PID controller IP Core user manual
Author: Zhu Xu
Email: m99al@yahoo.cn

Introduction

The PID controller IP core performs digital proportional-integral-derivative
controller (PID controller) algorithm. The algorithm first calculates the error
between a measured value (PV) and its ideal value (SP), then use the error as an
argument to calculate the manipulate value(MV). The MV will adjust the process to
minimize the error. It can be used to calculate duty cycle for PWM (Pulse Width
Modulation).

Features

« 16-bit signed coefficient and data input: Kp, Ki, Kd, SP and PV.

« 32-bit signed u(n) output.

« Containing one high speed 32-bit prefix-2 Han-Carlson adder and one high
speed pipelined 16x16-bit multiplier.

e Latency from input of PV to finished calculation and update of u(n) is 17 clock
cycles.

* Ki, Kp, Kd, SP, PV can be updated anytime after reset.

e After every update of Kp or Kd, register Kpd which stores Kp+Kd will be
calculated and updated.

« After every update of PV, calculation and update of e(n), e(n-1), sigma and u(n)
will be triggered in sequence.

 Overflow register records overflow signals when calculating Kpd, e(n), e(n-1), u(n)
and sigma.

« Using 2278 of 4608 (49%) Core Cells in Actel A2F200M3F FPGA and running at
100MHz clock frequency.

« Wishbone B4 compliant interface. Support 16-bit, 32-bit and 64-bit bus width.

PID controller description

Below describe the algorithm of PID controller.

Analog
A PID is made of three basic blocks whose outputs are:
 Proportional to the input

 The integral of the input

mailto:m99a1@yahoo.cn

 The derivative of the input

Figure 1 shows the block diagram of a generic system controlled by PID controller.
The goal of the PID block is to generate an output u(t) that drives the system at
hand (the “PLANT”) so that its output [y(t) or PV, Process Value] matches a
reference signal [x(t) or SP, Set Point]. The input to the PID is the error between the
reference signal (ideal or desired behavior of the PLANT) and the real output
behavior. Obviously, the target is to get the error as close to zero as possible.

x(1) e(t)

Plant / y(t)
Priz)]éess >

Figure 1: a generic system controlled by PID

The equation that describes the PID controller behavior in continuous time domain
is shown in equation 1.

t
u(t) = MV(t) = K,e(t) + Ki/ e(7T)dr + Kd%f(t)
0 _

Equation 1

Digital

Transform equation 1 into discrete time domain we get equation 2.

u(n) = (K, +K,)e(n) + Kizn:e(j) -K,e(n-1)

j=1
Equation 2

From equation 2 we can construct the algorithm’s block diagram shown in figure 2.

| =

¥]

Reference &

el

—
Ki
Product
|
)

0.5 .
Measured process value
5 Kpeka Preducti
! -
z S
n-1%]
&in-1) Product2

Kd
Figure 2: digital PID controller algorithm

Operation

Coefficients and Data Update

Coefficients (Kp, Ki, Kd, PV) and measured process value (PV) are stored in different
registers that be read and written any time after reset by a host through Wishbone
slave interface. Normally, Kp, Ki, Kd, PV are updated right after reset before
continuously update of PV. You also can update coefficients randomly for dynamic
tuning. Writing action to specific registers mentioned above won't be responded
until finished calculation of the last u(n).

Calculation of u(n)
Calculation of u(n) will be triggered every time PV is updated. The calculation
procedure is demonstrated in figure 3.

Update of overflow register

Overflow register records any overflow signal in previous calculations of Kpd, e(n),
e(n-1), u(n) and sigma. It will be updated after every addition operation. If any of
the 5 overflow register bits is set, then the final u(n) is incorrect.

Multiplication

Addition

Multiplication

Addition

1st Stage md=err(0), mr=Ki rn;;e;:{g], m::::él].
2nd Stage md=err(0), mr=Ki mﬂ?::;;g”
3rd Stage product=err(0)Ki
1st Stage *“="§;:£31§=‘— ’“ﬂ;ﬁ;:"“
2nd Stage Sum=(~er1(0)+1 | Sum=SP+(-P¥)+
3rd Stage err(l)=Sum err0)=Sum
Clock Cycles 1-7 J ‘ ‘ ‘ | l—‘ ‘ |
1st Stage
2nd Stage Uit
3rd Stage Produ;:;jerr{ﬂ]‘ Product-en
1st Stage Ef‘:;r‘ggf& B=product A=product A=Sum,B=Sigma
2nd Stage Surgr;ﬂﬁrc?a Sum::fnﬁij];gpﬁ Sum=Sum-+sigma
3rd Stage Sigma=Sum Ufn)=Sum

Clock Cycles 8-14 ‘ ‘ | |

I T S A

Figure 3: calculation procedure of u(n)

Registers
Address for
Name 16-bit/32-bit/64-bit bus | Width | Access | Description
width

Kp Base+0x0/0/0 16 R/W Stores coefficient Kp

Ki Base+0x2/4/8 16 R/W Stores coefficient Ki

Kd Base+0x4/8/10 16 R/W Stores coefficient Kd

SP Base+0x6/C/18 16 R/W Stores reference SP

PV Base+0x8/10/20 16 R/W Stores PV

Kpd Base+0xA/14/28 16 R Stores coefficient Kp+Kd

err[0] Base+0xC/18/30 16 R Stores e(n)

err[1] Base+0xE/1C/38 16 R Stores e(n-1)

un Base+0x10/20/40 32 R Stores u(n)

sigma | Base+0x12/24/48 32 R Stores K, > e(j)

j=1

of[0]==1 if Kpd overflows,
of[1]==1 if err[0] overflows,

of Base+0x14/28/50 5 R of[2]==1 if err[1] overflows,
of[3]==1 if un overflows,
of[4]==1 if sigma overflows

I/O ports
The IP core has a Wishbone Slave Interface and another interface for direct 32-bit
u(n) output.

Wishbone Slave Interface
It's Wishbone B4 compliant.

Name in
Name Wishbone | Size Direction | Description
B4
i_clk CLK I 1 input Clock input
i_rst RST.I 1 input Reset input
i_wb_cyc CYCI 1 input Indicates valid bus cycle (core select)
i_wb_stb STB_I 1 input Indicates valid data transfer cycle
i wb_we WE_I 1 input Write transaction when asserted high

i_wb_adr | ADR 16 input Address input

i_wb_data | DAT_I 16/32/64 | input Data input

Acknowledgment output (indicates
o wb ack | ACK O 1 output) o
normal transaction termination)

o_wb_data | DATA_O | 16/32/64 | output Data output

Direct 32-bit u(n) output
Name Size Direction | Description

o_un 32 output u(n) output

o_valid 1 output Indicates valid o_un

