
Replacing the SPARC-based core of the Leon3 HDL microprocessor model 
with a MIPS-based core.

Arvanitakis Ioannis Mamalis Dimitrios
jarvanitakis@gmail.com dimitris.mamalis@gmail.com

Abstract

The  aim of  this  study  is  the  creation  of  a  MIPS  
architecture  microprocessor  with  full  potential  of  
operating  and  controlling  its  functions,  and  its  
implementation in a Field-Programmable Gate Array  
(FPGA). In order for this to become possible, we relied  
on  the  already  implemented  SPARC  architecture  
microprocessor,  Leon3  by  Gaisler  Research,  which  
provides adequate functional units that add potentials  
missing  from  the  implemented  open  source  MIPS  
models. 

At  first,  the  detailed  operation  of  the  two  
microprocessors  is  presented  and  we  conclude  in  
composing a flexible microprocessor, in which the good  
functionality  of  Leon3  (caches,  AMBA  bus  etc.)  is  
combined with the advantages of the MIPS instruction  
set  architecture.  The  final  circuit  is  granted  in  full  
compatibility  with  the  FPGA  implementation  circuit  
models.  This  microprocessor  can  be  used  in  various  
applications and provides a lot of potential for further  
development for educational and research purposes.

1. Introduction

The reason for this study was the lack observed in 
the  existence  of  MIPS  architecture  models  of  open 
source and good functionality. Most models which are 
freely provided have inadequate potential of operating 
their functions.

We  worked  on  a  complex  processor  model,  like 
Leon3  and  we  successfully  replaced  the  SPARC 
architecture core with an MIPS architecture core, based 
on  the  MIPS789  model  which  is  freely  available  in 
verilog-2001 hardware description language.

The complexity of this study lies in the difficulty of 
adapting  a  fully  functional  processor  to  a  core 
architecture  which,  although  at  first  seems  to  be  of 
similar philosophy (both of RISC type), proves in fact 
to  handle  very  differently  its  interconnection  to  the 
elements outside the core, which are necessary for its 
operation.

Such  elements  are  for  example  the  caches,  the 
register file and the AMBA bus through which the main 
memory (RAM) and the peripheral devices controllers 
are interconnected.

The final outcome of the study is a functional MIPS 
processor programmed in FPGA.

2. Instruction set architecture

The instruction set  architecture  is  a  list  of  all  the 
commands that a processor can execute. There are two 
basic  types  of  such  architecture:  CISC  (Complex 

Instruction  Set  Computing)  and  RISC  (Reduced 
Instruction  Set  Computing).  In  CISC we encounter  a 
large  number  of  complex  instructions  which  are 
executed  in  more  than  one  machine  cycles.  On  the 
contrary, in RISC the instructions are fewer, simple and 
executed in one machine cycle.

Table 1: Basic features of CISC and RISC 
architectures.

CISC RISC
Emphasis  on 
hardware

Emphasis on software

Multi-clock 
instructions

Single-clock 
instructions

Embedded  LOAD 
and STORE

Independent  LOAD 
and STORE

Small  code size,  low 
cycles per second

Large code size,  high 
cycles per second

Transistors  for 
decoding  complex 
instructions

More  transistors  on 
registers

2.1. RISC Architecture: SPARC vs. MIPS

In this paragraph, we will make a brief reference to 
the two different  models of RISC architecture,  which 
we are going to deal with later in this study.

Starting  with  the  SPARC  architecture  (Scalable 
Processor  Architecture),  we should mention the  basic 
structures  of  a  SPARC  processor.  This  includes  an 
integer  unit  (IU),  a  floating-point  unit  (FPU)  and, 
optionally, a co-processor (CP). Each unit has its own 
registers.  The SPARC instructions can be categorized 
into six  groups:  load/store,  integer  arithmetic,  control 
transfer,  register/record  control,  FPU  functions,  CP 
functions.  Special  procedure  call  instructions  use  the 
windows organization of the IU register file.

Respectively,  in  MIPS  architecture,  the  processor 
includes the core,  an FPU and optionally a CP. Each 
unit has also its own registers. The MIPS instructions 
are categorized based on their pattern into three major 
groups:  the  R-type  instructions  with  solely  direct 
register  operands,  the  I-type  instructions  with  an 
immediate operand or offset  and the J-type which are 
jump instructions with direct address operand.

In both architectures no instruction can be more than 
32-bit  wide,  since  every instruction  must  fit  in  the 
pipeline and be completed in a single-clock cycle.



3. Leon3 Microprocessor

In this paragraph, we are going to present in brief 
the  structure  and  the  characteristics  of  Leon3 
microprocessor, with which we are going to deal.

Leon3 is an open-source implementation of a 32-bit 
microprocessor  in  VHDL  hardware  description 
language.  Leon3  model  is  designed  for  embedded 
applications.  Its  basic  features  are  the  seven  pipeline 
stages,  and  the  separate  units  of  multiplication  and 
division, floating point, memory management unit and 
MAC  function  unit.  Also,  it  includes  implemented 
interfaces  for  AMBA 2.0  AHB bus,  coprocessor  and 
on-chip  debugging.  The  integer  unit,  the  general 
purpose register  file,  the caches  and their  controllers, 
along with the floating point unit and the coprocessor 
are all regarded as the processor’s core.

The integer unit is what interests us the most, since 
it is here that both the Leon3 pipeline structure and the 
cache communication are implemented. 

The pipeline is implemented in the following seven 
stages:  Instruction  Fetch,  Decode,  Register  Access, 
Execute, Memory, Exception, Write.

The cache subsystem is implemented on the basis of 
Harvard  architecture,  in  two  separate  cache  units  of 
instruction and data.

Picture 1. Leon3 core diagram.

4. The MIPS789 microprocessor

The  MIPS789  microprocessor  is  freely  available 
through the OpenCores community. It is a core written 
in  verilog-2001  hardware  description  language.  It 
supports almost every MIPSI instruction with a pipeline 
structure of five stages.

It  consists  of  the  mem_array  and  mips_sys  units. 
The  mem_array  is  a  unified  external  memory  of 
instructions and data and the mips_sys contains the core 
and  the  coprocessor.  An elementary  register  file,  the 
interrupt controller and a data memory, which operates 
as  a  vestigial  data  cache,  are  all  implemented  in  the 
mips_sys unit.

From the aforementioned units, we are solely using 
the core, and for the rest we rely on the functionality of 
Leon3.

It  is  worth  noting  that  the  MIPS789  pipeline 
mechanism differs  from the  typical  pipeline  structure 
which was developed by John L. Hennesy’s team and is 
used  in  the  MIPS  models.  More  specifically,  the 
MIPS789 has  implemented a unified instruction fetch 
and decode stage. The register read stage follows the 
previous  one  and  it  is  not  done  along  with  the 
instruction  decode.  Finally,  the  branch  control  is 
incorporated  in  the  register  read  stage  and  not  the 
instruction execution stage.

Picture 2. MIPS789 core.

5.  Conversions  and connection  of  the  two 
microprocessors.

The  targets  and  modifications  on  the  MIPS789 
structure  will  be  briefly  presented  below.  The  basic 
target  is to use only the absolutely necessary units of 
MIPS  architecture.  As  a  result,  the  systems  of  the 
vestigial cache, the coprocessor as well as the register 
file were removed. The MIPS architecture core which 
came up, uses the cache unit of Leon3 itself, as well as 
its register file, without making any alterations in their 
structure.  In  order  for  something like that  to  become 
feasible, it was necessary to study the internal structures 
of the MIPS789 and Leon3, the signals they generate, 
the timing of the overlapping stages and plenty of other 
problems which arise during the modification of all the 
above.  Finally,  the  procedure  of  connecting  the  two, 
already modified, systems will be described.



5.1 Units of data and instructions cache

As  it  was  briefly  outlined  above,  the  MIPS789 
contains a unit  of  vestigial  data cache.  This unit  was 
removed and the suitable connections were created, so 
that the final core solely uses the instruction and data 
cache  of  the  Harvard  architecture  that  Leon3 has.  In 
tables 2 and 3 some of the most important signals which 
were modified or cut off are presented.

Table 2. I-cache signals
LEON

MIPS
Short 

Description

I-cache 
Input

inull 0
Instruction 

Nullify
rpc pc_next Raw pc

fpc zz_pc_o Fetch pc

fbranch branch
Instruction 

branch

rbranch branch
Instruction 

branch

fline
ifline = 
29'b0

Flush line 
offset

flush 0
Flush 
icache

flushl 0 Flush line
I-cache 
Output

data zz_ins_i Data type

set iset
Set data 

type

hold hold
Hold when 

ready

flush --
Flush in 
progress

mds imds
Memory 

data strobe
idle -- Idle mode

Table 3. D-cache signals

LEON MIPS
Short 

Description

D-cache 
Input

asi asi_code
Address 

space 
identifier

maddress alu_ur
Memory 
address

eaddress eaddr = 32'b0
Execute 
Address

edata dmem_data_ur
Execute 

Data
size size Data Size

enaddr dmem_ctl_ur(2)
Enable 
Address

nullify 0 Nullify

lock dmem_ctl_ur(4) Lock cache

read dmem_ctl_ur(1) Read cache

write dmem_ctl_ur(3) Write cache

flush 0 Flush Cache

flushl 0 Flush line

dsuen dmem_ctl_ur(0) DSU enable

D-cache 
Output

data dout Data type

set dset
Set data 

type
hold hold Hold cache

mds dmds
Memory 

data strobe
idle -- Idle mode

5.2. Coprocessor unit

Following  the  same  rationale,  the  MIPS789 
coprocessor unit was removed and its signals were cut 
off,  since  the  final  core  should  be  able  to  use  the 
interconnection  for  coprocessor  units  that  Leon3 
provides.

5.3. Register file

Subsequently,  the  MIPS789  register  file  was 
removed, in order to be replaced by the Leon3 register 
file. A basic adaptation made was the modification of 
the  input  signals  from  8-bit  to  5-bit.  This  occurred 
because the MIPS does not use register windows, but a 
fixed file of 32 registers.

The following table presents the correspondence of 
the Leon3 register file signals with those of the MIPS 
core.

Table 4. Register file signals.
LEON MIPS Σύνηομη 

Πεπιγπαθή 
Input Wdata Data Write Data 

Waddr Wraddress Write 
Address 

we wren Write 
Enable 

raddr1 rd_address_a Read 
Address 

re1 1 Read 
Enable 

raddr2 rd_address_b Read 
Address 

re2 1 Read 
Enable 

rclk clk Read Clock 

wclk clk Write 
Clock 

Output rdata1 qa Read Data 
rdata2 qb Read Data 

5.4. Instruction register

The  lack  of  a  register  which  could  maintain  the 
instruction coming to the core was creating problems to 
the timing of the core and the caches. Therefore, such a 
register  was  added,  controlled  by  the  same  control 
signals as the caches. The remaining registers are also 
using these signals, in order to achieve the best timing 
possible. 



Picture 3. Instruction register.

5.5. Data hazard control

During  the  study  of  the  MIPS789  pipeline,  we 
noticed a wrong implementation of the processor stall 
mechanism  in  the  case  of  data  hazards.  More 
specifically,  the  read-after-write  dependence  in  the 
event  that  two  consecutive  instructions  are  using  the 
same register,  when the first  instruction is  a  memory 
load, was not being recognized. Thus, we were led to 
the  addition  of  extra  control  to  detect  and  correctly 
handle such cases.

Picture 4. Data hazard control unit.

5.6. Connection of the two projects

As  it  has  already  been  mentioned,  the  two 
processors are written in different hardware description 
languages. In order to connect them in a joint project 
file, it was necessary to have a VHDL top-file, where 
the mapping of all the in-between signals is done, and 
to create the suitable VHDL components.

6.  Simulation,  debugging and  composition 
of the final project

For  the  final  simulation  and  debugging  of  the 
project,  we  relied,  as  much  as  possible,  on  the 
simulation techniques  available  for  the  Leon3 model. 
After studying its testbenches, we concluded that they 
initialized the processor and booted the programs to be 
executed through two srec files. These are ASCII data 
files of a binary coding system. The first file, prom.srec, 
contains the processor’s  initialization code.  This code 

was  modified  properly,  to  be  compatible  with  the 
MIPSI instruction set. The desired execution code was 
placed in a similar coding in the second file, sdram.srec. 

Subsequently,  these  files  together  with  the 
processor’s final layout, are loaded and executed with 
the Modelsim 6.3f program. There, one can observe the 
amount of signals produced in the timeline. By giving 
suitable parts of critical code, the correct operation of 
the  microprocessor  we  created  is  confirmed.  In  the 
following  paragraphs,  we  are  going  to  give  in  brief 
some examples of executing critical instructions. This is 
about a general snapshot of an execution, an execution 
of  a  logical  instruction,  of  a  loading  instruction  and 
finally, of a branch instruction.

6.1. General snapshot of execution

In  picture  5,  some  of  the  most  important  signals 
during  the  processor’s  boot  and  the  execution  of  the 
first two instructions of prom.srec code can be noticed. 
The  initial  signal  values  and  their  alternations  are 
shown in this particular snapshot. More specifically, the 
clk has a period of 25ns (that is frequency of 40MHz) 
and we can see the correct signal change concerning the 
pc (pc_next, zz_pc_o), the consecutive changes of the 
signals  concerning  each  instruction  word  (zz_ins_i, 
zz_ins_o) and the register file access signals. Most of 
these signals will be analysed in detail in the following 
paragraphs, where their functionality per instruction is 
shown.

It  is  worth referring to the case of signal  hold (of 
negative logic),  which takes value from the caches in 
order to stall the processor in case of miss. Here, it is 
clearly shown that the instructions pass through and the 
pc changes  are  being done during the time when the 
hold has the value “1”. When its value is “0”, nothing 
happens in the processor’s core! 

Picture 5. General snapshot of execution.



6.2. Snapshot of executing a logical instruction

In this paragraph we are going to follow the process 
of executing an instruction 

ori $t0, $t0, 0xƒ

which is coded in the hexadecimal 0x3508000f.
The  instruction  reaches  the  rising  of  signal  hold 

through the ins_i signal in the secode stage. During the 
fall of hold the relevant signals are produced (picture 6). 
More  specifically,  as  demonstrated  in  picture  8,  the 
instruction  following  the  register  file  access  has 
successfully  written  into  register  8  ($t0)  the  value 
0x0081000F after three pipeline stages and with the use 
of  forwarding,  given  the  fact  that  the  previous 
instruction produces the value 0x810000 for the same 
register.  The  forwarding  mechanism  is  portrayed  in 
picture  7,  where,  through  the  fw_alu  and  the  ext_i, 
which is the immediate operand,  the result  of the alu 
(alu_ur_o)  is  the  correct  result  and  this  is  what  is 
written into register 8.

Picture 6. Arrival of the instruction ori $t0, $t0, 
0xf at the decode stage and its execution.

Picture 7. Forwarding the value of register 8 
for the instruction ori $8, $8, 0xf.

Picture 8. Accessing the register file for writing 
by the instruction ori $t0, $t0, 0xf.

6.3. Snapshot of executing a load instruction

The next case is that of a load instruction

lw $t1, 0($t0)

which  reaches  the  core  encoded  in  the  hexadecimal 
0x8d090000.

In this case, the concern is on different signals, such 
as  the  load_o  signal,  which  indicates  that  a  load 
instruction  preceded  and  which  passes  through  the 
hazard control unit from the decode stage, as well as the 
rt_o  signal,  which  carries  the  address  of  the  register 
where the loading will take place. In picture 9 we see 
the  load_o  signal  having  already  taken  the  value  ‘1’ 
from the decode stage and through the hazard unit  is 
transferred  to  the  next  pipeline  stage,  as  well  as  the 
value of the rt register (here $t1, which is 9). After the 
arrival of the next instruction (0x00000000), the load_o 
signal is back to ‘0’, and since the ensuing instruction is 
a nop, the control for read-after-write hazards does not 
stall the processor.

Picture 9. Arrival of the instruction lw $t1, 
0($t0) at the decode stage and at the hazard 

unit.

Following, in picture 10, we observe the activation 
of  enaddr,  eenaddr  and read signals,  which allow the 
read  of  the  memory  address,  which  was  earlier 
calculated by adding the offset with the content of the rs 
register.  The  value  written  into  register  9  is  ‘0’,  as 
shown.

Picture 10. Value read from the data cache.



6.4. Snapshot of executing a branch instruction.

Below, we are going to go over the execution of a 
branch instruction and in particular that of

bne $t0, $t1, <L> 

which  reaches  encoded  in  the  hexadecimal 
0x15090005.

The instruction  arrives  through the zz_ins_i,  it  is 
decoded  and  then  passes  through  the  control  of  the 
conditional  jump.  The  result  of  this  process  is 
transferred through the interior signal NET904, which 
takes the value ‘1’, since the condition is true. At the 
same time, the offset that must be added to the pc is 
transferred through the ext_o signal, so that the address 
where the control will be transferred can be calculated. 
As shown in picture 10, in the register file read stage, 
the  branch  signal  has  been  activated,  which  in  turn 
activates the fbranch/rbranch signals of the instruction 
cache,  so  that  the  proper  instruction  will  be  fetched 
next, as shown in picture 11. Moreover, we notice the 
conversion of the pc_next signal. Instead of increasing 
by  0x4,  gets  to  the  memory  address  where  the  <L> 
branch tag is found on the loaded code.

Picture 11. Execution of a bne $t0, $t1, <L> 
instruction.

Picture 12. Activation of the fbranch and 
rbranch signals in the instruction cache.

6.5. Composition process.

The  composition  of  the  final  project  and  its 
programming in FPGA was accomplished through the 
use of Xilinx tools, found in the Xilinx WebPack. After 
the successful  completion of the composition process, 
the final bit file is produced, with which we completed 
the FPGA programming on the gr-xc-3s1500 board by 
Pender Electronics, which was at our disposal. 

Picture 13. Successful FPGA programming 
with the final design on the IMPACT tool.

Device utilization summary: 
--------------------------- 
Selected Device : 3s1500fg456-4 
Number of Slices: 5139 out of 13312 38% 
Number of Slice F/Fs: 3177 out of 26624 11% 
Number of 4 input LUTs: 9703 out of 26624 36% 
Number used as logic: 9700 
Number used as Shift registers: 3 
Number of IOs: 264 
Number of bonded IOBs: 138 out of 333 41% 
IOB F/Fs: 158 
Number of BRAMs: 17 out of 32 53% 
Number of GCLKs: 2 out of 8 25% 
Number of DCMs: 2 out of 4 50% 
================================================= 
Timing Detail: 
-------------- 
================================================= 
Default period analysis for 'clk': 
Clock period: 28.538ns (frequency: 35.041MHz) 
Total number of paths / destination ports: 
3628222487 / 7957 
------------------------------------------------- 
Delay: 35.673ns (Levels of Logic = 26) 
Source: 3.cpu[0].u0/p0...s/q_4 (FF) 
Destination: l3.cpu[0].u0/cmem...r0 (RAM) 
Source Clock: clk rising 0.8X 

Destination Clock: clk rising 0.8X

Picture 14. Extract from the composition 
process report.

7. Conclusions and future work.

On  completing  this  study,  we  must  refer  to  the 
conclusions we reached, as well as to the possibilities 
for further development of the particular project.

The final project is fully functional and compatible 
with the implementation techniques for FPGA circuits. 
However, the problems we faced, created a lot of ideas 
for future projects, to the implementation of which we 
are eager to provide our assistance and our experience.

More  specifically,  there  is  the  possibility  of 
interconnecting with other functional units of the Leon3 
processor, such as the multiplier and division unit, the 
floating point unit and the coprocessor unit. Moreover, 
with the appropriate modifications, the interrupt control 
unit can be supported. One of the most useful parts of 

Device utilization summary: 
--------------------------- 
Selected Device : 3s1500fg456-4 
Number of Slices: 5139 out of 13312 38% 
Number of Slice F/Fs: 3177 out of 26624 11% 
Number of 4 input LUTs: 9703 out of 26624 36% 
Number used as logic: 9700 
Number used as Shift registers: 3 
Number of IOs: 264 
Number of bonded IOBs: 138 out of 333 41% 
IOB F/Fs: 158 
Number of BRAMs: 17 out of 32 53% 
Number of GCLKs: 2 out of 8 25% 
Number of DCMs: 2 out of 4 50% 
================================================= 
Timing Detail: 
-------------- 
================================================= 
Default period analysis for 'clk': 
Clock period: 28.538ns (frequency: 35.041MHz) 
Total number of paths / destination ports: 
3628222487 / 7957 
------------------------------------------------- 
Delay: 35.673ns (Levels of Logic = 26) 
Source: 3.cpu[0].u0/p0...s/q_4 (FF) 
Destination: l3.cpu[0].u0/cmem...r0 (RAM) 
Source Clock: clk rising 0.8X 
Destination Clock: clk rising 0.8X



Leon3  which  could  be  connected  is  that  of  the 
debugging unit, in fact which would make the project 
manageable more easily, with the Leon3 control tools, 
which  are  provided  freely  by  the  manufacturing 
company, provided that they become compatible with 
the MIPS architecture. In order to do so, the operation 
of  the  AMBA  bus  should  be  studied,  which  could 
possibly be replaced by an open source bus, in which 
case  a  certain  modification  for  the  use  in  MIPS 
environment is necessary.

Finally, an important object of possible pursuit is the 
adaptation of one of the operating systems provided by 
Leon3 and the board xc-3s1500 in MIPS code. This will 
allow  the  use  of  peripheral  units  supported  by  the 
Leon3  environment,  as  well  as  the  execution  of 
complex  benchmarks  for  the  evaluation  of  the  entire 
effort and the comparison with the SPARC architecture 
of the original system.
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