
Project: Prj_12_DDR2
Purpose: DDR2-SDRAM at a Spartan-3A Board
DDR2-RAM: MT47H32M16 (64 MByte)
Date: 19.08.2011
Version: 7.0

Version: 7.0

Plattform: XILINX Spartan-3A

FPGA: XC35700A-FGG484

Language: VHDL

ISE: ISE-Design-Suite V:13.1

IP-Core: MIG V:3.6.1

Author: UB

Mail: Becker_U(at)gmx.de

first word : _____

> sorry for my bad english :-)

Moduls :

#######################################	#######################################	###############################				
# #	#	#	# #			
# DDR2-RAM : #	-# TOP_Modul_VHDL	#	-# Buttons_VHDL #			
# 512 MBit #	#	#	# #			
# #	#	#	###############			
#######################################	#	#				
	#	#	###############			
	#	#	# #			
	#	#	-# Clock_VHDL #			
	#	#	# #			
	#	#	###############			
	#	#				
#######################################	#	#	###################	##	#################	#
# #	#	#	#	#	#	#
# Input: #	#	#	<pre># DDR2_Control_VHDL</pre>	#	-# DDR2_READ_VHDL	#
# 4 buttons #	-#	#	#	#	#	#
# 4 switches #	#	#	-#	#	#################	#
# #	#	#	#	#		
############	#	#	#	#	#################	#
	#	#	#	#	#	#
#######################################	#	#	#	#	-# DDR2_Write_VHDL	#
# #	#	#	#	#	#	#
# Output : #	-#	#	#	#	#################	#
# 8 LEDs (Data) #	#	#	##################	##		
# 1 LED (Status) #	#	#				
#######################################	#	#	###################	####		
	#	#	-#	#		
#######################################	#	#	<pre># DDR2_RAM_CORE.vhd</pre>	#		
# Clock : #	-#	#	# MIG 3.6.1	#		
# 133 MHz #	#	#	# (27 files)	#		
# #	#	#	# + UCF-File	#		
#######################################	#######################	##	#################	####		

```
purpose :
======
> this project is a simple example how to implement the DDR2-SDRAM on a Xilinx FPGA Board
  (with the generated Code from the Xilinx MIG)
hint for using the DDR2-RAM:
> the complete DDR2_RAM_Core Files in this project are
  genaratet with the Xilinx MIG 3.6.1 tool
> MIG settings :
       - Typ = DDR2-SDRAM
       - Frq = 133MHz
       - Write Pipe Stages = 4
       - Memory Part = MT47H32M16XX-3 (for the Spartan-3A Board)
       - Data Width = 16
       - Data-Mask = Ja
       - SystemClock = Single-Ended
       - Signals at : Bank3 (complete) , Bank2 (V12)
       - Bank2 = System-Clock / Bank3 = Adrees-Control+Data+System-Control
       - all others : "Default"
> Hint : DDR2_RAM_CORE :
       - only the VHDL-Files from path
         "USer_Design/RTL" are used
       - the oter files generated from MIG
         are not necessary
> HINT : DDR2 UCF-File :
       - the settings in the UCF-File are very important
         for the correct timing and function of the RAM
       - i have downloaded the original UCF-File
         from Xilinx for the Spartan-3A Board
         from these adress :
         "http://www.xilinx.com/products/boards/s3astarter/reference_designs.htm"
       - a few changes are required (e.g. for the path)
Function of the Project :
_____
> Switch-0 (SW0) is the Reset-Switch (High = Reset)
> the "TOP_Modul" only routes the signals between the other Moduls
> the "Buttons_VHDL" debounce the switches und buttons
  and generate a "rising_edge" signal for the 4 Buttons
> the "DDR2_Control" has a state machine with these steps :
```

1. Init the RAM

4. Wait for a button signal

2. Automatic Write Sequenz (writes 16 Datawords each 64Bit)

3. Automatic Read Sequenz (reads the first Dataword with 64Bit from adress 0)

```
5b. Button-2 (south) -> decrement ROW-COunter
  5c. Button-3 (west) -> writes a single Datawort (64Bit) to the actual adress
  5d. Button-4 (east) -> reads a single Dataword (64Bit) from the actual adress
\gt the "DDR2_Control" also selects one Byte (from the 64Bit Dataword)
  - SW1 to SW3 are the MUX-Select-Pins :
        SW3=0 + SW2=0 + SW1=0 \rightarrow shows the Databits (D7...D0)
        SW3=0 + SW2=0 + SW1=1 \rightarrow shows the Databits (D15...D8)
        SW3=0 + SW2=1 + SW1=0 \rightarrow shows the Databits (D23...D16)
        SW3=0 + SW2=1 + SW1=1 \rightarrow shows the Databits (D31...D24)
        SW3=1 + SW2=0 + SW1=0 \rightarrow shows the Databits (D39...D32)
        SW3=1 + SW2=0 + SW1=1 \rightarrow shows the Databits (D47...D40)
        SW3=1 + SW2=1 + SW1=0 \rightarrow shows the Databits (D55...D48)
        SW3=1 + SW2=1 + SW1=1 \rightarrow shows the Databits (D63...D56)
        the selected Databits are shown on the 8 LEDs at the FPGA-Board
> the "DDR2_Read" has a state machine to read one Dataword (64Bit)
  from given adress
> the "DDR2_Write" has a state machine to write one Dataword (64Bit)
  to the given adress
Ram Data content after the automatic write sequenz :
______
> after the automtic write sequenz the content of the first 16 Datawords are :
ADR 0 = 0123456789ABCDEF
ADR 1 = 123456789ABCDEF0
ADR 2 = 23456789ABCDEF01
ADR 3 = 3456789ABCDEF012
ADR 4 = 456789ABCDEF0123
ADR 5 = 56789ABCDEF01234
ADR 6 to ADR 15 = 639CC6398C7318E7
Process after power on :
> after the RAM-INIT and writing of 16 Datawords
 the first RAM-Adress is reading and shown on the LEDs
> the buttons "north" and "south" changes the actuall adress pointer
> to read one adress use button "east"
> to write the Dataword "31CE629DC43B8877" use button "west"
RAM-Info:
> the size of the DDR2-RAM is 512MBit (64MByte)
```

5a. Button-1 (north) -> increment ROW-Counter

- > it is splitted in 4 Blocks (Banks)
 each Block has 8192 ROWs and 1024 COLs
 - a single Datacell is 16bit wide

4x8192*1024*16bit = 512MBit

- > the Bank-Adress needs 2Bit the ROW-Adress needs 13Bit the COL-Adress needs 10Bit
- > the Adresspointer looks like :

ADR = ROW & COL & BANK

the complete ADR-Pointer needs 25Bit

Restrictions in this project :

- > the "Burst-Mode" is fixed set to "4"
 whis this setting the Dataword is 64Bit wide
- > each read process reads 64Bit and each write process writes 64Bits
- > to avoid data fail the COL-Adress must increment
 and decrement by the value of "4"
 like (0,4,8,12...)

Speed:

- > a single read process (of 64Bit) needs 22 Clockcycles
 (at 133MHz -> 165 ns => 46 MByte/sec)
- > a single write process (of 64Bit) needs 25 Clockcycles
 (at 133MHz -> 188 ns => 40 MByte/sec)

last Hints :

- > this project is "from private"
 and not allowed for commercial use
- > this project is not free of bugs and i can not give a guarantee for any kind of error or damages
- > everyone is permitted to copy and modify
 this files
- > please give me a notice if you found some bugs

19.08.11 / UB