
Using ModelSim Foreign Language Interface for c – VHDL Co-
Simulation and for Simulator Control on Linux x86 Platform
Andre Pool - fli@andrepool.com - Version 1.5 - created November 2012, last update September 2013

Introduction
Writing testbenches in VHDL can be very cumbersome. This can be
solved by using a programming language with more features that does
not need to bother about hardware implementation restrictions. This
project demonstrates how plain c can be used for testing. Besides
generating Stimuli and Analyze results, optional features, like a control
interface and simulation accelerators, have been added to this testbench
environment.

Target
This project has been created to show hardware designers how easy it is
to use c for testing their Design Under Test (DUT). Besides writing tests
in c is much easier, also the simulation time can be reduced
significantly. The project is very simple, so the reader can focus on the
flow, however a basic knowledge of VHDL, c, Makefiles and ModelSim
is required.

Challenge
Using c to generate stimuli and evaluate results is quite easy, but there
are two problems when using software and VHDL (RTL) together:
• interfacing between the different worlds
• time awareness in software

Solution
Fortunately Model Technology (now Mentor Graphics) recognized the
need for interfacing these different worlds and defined the proprietary
Foreign Language Interface (FLI) [1].
The second issue can be solved by using the VHDL level to generate the
clock and use this clock to trigger the c functions through this FLI
interface.

Short description FLI
In a very basic use case one could define an Entity declaration with an
Architecture in VHDL. Normally the Architecture would contain the
functionality but in this case it only contains a link to a foreign c file.
This foreign c file contains the desired functionality including a
sensitivity list. Besides this foreign architectures also a number of
simulator controls can accessed through the FLI interface, including the
mti_ForceSignal and TCL commands, but unfortunately not the run
command.

Simulation Data Flow
Data is generated by the Stimuli Generator, this data is used for the
input signals on the DUT (from which the behavior has to be verified).
The output signals on the DUT are used by the Data Analyzer validating
the DUT behavior. If needed a feedback can be used to adjust the input
signals to the DUT depending on the output signals from the DUT.

Foreign Architecture (optional)
In cases where parts of the simulation environment are consuming a
significant amount of the simulation time, and if these parts are only
required to support the verification process, these parts could be moved
from VHDL to c. Then these parts become Foreign Architecture (FA)
blocks. The blocks make use of the FLI to interface with the simulator.
An example of such FA block could be a processor that configures and
monitors some registers.
The FA block is still sequential, meaning the simulator waits for the FA
block and the FA block waits for the simulator. Be careful with
concurrency between the FA blocks and other blocks.

Separate Process Threads (optional)
The next step in optimization is looking for (FA) blocks, or modify (FA)
blocks, that can be more or less run independent from each other and
use some kind of handshaking to synchronize. In the simplest form if

your FA block is only sensitive to the clock and your design uses only
one clock edge, then the simulator can send the information on the
active edge of the clock from the simulator to the separate process
thread (SPT) and continue with simulation without waiting for the SPT
to finish. At the non active clock edge the simulator requires the results
from the SPT thread, only when the (probably much faster) SPT was not
ready, the simulator has to wait, otherwise it can just continue. This can
be very efficient on a multi (processor) core system because a number of
such SPTs can run in parallel with each other and in parallel with the
simulator (checkout with: top and or pstree -a <process_id>).

Controlling the Environment (optional)
Would it not be awesome if you could poke around in the Simulator
(ModelSim), Stimuli Generator or Data Analyzer during simulation?
For this a server interface has been added to the simulation
environment. The server runs also as an SPT. A simple API has been
defined which covers most used commands.

Control Application (optional)
The control application is a separate process (on the same system) that
will connect to the server of the simulation environment. The control
application does a number of changes and checks on the running
simulation environment (Simulator, Stimuli Generator, Data Analyzer,
FA and SPT). Furthermore it also excepts tcl commands as arguments
that will be forwarded to the Simulator.

Diagram
The next figure shows how the blocks are related to each other

Figure 1. c – VHDL Co-Simulation diagram using FLI.

Get Going
Step 1 get the code:

git clone git://github.com/andrepool/fli.git

(or https://github.com/andrepool/fli/archive/master.zip)

Step 2 check if the simulator environment settings are correct
MTI_HOME (e.g. MTI_HOME=/opt/modeltech/v10.2)
PATH (e.g. PATH=/opt/modeltech/v10.2/bin:...)

Step 3 start test server (without simulator)
cd fli/socket
make test

Copyright 2012, 2013 Andre Pool, Licensed under the Apache License Version 2.0

Using ModelSim Foreign Language Interface for c – VHDL Co-
Simulation and for Simulator Control on Linux x86 Platform
Andre Pool - fli@andrepool.com - Version 1.5 - created November 2012, last update September 2013

Step 4 control_application connect to test server and performs actions
open another terminal
cd fli/socket
make

This tests the client server connection

make quit

This shuts down the server

Figure 2. Socket test server log output.

Note: the output of this test needs to be corrected.
Figure 3. Socket test control application log output.

Step 5 start the simulation environment
cd fli/rtl
make clean
make

The simulator workspace and the wave window should pop up.

Figure 4. make rtl log output.

Step 6 client connect to simulation environment and perform actions
use the other terminal (same as step 3)
cd fli/socket
make

This will demonstrate the interaction between the control application
and simulation environment. One of things you should notice that last
section in the wave window moves in time.

Figure 5. make socket / control application log output.

Figure 6. ModelSim Simulator Wave window.

Step 7 a series of tcl commands
./control_application -p "hello world"
./control_application -m "force /top/d0/cnt 8"
./control_application -w
./control_application -m "noforce /top/d0/cnt"
./control_application -w

This will print a message in the transcript window and forces a signal by
sending tcl commands to the simulator and show this change in the
wave window.

Figure 7. ModelSim Simulator transcript window.

Copyright 2012, 2013 Andre Pool, Licensed under the Apache License Version 2.0

Using ModelSim Foreign Language Interface for c – VHDL Co-
Simulation and for Simulator Control on Linux x86 Platform
Andre Pool - fli@andrepool.com - Version 1.5 - created November 2012, last update September 2013

Step 8 shutdown the simulation environment
make quit

Note: when you send a break to the simulator or shutdown the server,
you have to restart the simulation environment to be able to use the
control application again.

That's it ;-)

Project directory structure
fli/docs

fli_c_vhdl_cosimulation.pdf
fli_c_vhdl_cosimulation.odt (openoffice)
fli_c_vhdl_cosimulation_diagram.odg (openoffice)
fli_c_vhdl_process_flow.odg (process relations)
todo.txt (known issues / features)

fli/rtl
Makefile (build and start simulation environment)
top.vhd (including clock generator)
testbench.vhd (stimuli / analyzer)
dut.vhd (counter->sqrt->comparator)
counter.vhd (vhdl or c model)
sqtr_int.vhd (square root entity pointing to c model)
comparator.vhd (comparator in vhdl)
vsim.do (simulator startup script with wave)
vsimc.do (command line simulator script, no wave)

fli/src
Makefile (build shared object for the simulator)
global_var.c (shared memory used by all functions)
testbench.c (stimuli and analyzer)
“Foreign Architectures”

sqrt_int.c (c fuction square root)
counter.c (optional c model for counter.vhd)
housekeeping.c (c function to control simulator)

“Separate Process Threads”
server.c (environment control interface)

fli/socket
Makefile (build control application and test server)
sock_config.h (socket configuration file)
sock_functions.c (generic AF-UNIX socket functions)
client_functions.c (client socket functions)
server_functions.c (server socket_functions)
control_application.c (externally control environment)
test_server.c (used for client server test)

Flow
This paragraph shows how the c-file is linked with ModelSim

c-file example (counter.c)

#include "mti.h"
#include "global_var.h"
#include <stdio.h>

// create one struct that contains all vhdl signals that
// need to be passed to the function
typedef struct
{
 mtiSignalIdT clk;
 mtiSignalIdT rst;
 mtiSignalIdT set;
 mtiSignalIdT inc;
 mtiSignalIdT dec;
 mtiSignalIdT load;
 mtiDriverIdT cnt;
} counter_t;

// the process function that will be called on each event
// (in this case only clk)
static void counter(void *param)
{
 // connect function argument to counter struct
 counter_t * ip = (counter_t *) param;

 // get current values from the vhdl world
 _Bool clk = (_Bool) mti_GetSignalValue (ip->clk);
 _Bool rst = (_Bool) mti_GetSignalValue (ip->rst);
 _Bool set = (_Bool) mti_GetSignalValue (ip->set);

 _Bool inc = (_Bool) mti_GetSignalValue (ip->inc);
 _Bool dec = (_Bool) mti_GetSignalValue (ip->dec);
 mtiInt32T load = mti_GetSignalValue (ip->load);

 // implement the counter functionality
 static mtiInt32T cnt = 7; // initial value
 if(clk)
 {
 if(rst)
 {
 cnt = 0;
 }
 else if(set)
 {
 cnt = load;
 }
 else if(inc)
 {
 cnt++;
 }
 else if(dec)
 {
 cnt--;
 }
 }

 // send value cnt back to vhdl world with 1 ns delay
 mti_ScheduleDriver(ip->cnt, cnt, 1, MTI_INERTIAL);
}

// c initialization function
void counter_init(
 mtiRegionIdT region, // location in the design
 char *parameters, // from vhdl world (not used)
 mtiInterfaceListT *generics, // from vhdl world (not used)
 mtiInterfaceListT *ports // linked list of ports
)
{
 // create a struct to store a link for each vhdl signal
 counter_t *ip = (counter_t *)mti_Malloc(sizeof(counter_t));

 // map input signals (from vhdl world) to struct
 ip->clk = mti_FindPort(ports, "clk");
 ip->rst = mti_FindPort(ports, "rst");
 ip->set = mti_FindPort(ports, "set");
 ip->inc = mti_FindPort(ports, "inc");
 ip->dec = mti_FindPort(ports, "dec");
 ip->load = mti_FindPort(ports, "load");

 // map "cnt" output signal (to vhdl world) to struct
 ip->cnt = mti_CreateDriver(mti_FindPort(ports, "cnt"));

 // create "counter" process with a link to all vhdl signals
 // where the links to the vhdl signals are in the struct
mtiProcessIdT process_id = mti_CreateProcess("counter_p",
counter, ip);

 // trigger “counter” process when event on vhdl signal clk
 mti_Sensitize(process_id, ip->clk, MTI_EVENT);
}

Compile (-I points to directory where mti.h file is located)
gcc -I$MTI_HOME/include -o counter.o -c counter.c

Link create one shared object from all .o files
gcc -shared -o c_environment.so xxx.o counter.o yyy.o ...

Connect shared object in VHDL world

entity counter is
 port(
 clk : in boolean;
 rst : in boolean;
 set : in boolean;
 inc : in boolean;
 dec : in boolean;
 load : in integer;
 cnt : out integer := 0
);
end;

architecture c_model of counter is
 attribute foreign : string;
 attribute foreign of c_model :
 architecture is "counter_init ../src/c_environment.so";

Copyright 2012, 2013 Andre Pool, Licensed under the Apache License Version 2.0

Using ModelSim Foreign Language Interface for c – VHDL Co-
Simulation and for Simulator Control on Linux x86 Platform
Andre Pool - fli@andrepool.com - Version 1.5 - created November 2012, last update September 2013

 -- counter_init is called in c_environment.so
begin
 -- architecture function in c model
end;

For more information about compiling and linking see chapter
Compiling and Linking FLI C Applications in [1] and for more
examples check the ModelSim examples in [3].

Client Server Interface
A very simple protocol is used to communicate between client and
server. The server only responds when it receives a packet from the
client, and the client only expects a packet from the server when it has
send a packet itself.
Structure of a packet (same for client and server)

command (one of the command list, see below)
size (total packet size in bytes)
data (32 bit, used for single read and write access)
addr (32 bit, start address)
words (amount of 32 bit words in payload)
payload (to transfer large blocks of data c8,u16,u32,u64)

A few commands from command response list (see sock_config.h for
full list):

API_GET → version check between server and client
DISCONNECT → client disconnects from server
MTI_BREAK → send break command to simulator
MTI_CMD → run tcl command in simulator
MTI_QUIT → quit simulator (and environment)
OKAY → server response to client correct
PAYLOAD_READ → read data block from the environment
PAYLOAD_WRITE → write data block to the environment
TIME_GET_NOW → current time in the simulator
TRANSCRIPT_PRINT → print in simulator transcript window

Questions and Answers
Q. What about Apache License Version 2.0?
A. You can do pretty much anything with this project, and in

contradiction to GPL, you do not need to publish other files linked
with this project.

Q. Does this project also work with QuestaSim?
A. Yes it does.
Q. Why does c simulate way faster than VHDL?
A. Mainly because it does not need to check for all VHDL/RTL

restrictions and each bit can only be true or false. And quite often
you can reduce overhead by mapping your signals to the native 32
or 64 bit system type.

Q. Which parts I should do in VHDL and which in c?
A. Try to move as much as possible parts that do not to be verified to

the c, but keep in mind that it is even more important that you keep
a clean and logical design structure, which can be understood by
somebody else. Also be careful with concurrency.

Q. Can I use this for hardware in the loop / hardware software co-
simulation.

Y. Yes you can use an FPGA board for hardware in the loop testing, but
you need to create a data mapping interface in the FPGA,
connecting to the part you want to accelerate, an interface to the
x86, e.g. PCI express, USB or Ethernet and a driver from which you
can use the created data mapping. With this driver you should be
able to access the hardware through an FA or SPT.

Q. Can I have a DUT written in Verilog rather than VHDL?
A. Yes you can instantiate the Verilog code inside the VHDL top level.

However in that case you need a mixed simulation license. Another
approach would be to use PLI instead of FLI.

Q. What about Programming Language Interface (PLI)?
A. PLI is more or less the same as FLI, but it is intended for Verilog, I

choose for FLI because most of my projects are VHDL. An
advantage of PLI is that it is a standard, so it can be used with
different simulators (FLI is Model Technology proprietary).

Q. And what about Direct Programming Interface (DPI)?

A. DPI is a sort of simplified PLI, however DPI does not provide direct
access to the internals of a simulation data structure [2].

Q. Why are AF UNIX (file handle) sockets used for the client server
connection and not AF INET (Internet) sockets?

A. In my world the control application and simulator are always
running on the same system (where the display is forwarded tot a
workstation). Also I run multiple simulations in parallel from
different directories. With AF UNIX I do not have to worry about
free TCP IP ports and save some network overhead.

Q. Can multiple clients connect to the server?
A. No only one client (control application) can connect to the server,

however if you want to you can modify or duplicate the server.
Q. I want to create a control application in a different language then c,

e.g. Python, Perl or TCL, is that possible?
A. Any language would work, as long as it supports the AF UNIX

sockets. However you have to port the simple protocol I use for the
client server communication.

Q. What about code coverage?
A. Sorry that is beyond the scope of this project.
Q. On what platform does this project work?
A. Currently only Linux x86 (32 bit) and Linux x86_64, because the

project makes use of pthreads, sockets and some compiler options
for ModelSim, this project will not work on other platforms.

Q. Does this work with ModelSim Altera Starter Edition, ModelSim
PE, or ModelSim DE?

A. No, FLI is only supported on ModelSim SE.
Q. So why did you not use boost or Qt to make the project platform

independent?
A. That would make things more complicated to understand and add

more dependencies.
Q. Why did you use c instead of c++?
A. Model Technology FLI functions are also in c and I wanted to keep

the project transparent, you are free to add c++ functions by
yourself, checkout chapter “Compiling and linking FLI c++
applications” in [1].

Q. I have Linux distribution x, Linux kernel version y and ModelSim
version z, does this project work on my system?

A. Both the ModelSim FLI and Linux functions used in this project are
around for a while and as far as I know the interfaces of the
functions did not change for a long time, so I would be surprised if it
did not work on your system.

Q. Do I need multiple ModelSim licenses when I use these Separate
Process Threads to speedup my simulation?

A. No, that is one of the main advantages, you can speedup simulation,
but still require only one ModelSim license.

References
[1] ModelSim Foreign Language Interface Reference
$MTI_HOME/docs/pdfdocs/*_fli.pdf
[2] http://sutherland-hdl.com/papers/2004-SNUG-
paper_Verilog_PLI_versus_SystemVerilog_DPI.pdf
[3] $MTI_HOME/examples/vhdl/foreign

Copyright 2012, 2013 Andre Pool, Licensed under the Apache License Version 2.0

http://sutherland-hdl.com/papers/2004-SNUG-paper_Verilog_PLI_versus_SystemVerilog_DPI.pdf
http://sutherland-hdl.com/papers/2004-SNUG-paper_Verilog_PLI_versus_SystemVerilog_DPI.pdf

	Introduction
	Target
	Challenge
	Solution
	Short description FLI
	Simulation Data Flow
	Foreign Architecture (optional)
	Separate Process Threads (optional)
	Controlling the Environment (optional)
	Control Application (optional)
	Diagram
	Get Going
	Project directory structure
	Flow
	Client Server Interface
	Questions and Answers
	References

