

FEATURES
Implements UDP, IPv4, ARP protocols
Zero latency between UDP and MAC layer

(combinatorial transfer during user data phase)
See simulation diagram below

Allows full control of UDP src & dst ports on TX.
Provides access to UDP src & dst ports on RX (user filtering)
Couples directly to Xilinx Tri-Mode eth Mac via AXI interface
Separate building blocks to create custom stacks
Easy to tap into the IP layer directly
Separate clock domains for tx & rx paths
Tested for 1Gbit Ethernet, but applicable to 100M and 10M

SIMULATION DIAGRAM SHOWING ZERO LATENCY ON RECEIVE

LIMITATIONS

Does not handle segmentation and reassembly
Assumes packets offerred for transmission will fit in a single
ethernet frame
Discards packets received if they require reassembly

Currently implementing only one ARP resolution slot
means only realistic to use for pt-pt cxns (but can easily extend
ARP layer to manage an array of address mappings

Doesnt always detect error situations (although these are flagged
as TODO in the code)

Doesnt currently double register signals where they cross between tx
& rx clock domain in a couple of places.

OVERALL BLOCK DIAGRAM

UDP_Complete_nomac

UDP TX bus

UDP RX bus

IP RX bus

Clocks &
reset

MAC TX bus

MAC RX bus

Our IP & MAC
addr

Arp & IP pkt
count

STRUCTURAL DECOMPOSITION

UDP TX bus

UDP RX bus

IP RX bus

Clocks &
reset

Our IP &
MAC addr

Arp & IP
pkt count

MAC TX bus

MAC RX bus

UDP_Complete_nomac

UDP_TX

UDP_RX

IP_Complete_nomac

Tx_arbitrator

arp

IPV4_TX

IPV4_R
X

IPv4

INTERFACE
entity UDP_Complete_nomac is

Port (
-- UDP TX signals
udp_tx_start : in std_logic; -- indicates req to tx UDP
udp_txi : in udp_tx_type; -- UDP tx cxns
udp_tx_result : out std_logic_vector (1 downto 0); -- tx status (changes during tx)
udp_tx_data_out_ready: out std_logic; -- indicates udp_tx is ready to take data
-- UDP RX signals
udp_rx_start : out std_logic; -- indicates receipt of udp header
udp_rxo : out udp_rx_type;
-- IP RX signals
ip_rx_hdr : out ipv4_rx_header_type;
-- system signals
rx_clk : in STD_LOGIC;
tx_clk : in STD_LOGIC;
reset : in STD_LOGIC;
our_ip_address : in STD_LOGIC_VECTOR (31 downto 0);
our_mac_address : in std_logic_vector (47 downto 0);
-- status signals
arp_pkt_count : out STD_LOGIC_VECTOR(7 downto 0); -- count of arp pkts received
ip_pkt_count : out STD_LOGIC_VECTOR(7 downto 0); -- number of IP pkts received for us
-- MAC Transmitter
mac_tx_tdata : out std_logic_vector(7 downto 0); -- data byte to tx
mac_tx_tvalid : out std_logic; -- tdata is valid
mac_tx_tready : in std_logic; -- mac is ready to accept data
mac_tx_tlast : out std_logic; -- indicates last byte of frame
-- MAC Receiver
mac_rx_tdata : in std_logic_vector(7 downto 0); -- data byte received
mac_rx_tvalid : in std_logic; -- indicates tdata is valid
mac_rx_tready : out std_logic; -- tells mac that we are ready to take data
mac_rx_tlast : in std_logic -- indicates last byte of the trame
);

end UDP_Complete_nomac;

THE AXI INTERFACE
This implementation makes extensive use of the AXI interface (axi.vhd):

package axi is

type axi_in_type is record

data_in : STD_LOGIC_VECTOR (7 downto 0);

data_in_valid : STD_LOGIC; -- indicates data_in valid on clock

data_in_last : STD_LOGIC; -- indicates last data in frame

end record;

type axi_out_type is record

data_out_valid : std_logic; -- indicates data out is valid

data_out_last : std_logic; -- indicates last byte of a frame

data_out : std_logic_vector (7 downto 0);

end record;

end axi;

SYNTHESIS STATS

504 occupied slices on Xilinx xc6vlx240t (1%)

(621 flipflops, 1243 LUTs)

Test synthesis using
Xilinx ISE 13.2

MODULE DESCRIPTION: UDP_COMPLETE_NOMAC

Simply wires up the following blocks:
UDP_TX
UDP_RX
IP_Complete_nomac

Propagates the IP RX header info to the UDP_complete_nomac
module interface.

MODULE DESCRIPTION: UDP_TX AND UDP_RX

UDP_TX:
Very simple FSM to capture data from the supplied UDP TX header,
and send out a UDP header.
Asserts data ready when in user data phase, and copies bytes from
the user supplied data.
Assumes user will supply the CRC (specs allow CRC to be zero).

UDP_RX
Very simple FSM to parse the UDP header from data supplied from the
IP layer, and then to send user data from the IP layer to the interface
(asserts udp_rxo.data.data_in_valid).
Discards IP pkts until it gets one with protocol=x11 (UDP pkt).

MODULE DESCRIPTION: IPV4
Simply wires up the following blocks:

IPv4
ARP
Tx_arbitrator

Arp reads the MAX RX data in parallel with the IPv4 RX path. ARP is
looking for ARP pkts, while IPv4 is looking for IP pkts.

IPv4 interacts directly with ARP block during TX to ensure that the
transmit destination MAC address is known.

TX_arbitrator, controls access to the MAC TX layer, as both ARP and IPv4
may want to transmit at the same time.

MODULE DESCRIPTION: IPV4_TX
IPv4_TX comprises two simple FSMs:

to control transmission of the header and user data
to calculate the header checksum

To use,
set the TX header, and assert ip_tx_start.
The block begins to calculate the header CRC and transmit the header
Once in the user data stage, the block asserts ip_tx_data_out_ready and copies
user data over to the MAC TX output

MODULE DESCRIPTION: IPV4_RX

Simple FSM to parse both the ethernet frame header and the IP v4
header.

Ignores packets that
Are not v4 IP packets
Require reassembly
Are not for our ip address

Once all these checks are satisfied, the rx header data: ip_rx.hdr is
valid and the module asserts ip_rx_start.

Received user data is available through the ip_rx.data record.

MODULE DESCRIPTION: ARP
Handles receipt of ARP packets

Handles transmission of ARP requests

Handles request resolution (check ARP cache and request resolution if not found)

Three FSMs, one for each of the above functions

ARP mapper cache is only 1 deep in this implementation
which means that it is only really good for point-point comms.
Can easily be extended though for greater depth.

Input signals to module indicate our IP and MAC addresses

MODULE DESCRIPTION: TX_ARBITRATOR
FSM to arbitrate access to the MAC TX layer by

IP TX path
ARP TX path

One of the sources requests access and must wait until it is granted.

Priority is given to the IP path as it is expected that that path has the highest request
rate.

SIMULATION
Every vdhl module has a corresponding RTL simulation test bench.

Additionally, there are simulation test benches for various module integrations.

In this version, verification is not completely automatic. The test benches test for
some things, but much is left to manual inspection via the simulator waveforms.

TESTBENCH - HW

The HW testbench is built around the Xilinx ML-605 prototyping card.
It directly uses the card’s 200MHz clocks, Eth PHY (copper) and LEDs to

indicate status.
A simple VHDL driver module for the stack replies with a canned response

whenever it receives a UDP pkt on a particular IP addr and port number.
The Xilinx LogiCORE IP Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC v2.1 is

used to couple the UDP/IP stack to the board’s Ethernet PHY. This is used
with the standard FIFO user buffering (which adds a one-frame delay). It
should be possible also to remove this FIFO to reduce latency.

A laptop provides stimulus by way of one of two Java programs:
UDPTest.java – writes one UDP pkt and waits for a response then prints it
UDPTestStream.java – writes a number of UDP pkts and prints responses

The test network is a single twisted CAT-6 cable between the laptop and the
ML-605 board.

Wireshark (on the laptop) is used to capture the traffic on the wire (sample
pcap files are included)

TEST SETUP

UDP_Complete_
nomac

UDP TX

UDP RX

Clocks &
reset

IP & MAC set

Arp & IP pkt
count: 4 leds

each

Xilinx
mac_bloc

k

TX
response
process

Xilinx ML605 board

Async TX
Pushbutton

Eth
PHY

Java Test Code running on Laptop

UDP_integration_example

network

TESTBENCH HW - ML605 MODULES

• UDP_Complete – integration of UDP with a mac layer

• IP Complete – integration of IP layer only with a mac layer

• UDP_Integration_Example – test example with vhdl process to reply to received
UDP packets

TEST RESULTS

The xilinx MAC layer used contains a FIFO which therefore introduces a 1
frame delay.

For tightly coupled low latency requirements, this can be removed.

Output from UDPTest:
Sending packet: 1=45~34=201~18=23~ on port 2000
Got [@ABC]

Output from UDPTestStream:
…
Sending price tick 205
Sending price tick 204
Sending price tick 203
Sending price tick 202
Got [@ABC]
Got [@ABC]
Got [@ABC]
Got [@ABC]
…

