
Pepelatz MISC (zero edition)

About
Pepelatz MISC is a small education processor written in Verilog. It can be

used for learning HDLs or computer low-level structure.

Programmers architecture

Instruction
thread

Decoder

ALU PC

RAM BUS

ROM
BUS

Arithm
etic stack

C
all stack

Pepelatz is a processor with stack-based architecture. It has two stacks:

one for arithmetic operations and parameters and one for organization of
loops and procedures.

In current version both stacks are stored inside processor. Arithmetic
stack has 64 16-bite words, and call stack has 16.

Pepelatz has two buses: one for data and one for program. There is no
IO bus: IO ports (if they are needed) can be placed in data area.

Instruction thread (ITh) is a very important path of architecture. It is a
FIFO queue of commands. It is used as command cache.

Hardware

architecture

P
rocessor

Address
formatter

ram_adr

ram_input

ram_we

ram_data

RAM

System
controller

IO

ROM rom_adr

ram_ready

rom_data

Rom_ready

CLK

RST

Instructions
Each word (16 bites) in ITh is 3 5-bite instructions. All instructions have

the same size. Operands (if it is needed) are placed in the next words of
ITh. In this next I will name sets of 5-bite instructions commands.

The first bite in each command is operand flag. If it is on, an operand will
be loaded into stack without using special instruction.

Num Mnemonic Comment
00 add
01 sub
02 and
03 or
04 xor
05 shr
06 shl
07 drop SP--;

08 inc
09 dec
0A not
0B svap S0<=S1;S1<=S0
0C rot S0<S2;S2<=0
0D store Save value to memory. *Does not SP--!!!
0E setcall Push value from arithmetic stack to call stack.*
0F dropcall Drops call stack.*

10 const Loads a constant from ITh.
11 load Loads [S0] from memory.*
12 getcall Gets value from call stack. Does not drop call stack!
13 dup Duplicates S0.
14 dupd Duplicates S1 (to stack top).
15 isover Overflow control.
16 isneg Negate control.
17 nop

18 loop Starts current command from beginning.
19 loop1 Loads an operand and starts current command from

beginning.
1A skip Goes to the next command.
1B call Push PC into call stack and go to address
1C if if S0=0 then jmp
1D jump PC=S0
1E loopz If C[0]!=0, dec C[0] and starts current command from

beginning.
1F ifloop If C[0]!=0, dec C[0] and jmp.

Warring I. PC is a pointer to the next command, not instruction. Jump

and call is not jumping. Jumping will happen after the end of current
instruction or after skip command.

Warring II. After changing PC, operands will be read from the new
address!

Note I. After changing PC, ITh will be overwritten.

