

32 Bit – 8 Thread – 4 Register/Stack Hybrid – Barrel Pipelined
Verilog Soft Processor Core

Hive_Design_2013-07-07.doc Page 2 of 41

IINNTTRROODDUUCCTTIIOONN
Hive is a general purpose soft processor core intended for instantiation in an FPGA when CPU functionality is
desired but when an ARM or similar would be overkill. The Hive core is complex enough to be useful, with a wide
data path, a relatively full set of instructions, high code density, and good ALU utilization – but with very basic
control structures and minimal internal state, so it is simple enough for a human to easily grasp and program at
the lowest level without any special tools. It fits in the smallest of current FPGAs with sufficient resources left over
for peripherals (as well as other unrelated logic) and operates at or near the top speed of the device DSP
hardware.

Hive isn’t an acronym, the name is meant to suggest the swarm of activity in an insect hive: many threads sharing
the same program and data space, individually beavering away on separate tasks, and cooperating together to
accomplish larger goals. Because of the shared memory space, thread intercommunication is facilitated, and
threads can all share a single instance of code, subroutines, or data sets which enables code compaction via
global factoring.

The novel hybrid stack / register construct employed reduces the need for a plethora of registers and allows for
small operand indexes in the opcode. This construct, coupled with explicit stack pointer control in the form of a
pop bit for each stack index, minimizes the confusing and inefficient stack gymnastics (swap, pick, roll, copying to
thwart auto-consumption, etc.) normally associated with conventional stack machines.

Hive employs a naturally emergent form of multi-threaded scheduling which eliminates all pipeline hazards and
provides the programmer with as many equal bandwidth threads – each with its own independent interrupt – as
pipeline stages. Processors that employ this form of pipelining are classified as “barrel” processors.

Hive is a largely stateless design (no pipeline bubbles, no registered ALU flags that may or may not be
automatically updated, no reserved data registers, no pending operations, no branch prediction, etc.) so
subroutines require no overhead and interrupts consume a single branch cycle, and their calculations can be
performed directly and immediately with complete disregard for what may be transpiring in other contexts.

This paper presents the design of Hive along with some general background, so if you don’t find the architecture
of Hive itself to your liking, you may possibly find something else of use in it. Enjoy!

“'Tis the gift to be simple, 'tis the gift to be free…”

From “Simple Gifts” by Elder Joseph

Hive_Design_2013-07-07.doc Page 3 of 41

HHIIVVEE FFEEAATTUURREE LLIISSTT

 A simple, compact, relatively stateless, high speed, barrel pipelined, multi-threaded design based on
novel RASH (Register And Stack Hybrid) technology.

 2 operand machine with operand select and stack control fields in the opcode.

 32 bit data path with extended width arithmetic results.

 16 bit addresses, instructions, and memory data accesses.

 8 equal bandwidth threads.

 4 independent, isolated, general purpose LIFO data stacks per thread with parameterized depth and
fault protections.

 8 fully independent interrupts with no hierarchical limitations (one per thread).

 8 stage pipeline with no stalls or hazards.

 All instructions execute in a single pipeline cycle, including 32 x 32 = 64 bit signed / unsigned multiply
(lower or extended).

 Common data & instruction memory space (Von Neumann architecture) enables dynamic code / data
partitioning, combined code and data constructs, code copy & move, etc.

 All threads share the entire common data / code space, which facilitates global code factoring and
thread intercommunication.

 Internal register set with highly configurable base register module that may be easily modified /
expanded to enhance I/O, debug, etc.

 32 bit GPIO with atomic full-width read.

 Written in 100% highly portable verilog (no vendor specific or proprietary language constructs).

 Intelligently partitioned into easy to understand and verify verilog modules.

 May be programmed via a verilog initial text file, no complex tool chain is necessary.

 Achieves aggregate throughput of 200 MIPS in a bargain basement Altera EP3C5E144C8 FPGA
(Cyclone 3, speed grade 8 – the target device for initial development) while consuming only ~1800 logic
elements, or ~34% of an EP3C5E144C8.

 Free to use, modify, distribute, etc. (but only for the greater good, please see the copyright).

Hive_Design_2013-07-07.doc Page 4 of 41

CCOONNTTEENNTTSS
Introduction
Hive Feature List
Contents
Motivation
Register Machines vs. Stack Machines
Background: LIFOs
Register / Stack Hybrid
Operands
Stacks
Data Width
Access Width
Address Width
Arithmetic Results Width
Signed vs. Unsigned Arithmetic
Background: FPGA Resources
ALU Design
Pipelined Core
Instructions / Opcodes
Internal Register Set
Verification
Speed
Programming
Bzzz!
Etc.
Document Change Control
Copyright

Hive_Design_2013-07-07.doc Page 5 of 41

MMOOTTIIVVAATTIIOONN
As a (mostly) digital designer who works primarily in FPGAs, I'm always on the lookout for simple processor cores
because projects often underutilize the hardware due to low data rates (think of a UART, or a sampled audio
stream). If latency isn't a big issue, then why not multiplex the hardware with a processor construct? But the core
needs to be really simple, not consume too much in the way of logic (LUTs, block RAMs, multipliers), have
compact op codes (internal block RAM isn't limitless nor inexpensive), keep the ALU sufficiently busy, and be
easy to program at the machine code level without the need for a compiler or even an assembler.

FPGA vendors have off-the-shelf designs that are quite polished and bug-free, but they, and therefore the larger
design and the designer, are generally legally chained to that vendor's silicon and tool set. There are lots of free
cores available on the web, but one may end up getting exactly what one paid for.

The Hive core is my offering for this problem area. The essentially free and naturally emergent multi-threading /
scheduling mechanism in Hive is not unique; I believe it was implemented as far back as 1964 on the CDC 6000
series peripheral barrel processors. Hive shift distances are treated as signed, which works out rather nicely, but
the ancient PDP 10 does this as well. The notion of multiple stacks isn’t original, nor is the explicit control over
the processor stack pointer, but I believe the register/stack hybrid as implemented and described here (indexed
stacks with conservative top-entry-only access and pop bit override) is something new. And the way extended
arithmetic results are dealt with uniformly in Hive may possibly be novel as well. But who knows? Processors
have been around long enough that most of the good ideas have been mined out and put to the test in one form
or anther, which makes it really difficult to bring something fundamentally new or innovative to the table.

Hive_Design_2013-07-07.doc Page 6 of 41

RREEGGIISSTTEERR MMAACCHHIINNEESS VVSS.. SSTTAACCKK MMAACCHHIINNEESS
Most modern processors are register based, and so have some form of register set tightly bound to the ALU – a
tiny fast triple port memory in a sense. This conveniently continues the memory hierarchy of faster and smaller
the closer to the core, and has the huge advantage of being a very mature target for compilers.

Many registers are generally available because the register space grows exponentially with register address
width. But register opcode indexes can still consume significant opcode space, particularly in a 3 operand
machine, and register count is a limited resource that doesn’t scale with the rest of the design. Registers are
often reserved for special purposes, and some may be invisible to non-supervisory code. It would seem the more
registers available, particularly of the “special” variety, the more the programmer has to juggle in his/her head.
And a general purpose register may only be used if the programmer is absolutely certain that any data there is
moot, or if the register contents are first saved to memory and later restored, which is something else to keep
track of.

Almost since my first exposure to data stacks via an HP calculator (won in a high school engineering contest) I've
been fascinated with stack languages and stack machines. With no explicit operands, a data stack, a return
stack, and almost no internal state, a stack machine can have incredibly compact op codes - often 5 bits will do.
Due to the stacked registers, interrupts and subroutines and other forms of code factoring can be quite efficient;
all that is required is that they clean up after themselves. I've studied many of these, and have coded a few of my
own and had them running on an FPGA demo board. They are surprisingly easy to implement but surprisingly
cumbersome to program - one has to stick loop indices, conditional test values, and branch addresses under the
operands on the stack or in memory somewhere, so there are a lot of operations and much real time wasted on
stack manipulation which can get confusing very quickly. Laborious hand optimization of stack code leads to
“write only” procedural programs that are difficult to decipher later, and with catastrophic stack faults all too likely.
The tiny opcode widths produce a natural instruction caching mechanism, but having multiple opcodes per word is
awkward when they aren’t powers of 2 wide, a nuisance when one must manually change the code by hand (one
usually end up inserting no-ops to pad out the space), and interrupts / subroutines must either return to a word
boundary (more no-ops, or at least wasted program space) or the hardware must somehow store and retrieve a
sub index into the return word (more state).

Stack machines are, perhaps somewhat inadvertently, portrayed as a panacea for computing ills, but with little in
the way of formal analysis to back up these assertions. They are something very different and on the fringe and
as such don't get addressed by the mainstream, so there aren't many technical comparisons (speed, code
density, etc.) to more conventional architectures – or detractors for that matter, so the stack machine noob
encounters a situation rather like serving on a jury and hearing only the one side of the case.

Something that isn’t discussed much regarding stack machines is that auto consumption of all input values is
generally necessary. While it is obvious that ALU operations pop the input operand(s) and push the result, it isn’t
always emphasized that conditional branches generally consume the branch test value(s) and the branch address
regardless of whether the branch is taken or not. Auto consumption is a big issue because it leads to much
copying or restoring of values to be used both now and later, and it also means most instructions cannot be made
individually conditional (ala the ARM, or via a skip instruction) because the stack pointer(s) will likely be different
depending on whether the instruction was executed or not, something the programmer can’t generally track.

Hive_Design_2013-07-07.doc Page 7 of 41

BBAACCKKGGRROOUUNNDD:: LLIIFFOOSS
Since the discussion is about stack machines, it helps to fully understand stacks themselves, which are based on
the LIFO (Last In First Out) construct.

Figure 1. LIFO symbols.

The figure above shows two LIFO symbols, the one on the left is I/O centric, the one on the right more of a
schematic memory view. Unlike FIFOs, which need separate read and write side pointers, LIFOs only require a
single pointer, which may implemented in such a way as to conveniently reflect the fullness of the LIFO. The
push side is only concerned with whether the LIFO is full or not, the pop side only concerned if it is empty or not.
Push when full is an error because it may drop the input data on the floor and may corrupt the LIFO pointer. Pop
when empty is an error because it gives false read data and also may corrupt the LIFO pointer.

Figure 2. LIFO stack operations – push then pop from empty state.

The figure above shows LIFO operation from empty, to not empty, to empty again. Note that the first write to
memory is address 1 rather than address 0, which may seem a bit counter-intuitive. This convention allows the
level and pointer values to be the same.

Figure 3. LIFO stack operations – push from empty state to full state.

The next figure shows LIFO operation from empty to full. Note that the last write to memory is at address 0, which
may also seem a bit counter-intuitive. It helps here to think of the address as modulo (one MSB less than) the
level value. For this 4-deep LIFO there are actually 5 distinct states corresponding to levels 0 through 4. Indeed,
when fully utilizing the LIFO memory space there will always 2n + 1 levels, and it is easiest and most
straightforward to handle them with an extra MSB in the level counter, and present the LSBs of this counter to the
LIFO memory address input (i.e. the stack pointer).

Hive_Design_2013-07-07.doc Page 8 of 41

Figure 4. LIFO stack operations – pop from full state to empty state.

The next figure shows the previously filled LIFO operation from full to empty. At the end (in this case) the value D
at memory location 0 is presented as output, but it is flagged as invalid by the empty indicator so the pop side
knows not to use it.

Figure 5. LIFO stack operations – three pop & push scenarios.

What happens if we pop and push at the same time? For a canonical stack machine we need to read the pop
side value, pop it off the stack, and then push the result onto the stack. This is a pop & push (as opposed to a
push & pop, which is nonsensical for this application). At the above left we see a pop & push in action, the value
B at address location 2 is overwritten with the value F, and there is no net pointer change. In the center we see a
pop & push when full, which is not an error because pop, which decrements the pointer, can be thought of as
preceding push, which increments the pointer. Finally, on the right we see a pop & push when empty. This is
obviously a pop error because the read data is invalid, but it is a pop error only! If the pointers are internally
protected from corruption then the correct net result is a push.

Stack Protection
Is it always best to protect the stack against the corruption of the pointer or memory contents? It may seem that
the answer to this is always “yes” but consider the following scenario. Say a stack is almost full and a data value
is pushed to it, making it full. Then an address is pushed to the stack and the thread attempts to branch to this
address. If the pointer and stack memory are overflow protected then the address was dropped on the floor and
the thread instead branches to the location given by the previously pushed data – off into the weeds it goes with
one stack that is essentially stuck and can’t accept new data (unless it is a pop & push, or unless a pop is
otherwise performed first). The thread could be returned to sanity with an external clear (perhaps issued by
another thread on supervisory duty) but the stuck stack means the thread itself has limited ability to fix its own
problems. Would it be better to not protect against push errors, and just let them corrupt the first stack entries so
the thread could continue? Granted this kicks the problem down the road, but perhaps the thread wasn’t going to
use the earlier entries on the stack anyway and was about to issue a routine stack clear? Or perhaps it was
about to check itself for stack errors and if it found one would have cleared itself? At least it isn’t immediately
derailed and off corrupting the contents of main memory.

In contrast, I believe pop (underflow) protection is generally good because it prevents the stack from rolling under
and thereby offering up completely unrelated, non-local data and addresses to the thread.

Contemplating how to deal with these “what if” conditions that shouldn’t happen but likely will can drive you a little
crazy. In any case, pop and push protections are individually configurable build options in Hive so you can set
them however you like. And regardless of the protection settings, stack errors are always reported to the local
register set.

Hive_Design_2013-07-07.doc Page 9 of 41

RREEGGIISSTTEERR // SSTTAACCKK HHYYBBRRIIDD
Many register based machines have a return stack, but beyond that is there some kind of middle ground between
stack based and register based machines? If a register based machine were designed with a LIFO stack under
each register, then perhaps the programmer could accomplish the same goals with fewer indexed register
locations, meaning the register index could be made narrower giving a more compact and efficient opcode.
Multiple stacks would be more convenient than a single stack for complex algorithms, and would help keep
inefficient and confusing stack thrash to a minimum. Unlike register count, LIFO depth could easily scale as
required by other aspects of the design. Could the stacks indeed be addressed as register operands? If so, how
might multiple stacks be implemented and how would the stack push/pop mechanism behave?

I recently encountered the J1 stack based processor (http://www.excamera.com/sphinx/fpga-j1.html) which is
quite intriguing in that it has a two bit wide signed stack increment field in the opcode. This idea inspired me to
investigate explicit rather than implicit stack control. I decided that an array of simple stacks, where only the top
stack values are presented to the ALU (as opposed to the top and second values as in a conventional stack
machine) would suffice. The stacks could then be indexed normally as register locations, with the usual one or
two sources and one destination. I then came up with a simple, inherently conservative stack mechanism:
whenever anything is read from a stack, the value and stack pointer remain unchanged. Whenever anything is
written to a stack the value already there is pushed in to make room for the new value. Each stack index is
provided with an associated pop bit that influences this default conservative behavior:

pop bit read / write Stack Behavior
0 read no change Register type read.
1 read pop Stack type read.
0 write push Stack type write.
1 write pop & push Register type write.

Figure 6. Hybrid register / stack behavior.

This arrangement accommodates the full range of stack / register behaviors. For example, say the operand
source of an ALU single operand operation is stack index B and the result destination is stack index A:

Case B pop A pop B stack A stack Behavior
0 0 0 no change push Register type read, stack type write.
1 0 1 no change pop & push Register type read & write.
2 1 0 pop push Stack type read & write.
3 1 1 pop pop & push Stack type read, register type write.

Figure 7. One and two operand hybrid register / stack behavior.

Cases 1 and 2 respectively give the normal pure register and pure stack behaviors, while cases 0 and 3 give
useful variations. What about the two input operand case? Say the primary input operand is stack index A, the
secondary input operand is stack index B, with the result going to stack index A (e.g. a two operand opcode
architecture). It turns out that the same table above works for both scenarios. How do we handle the case where
both of the sources and the destination point to the same stack? The solution is to simply OR the two pop bits
together. Remember that there is no access to the value below the top LIFO entry as in most stack machines, so
when index A = index B for a two operand instruction such as multiply, the result will be A2 pushed to A. And in
this case, if both of the A and B pop bits are set this won’t cause a double pop because the pop bits are simply
ORed, causing a single pop of A (a pop & push, actually).

Now that we have simpler stacks and more control over them, the conditional execution of single operations is
suddenly a viable option. Conventional stack machines generally don't have conditional single operations
because operands are always consumed – the programmer wouldn’t be able to tell what state the stack is in after
a conditional two operand operation, leading to stack faults. With no auto-consumption of the input, and by
setting the pop bit of the register being conditionally written to, we can ensure the stack pointers don't change
during a single conditional operation.

Hive_Design_2013-07-07.doc Page 10 of 41

OOPPEERRAANNDDSS
How many operands should be in the opcode? I picked 2 to keep the opcode small, so Hive is a 2 operand
machine. Here are the rules:

• For single input ALU operations the source is B and the result destination is A. For example: not B => A.
• For two input ALU operations the primary source is A, the secondary source is B, and the result destination is

A. For example: A - B => A.
• For single input conditional branch statements A is tested against zero, and the absolute address is B, or the

address increment is B or supplied as immediate data. For example: (A>0) ? B => PC.
• For two input conditional branch statements, A is tested against B, and the address increment is supplied as

immediate data. For example: (A<>B) ? PC+I => PC.
• For memory reads the base address is B, the read value is written to A, and there is an immediate 4 bit

positive address offset. For example: mem(B+I) => A.
• For memory writes the base address is B, the write value is read from A, and there is an immediate 4 bit

positive address offset. For example: A => mem(B+I).
• For subroutines the subroutine absolute address is B and the return address (the PC) is pushed to A.
• When an interrupt is taken the return address (the PC) is automatically pushed to stack S0 (this is the only

“special” stack, and this is the only way in which it is “special”).
• For operations that exist in both immediate and non-immediate form, B data is simply ignored for the

immediate form.
• For operations that use the ‘1’ input on A, the A data is simply ignored.

So A is the primary data source and destination for two operand operations, is the primary data tested, receives
subroutine return addresses, and is the only thing that can be written to. B is the primary data source for one
operand operations, the secondary data source for two operand operations, is the secondary data that A is tested
against, and always provides the address or address offset.

SSTTAACCKKSS
How many stacks are needed? I picked 4. This gives 3 bits for each operand (pop bit, two stack index bits) for a
total of 6 bits of opcode consumed. If the opcode is 16 bits total, this leaves 10 bits, or 1024 possible opcodes.
How deep should the stacks be? I’ve read 32 entries are generally deep enough for single stack machines to not
require auto spill-to-memory mechanisms and the like. Since we have 4 stacks, and since coding for this core is
likely to be done by hand, we could doubtless get by with less depth. In any case the use of FPGA block RAM for
the stacks sets a fairly generous practical lower limit (32 entries per stack per thread in our target device).

DDAATTAA WWIIDDTTHH
Hive data is 32 bits wide. Byte data is too narrow for most applications, and 16 bit data doesn’t have sufficient
resolution to directly perform the internal computations required for audio DSP. 64 bit data is overkill for most
applications that would be running on a small FPGA processor. Non-power-of-2 widths can be excluded for
efficiency reasons, which leaves us with 32 bits. Obviously data width directly dictates the top speed vs.
pipelining depth because wider data requires more deeply cascaded combinatorial logic to perform adds,
multiplies, etc.

AACCCCEESSSS WWIIDDTTHH
Hive access width, and by that I mean main (data and program) memory read / write – which includes instruction
fetch and in-line literal access – is 16 bits. One generally desires everything to be the same width, but an
intentionally compacted opcode can easily wind up narrower than the ALU data path. And much can be done
with 16 bit data which can directly lead to code compaction.

AADDDDRREESSSS WWIIDDTTHH
Hive addresses are limited to 16 bits, giving an address space of 65k 16 bit words.

One can agonize over the small address space and the narrow access, but the target functionality here is a small
processor in an FPGA, so large address space isn’t necessary, and beyond a certain depth memories are slower.
(At any rate, I believe only trivial edits would be required to provide Hive with a full 32 bit address.)

Hive_Design_2013-07-07.doc Page 11 of 41

AARRIITTHHMMEETTIICC RREESSUULLTTSS WWIIDDTTHH
ALU arithmetic operations invariably produce wider results than the input operands. Traditional processors stick
the extended results of add and subtract (carry, overflow, sign, etc.) in dedicated bit flag registers, and then have
rules and special instructions that govern the updating, saving, and restoring of them. The results of full width
multiplies are usually sent to special concatenated register pairs. These practices introduce complexity and
internal state.

A simple and uniform method of handling wide arithmetic results is to treat them as double width regardless of
operation (add, subtract, multiply) and select either the lower (i.e. normal) half of the result or the upper
(extended) half of the result via the instruction set. The obvious downside here is that obtaining the full width
result takes two cycles even when the operation is actually performed in one. For the full result it may seem
wasteful to perform the same internal calculation both times, but one probably shouldn’t think of this as major
effort for the ALU or as a huge opportunity lost. All processors have to perform a full subtraction in order to
generate the arithmetic comparison flags between two numbers. By examining the extended result of add /
subtract first one can know beforehand if the result will overflow and perhaps not perform it (e.g. restoring
division), and often only the lower or extended arithmetic result is required.

Interestingly, the extended result of signed and unsigned subtraction always forms a convenient all ones or all
zeros flag (easily negated with a NOT instruction). The extended result of unsigned addition is a bit more
complex. Some 4 bit corner case examples to get a flavor of how this works:

+ unsigned 15 + 15 = 30 = 0001,1110 max

 0 + 0 = 0 = 0000,0000 min

+ signed 7 + 7 = 14 = 0000,1110 max
 -8 + -8 = -16 = 1111,0000 min

- unsigned 15 - 0 = 15 = 0000,1111 max
 0 - 15 = -15 = 1111,0001 min

- signed 7 - -8 = 15 = 0000,1111 max
 -8 - 7 = -15 = 1111,0001 min

* unsigned 15 x 15 = 225 = 1110,0001 max
 0 x 0 = 0 = 0000,0000 min

* signed -8 x -8 = 64 = 0100,0000 max
 7 x -8 = -54 = 1100,1000 min

Figure 8. 4 bit input / 8 bit corner results.

SSIIGGNNEEDD VVSS.. UUNNSSIIGGNNEEDD AARRIITTHHMMEETTIICC
Hive arithmetic is signed by default. Although addresses are generally thought of as unsigned, unsigned
subtraction will produce negative numbers whether one likes it or not. The programmer obviously needs the
resources to handle both, so the impact of signed vs. unsigned arithmetic is largely one of default behavior and
instruction naming conventions. Signed multiply is more basic due to sign/zero extension needs (hence Altera’s
FPGA multiply hardware primitives being signed). I feel that signed half-width read and in-line literal data is more
useful because it can influence the MSBs above. Given the way that Hive deals with extended results, lower
arithmetic operations are sign neutral (i.e. give the same results regardless of signed / unsigned operation) so
only the right shift operations and the arithmetic operations that produce extended results as output need to be
differentiated with respect to sign.

Hive_Design_2013-07-07.doc Page 12 of 41

BBAACCKKGGRROOUUNNDD:: FFPPGGAA RREESSOOUURRCCEESS
The available physical resources and their detailed behavior, limitations, and timing characteristics in the target
FPGA will strongly influence the top speed, size, and other important bulk metrics of any soft processor. One
may as well exploit these resources up front rather than be stymied by them later.

Block RAM (BRAM)
The primary FPGA component the soft processor designer needs to understand is block RAM.

Figure 9. Block RAM: simple (DQ) on left, true dual port (DP) on right.

The figure above shows two common forms of block RAM: a simple dual port (DQ) on the left and a true dual port
(DP) on the right. Because it uses a single address, the DQ variant is a good fit for the LIFO stacks. The DP
variant is useful for main memory as it gives two independent accesses which enables a data read / write along
with instruction fetch per cycle (thus sidestepping the “Von Neumann bottleneck”). Main memory access is a
huge driver in any processor design.

Block RAM resources have configurable variable widths, from some maximum down to a single bit. For widths of
8 and above an additional bit per byte (8+1, 16+2, 32+4) is provided for out-of-band signaling, individual byte
enables, CRC, error correction, and other common uses. I believe it is a mistake to employ these extra bits in
order to increase the width of the ALU or instructions, as this precludes the efficient use of conventional 2n width
memory to store internal data / control information.

Figure 10. Block RAM internal resources.

What resources are available within block RAMs? The figure above shows a schematic view of the “inside” of a
typical DQ RAM, though it applies to DP RAM as well. Even though FPGA block RAMs are always fully
synchronous, it is sometimes helpful to think of the base RAM entity inside of the block as asynchronous. This
RAM entity is supplemented with “read through” logic in the form of a multiplexer, which enables two types of
configurable (at build time) read-during-write behavior. Without the multiplexer, a read-during-write delivers the
old memory data to the read data port. With the multiplexer, a read-during-write conveys the data being written to
the read data port. The flip flop following this optional multiplexer is always present. Following this is yet another
flip flop; it is optional and generally part of the block RAM circuitry because it can dramatically speed up read
clocking at the expense of one additional clock of latency.

Hive_Design_2013-07-07.doc Page 13 of 41

In terms of read-during-write behavior, Hive needs write-through mode for the LIFO stacks to function correctly.
This mode is unimportant for the main memory however because we will never be simultaneously reading from
and writing to the data port, and the fetch port is read-only. In terms of speed, the write side is often capable of
near fabric flip flop performance, while the read side is rather slow if the additional output register isn’t used. So a
certain amount of combinatorial logic can be placed directly in front of the write side, and if our architecture can
tolerate the latency of the additional read side output register we should certainly use it because it speeds things
up and is essentially free.

Figure 11. True dual port block RAM utilized as DQ RAM.

There is a way to convert DP RAM to DQ RAM, and this is shown in the figure above. Feeding the same clock,
address, and write enable to both sides, along with splits / concatenations of the read / write data, accomplishes
this simple transformation. In fact the tool will do this automatically when necessary. For our target Cyclone 3
device, DP data ports are limited to a maximum of 16 (+2) bits wide, and DQ data ports to a maximum of 32 (+4)
bits wide – and the 1:2 ratio of these width limits makes sense given the above transformation. Since our LIFO
stacks can employ DQ RAM (due to the single pointer) we can make them 32 bits wide using a single device.

Figure 12. Block RAMs combined via bit-slice.

We may need our main memory to be considerably larger than a single 9k bit block RAM found in our target
device. The tool will automatically combine multiple block RAM devices together, and often with no speed
decrease – how does it accomplish this? The trick to making the largest and fastest block RAM amalgam is to
configure the block RAMs to be one bit wide and maximum depth, 8k in this case, and then simply split /
concatenate the write / read data by bit slicing the blocks together. Going above this size requires write steering
and output multiplexing, which will also be inserted automatically by the tool when needed, but this extra logic
tends to slow things down, particularly on the read side (though pipelining this logic could certainly get it back up
to speed).

Hive_Design_2013-07-07.doc Page 14 of 41

DSP Hardware
Since even quite low-end FPGAs these days have fairly fast hardware multipliers in some form of a DSP block,
we should undertake any new designs with the knowledge and trust that they will be there. There is little point in
leaving multiply operations out of our instruction set, and no point in trying to outsmart the FPGA manufacturers
by constructing what would inevitably be slower and larger multipliers out of shifters, adders, etc. – both of which
would needlessly strand this valuable resource. So it behooves us to understand the dedicated multiply hardware.

Figure 13. Signed multiplier hardware typically found in an FPGA.

Basic hardware multiplier width is 18 bits, which follows the convention of block RAM widths (2n + 1 extra bit per
byte). Being a full multiplier, the result is obviously double this, or 36 bits wide. As with add hardware, leaving
some of the MSBs or LSBs unused will allow the remaining utilized multiply hardware to run faster due to fewer
carry propagations, etc.

Altera multiplier blocks are signed by default, which makes sense because this convention simplifies sign
extension of the inputs. To make a signed multiplier do unsigned math all that is necessary is to construct it one
MSB wider at the inputs and force those MSBs to zero (zero extension). Conveniently, this same construct can
be used to do signed multiplication simply by driving these MSBs with the signs of the inputs (sign extension).
Though of course this requires an extra bit and therefore negatively impacts top speed slightly. The extra output
MSBs generated with this scheme are unused (left unconnected).

The multiplier hardware can be used in a purely combinatorial sense, but registering will speed it up considerably
so manufacturers provide “free” internal registers at the inputs and outputs that are not part of the general FPGA
fabric. As in the case of block RAM output registers, if our architecture can tolerate the latency of the additional
multiplier I/O registering we would be crazy not to use it. But this leads one inexorably to the issue of ALU
pipelining.

Digital Clock Managers (DCMs)
Virtually all FPGAs have some kind of DCM in the form of one or more PLLs (Phase Locked Loops), and/or DLLs
(Delay Locked Loops) which may be used for a variety of purposes. A DCM can move the clock edge around to
change external setup / hold / data out timing, trade internal cycle time margins for tighter external I/O timing,
condition the input clock duty cycle, multiply and divide the input clock, generate multiple clocks with phase
offsets, etc. Probably the main use for a DCM in a processor core is to manipulate the input clock frequency
(multiply / divide) so that the clock feeding the core is at or a bit below the top theoretical speed of the core in
order to get the best performance from it.

Note that there is some lower frequency limit below which a DCM will not be able to lock to or otherwise process
the input clock, and this figure is given in the AC specifications datasheet for the FPGA. Also note that running
the core at high frequencies will increase dynamic power consumption, and may make other logic which is not in
the core but supplied by the core clock more difficult to construct due to the tighter timing constraints. It is
possible to have multiple clock domains inside the FPGA, but then one must take special care to condition data
(particularly vectors) that cross domain boundaries.

Hive_Design_2013-07-07.doc Page 15 of 41

AALLUU DDEESSIIGGNN
Building an ALU for all but the most trivial of processors is more involved than “compute all results and pick the
one you want” (though in the future we may see sufficient unification of DSP blocks across devices and
manufacturers, and new HDL constructs that allow for more naïve instantiations). Arithmetic and logical
calculations aside, the wide output multiplexer itself can be a speed bottleneck. The design of the ALU drives
much of the rest of the processor design, particularly one that is pipelined, so it’s not surprising if it is the
component that takes the longest to fully develop.

Multiplication
Let’s start with the elephant in the room – the multiply unit. If we want to do audio DSP we need 16 x 16 = 32 bits
signed as a fairly unsuitable absolute bare minimum. We could probably get by with 16 x 32 = 48 bits signed,
with 16 bit samples, 32 bit filter coefficients, and a 48 bit result. For the sake of symmetry and simplicity, let’s set
the goal as full 32 x 32 = 64 bits signed and unsigned. The use of a signed base entity requires 33 x 33 = 66 to
accommodate unsigned, which conveniently is slightly less than twice the width of a single 18 x 18 FPGA
hardware multiplier.

Just as multiplication is performed using pencil and paper, addition and concatenation enable the utilization of
several hardware multipliers in parallel, thus increasing the input and output widths. Xilinx and Altera both have
nice application notes describing how to do this. Consider the following base 10 example:

98
* 67

56
+ 630
+ 480
+ 5400

=>

56

+ 54__

=>

63_
+ 48_

=>

111_
+ 5456

6566 5456 111_ 6566

Figure 14. Multiplication example.

On the left 98 and 67 are multiplied together in the usual manner, 7x8, 7x90, 60x8, and 60x90. All of the results
of multiplication are added together to get the final answer, which requires three additions – or does it? Looking
closely, 5400 and 56 can be simply concatenated, which eliminates one addition. 630 and 480 will always have
zero as their least significant digits, so this addition is simplified to adding 63 and 48 giving 111. The result 1110
will also always have a zero as the least significant digit, so adding it to 5456 simplifies to adding 545 and 111
and concatenating the 6 to the least significant digit location. So 4 half width multiplications must be performed,
but the three additions have been reduced to two, narrowed, simplified, and therefore likely sped up.

Figure 15. Three stage 33 x 33 = 66 bit signed pipelined multiplication.

Hive_Design_2013-07-07.doc Page 16 of 41

The figure above shows these same methods implemented in binary 2s complement logic. The inputs are split in
half, with the lower parts zero extended to make them unsigned (interpreting their MSBs as signs would give
incorrect results). In the first stage the cross multiplications are performed, in the second stage the outer
concatenation and inner add are performed, and in the third stage the final add / concatenation is carried out (the
17 LSBs of the add are automatically implemented by the compiler as a concatenation).

In terms of speed, the 18 bit multiplies in the first stage will likely be the slowest logic in the entire design, though
the 47 bit add in the third stage may be close or possibly slightly worse. In the target EP3C5E144C8 device the
multiply is restricted to 200 MHz, which means we should endeavor to make all of the other logic at least
somewhat faster in order to have a chance of hitting 200 MIPS with the final design. The dedicated I/O
registering in the multiplier hardware should certainly be used, with interstage registering to isolate the addition
hardware, giving three stages and four clocks of latency.

Shifting
One thing that really nagged me about my earlier designs was that their rudimentary ALUs didn’t exploit the
overlapping properties of shift and multiply. It takes a considerable amount of FPGA fabric logic to shift a number
to the right and left some arbitrary distance and the result isn’t very speedy. Having a multiplier just sitting there
doing nothing useful during the shift is a missed opportunity.

Figure 16. The Multiply and Shift unit.

When a number is multiplied by a power of 2, say 25, it is shifted to the left 5 bit positions. So if a full multiplier is
already present, the positioning of a simple ones shifter at the front (1 << n) can eliminate the left shift hardware.
Can a right shift be accomplished with the same hardware? Yes, the trick is to consider the shift distance input as
signed, with positive inputs causing shifts to the left and negative inputs shifts to the right. The shift distance MSB
(the sign bit) is stripped off and used to select the upper (or extended) multiplication result when set (negative),
and the lower result when zero (non-negative). The remaining shift distance LSBs are treated as unsigned and
simply routed to the (1 << n) unit at the input as before. Here is an 8 bit example that may help clarify things:

Shift {s,n} MSB (s) LSBs (n) LSBs (n) B input (1<<n) A input X output
+7 0 111 7 10000000 10110111 01011011,10000000
+6 0 110 6 01000000 10110111 00101101,11000000
+5 0 101 5 00100000 10110111 00010110,11100000
+4 0 100 4 00010000 10110111 00001011,01110000
+3 0 011 3 00001000 10110111 00000101,10111000
+2 0 010 2 00000100 10110111 00000010,11011100
+1 0 001 1 00000010 10110111 00000001,01101110
 0 0 000 0 00000001 10110111 00000000,10110111
-1 1 111 7 10000000 10110111 01011011,10000000
-2 1 110 6 01000000 10110111 00101101,11000000
-3 1 101 5 00100000 10110111 00010110,11100000
-4 1 100 4 00010000 10110111 00001011,01110000
-5 1 011 3 00001000 10110111 00000101,10111000
-6 1 010 2 00000100 10110111 00000010,11011100
-7 1 001 1 00000010 10110111 00000001,01101110
-8 1 000 0 00000001 10110111 00000000,10110111

Figure 17. 8 bit example of left and unsigned right shifting using a full multiplier.

Hive_Design_2013-07-07.doc Page 17 of 41

Though we are thinking of the shift distance input as signed, the resulting shifted one must be presented to the
multiplier as unsigned for the 100…000 case to work correctly. Then presenting the input data to be shifted as
unsigned or signed will conveniently produce unsigned (“logical” or zero extended) and signed (“arithmetic” or
sign extended) right shifts. (Note that independent control over the input signedness is required for this to work,
global signedness is not sufficient.) So we have left shift covered, which is sign neutral, as well as unsigned and
signed right shift.

Other Uses
Can more be done with this construct? A multiplexer on port A with a fixed value of one can be used for a couple
of things. The first is copying the B input shifted one result to the output of the multiplier, which is useful for
generating powers of 2, bit setting & masking, etc. The second is even simpler – multiplication by one replicates
the B input to the output of the multiplier, which provides us with a free and convenient “copy B” route through the
ALU.

Note that signed and unsigned left shift are identical (zero padding from the right). With a bit of logic governing
the input multiplexers, one of these redundant modes may be replaced with the power of 2 described above. I
chose to replace unsigned shift left, non-negative input shift value, with power of 2, which makes it something of
an odd man out in terms of operations but hopefully not too confusing. Signed shift left works as expected.
These are summarized below:

Shift Value Instruction Operation Example
- Shift left, signed Shift right, signed B=-3, A=10110111, Out=11110110

+,0 Shift left, signed Shift left, signed B=+3, A=10110111, Out=10111000
- Shift left, unsigned Shift right, unsigned B=-3, A=10110111, Out=00010110

+,0 Shift left, unsigned Power of 2 B=+3, A=xxxxxxxx, Out=00001000

Figure 18. Shifting and power of 2 functions as implemented.

Addition and Subtraction
Next we need to consider addition and subtraction. Signed and unsigned can be handled with the same method
employed in the multiplier, i.e. by making the inputs one MSB wider and sign or zero extending them depending
on whether that input value is to be considered signed or not. As with multiplication, overflow / carry out is
extended into the double width data space and selected with instructions. Note that the lower word result is sign
neutral, so only the extended result will vary based on input signed / unsigned status. The add / subtract unit is
also used to compare (A<B) and (A<0) for conditional branching.

Logical Functions
For logical functions, the usual suspects are implemented:

Operation Description Examples
AND A & B A=1100, B=0101, Out=0100
OR A | B A=1100, B=0101, Out=1101

XOR A ^ B A=1100, B=0101, Out=1001
NOT ~B A=xxxx, B=0101, Out=1010

AND_B &B A=xxxx, B=0101, Out=0000
A=xxxx, B=1111, Out=1111

OR_B |B A=xxxx, B=0101, Out=1111
A=xxxx, B=0000, Out=0000

XOR_B ^B A=xxxx, B=0101, Out=0000
A=xxxx, B=0111, Out=1111

Figure 19. Logical functions as implemented (examples here limited to 4 bits).

Note that “_B” stands for “bit reduction” though it is also a mnemonically convenient reminder that B is the input to
these single operand functions. The logical unit is also used to compare (A!=B) and (A!=0) for conditional
branching.

Hive_Design_2013-07-07.doc Page 18 of 41

Pulling It All Together

Figure 20. The Arithmetic and Logic Unit (ALU).

The figure above shows the complete ALU. The blue dashed lines represent register boundaries of a pipeline.
Data enters from the left and proceeds through the pipe, with the result emerging on the right 6 clocks later.
Inputs are multiplexed in, and the desired results multiplexed out. The PC (Program Counter) is multiplexed in
between stages 3 and 4 for reading and subroutine / interrupt return address use. Read and literal data from
main memory and the local register set is multiplexed in between stages 4 and 5. This pipeline structure provides
natural intermediate value storage, so the ALU can be presented with new input data on every clock without worry
that the new data will be somehow mixed in or confused with previous or later data. Pipeline interstage
registering speeds things up and is an otherwise largely stranded FPGA resource, so it might as well be used (my
earlier processor designs only employed a few percent of the fabric registers, and not surprisingly were relatively
slow).

A somewhat thorny issue with ALU design is working out what the control inputs should be and how they should
be implemented. So as not to slow things down with elaborate encoding and decoding, I decided to encode them
one-hot, but with a precedence that is not actually relied upon in practice. The control signals are also pipelined,
so the data and the desired operation on it may be conveniently presented together on the left. The multiply and
shift unit is complex enough to have its own controls internally pipelined.

Hive_Design_2013-07-07.doc Page 19 of 41

PPIIPPEELLIINNEEDD CCOORREE

Figure 21. Hive core – view from 100 feet up.

Shown above is the full Hive core. The dotted lines and numbered boxes represent interstage registering. I’ll
refer to the logic following a line of registers with the same numbering as the registers to the left, e.g. stage 3 logic
is located between the “3” and “4” register lines. Pipeline stage numbering is relative to data path operations,
rather than control path operations. I chose this convention because the lion’s share of the core logic – ALU &
LIFOs – is contained in the data path.

It is vitally important to note that the left and right edges of the figure are connected, which converts the horizontal
paths into loops, and so the core may be thought of as one large ring structure. As with the ALU, the pipeline
interstage registering provides natural storage for intermediate results. With the pipelines configured as rings,
values such as the PC and the LIFO pointers are not only buffered but actually stored in the interstage registering.
Clearly this also forms a natural and simple scheduling mechanism, with packets of data and associated control
information spinning around a global ring like horses on a carousel, all independent of one another, isolated by
and stored within the pipe interstage registering, passed from stage to stage in a circular bucket brigade fashion.
Let’s call these packets “threads” – each stage of the core pipeline can receive and temporarily store, process,
and pass on data and control information for a single thread, and there are 8 stages, so we have 8 threads.
(Given extra buffering, one could have more threads than pipeline stages with this scheme, but not vice-versa.)

The core may then be thought of as eight processors running at 1/8 the clock speed, sharing a memory (data and
address) space which facilitates intercommunication between them as well as code compaction / factoring (the
sharing of common data and subroutines). The ring structure of the core forms a “barrel” type scheduler for the
threads. Each thread is unique, has as much real time as the next, and gets equal access to the core resources
in a strictly offset / overlapped but non-interfering manner. It is up to the programmer to keep the threads busy
doing something, though of course unused threads could simply loop, perhaps waiting for an interrupt or a
semaphore in memory to change (i.e. “camping on a bit”).

Let’s look at the individual rings in a bit more detail.

Hive_Design_2013-07-07.doc Page 20 of 41

Figure 22. The Thread ID “Ring”.

Threads needs an identification number to correctly time the injection of thread clear and interrupt events into the
ring, for stack error reporting, and to generate thread clear and interrupt addresses. (All threads could vector to
the same clear and interrupt address, but that would require overhead for the thread when emerging from start up
or when servicing an interrupt: read the thread ID from the local register set, use it to lookup or offset an address,
jump there, etc.) A simple up-counter at the beginning of the ring generates the thread ID. A true ring structure
sans counter could be used here, but that would rely on everything going well from hard reset to infinite time
(never do this if you can avoid it) so we break the ring and use a counter and pipe construct instead because it is
inherently self-correcting. The interstage registers emerge from asynchronous reset with the values they would
normally have if previously fed by the counter, and thread ID 0 is the first to emerge from a global reset / clear,
followed by 1, 2, etc. Note that this isn’t a true scheduler, just a round-robin doling out of identifiers, and that any
scheme which produces a continuously repeating fixed pattern where each and every ID is generated once and
only once every 8 clocks would suffice.

Figure 23. The Program Counter Ring.

Above is the program counter ring. At stage 0 the PC is replaced by the thread clear address is if the thread is
being cleared, left alone if the thread is taking an interrupt, or incremented to get the next instruction (or in-line
literal). In stage 1 the PC is used as the address for the main memory data port if retrieving in-line literal data. In
stage 2 the PC is incremented by 1 if retrieving an in-literal (to get the next instruction), incremented by B (or an
immediate value) if taking a relative jump, or left alone. In stage 3 the PC is sent to the data path for reading, or
as a return address if taking a subroutine or interrupt. Also in stage 3 the PC is replaced with the thread interrupt
address if taking an interrupt, or by B if performing an absolute jump or subroutine. In stage 4 the PC is used as
the address for the main memory instruction port to fetch the next instruction.

Figure 24. The Control Ring.

The thread ring and PC ring, together with the opcode decoding unit and the clear and interrupt event controllers,
form the control ring. Opcode decoding takes place in several stages in order to speed it up, and as a
consequence the instruction fetch must happen fairly early in the pipeline, which means conditional testing has to
take place even earlier. The clear and interrupt event controllers use the thread ID to correctly inject thread clear
and interrupt events into the control ring structure (and to simultaneously retire these events once injected); these
events are handed off to the opcode decoder where they are prioritized and decoded. Note that each thread has
its own separate clear and interrupt. The clearing or interrupt of one or more threads won’t disturb the other
normally functioning threads. The abundance of independent interrupts means that hierarchical interrupt logic /
code won’t likely be necessary for most applications.

Hive_Design_2013-07-07.doc Page 21 of 41

Figure 25. The Stack Pointer Ring.

Shown above is the stack pointer ring. In stage 0 the stack pointers are cleared if the thread is being cleared or if
a stack clear instruction is decoded. In stage 1 valid pop events decrement the relevant stack pointer(s). In stage
2 valid push events increment the relevant stack pointer. Not shown in stages 1 and 2 is logic that measures
fullness and prevents push when full / pop when empty from corrupting the stack pointers (if so configured at build
time). These error events are reported to the local register set for debugging purposes. Separating the pop and
push logic in this manner actually simplifies combined pop & push actions, as well as error tracking and reporting.
Valid pushes also generate write enables for the LIFO memories, which are pipelined and applied in stage 6. In
stage 6 the stack pointers are concatenated with the thread ID to form the LIFO memory write / read address and
the ALU result is written to one of the stack memories. This pointer / thread ID concatenation scheme gives each
thread its own private set of stacks in shared block RAM, and makes stack corruption from one thread to another
impossible. Stack to stack corruption within a thread is also impossible due to the physically separate block
RAMs employed for each stack.

Figure 26. The Data Ring.

As shown above, the stack output multiplexer, ALU, LIFO memories, and stack pointer ring constitute the data
ring.

The control ring, data ring, main memory, local register set, and register set shim (not shown) make up the Hive
core. The shim is a simple data & address arbiter, which allows the register set to share the same bus as the
main memory data port. The shim also arbitrates between in-line literal and data accesses.

Hive_Design_2013-07-07.doc Page 22 of 41

IINNSSTTRRUUCCTTIIOONNSS // OOPPCCOODDEESS
With the basic hardware structure in place we can now decide on the instructions and opcode formats. In
actuality the design process isn’t nearly this cut and dried, the inclusion and format of certain instructions will
ripple back into the hardware structure and vice versa leading to all sorts of exciting, fun-filled churn.

Selecting a balanced set of instructions and determining how to best fit them into the opcode space can be a
formidable challenge, particularly for a processor where the opcode is intentionally compact. From the previous
discussion, we know there are 2 stack indexes of 2 bits each, with 1 pop bit for each index. This consumes 6 bits
of opcode space, leaving 10 bits remaining. Some designs utilize the room freed up when fewer operands are
required for a particular operation, and I decided not to go that route in order to maximize the opportunities for
concurrent stack cleanup (popping of unneeded data / addresses).

Instructions that contain an immediate data or address offset field can be quite effective, though they quickly
gobble up opcode space so they need to be firmly in the frequent use category to earn their keep. The immediate
field width need not be fixed, and I decided to implement immediate 8 and 6 bit signed data instructions, as well
as immediate 5 bit signed and 4 bit unsigned address offset instructions, all with the immediate LSB positioned at
bit 6 for consistent alignment. A 6 bit wide immediate value when coupled to the shift instruction is useful
because it allows for full 32 bit left or right shifting in a single cycle, and one or more shifts can perform many
chores that would otherwise require dedicated instructions and hardware (full width MSB flag, arbitrary width sign
/ zero extension, isolation of arbitrary contiguous bit fields, etc.). The 4 bit immediate is used exclusively as a
read / write address offset, so I felt it best be unsigned.

Immediate instruction types and opcode space consumption:

• Four 4 bit immediate address instructions: read and write, both with extended mode – 64 codes.
• One 5 bit immediate address instruction: conditional jump – 416 codes.
• One 8 bit immediate data instruction: byte (signed) – 256 codes.
• Three 6 bit immediate data instructions: shift left (signed), shift left unsigned, add (signed) – 192 codes.

0 W 0 0 0 X IM[3:0] PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 NZ UG L E IM[4:0] PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 27. Immediate address instruction formats (top to bottom): immediate read & write; immediate
conditional jump.

1 0 IM[7:0] PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 U IM[5:0] PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 IM[5:0] PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 28. Immediate data instruction formats (top to bottom): immediate literal data; immediate shift;
immediate add.

Hive_Design_2013-07-07.doc Page 23 of 41

1 1 1 1 0 0 OP G L E PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 OP PB PA B A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 29. Other instruction formats (top to bottom): conditional branch; single.

The bandwidth consumed by immediate / literal data is quite important; some processor designs devote (literally!)
half of the opcode space to a single immediate data operation. With Hive, the immediate byte instruction is one
way to insert data from the instruction stream, another is via three literal instructions that employ an in-line
mechanism (the value immediately follows the literal instruction in program space). The byte instruction obviously
uses 16 bits and one cycle to push 8 signed bits of data. The in-line literal instructions use 32 bits (the 16 bit
literal instruction followed by 16 bits of data – the data is used “literally” rather than decoded) but still only one
cycle to push 16 bits of data. There are signed and unsigned literal low instructions, and an extended instruction
that preserves the lower 16 bit value to fill 32 data bits in two cycles.

There are 4 instructions for data space access: two for read and two for write. All have an unsigned 4 bit
immediate field in order to provide a group of 16 convenient memory slots off of a base address. The low read is
signed, and there is no corresponding unsigned read instruction. The extended read (like the extended in-line
literal) preserves the lower 16 bit value to load all 32 bits in two cycles. Write and write extended instructions are
provided to store 32 data bits in two cycles. Data and code space are shared, which enables the programmer to
freely allocate and partition it, and enables the copying in of new code via this data read / write mechanism.

Add, subtract, multiply, shift, and all of the logical operations have been described previously. An immediate
signed add is provided for small quick increments and decrements (+31/-32). There are both immediate and non-
immediate forms of the shifts because one often needs to shift by a variable, rather than by a constant.

Branches
There are three types of branches – jump, go to, and subroutine:

• JMP (jump) is relative to the PC and is either conditional or unconditional, and either immediate or not. The

conditional form jumps a signed distance given by B (or I for the immediate version) if the test (A?0) is true.
There are also conditional (A?B) signed and unsigned tests for the immediate JMP. The immediate JMP is
deemed (perhaps rashly) so valuable that it consumes almost half of the opcode space.

• GTO (go to) is absolute, and is either conditional or unconditional. The conditional form loads the PC with the
value given by B if the conditional test (A?0) is true.

• GSB (go to subroutine) is absolute and unconditional. It loads the PC with the value given by B and stores
the return address to A.

Relative branches are relative to the next instruction address, and not this instruction address, which seems like
the most natural convention: a relative jump of 0 does nothing, a relative jump of +1 skips over the next
instruction, and a relative jump of -1 is an infinite loop.

The only thing conditional about a conditional instruction is whether or not the branch is taken. Pops are always
performed if pop bits are set in the conditional instruction.

Note that there is no explicit return operation, an unconditional GTO is used to return from subroutines and
interrupts. The return address can be simultaneously popped at this point as well.

Hive_Design_2013-07-07.doc Page 24 of 41

Conditional Field

G L E Condition (A?0) (A?B)
0 0 0 Never (useless) 0 0
0 0 1 Equal A==0 A==B
0 1 0 Less A<0 A<B
0 1 1 Less OR Equal A<=0 A<=B
1 0 0 Greater A>0 A>B
1 0 1 Greater OR Equal A>=0 A>=B
1 1 0 Greater OR Less (not equal) A<>0 A<>B
1 1 1 Always (unconditional) 1 1

Figure 30. The conditional binary field.

As seen in the above table, the conditional bits form a convenient binary field when placed adjacent to one
another and functionally ORed together. GLE=111 is always execute, which is the unconditional case. GLE=000
is wasted space, particularly so for conditional instructions that have immediate fields.

Some conditional sign conventions / observations:

• All conditional comparisons of A to zero treat A as signed.
• All conditional comparisons of A and B that aren’t explicitly unsigned treat both A and B as signed.
• All conditional comparisons of A and B that are unsigned treat both A and B as unsigned.
• The equivalency comparisons E and GL (A==0), (A==B), (A<>0), and (A<>B) are obviously sign neutral.

Other Instructions
There are several stack and miscellaneous instructions:

• PC pushes the current PC (pointing to the next instruction) to A.
• CPY copies the contents of B to A (use with pop bits to form a move, etc.).
• POP is a NOP that enables pops (the usual A and/or B) for stack cleanup.
• NOP is a do nothing instruction, all functionality including pops is disabled.
• CLS clears the stack pointers of this thread.

One of course endeavors to maintain a strict global stack inventory, but it’s often difficult to keep track of garbage
on the stacks, which can easily lead to catastrophic stack faults. Clearing the stacks now and then can be a good
thing. Note the almost complete absence of the usual swap, roll, pick, etc. stack operations normally associated
with pure stack machines.

Naming Conventions
Consistency is important with instruction naming conventions so that one can easily remember them or, failing
that, quickly construct them knowing some basic rules. The letters “op_” precede all Hive instructions, and this is
mainly to avoid conflict with verilog reserved words. After this is the two or three letter operation, followed often
(but not necessarily) by a second underscore and one or more option letters. Obviously not all operations can
use all of the options.

Hive_Design_2013-07-07.doc Page 25 of 41

Op_* Function
byt BYTe data : I=>A
rd ReaD : mem[B+I]=>A
wr Write : A=>mem[B+I]
jmp JuMP : PC+(B or I)=>PC
gto Go TO : B=>PC
gsb Go SuBroutine : B=>PC, PC=>A
lit In-line LITeral data : mem[PC]=>A
pc PC as data : PC=>A
cpy CoPY : B=>A
and Logical AND : A&B=>A
or Logical OR : A|B=>A
xor Logical XOR : A^B=>A
not Logical NOT : ~A=>A
add Arithmetic ADDition : A+B=>A
sub Arithmetic SUBtraction : A-B=>A
mul Arithmetic MULtiplication : A*B=>A
shl Shift Left : A<<(B or I)=>A
cls Clear Stacks (for this thread only)
pop NOP with POPs enabled
nop No Operation (no pops either)

Figure 31. Instruction operations.

Op_*_? Function

i Immediate
u Unsigned (default is signed)
x eXtended
g Greater than (A>B)?
l Less than (A<B)?
e Equal to (A==B)?
z Zero
b Bit reduction

Figure 32. Operation options.

The rules for these options are:

• No underscore between options.
• The immediate option comes first.
• The unsigned option comes next. Example: op_shl_iu (shift left immediate unsigned).
• The conditional options g, l, e, and z come next, and in that order. Example: op_jmp_igez (jump immediate

greater than or equal to zero).
• The extended option goes last. Example: op_mul_ux (multiply unsigned extended).
• Some operations exist only in an immediate form (byt, rd, wr) and the rule here is to always include the

immediate option regardless. Example: op_byt_i (byte immediate).

The conditional field bits (G, L, E) are used with the modifier Z (zero) if the default comparison to B is not desired.
Some examples: GE is true if (A>=B); LZ is true if (A<0); GLZ is true if (A<>0) or equivalently (A!=0). GLE and
GLEZ are not actually referred to this way because they are equivalent to always execute, which is simply the
absence of the conditional options in the opcode name.

If a desired (A?B) comparison doesn’t exist, pick the logical opposite and switch the A and B stack targets in the
instruction. For example, say you want {op_jmp_iule, -8, _, P, s0, s1} but you look at the opcode list and no dice.
But the equivalent {op_jmp_iuge, -8, P, _, s1, s0} does exist and is an exact functional replacement.

Hive_Design_2013-07-07.doc Page 26 of 41

Encoding
When assigning the actual numerical values to the instructions – the operational encoding or opcodes – it is
important to make the decoding as straightforward and orthogonal as possible, which is much easier to say than
to do. I use a spreadsheet to keep track of them, with a column for each control signal that is an output of the
opcode decoder. This helps to reveal similar decoding patterns that may then be grouped together or otherwise
advantageously arranged for ease of interpretation by the decoding logic.

Codes Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
32 op_rd_i 0 0 0 0 0 X IM[3:0] PB PA B A
224 op_jmp_iglez G L E IM[4:0]
32 op_wr_i 1 0 0 0 X IM[3:0]
192 op_jmp_iugle UG L E IM[4:0]
32 - unused - 1 1 1
256 op_byt_i 1 0 IM[7:0]
128 op_shl_i 1 0 U IM[5:0]
64 op_add_i 1 0 IM[5:0]
8 op_jmp_glez 1 0 0 0 G L E
8 op_gto_glez 1
1 op_add 0 1 0 0 X U
1 op_sub 0 1 0 1
1 op_mul 0 1 1 0
.
1 op_pop 1 1 1 1 1 0
1 op_nop 1 1 1 1 1 1

Figure 33. Opcode encoding.

As seen in the table above, the immediate reads are positioned at the base of the opcode space, consuming 32
codes. These, with the immediate writes, are shoehorned into the otherwise unused GLE = 000 (i.e. never)
conditional area of the immediate conditional jump instruction that consumes 416 codes or nearly half of the entire
space – I obviously feel that conditional short relative jumps are really important! Next is an unassigned group of
32 codes in the GLE = 111 (i.e. always) conditional area. Next is the immediate byte instruction which not
surprisingly consumes 256 codes or one quarter of the entire space. Next are two immediate shifts and an
immediate add which consume 64 codes each for a total of 192 codes. Following these are 8 conditional jump
instructions and 8 conditional go to instructions, with the GLE field necessarily shifted down. There are 48
remaining code slots used for singles. The singles are arranged by functionality in groups of 16, with arithmetic
first, logical second, and the third and final group something of a catch-all.

Only 27 of the 48 single instruction codes are actually assigned, leaving 21 remaining. Opcode space utilization
is therefore:

 (1024 – 32 – 21)/1024 = 96.7%

So there are some opcode slots open for future expansion, but the opcode space is otherwise largely consumed
by instructions with immediate fields, and this probably is as it should be for a processor with compact opcodes.

It can be a long road leading up to the final selection of operations and their encoding, with much inserting and
deleting of operations, resizing of immediate fields, and reshuffling of the encoding space, and I’m not sure there
is any way to abbreviate this activity and still really do it justice. A compact opcode can be a rather harsh
mistress due to the cramped working environment, hence the tucking away of the reads and writes in Hive’s
otherwise unused immediate conditional jump space. As you might imagine, small changes in grouping can
sometimes dramatically alter the top speed of, and logic required for, the opcode decoder function.

The use of a multi-file text search and replace tool such as TextCrawler (Digital Volcano) during development can
be quite useful for making global changes to opcode names, etc. reaching all the way into the bootcode text as
well.

Hive_Design_2013-07-07.doc Page 27 of 41

IINNTTEERRNNAALL RREEGGIISSTTEERR SSEETT
Any processor core will need a local, or internal register set to manage things like the reporting of basic
operational errors, enabling and disabling of interrupts, general purpose I/O communications, timers, UARTs,
watchdog sanity timers, shoot yourself in the head resets, etc. But register set implementation can be a dull,
repetitive, and bug prone exercise. To automate this to some degree and to reduce the chance of errors, the
foundation of the register set is a configurable multi-function single base register component with many
parameter-based options.

Figure 34. Configurable base register component.

The figure above shows a schematic view of the single base register component. On the left is the common
processor expansion bus, on the right are the individual inputs and outputs of the single register. Not shown is
logic that detects the address match, nor the read / write / in / out signal conditioning. The two large multiplexers
set the read and output modes via parameters at build time. Any number and combination of bits can be “live”
(provided with functional logic) and initialized to a known value at reset. Register input data can be optionally
resynchronized and/or made edge sensitive. Most common register types can be formed via various
combinations of the modes, most others can be implemented by adding a bit of circuitry to this base construct.
Mixed mode bits in a single register aren’t directly supported.

Parameter Output Mode
“ZERO” zero output
“THRU” no latch, direct connect
“LTCH” write latch
“READ” no output latch, output selected read data

Figure 35. Output mode options.

Parameter Read Mode

“THRU” no latch, direct connect
“CORD” set on input one, clear on read
“COW1” set on input one, clear on write one
“DFFE” D type flip flop with enable
“OUT” no read latch, read selected out data

Figure 36. Read mode options.

Multiple base register components are assembled into a register set by using a big OR gate to combine their bus
side data read port bits. Placement of each individual base register within the register set address space is
governed by an input parameter to each base register component. Placement of the register set within the main
memory address space is arbitrated by a shim component that differentiates processor read and write accesses.

Unlike their ASIC brethren, one nice thing that soft processor cores have going for them is they don’t need huge
gobs of configuration registers. Want a timer? Write one in verilog, connect it to an interrupt, and it’s game over.
Want 8 UARTs? No problem – you don’t have to put them in until you really need them and you can take them
out later when you don’t.

Hive_Design_2013-07-07.doc Page 28 of 41

The Hive internal register set is located at the top of memory space (base 0xFFF0) and includes the following
basic functionality:

Decode:
- 0x0 : Core version register - ver_reg
- 0x1 : Thread ID register - thrd_id_reg
- 0x2 : Clear register - clr_reg
- 0x3 : Interrupt enable register - intr_en_reg
- 0x4 : Opcode error register - op_er_reg
- 0x5 : Stack error register - stk_er_reg
- 0x6 - 0x7 : UNUSED
- 0x8 : I/O low register - io_lo_reg
- 0x9 : I/O high register - io_hi_reg
- 0xA - 0xF : UNUSED

==
- 0x0 : Core version register - ver_reg
--

 bit name description
----- ---- -----------
 7-0 ver_min[7:0] minor version info
 15-8 ver_maj[7:0] major version info

Notes:
- Read-only.
- Nibbles S/B BCD (0-9; no A-F) to be easily human readable,
 and to eliminate confusion between decimal and hex here.
- Major version changes when op_code binary decode changes (incompatibilty).

==
- 0x1 : Thread ID register - thrd_id_reg
--

 bit name description
----- ---- -----------
 2-0 thrd_id[2:0] thread ID
 15-3 - 0000000000000

Notes:
- Read-only.
- Threads can read this to discover their thread ID.

==
- 0x2 : Clear register - clr_reg
--

 bit name description
----- ---- -----------
 7-0 clr[7:0] 0=>1 clear thread; 1=>0 no effect;
 15-8 - 00000000

Notes:
- Read / write.
- Per thread clearing.
- All bits cleared on async reset.

==
- 0x3 : Interrupt enable register - intr_en_reg
--

 bit name description
----- ---- -----------
 7-0 intr_en[7:0] 1=thread interrupt enable; 0=disable
 15-8 - 00000000

Notes:
- Read / write.
- Per thread enabling of interrupts.
- All bits cleared on async reset.

Hive_Design_2013-07-07.doc Page 29 of 41

==
- 0x4 : Opcode error register - op_er_reg
--

 bit name description
----- ---- -----------
 7-0 op_er[7:0] 1=opcode error; 0=OK
 15-8 - 00000000

Notes:
- Clear on write one.
- Per thread opcode error reporting.

==
- 0x5 : Stack error register - stk_er_reg
--

 bit name description
----- ---- -----------
 7-0 pop_er[7:0] 1=lifo pop when empty; 0=OK
 15-8 push_er[7:0] 1=lifo push when full; 0=OK

Notes:
- Clear on write one.
- Per thread LIFO stack error reporting.

==
- 0x6 - 0x7 : UNUSED
==
- 0x8 : I/O low register - io_lo_reg
--

 bit name description
----- ---- -----------
 15-0 io_lo[15:0] I/O data

Notes:
- Separate read / write.
- Reads of io_lo_reg freeze data in io_hi_reg, so read io_lo_reg first then
 read io_hi_reg for contiguous wide (32 bit) data reads.
- Writes function normally.

==
- 0x9 : I/O high register - io_hi_reg
--

 bit name description
----- ---- -----------
 15-0 io_hi[15:0] I/O data

Notes:
- Separate read / write.
- Reads of io_lo_reg freeze data in io_hi_reg, so read io_lo_reg first then
 read io_hi_reg for contiguous wide (32 bit) data reads.
- Writes function normally.

==
- 0xA - 0xF : UNUSED
==

Hive_Design_2013-07-07.doc Page 30 of 41

VVEERRIIFFIICCAATTIIOONN
Job #1 when building a processor is obviously wringing out all the bugs. Processors that have caches, pipeline
hazards and stalls, and lots of internal state are notoriously difficult to verify (and therefore fundamentally trust –
Pentium division bug anyone?). Much of engineering is the exercise of complexity management, and processor
architectures themselves should be governed by this conduct as well. Simplicity allows one to more easily juggle
the processor model in one’s head, but can also greatly ease the verification problem. Hive has relatively simple
control structures, minimal internal state, and the entire design is partitioned into right sized modules that are as
self-contained as possible, making verification a straightforward and relatively painless task.

It goes without saying that all basic blocks should be fully tested before being assembled together. With Hive,
most module port widths and associated internal logic are parameterized so, for example, full verification of the
ALU was accomplished by shrinking the data port widths to a trivial size, which allowed for manual examination of
the results of all possible inputs. The multiplier was verified separately at full width by comparing its results to a
second naively instantiated multiplier, both supplied with corner cases and random input (the inclusion of this test
hardware is a parameterized option for the multiplier base module). The intermediate control and data ring
constructs allowed for the testing of lower level aggregate functionality.

Once basic functionality was up (thread clearing, immediate byte, jumps) boot code enabled the processor to
essentially verify itself. Stack functioning and error reporting were fully tested in all threads. Jump distances and
all associated conditionals were confirmed. Each opcode was tested to make sure it was decoded and
functioning correctly – distinctive signatures were used here rather than exhaustive testing. This is also a good
way to get some early experience hand coding the processor (the point at which I’ve became largely disillusioned
with my past designs) which can often lead to changes in the op codes or other parts of the fundamental design.

Finally, several simple algorithms were coded up, first in a spreadsheet and then in the simulated core, with the
results compared. When working on this phase of the design I find that I have to fight a strong inclination to tailor
the instruction set to the algorithm du jour and keep my eye on the big picture. For instance, after coding the log2
algorithm, a leading zero count instruction (lzc, clz) seemed like it would be a valuable inclusion (it has floating
point normalization uses as well). So I coded up a fully parameterized verilog module and speed / functionally
tested it, but I’ve successfully resisted the urge to actually stick it in the logical unit of the Hive core (so far). Ditto
for ANDN (A & ~B) AKA a “bit squashing” instruction (it doesn’t seem worth the extra hardware).

SSPPEEEEDD
Job #2 when building a processor is getting the most speed out of it as possible. To this end most Hive modules
have configurable registering on inputs and outputs which can effectively isolate timing to the fabric rather than
the FPGA I/O pins when doing individual module speed trial builds. The component vector_sr.v can go from a
single wire to any desired width and registering depth, and is used throughout the design for general registering
and pipelining. (A downside to this approach is that useful internal signal names get reduced to vector indexes,
which can make them difficult to differentiate in simulation.)

It is important during early testing to identify the slowest low level hardware path. This then is the lower speed
target for the remaining circuitry, which should be written / implemented at least 10% or so faster so as to have a
bit of a cushion when it all comes together – the more margin the better because modules have a tendency to
slow down considerably when spattered willy nilly onto the fabric with all of the other logic. Just as C compilers
can often beat the best human hand coders (particularly when targeting x86 and other insanely complex
processors) there are various FPGA synthesis options that will likely produce a faster top speed, and an
automated seed hunt with multiple options (e.g. Altera’s “Design Space Explorer”) will usually produce a faster
point in the design space if you’ve got some time in your life to spare. This is worth doing if only to know the top
speed easily attainable.

Watch the fitter resource allocation like a hawk, particularly for any extra block RAM creeping into your design. It
seems the fitter likes to replace pipe stages with block RAM, which can really slow things down.

Use a DCM to get your board clock up to the maximum speed of the core.

Hive_Design_2013-07-07.doc Page 31 of 41

PPRROOGGRRAAMMMMIINNGG
The verilog hardware description language has an “initial” construct that can be used along with other verilog
syntax features to write simple, fairly readable boot code, comments and all. Hive boot code text resides in a text
file (boot_code.h) that gets inserted into the main memory module with an include statement. Let’s take a look at
some sample boot code:

`include “op_encode.h”
`include “register_set_addr.h”

These two includes pull in our opcode encoding and internal address register locations so we can refer to them by
name rather than by their rather cryptic numerical encoding. The register set is located at the top of the address
space, with a base address of 0xFFF0, and the addresses given in the file are offsets to this base address.

 `define s0 2’d0
 `define s1 2’d1
 `define s2 2’d2
 `define s3 2’d3
 `define _ 1’b0
 `define P 1’b1

The above defines make stack indexes and popping a bit clearer.

 `define op_rd_i op_rd_i[9:4]
 `define op_rd_ix op_rd_ix[9:4]
 //
 `define op_jmp_iez op_jmp_iez[9:5]
 `define op_jmp_ilz op_jmp_ilz[9:5]
 `define op_jmp_ilez op_jmp_ilez[9:5]
 `define op_jmp_igz op_jmp_igz[9:5]
 `define op_jmp_igez op_jmp_igez[9:5]
 `define op_jmp_iglz op_jmp_iglz[9:5]
 `define op_jmp_i op_jmp_i[9:5]
 //
 `define op_wr_i op_wr_i[9:4]
 `define op_wr_ix op_wr_ix[9:4]
 //
 `define op_jmp_ie op_jmp_ie[9:5]
 `define op_jmp_il op_jmp_il[9:5]
 `define op_jmp_ile op_jmp_ile[9:5]
 `define op_jmp_iug op_jmp_iug[9:5]
 `define op_jmp_iuge op_jmp_iuge[9:5]
 `define op_jmp_igl op_jmp_igl[9:5]
 //
 `define op_byt_i op_byt_i[9:8]
 //
 `define op_shl_i op_shl_i[9:6]
 `define op_shl_iu op_shl_iu[9:6]
 `define op_add_i op_add_i[9:6]

The above defines keep us from having to size the immediate instructions when we call them. If not properly
sized we will get concatenation width warnings from the tool.

 integer i;
 initial begin

The above declares an integer we’ll use to keep from having to name each and every address, and marks the
beginning of the initialization code.

Hive_Design_2013-07-07.doc Page 32 of 41

A Simple Example

 // clr space //
 i=’h0; ram[i] = { op_lit_u, `_, `_, `s0, `s1 }; // lit => s1
 i=i+1; ram[i] = { 16’h0040 }; // sub addr
 i=i+1; ram[i] = { op_gsb, `P, `_, `s1, `s0 }; // sub (return => s0), pop s1
 i=i+1; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 //
 i=’h4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever
 i=i+4; ram[i] = { `op_jmp_i, -5’h1, `_, `_, `s0, `s0 }; // loop forever

 // intr space //

 // code & data space //

 // sub : output core version
 i=’h40; ram[i] = { op_lit_u, `_, `_, `s0, `s1 }; // lit => s1
 i=i+1; ram[i] = REG_BASE_ADDR ; // reg base addr
 i=i+1; ram[i] = { `op_rd_i, VER_ADDR, `_, `_, `s1, `s0 }; // [s1+im] => s0
 i=i+1; ram[i] = { `op_wr_i, IO_LO_ADDR, `P, `P, `s1, `s0 }; // s0 => [s1+im], pop both
 i=i+1; ram[i] = { op_gto, `P, `_, `s0, `s0 }; // return, pop s0 (return addr)
 // end sub

Finally some code!

The first line is located at address 0, which is where thread 0 vectors to when cleared. The instruction puts an
unsigned literal in S1, the value of which is the address of a subroutine. The second line is the unsigned in-line
literal value, 0x40. The third line calls the subroutine and pushes the return address to S0, and it simultaneously
pops the subroutine address in S1 (stack cleanup). The fourth line is an immediate jump -1, which is an infinite
loop.

The next seven lines are for threads 1 through 7, which are instructed to twiddle their thumbs by looping infinitely.
Note that the clear addresses are spaced 4 apart (both this distance and the base address are configurable at
build time for the clear and interrupt vector groups). The interrupt instruction address space is blank because the
interrupts won’t be enabled nor used for this program.

The subroutine code at address 0x40 loads the processor register set base address to S1, reads the core version,
then writes the core version to the lower I/O port, pops both address and data simultaneously with the write (stack
cleanup), then issues a gto S0 and pops S0 (stack cleanup), which is the way subroutines and interrupts are
returned from in Hive.

Hive_Design_2013-07-07.doc Page 33 of 41

Restoring Division Subroutine Example
A somewhat meatier example is division. The so called “restoring” division algorithm is shown below:

Figure 37. Restoring division algorithm flow chart.

This is much like pencil and paper long division, where the largest multiple of the denominator that will produce a
non-negative result when subtracted from the shifted numerator is used. In binary the only multiples are 0 and 1
so the process is simplified considerably. A negative result can be tested for in advance, thus skipping both the
subtraction and the restore in that case. The MSB end of the numerator currently under consideration is left
shifted into S3, rather than the denominator to the right, and the dividend register does double duty as the
currently uninvolved portion of the numerator (the MSB end) as well as the dividend which is being built up bit by
bit during the calculations (the LSB end). Hive stacks for this subroutine are assigned as follows:

• S0 : Numerator A input / dividend (A/B) output
• S1 : Denominator B input / mod (A%B) output
• S2 : loop index
• S3 : subroutine return address / mod (A%B) during calculations

Hive_Design_2013-07-07.doc Page 34 of 41

 // sub : divide s0/s1 => result in s0, remainder in s1, return to (s3)
 //
 // s0 : A input, A/B output
 // s1 : B input, A%B output
 // s2 : loop index
 // s3 : subroutine return address, A%B
 //
 // 0 input s1 is an error, return
 i=’h70; ram[i] = { `op_jmp_iglz, 5’d1, `_, `_, `s0, `s1 }; // (s1!==0) ? skip return
 i=i+1; ram[i] = { op_gto, `P, `_, `s3, `s0 }; // return to (s3), pop s3
 // loop setup
 i=i+1; ram[i] = { `op_byt_i, 8’d32, `_, `_, `s0, `s2 }; // 32=>s2
 i=i+1; ram[i] = { `op_byt_i, 8’d0, `_, `_, `s0, `s3 }; // 0=>s3
 // divide loop
 i=i+1; ram[i] = { `op_add_i, -6’d1, `_, `P, `s0, `s2 }; // s2--=>s2, pop s2
 i=i+1; ram[i] = { `op_shl_i, 6’d1, `_, `P, `s0, `s3 }; // s3<<1=>s3, pop s3
 i=i+1; ram[i] = { `op_jmp_igez, 5’d1, `_, `_, `s0, `s0 }; // (s0[31]==0) ? skip
 i=i+1; ram[i] = { `op_add_i, 6’d1, `_, `P, `s0, `s3 }; // s3++=>s3, pop s3
 i=i+1; ram[i] = { `op_shl_i, 6’d1, `_, `P, `s0, `s0 }; // s0<<1=>s0, pop s0
 i=i+1; ram[i] = { `op_jmp_iug, 5’d2, `_, `_, `s3, `s1 }; // (s1>s3) ? jump unsigned
 i=i+1; ram[i] = { op_sub, `_, `P, `s1, `s3 }; // s3-s1=>s3, pop s3
 i=i+1; ram[i] = { `op_add_i, 6’d1, `_, `P, `s0, `s0 }; // s0++=>s0, pop s0
 i=i+1; ram[i] = { `op_jmp_igz, -5’d9, `_, `_, `s0, `s2 }; // (s2>0) ? do again
 // s3=>s1; cleanup, return
 i=i+1; ram[i] = { op_cpy, `P, `P, `s3, `s1 }; // s3=>s1, pop both
 i=i+1; ram[i] = { op_gto, `P, `P, `s3, `s2 }; // return to (s3), pop s3 & s2
 // end sub

The division subroutine code is above. The return is not skipped if the denominator value is zero, which is
mathematically undefined (+/- infinity). Note that a conditional gto can’t be used here because the S3 pop would
always happen regardless of the outcome of the test, leaving us with no return address should the test result be
false. The loop index is pushed to S2, S3 is initialized to zero, and the loop begins. The left shifting of S0 and S3
is performed in a staggered manner so that no intermediate results need to be stored. A shift and a conditional
immediate add are used to left shift either a 0 or 1 into the remainder LSB. A conditional immediate jump
bypasses the subtraction and 1 injection into the LSB of the dividend. After the loop has completed the remainder
is copied to S1, with both popped to form a move. The return address in S3 and the loop index in S2 are both
popped at return to clean up.

In terms of real time, assuming the denominator isn’t zero and the return is skipped, it takes 3 cycles to test the
input and setup the loop, 6 cycles per loop best case and 9 cycles worst case, with two cycles after the loop. For
32 loops this gives:

 3 + 6*32 + 2 = 197 best case
 3 + 9*32 + 2 = 293 worst case

For a 200 MHz clock and 8 clocks per cycle, this is 7.88 us best case, 11.72 us worst case.

Hive_Design_2013-07-07.doc Page 35 of 41

Log2 Subroutine Example
A somewhat similar example to division is the calculation of the 32 bit base 2 logarithm of an unsigned 32 bit input
number. The algorithm shown here exploits the fact that log2(x2) = 2*log2(x), and is implemented via an unrolled
binary search normalization process followed by a looped squaring processes.

The first section normalizes the input by shifting it to the left until the MSB is equal to 1 (which tests as negative).
The number of shifts necessary to accomplish this is subtracted from 31 to form the log characteristic, which is
the 5 bit number to the left of the decimal place in the result.

After normalization, the normalized input is squared and the resulting MSB examined. If it is equal to 1 then a 1 is
left shifted into the characteristic. If it is equal to 0 both the characteristic and the squared input are left shifted
once (which should make the characteristic LSB = 0 and the squared input MSB = 1). This loop is executed 32 –
5 = 27 times to find all bits to the right of the decimal place in the result, AKA the log mantissa.

Figure 38. Log base 2 algorithm flow chart.

This algorithm is shown above as a flow chart. The initial test makes sure the input is non-zero because the log
of zero is undefined. Next is the normalization / characteristic binary search. Finally we have the square /
mantissa loop, with the loop exit test at the end. Hive stacks are assigned as follows:

• S0 : input / normalized input / squaring / output
• S1 : characteristic.mantissa
• S2 : mantissa loop index
• S3 : subroutine return address

Hive_Design_2013-07-07.doc Page 36 of 41

 // sub : log2(s0)=>s0, return to (s3)
 //
 // s0 : input, normalize, square, output
 // s1 : characteristic (5 MSBs of output) and mantissa (27 LSBs of output)
 // s2 : square loop index
 // s3 : subroutine return address
 //
 // input 0 is an error, return
 i=’h60; ram[i] = { `op_jmp_iglz, 5’d1, `_, `_, `s0, `s0 }; // (s0!==0) ? skip return
 i=i+1; ram[i] = { op_gto, `P, `_, `s3, `s0 }; // return to (s3), pop s3
 // normalize binary search
 i=i+1; ram[i] = { `op_byt_i, 8’d31, `_, `_, `s0, `s1 }; // 31=>s1, characteristic
 //
 i=i+1; ram[i] = { `op_shl_iu, -6’d16, `_, `_, `s0, `s0 }; // s0>>16=>s0
 i=i+1; ram[i] = { `op_jmp_iglz, 5’d2, `_, `P, `s0, `s0 }; // (s0<>0) ? jump, pop s0
 i=i+1; ram[i] = { `op_shl_i, 6’d16, `_, `P, `s0, `s0 }; // s0<<16=>s0, pop s0
 i=i+1; ram[i] = { `op_add_i, -6’d16, `_, `P, `s0, `s1 }; // s1-16=>s1, pop s1
 //
 i=i+1; ram[i] = { `op_shl_iu, -6’d24, `_, `_, `s0, `s0 }; // s0>>24=>s0
 i=i+1; ram[i] = { `op_jmp_iglz, 5’d2, `_, `P, `s0, `s0 }; // (s0<>0) ? jump, pop s0
 i=i+1; ram[i] = { `op_shl_i, 6’d8, `_, `P, `s0, `s0 }; // s0<<8=>s0, pop s0
 i=i+1; ram[i] = { `op_add_i, -6’d8, `_, `P, `s0, `s1 }; // s1-8=>s1, pop s1
 //
 i=i+1; ram[i] = { `op_shl_iu, -6’d28, `_, `_, `s0, `s0 }; // s0>>28=>s0
 i=i+1; ram[i] = { `op_jmp_iglz, 5’d2, `_, `P, `s0, `s0 }; // (s0<>0) ? jump, pop s0
 i=i+1; ram[i] = { `op_shl_i, 6’d4, `_, `P, `s0, `s0 }; // s0<<4=>s0, pop s0
 i=i+1; ram[i] = { `op_add_i, -6’d4, `_, `P, `s0, `s1 }; // s1-4=>s1, pop s1
 //
 i=i+1; ram[i] = { `op_shl_iu, -6’d30, `_, `_, `s0, `s0 }; // s0>>30=>s0
 i=i+1; ram[i] = { `op_jmp_iglz, 5’d2, `_, `P, `s0, `s0 }; // (s0<>0) ? jump, pop s0
 i=i+1; ram[i] = { `op_shl_i, 6’d2, `_, `P, `s0, `s0 }; // s0<<2=>s0, pop s0
 i=i+1; ram[i] = { `op_add_i, -6’d2, `_, `P, `s0, `s1 }; // s1-2=>s1, pop s1
 //
 i=i+1; ram[i] = { `op_jmp_ilz, 5’d2, `_, `_, `s0, `s0 }; // (s0<0) ? jump
 i=i+1; ram[i] = { `op_shl_i, 6’d1, `_, `P, `s0, `s0 }; // s0<<1=>s0, pop s0
 i=i+1; ram[i] = { `op_add_i, -6’d1, `_, `P, `s0, `s1 }; // s1-1=>s1, pop s1
 // loop setup
 i=i+1; ram[i] = { `op_byt_i, 8’d27, `_, `_, `s0, `s2 }; // 27=>s2
 // square loop
 i=i+1; ram[i] = { `op_add_i, -6’d1, `_, `P, `s0, `s2 }; // s2--=>s2, pop s2
 i=i+1; ram[i] = { `op_shl_i, 6’d1, `_, `P, `s0, `s1 }; // s1<<1=>s1, pop s1
 i=i+1; ram[i] = { op_mul_ux, `_, `P, `s0, `s0 }; // s0*s0=>s0, pop s0
 i=i+1; ram[i] = { `op_jmp_igez, 5’d2, `_, `_, `s0, `s0 }; // (s0[31]==0) ? jump
 i=i+1; ram[i] = { `op_add_i, 6’d1, `_, `P, `s0, `s1 }; // s1++=>s1, pop s1
 i=i+1; ram[i] = { `op_jmp_i, 5’d1, `_, `_, `s0, `s0 }; // skip
 i=i+1; ram[i] = { `op_shl_i, 6’d1, `_, `P, `s0, `s0 }; // s0<<1=>s0, pop s0
 i=i+1; ram[i] = { `op_jmp_igz, -5’d8, `_, `_, `s3, `s2 }; // (s2>0) ? do again
 // s1=>s0; cleanup, return
 i=i+1; ram[i] = { op_cpy, `P, `P, `s1, `s0 }; // s1=>s0, pop both
 i=i+1; ram[i] = { op_gto, `P, `P, `s3, `s2 }; // return, pop s3 & s2
 // end sub

The subroutine code is above. The return is not skipped if the input value is zero. The normalization section
shifts the input value to the left until the MSB is 1, subtracting the number of shifts necessary to do this from 31
which is the characteristic. The square loop uses a shift and a conditional immediate add to left shift either a 0 or
1 into the mantissa LSB. Unsigned extended multiplication is the operation used for squaring. After the loop has
completed, the result in S1 is copied to S0 with both popped to form a move. The return address and S2 (loop
index) are both popped at return to complete the cleanup.

In terms of real time, assuming the input isn’t zero and the return skipped, it takes 1 cycle to test the input and
enter the normalization section, which takes between 11 and 21 cycles to perform. After that there is a 1 cycle
setup for the second loop. The two skip conditions oppositely test the same value, so one is always taken when
the other one isn’t, giving 7 cycles per loop with 27 loops, followed by 2 cycles of cleanup and return.

The best case is when the input value has an MSB of 1, which jumps through the normalization in 11 cycles. The
worst case is an input value of 1 which takes 21 cycles to normalize. This gives:

 1 + 11 + 1 + 7*27 + 2 = 204 best case

Hive_Design_2013-07-07.doc Page 37 of 41

 1 + 21 + 1 + 7*27 + 2 = 214 worst case

For a 200 MHz clock and 8 clocks per cycle, this is 8.16 us best case, 8.56 us worst case.

Generic Boot Code
If one has a UART level shifter attached to one of the FPGA inputs (or the USB equivalent), the boot code may
consist of a simple boot loader capable of uploading and storing executable code, and the boot code itself
wouldn’t need to be touched much after that. Simple scripting could be used to convert verilog boot text (or
similar assembly) into uploadable binary data.

Hive_Design_2013-07-07.doc Page 38 of 41

BBZZZZZZ!!
I would be remiss if I didn’t point out the less positive aspects of Hive that I’m aware of:

• The instruction set of Hive was hatched more intuitively than scientifically by a person who doesn’t exactly

have loads of practical experience programming assembly (that probably just scared off most readers). I’ve
put more time into selecting operations, sizing immediate fields, and shuffling things around in the opcode
encoding space than I’ve spent actually programming Hive (at this point).

• Common data & instruction memory space (Von Neumann architecture) enables many good things, but it
generally prevents code from executing directly from ROM, and it also makes it that much likelier for wild data
writes to clobber code. A single thread caught out in the weeds means you should probably clear them all. (I
should point out that the “Von Neumann bottleneck” is not an issue for Hive because it uses dual port BRAM
for main memory.)

• With any stack machine, stack fullness is something the programmer must track carefully in order to avoid
stack faults, and Hive has more stacks than usual to keep track of (though to be fair they are used in a
simpler manner and two clearing mechanisms are provided).

• Strict equal bandwidth multi-threading forces the programmer to implement some kind of load sharing
arrangement for algorithms that require more real-time / less latency than a single thread can provide.

• Real-time response to an interrupt can be somewhat long and variable (though depending on the application
this could perhaps be compensated for with additional interrupt time stamp & register set logic).

• FPGA logic will likely never be as fast / power efficient / inexpensive / etc. as an ASIC, so any soft processor
core is in some sense a solution in search of a problem.

EETTCC..
 Hive was developed (including simulation / verification) with Altera Quartus II 9.1sp2 Web Edition

(unfortunately the last edition with integrated simulator) running on WinXP Pro (sadly nearing the end of
support).

 TextCrawler was used extensively to perform multi-file text search and replace (freeware from Digital
Volcano).

 Pictures were drawn in AutoCAD 2006 (it is ironically nearly impossible to export good looking image files
from AutoCAD) plotted to Adobe Generic PS printer (free from Adobe, good luck finding a suitable *.inf file)
and rasterized with Paint Shop Pro X (pretty much broken in Win7/64).

 The Hive document was written in MS Word 2003 (also sadly nearing the end of support), and converted to
PDF with Adobe Acrobat 8 Professional (which is free-ish due to license server retirement).

 The Hive opcode spreadsheet was prepared in MS Excel 2003.
 There are inexpensive FPGA demo boards readily available on eBay, Cyclone 2 is the minimum I would

recommend. A very nice Cyclone 4 board can be had for $27 USD or thereabouts. Comparable Xilinx
Spartan offerings may require a few code changes here and there (I haven’t run the code through ISE yet)
and will likely run slower – Altera apparently uses faster, and consequently leakier and more power hungry,
transistors.

Comments?
Found a bug in Hive (ha ha)? If you have questions, comments, criticisms, improvements, etc. regarding Hive I’d
love to hear them! Contact me at: tammie_eric@verizon.net (note the ‘_’ underscore).

Hive_Design_2013-07-07.doc Page 39 of 41

DDOOCCUUMMEENNTT CCHHAANNGGEE CCOONNTTRROOLL
(YYYY-MM-DD) Notes

2013-07-07 Edits to reflect code v1.10 reshuffled opcodes. Fixed immediate add range on page 23.
Added “barrel” processor classification and PDP 10 signed shift reference. Other sporadic
minor edits.

2013-06-19 First public release.

CCOOPPYYRRIIGGHHTT
Copyright © Eric David Wallin, 2013.
Permission to use, copy, modify, and/or distribute this design for any purpose without fee is hereby granted,
provided it is not used for spying or "surveillance" uses, military or "defense" projects, weaponry, or other
nefarious purposes. Furthermore the above copyright and this permission notice must appear in all copies.

Hive_Design_2013-07-07.doc Page 40 of 41

Figure 39. Hive core (embiggened).

Hive_Design_2013-07-07.doc Page 41 of 41

OPCODE DECODE NOTES I push wr rd clr lit jmp gto tst_ab tst_gt tst_lt tst_eq imda imad rtn dm cpy shl mul sub add lg ext sgn

 0 0 0 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 1
op_rd_i = { 2'b00, 4’b0000, 4'bxxxx }; // mem(B+I[3:0]) => A read immediate w/ offset (signed) [0:15] 1 1 1
op_rd_ix = { 2'b00, 4’b0001, 4'bxxxx }; // {mem(B+I[3:0]), A[lo]} => A read immediate extended w/ offset [0:15] 1 1 1 1
op_jmp_iez = { 2'b00, `iez, 5'bxxxxx }; // (A?0) PC+I[4:0] => PC jump relative immediate conditional [-16:15] 1 1 1
op_jmp_ilz = { 2'b00, `ilz, 5'bxxxxx }; [-16:15] 1 1 1
op_jmp_ilez = { 2'b00, `ilez, 5'bxxxxx }; [-16:15] 1 1 1 1
op_jmp_igz = { 2'b00, `igz, 5'bxxxxx }; [-16:15] 1 1 1
op_jmp_igez = { 2'b00, `igze, 5'bxxxxx }; [-16:15] 1 1 1 1
op_jmp_iglz = { 2'b00, `iglz, 5'bxxxxx }; [-16:15] 1 1 1 1
op_jmp_i = { 2'b00, `igle, 5'bxxxxx }; [-16:15] 1 1 1 1 1
op_wr_i = { 2'b01, 4’b0000, 4'bxxxx }; // A[lo] => mem(B+I[3:0]) write immediate w/ offset [0:15] 1
op_wr_ix = { 2'b01, 4’b0001, 4'bxxxx }; // A[hi] => mem(B+I[3:0]) write immediate extended w/ offset [0:15] 1 1
op_jmp_ie = { 2'b01, `ie, 5'bxxxxx }; // (A?B) PC+I[4:0] => PC jump relative immediate conditional [-16:15] 1 1 1 1
op_jmp_il = { 2'b01, `il, 5'bxxxxx }; [-16:15] 1 1 1 1
op_jmp_ile = { 2'b01, `ile, 5'bxxxxx }; [-16:15] 1 1 1 1 1
op_jmp_iug = { 2'b01, `iug, 5'bxxxxx }; [-16:15] 1 1 1 1 0
op_jmp_iuge = { 2'b01, `iuge, 5'bxxxxx }; [-16:15] 1 1 1 1 1 0
op_jmp_igl = { 2'b01, `igl, 5'bxxxxx }; [-16:15] 1 1 1 1 1 0
op_byt_i = { 2'b10, 8'bxxxxxxxx }; // I[7:0] => A byte immediate (signed) [-128:127] 1 1 1
op_shl_i = { 4'hc, 6'bxxxxxx }; // A<<I[5:0] => A shift left A (signed) immediate [-32:31] 1 1 1
op_shl_iu = { 4'hd, 6'bxxxxxx }; // 1<<I[5:0] | A<<I[5:0] => A shift left immediate unsigned [-32:31] 1 1 1 0
op_add_i = { 4'he, 6'bxxxxxx }; // A+I[5:0] => A add immediate (I signed) [-32:31] 1 1 1
op_jmp_ez = { 4'hf, 3'b000, `ez }; // (A?0) PC+B[lo] => PC jump relative conditional 1 1
op_jmp_lz = { 4'hf, 3'b000, `lz }; 1 1
op_jmp_lez = { 4'hf, 3'b000, `lez }; 1 1 1
op_jmp_gz = { 4'hf, 3'b000, `gz }; 1 1
op_jmp_gez = { 4'hf, 3'b000, `gez }; 1 1 1
op_jmp_glz = { 4'hf, 3'b000, `glz }; 1 1 1
op_jmp = { 4'hf, 3'b000, `glez }; 1 1 1 1
op_gto_ez = { 4'hf, 3'b001, `ez }; // (A?0) B[lo] => PC jump absolute conditional 1 1
op_gto_lz = { 4'hf, 3'b001, `lz }; 1 1
op_gto_lez = { 4'hf, 3'b001, `lez }; 1 1 1
op_gto_gz = { 4'hf, 3'b001, `gz }; 1 1
op_gto_gez = { 4'hf, 3'b001, `gez }; 1 1 1
op_gto_glz = { 4'hf, 3'b001, `glz }; 1 1 1
op_gto = { 4'hf, 3'b001, `glez }; 1 1 1 1
op_add = { 4'hf, 2'b01, 4'h0 }; // A+B => A add 1 1
op_add_x = { 4'hf, 2'b01, 4'h2 }; // A+B => A add extended (signed) 1 1 1
op_add_ux = { 4'hf, 2'b01, 4'h3 }; // A+B => A add extended unsigned 1 1 1 0
op_sub = { 4'hf, 2'b01, 4'h4 }; // A-B => A subtract 1 1
op_sub_x = { 4'hf, 2'b01, 4'h6 }; // A-B => A subtract extended (signed) 1 1 1
op_sub_ux = { 4'hf, 2'b01, 4'h7 }; // A-B => A subtract extended unsigned 1 1 1 0
op_mul = { 4'hf, 2'b01, 4'h8 }; // A*B => A multiply 1 1
op_mul_x = { 4'hf, 2'b01, 4'ha }; // A*B => A multiply extended (signed) 1 1 1
op_mul_ux = { 4'hf, 2'b01, 4'hb }; // A*B => A multiply extended unsigned 1 1 1 0
op_shl = { 4'hf, 2'b01, 4'hc }; // A<<B => A shift left A (signed) 1 1
op_shl_u = { 4'hf, 2'b01, 4'hd }; // 1<<B | A<<B => A 2^B | shift left A unsigned 1 1 0
op_and = { 4'hf, 2'b10, 4'h0 }; // A&B => A logical AND 1 0
op_or = { 4'hf, 2'b10, 4'h1 }; // A|B => A logical OR 1 1
op_xor = { 4'hf, 2'b10, 4'h2 }; // A^B => A logical XOR 1 2
op_not = { 4'hf, 2'b10, 4'h3 }; // ~B => A logical NOT 1 3
op_and_b = { 4'hf, 2'b10, 4'h4 }; // &B => A logical AND bit reduction 1 0 1
op_or_b = { 4'hf, 2'b10, 4'h5 }; // |B => A logical OR bit reduction 1 1 1
op_xor_b = { 4'hf, 2'b10, 4'h6 }; // ^B => A logical XOR bit reduction 1 2 1
op_lit = { 4'hf, 2'b11, 4'h0 }; // mem(PC) => A literal low (signed) 1 1 1
op_lit_u = { 4'hf, 2'b11, 4'h1 }; // mem(PC) => A literal low unsigned 1 1 1 0
op_lit_x = { 4'hf, 2'b11, 4'h2 }; // {mem(PC),A[lo]} => A literal extended 1 1 1 1
op_cpy = { 4'hf, 2'b11, 4'h4 }; // B => A copy 1 1
op_pc = { 4'hf, 2'b11, 4'h8 }; // PC => A read PC (unsigned) 1 1
op_gsb = { 4'hf, 2'b11, 4'h9 }; // B[lo] => PC, PC => A subroutine call 1 1 1 1 1 1
op_cls = { 4'hf, 2'b11, 4'hc }; // clear stacks 1
op_pop = { 4'hf, 2'b11, 4'he }; // do nothing (but allow pops)
op_nop = { 4'hf, 2'b11, 4'hf }; // do nothing (no pops either)

Figure 40. Hive opcode encoding and decoding (ensmallened to the point of illegibility).

