
Replacing the SPARC-based core of the Leon3 HDL microprocessor model
with a MIPS-based core.

Arvanitakis Ioannis Mamalis Dimitrios
jarvanitakis@gmail.com dimitris.mamalis@gmail.com

Abstract

The aim of this study is the creation of a MIPS
architecture microprocessor with full potential of
operating and controlling its functions, and its
implementation in a Field-Programmable Gate Array
(FPGA). In order for this to become possible, we relied
on the already implemented SPARC architecture
microprocessor, Leon3 by Gaisler Research, which
provides adequate functional units that add potentials
missing from the implemented open source MIPS
models.

At first, the detailed operation of the two
microprocessors is presented and we conclude in
composing a flexible microprocessor, in which the good
functionality of Leon3 (caches, AMBA bus etc.) is
combined with the advantages of the MIPS instruction
set architecture. The final circuit is granted in full
compatibility with the FPGA implementation circuit
models. This microprocessor can be used in various
applications and provides a lot of potential for further
development for educational and research purposes.

1. Introduction

The reason for this study was the lack observed in
the existence of MIPS architecture models of open
source and good functionality. Most models which are
freely provided have inadequate potential of operating
their functions.

We worked on a complex processor model, like
Leon3 and we successfully replaced the SPARC
architecture core with an MIPS architecture core, based
on the MIPS789 model which is freely available in
verilog-2001 hardware description language.

The complexity of this study lies in the difficulty of
adapting a fully functional processor to a core
architecture which, although at first seems to be of
similar philosophy (both of RISC type), proves in fact
to handle very differently its interconnection to the
elements outside the core, which are necessary for its
operation.

Such elements are for example the caches, the
register file and the AMBA bus through which the main
memory (RAM) and the peripheral devices controllers
are interconnected.

The final outcome of the study is a functional MIPS
processor programmed in FPGA.

2. Instruction set architecture

The instruction set architecture is a list of all the
commands that a processor can execute. There are two
basic types of such architecture: CISC (Complex

Instruction Set Computing) and RISC (Reduced
Instruction Set Computing). In CISC we encounter a
large number of complex instructions which are
executed in more than one machine cycles. On the
contrary, in RISC the instructions are fewer, simple and
executed in one machine cycle.

Table 1: Basic features of CISC and RISC
architectures.

CISC RISC
Emphasis on
hardware

Emphasis on software

Multi-clock
instructions

Single-clock
instructions

Embedded LOAD
and STORE

Independent LOAD
and STORE

Small code size, low
cycles per second

Large code size, high
cycles per second

Transistors for
decoding complex
instructions

More transistors on
registers

2.1. RISC Architecture: SPARC vs. MIPS

In this paragraph, we will make a brief reference to
the two different models of RISC architecture, which
we are going to deal with later in this study.

Starting with the SPARC architecture (Scalable
Processor Architecture), we should mention the basic
structures of a SPARC processor. This includes an
integer unit (IU), a floating-point unit (FPU) and,
optionally, a co-processor (CP). Each unit has its own
registers. The SPARC instructions can be categorized
into six groups: load/store, integer arithmetic, control
transfer, register/record control, FPU functions, CP
functions. Special procedure call instructions use the
windows organization of the IU register file.

Respectively, in MIPS architecture, the processor
includes the core, an FPU and optionally a CP. Each
unit has also its own registers. The MIPS instructions
are categorized based on their pattern into three major
groups: the R-type instructions with solely direct
register operands, the I-type instructions with an
immediate operand or offset and the J-type which are
jump instructions with direct address operand.

In both architectures no instruction can be more than
32-bit wide, since every instruction must fit in the
pipeline and be completed in a single-clock cycle.

3. Leon3 Microprocessor

In this paragraph, we are going to present in brief
the structure and the characteristics of Leon3
microprocessor, with which we are going to deal.

Leon3 is an open-source implementation of a 32-bit
microprocessor in VHDL hardware description
language. Leon3 model is designed for embedded
applications. Its basic features are the seven pipeline
stages, and the separate units of multiplication and
division, floating point, memory management unit and
MAC function unit. Also, it includes implemented
interfaces for AMBA 2.0 AHB bus, coprocessor and
on-chip debugging. The integer unit, the general
purpose register file, the caches and their controllers,
along with the floating point unit and the coprocessor
are all regarded as the processor’s core.

The integer unit is what interests us the most, since
it is here that both the Leon3 pipeline structure and the
cache communication are implemented.

The pipeline is implemented in the following seven
stages: Instruction Fetch, Decode, Register Access,
Execute, Memory, Exception, Write.

The cache subsystem is implemented on the basis of
Harvard architecture, in two separate cache units of
instruction and data.

Picture 1. Leon3 core diagram.

4. The MIPS789 microprocessor

The MIPS789 microprocessor is freely available
through the OpenCores community. It is a core written
in verilog-2001 hardware description language. It
supports almost every MIPSI instruction with a pipeline
structure of five stages.

It consists of the mem_array and mips_sys units.
The mem_array is a unified external memory of
instructions and data and the mips_sys contains the core
and the coprocessor. An elementary register file, the
interrupt controller and a data memory, which operates
as a vestigial data cache, are all implemented in the
mips_sys unit.

From the aforementioned units, we are solely using
the core, and for the rest we rely on the functionality of
Leon3.

It is worth noting that the MIPS789 pipeline
mechanism differs from the typical pipeline structure
which was developed by John L. Hennesy’s team and is
used in the MIPS models. More specifically, the
MIPS789 has implemented a unified instruction fetch
and decode stage. The register read stage follows the
previous one and it is not done along with the
instruction decode. Finally, the branch control is
incorporated in the register read stage and not the
instruction execution stage.

Picture 2. MIPS789 core.

5. Conversions and connection of the two
microprocessors.

The targets and modifications on the MIPS789
structure will be briefly presented below. The basic
target is to use only the absolutely necessary units of
MIPS architecture. As a result, the systems of the
vestigial cache, the coprocessor as well as the register
file were removed. The MIPS architecture core which
came up, uses the cache unit of Leon3 itself, as well as
its register file, without making any alterations in their
structure. In order for something like that to become
feasible, it was necessary to study the internal structures
of the MIPS789 and Leon3, the signals they generate,
the timing of the overlapping stages and plenty of other
problems which arise during the modification of all the
above. Finally, the procedure of connecting the two,
already modified, systems will be described.

5.1 Units of data and instructions cache

As it was briefly outlined above, the MIPS789
contains a unit of vestigial data cache. This unit was
removed and the suitable connections were created, so
that the final core solely uses the instruction and data
cache of the Harvard architecture that Leon3 has. In
tables 2 and 3 some of the most important signals which
were modified or cut off are presented.

Table 2. I-cache signals
LEON

MIPS
Short

Description

I-cache
Input

inull 0
Instruction

Nullify
rpc pc_next Raw pc

fpc zz_pc_o Fetch pc

fbranch branch
Instruction

branch

rbranch branch
Instruction

branch

fline
ifline =
29'b0

Flush line
offset

flush 0
Flush
icache

flushl 0 Flush line
I-cache
Output

data zz_ins_i Data type

set iset
Set data

type

hold hold
Hold when

ready

flush --
Flush in
progress

mds imds
Memory

data strobe
idle -- Idle mode

Table 3. D-cache signals

LEON MIPS
Short

Description

D-cache
Input

asi asi_code
Address

space
identifier

maddress alu_ur
Memory
address

eaddress eaddr = 32'b0
Execute
Address

edata dmem_data_ur
Execute

Data
size size Data Size

enaddr dmem_ctl_ur(2)
Enable
Address

nullify 0 Nullify

lock dmem_ctl_ur(4) Lock cache

read dmem_ctl_ur(1) Read cache

write dmem_ctl_ur(3) Write cache

flush 0 Flush Cache

flushl 0 Flush line

dsuen dmem_ctl_ur(0) DSU enable

D-cache
Output

data dout Data type

set dset
Set data

type
hold hold Hold cache

mds dmds
Memory

data strobe
idle -- Idle mode

5.2. Coprocessor unit

Following the same rationale, the MIPS789
coprocessor unit was removed and its signals were cut
off, since the final core should be able to use the
interconnection for coprocessor units that Leon3
provides.

5.3. Register file

Subsequently, the MIPS789 register file was
removed, in order to be replaced by the Leon3 register
file. A basic adaptation made was the modification of
the input signals from 8-bit to 5-bit. This occurred
because the MIPS does not use register windows, but a
fixed file of 32 registers.

The following table presents the correspondence of
the Leon3 register file signals with those of the MIPS
core.

Table 4. Register file signals.
LEON MIPS Σύνηομη

Πεπιγπαθή
Input Wdata Data Write Data

Waddr Wraddress Write
Address

we wren Write
Enable

raddr1 rd_address_a Read
Address

re1 1 Read
Enable

raddr2 rd_address_b Read
Address

re2 1 Read
Enable

rclk clk Read Clock

wclk clk Write
Clock

Output rdata1 qa Read Data
rdata2 qb Read Data

5.4. Instruction register

The lack of a register which could maintain the
instruction coming to the core was creating problems to
the timing of the core and the caches. Therefore, such a
register was added, controlled by the same control
signals as the caches. The remaining registers are also
using these signals, in order to achieve the best timing
possible.

Picture 3. Instruction register.

5.5. Data hazard control

During the study of the MIPS789 pipeline, we
noticed a wrong implementation of the processor stall
mechanism in the case of data hazards. More
specifically, the read-after-write dependence in the
event that two consecutive instructions are using the
same register, when the first instruction is a memory
load, was not being recognized. Thus, we were led to
the addition of extra control to detect and correctly
handle such cases.

Picture 4. Data hazard control unit.

5.6. Connection of the two projects

As it has already been mentioned, the two
processors are written in different hardware description
languages. In order to connect them in a joint project
file, it was necessary to have a VHDL top-file, where
the mapping of all the in-between signals is done, and
to create the suitable VHDL components.

6. Simulation, debugging and composition
of the final project

For the final simulation and debugging of the
project, we relied, as much as possible, on the
simulation techniques available for the Leon3 model.
After studying its testbenches, we concluded that they
initialized the processor and booted the programs to be
executed through two srec files. These are ASCII data
files of a binary coding system. The first file, prom.srec,
contains the processor’s initialization code. This code

was modified properly, to be compatible with the
MIPSI instruction set. The desired execution code was
placed in a similar coding in the second file, sdram.srec.

Subsequently, these files together with the
processor’s final layout, are loaded and executed with
the Modelsim 6.3f program. There, one can observe the
amount of signals produced in the timeline. By giving
suitable parts of critical code, the correct operation of
the microprocessor we created is confirmed. In the
following paragraphs, we are going to give in brief
some examples of executing critical instructions. This is
about a general snapshot of an execution, an execution
of a logical instruction, of a loading instruction and
finally, of a branch instruction.

6.1. General snapshot of execution

In picture 5, some of the most important signals
during the processor’s boot and the execution of the
first two instructions of prom.srec code can be noticed.
The initial signal values and their alternations are
shown in this particular snapshot. More specifically, the
clk has a period of 25ns (that is frequency of 40MHz)
and we can see the correct signal change concerning the
pc (pc_next, zz_pc_o), the consecutive changes of the
signals concerning each instruction word (zz_ins_i,
zz_ins_o) and the register file access signals. Most of
these signals will be analysed in detail in the following
paragraphs, where their functionality per instruction is
shown.

It is worth referring to the case of signal hold (of
negative logic), which takes value from the caches in
order to stall the processor in case of miss. Here, it is
clearly shown that the instructions pass through and the
pc changes are being done during the time when the
hold has the value “1”. When its value is “0”, nothing
happens in the processor’s core!

Picture 5. General snapshot of execution.

6.2. Snapshot of executing a logical instruction

In this paragraph we are going to follow the process
of executing an instruction

ori $t0, $t0, 0xƒ

which is coded in the hexadecimal 0x3508000f.
The instruction reaches the rising of signal hold

through the ins_i signal in the secode stage. During the
fall of hold the relevant signals are produced (picture 6).
More specifically, as demonstrated in picture 8, the
instruction following the register file access has
successfully written into register 8 ($t0) the value
0x0081000F after three pipeline stages and with the use
of forwarding, given the fact that the previous
instruction produces the value 0x810000 for the same
register. The forwarding mechanism is portrayed in
picture 7, where, through the fw_alu and the ext_i,
which is the immediate operand, the result of the alu
(alu_ur_o) is the correct result and this is what is
written into register 8.

Picture 6. Arrival of the instruction ori $t0, $t0,
0xf at the decode stage and its execution.

Picture 7. Forwarding the value of register 8
for the instruction ori $8, $8, 0xf.

Picture 8. Accessing the register file for writing
by the instruction ori $t0, $t0, 0xf.

6.3. Snapshot of executing a load instruction

The next case is that of a load instruction

lw $t1, 0($t0)

which reaches the core encoded in the hexadecimal
0x8d090000.

In this case, the concern is on different signals, such
as the load_o signal, which indicates that a load
instruction preceded and which passes through the
hazard control unit from the decode stage, as well as the
rt_o signal, which carries the address of the register
where the loading will take place. In picture 9 we see
the load_o signal having already taken the value ‘1’
from the decode stage and through the hazard unit is
transferred to the next pipeline stage, as well as the
value of the rt register (here $t1, which is 9). After the
arrival of the next instruction (0x00000000), the load_o
signal is back to ‘0’, and since the ensuing instruction is
a nop, the control for read-after-write hazards does not
stall the processor.

Picture 9. Arrival of the instruction lw $t1,
0($t0) at the decode stage and at the hazard

unit.

Following, in picture 10, we observe the activation
of enaddr, eenaddr and read signals, which allow the
read of the memory address, which was earlier
calculated by adding the offset with the content of the rs
register. The value written into register 9 is ‘0’, as
shown.

Picture 10. Value read from the data cache.

6.4. Snapshot of executing a branch instruction.

Below, we are going to go over the execution of a
branch instruction and in particular that of

bne $t0, $t1, <L>

which reaches encoded in the hexadecimal
0x15090005.

The instruction arrives through the zz_ins_i, it is
decoded and then passes through the control of the
conditional jump. The result of this process is
transferred through the interior signal NET904, which
takes the value ‘1’, since the condition is true. At the
same time, the offset that must be added to the pc is
transferred through the ext_o signal, so that the address
where the control will be transferred can be calculated.
As shown in picture 10, in the register file read stage,
the branch signal has been activated, which in turn
activates the fbranch/rbranch signals of the instruction
cache, so that the proper instruction will be fetched
next, as shown in picture 11. Moreover, we notice the
conversion of the pc_next signal. Instead of increasing
by 0x4, gets to the memory address where the <L>
branch tag is found on the loaded code.

Picture 11. Execution of a bne $t0, $t1, <L>
instruction.

Picture 12. Activation of the fbranch and
rbranch signals in the instruction cache.

6.5. Composition process.

The composition of the final project and its
programming in FPGA was accomplished through the
use of Xilinx tools, found in the Xilinx WebPack. After
the successful completion of the composition process,
the final bit file is produced, with which we completed
the FPGA programming on the gr-xc-3s1500 board by
Pender Electronics, which was at our disposal.

Picture 13. Successful FPGA programming
with the final design on the IMPACT tool.

Device utilization summary:

Selected Device : 3s1500fg456-4
Number of Slices: 5139 out of 13312 38%
Number of Slice F/Fs: 3177 out of 26624 11%
Number of 4 input LUTs: 9703 out of 26624 36%
Number used as logic: 9700
Number used as Shift registers: 3
Number of IOs: 264
Number of bonded IOBs: 138 out of 333 41%
IOB F/Fs: 158
Number of BRAMs: 17 out of 32 53%
Number of GCLKs: 2 out of 8 25%
Number of DCMs: 2 out of 4 50%
===
Timing Detail:

===
Default period analysis for 'clk':
Clock period: 28.538ns (frequency: 35.041MHz)
Total number of paths / destination ports:
3628222487 / 7957

Delay: 35.673ns (Levels of Logic = 26)
Source: 3.cpu[0].u0/p0...s/q_4 (FF)
Destination: l3.cpu[0].u0/cmem...r0 (RAM)
Source Clock: clk rising 0.8X

Destination Clock: clk rising 0.8X

Picture 14. Extract from the composition
process report.

7. Conclusions and future work.

On completing this study, we must refer to the
conclusions we reached, as well as to the possibilities
for further development of the particular project.

The final project is fully functional and compatible
with the implementation techniques for FPGA circuits.
However, the problems we faced, created a lot of ideas
for future projects, to the implementation of which we
are eager to provide our assistance and our experience.

More specifically, there is the possibility of
interconnecting with other functional units of the Leon3
processor, such as the multiplier and division unit, the
floating point unit and the coprocessor unit. Moreover,
with the appropriate modifications, the interrupt control
unit can be supported. One of the most useful parts of

Device utilization summary:

Selected Device : 3s1500fg456-4
Number of Slices: 5139 out of 13312 38%
Number of Slice F/Fs: 3177 out of 26624 11%
Number of 4 input LUTs: 9703 out of 26624 36%
Number used as logic: 9700
Number used as Shift registers: 3
Number of IOs: 264
Number of bonded IOBs: 138 out of 333 41%
IOB F/Fs: 158
Number of BRAMs: 17 out of 32 53%
Number of GCLKs: 2 out of 8 25%
Number of DCMs: 2 out of 4 50%
===
Timing Detail:

===
Default period analysis for 'clk':
Clock period: 28.538ns (frequency: 35.041MHz)
Total number of paths / destination ports:
3628222487 / 7957

Delay: 35.673ns (Levels of Logic = 26)
Source: 3.cpu[0].u0/p0...s/q_4 (FF)
Destination: l3.cpu[0].u0/cmem...r0 (RAM)
Source Clock: clk rising 0.8X
Destination Clock: clk rising 0.8X

Leon3 which could be connected is that of the
debugging unit, in fact which would make the project
manageable more easily, with the Leon3 control tools,
which are provided freely by the manufacturing
company, provided that they become compatible with
the MIPS architecture. In order to do so, the operation
of the AMBA bus should be studied, which could
possibly be replaced by an open source bus, in which
case a certain modification for the use in MIPS
environment is necessary.

Finally, an important object of possible pursuit is the
adaptation of one of the operating systems provided by
Leon3 and the board xc-3s1500 in MIPS code. This will
allow the use of peripheral units supported by the
Leon3 environment, as well as the execution of
complex benchmarks for the evaluation of the entire
effort and the comparison with the SPARC architecture
of the original system.

8. Bibliography.

1. David A. Patterson, John L. Hennessy: “Computer
organization and design – The hardware/Software Interface –
3rd Edition”, Morgan Kaufmann, 2005
2. John L. Hennessy, David A. Patterson: “Computer
Architecture – A quantative approach – 4th Edition”, Morgan
Kaufmann, 2007
3. Sandi Habinc: “Lessons Learned from FPGA
Developments”, Gaisler Research, 2002

4. Jiri Gaisler, Edvin Catovic, Marko Isomaki, Kristoffer
Glembo, Sandi Habinc: “Grlib IP Core User‟s Manual”,
Gaisler Research, 2008
5. Jiri Gaisler, Edvin Catovic, Sandi Habinc: “Grlib IP Library
User‟s Manual”, Gaisler Research, 2008
6. Jiri Gaisler, Marko Isomaki: “Leon 3 GR-XC3S-1500
Template Design – Based on GRLIB”, Gaisler Research, 2006
7. “GR-XC-3S-1500 Deve3lopment Board – User Manual”,
Gaisler Research/Pender Electronics, 2006
8. Jiri Gaisler Mailing List, sparc@yahoogroups.com
9. Lutz Buttelmann: “How to setup LEON3 VHDL simulation
with Modelsim”, 2007
10. “The SPARC architecture manual – version 8” SPARC
International Inc.
11. “Amba Specification, Rev, 2.0”, Arm Limited, 1999.
12. “ISE Release Notes and Installation Guide”, Xilinx Inc.
2004
13. “ISE In-Depth Tutorial” Xilinx Inc. 2004
14. “XST User Guide”, Xilinx Inc. 2004
15. “Fpga Editor Guide” Xilinx Inc. 2004
16. “Fpga Tutorial” http://www.fpga4fun.com
17. Miles J. Murdocca, Vincent P. Heuring: “Principles of
Computer Architecture”, 1999
18. Sivarama P. Dandamudi: “Guide to RISC Processors for
Programmers and Engineers”, Springer, 2005
19. “MIPS IV Instruction Set”, Revision 3.2, 1995
20. “Sparc 7 Instruction Set- Assembly Language Syntax”,
Atmel Inc., 2002
21. Dominic Sweetman: “See MIPS run Linux – Second
Edition”, Morgan Kaufmann, 2007
22. D. Nikolos: “Computer Architecture”, University of
Thessaly Publications, 2000.

