 
move data autonomously. No CPU intervention need. 
After data is moved, a status byte can be read back by 
processor to indicate the result. Synchronization is also 
provided by controller and if no data moved by DMA, the 
processor can stop as well. 

The software is similar to software in the previous 
system. The only modification is that DMA driver is 
added for the code running on processor 0 and 1. 
However, FIFO driver on the two processors have to be 
kept because there is still FIFO connection to other 
processors. 

 

5. Conclusions 
 

Fast design of high performance embedded systems 
based on soft multiprocessor cores with off-the-shelf tools 
is feasible. The tools and the flow are efficient. The 
software flow can be separated from the hardware flow. 
So a software update doesn’t need re-implementing the 
whole chip. Most of the software code can be reused on 
the multiprocessor platform while it may require some 
modification for the programming model. Design cost and 
time can be significantly reduced. 

 
There is a trade-off between different types of on-chip 

interconnections and therefore they should be deployed 
depending on application. (a) a bus is easiest to implement 
but poor in performance. It’s not scalable either. It may be 
used for fast system prototyping and verification; (b) dual 
port memory is easy to implement. It’s efficient and 
supports bidirectional communication. The disadvantage 
is that its resource consuming, inflexible due to the fixed 
topology, not scalable and that it needs an additional 
synchronization mechanism. (c) FIFO is also easy to 
implement and it uses build-in synchronization 
mechanism. But it’s inflexible due to the fixed topology 
and not scalable either. Furthermore it’s less efficient 
because it requires the processor to copy data into the 
FIFO. (d) DMA controller is flexible, scalable, and 
efficient. The controller actually can move data in parallel 
to processor. The disadvantage is the complexity of the 
controller. 

Because of the after-manufacturing programmability of 
FPGA, the best interconnection is a combination of these 
interconnection types in a topology that targets for the 
application.  
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