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IINNTTRROODDUUCCTTIIOONN  
Hive is a general purpose soft processor core intended for instantiation in an FPGA when CPU functionality is 
desired but when an ARM or similar would be overkill.  The Hive core is complex enough to be useful, with a wide 
data path, a relatively full set of instructions, high code density, and excellent ALU utilization – but with very basic 
control structures and minimal internal state, so it is simple enough for a human to easily grasp and program at 
the lowest level without any special tools.  It fits in the smallest of current FPGAs with sufficient resources left over 
for peripherals (as well as other unrelated logic) and operates at or near the top speed of the device DSP 
hardware. 
  
Hive isn’t an acronym, the name is meant to suggest the swarm of activity in an insect hive: many threads sharing 
the same program and data space, individually beavering away on separate tasks, and cooperating together to 
accomplish larger goals.  Because of the shared memory space, thread intercommunication is facilitated, and 
threads can all share single instances of code, subroutines, and data sets which enables code compaction via 
global factoring. 
 
The novel hybrid stack / register construct employed reduces the need for a plethora of registers and allows for 
small operand indexes in the opcode.  This construct, coupled with explicit stack pointer control in the form of a 
pop bit for each stack index, minimizes the confusing and inefficient stack gymnastics (swap, pick, roll, copying to 
thwart auto-consumption, etc.) normally associated with conventional stack machines, and also minimizes the 
saving and restoring of register contents normally associated with conventional register machines. 
 
Hive employs a naturally emergent form of multi-threaded scheduling which eliminates all pipeline hazards and 
provides the programmer with as many equal bandwidth threads – each with its own independent interrupt – as 
pipeline stages.  Processors that employ this form of pipelining are classified as “barrel” processors. 
 
Hive is a largely stateless design (no pipeline bubbles, no registered ALU flags that may or may not be 
automatically updated, no reserved data registers, no pending operations, no branch prediction, etc.) so 
subroutines require no extra overhead, interrupts consume a single branch cycle, and their calculations can be 
performed directly and immediately with almost complete disregard for what may be transpiring in other contexts. 
 
This paper presents the design of Hive along with some general background, so if you don’t find the architecture 
of Hive itself to your liking, you may possibly find something else of use in it.  Enjoy! 
 
 
 
 
 
 

“'Tis the gift to be simple, 'tis the gift to be free…” 
 
 
 

From “Simple Gifts” by Elder Joseph 
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HHIIVVEE  FFEEAATTUURREE  LLIISSTT  
 

 

 A simple, compact, relatively stateless, high speed, barrel pipelined, multi-threaded design based on 
novel RASH (Register And Stack Hybrid) technology. 

 2 operand machine with operand select and stack control fields in the opcode. 

 32 bit data path / ALU with extended width arithmetic results. 

 16 bit compact opcode.  16 & 32 bit memory data access width, both aligned and unaligned. 

 Variable width address (set via a build time parameter) – up to 32 bits of directly addressable space. 

 8 equal bandwidth threads. 

 8 independent, isolated, general purpose LIFO data stacks per thread with parameterized depth and 
fault protections. 

 8 fully independent internal and external interrupts with no hierarchical limitations (one per thread). 

 8 stage pipeline with no stalls or hazards. 

 All instructions execute in a single pipeline cycle, including 32 x 32 = 64 bit signed / unsigned multiply 
(lower or extended). 

 Common data & instruction memory space (Von Neumann architecture) enables dynamic code / data 
partitioning, combined code and data constructs, code copy & move, etc. 

 All threads share the entire common data / code space, which facilitates global code factoring and 
thread intercommunication. 

 Separate (i.e. non-memory mapped) 32 bit wide I/O space. 

 32 bit internal register set in I/O space with highly configurable base register module that may be easily 
modified / expanded to provide coprocessor interfacing, enhanced I/O, detailed debug, etc. 

 32 bits of GPIO. 

 Double buffered UART with BAUD generator and several parameterized options. 

 Written in 100% highly portable SystemVerilog (no vendor specific or proprietary language constructs) 
and partitioned into easy to understand and verify modules. 

 May be programmed via a SystemVerilog initial text file, no complex tool chain is necessary. 

 Achieves aggregate throughput of ~200 MIPS in a bargain basement Altera EP3C5E144C8 FPGA 
(Cyclone 3, speed grade 8 – the target device for initial development) while consuming ~2600 logic 
elements, or ~50% of an EP3C5E144C8. 

 Free to use, modify, distribute, etc. (but only for the greater good, please see the copyright). 
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MMOOTTIIVVAATTIIOONN  
As a (mostly) digital designer who works primarily in FPGAs, I'm generally on the lookout for simple processor 
cores because projects often underutilize the hardware due to low data rates (e.g. a UART, or a sampled audio 
stream).  If latency isn't a big issue, then why not multiplex the high speed hardware with a processor construct?  
But the core needs to be really simple, not consume too much in the way of logic (LUTs, block RAMs, multipliers), 
have compact op codes (internal block RAM isn't limitless nor inexpensive), keep the ALU sufficiently busy, and 
be easy to program at the machine code level without the need for a compiler or even an assembler. 
 
FPGA vendors have off-the-shelf designs that are quite polished and bug-free, but they, and therefore the larger 
design and the designer, are generally legally chained to that vendor's silicon and tool set.  There are lots of free 
cores available on the web, but one may end up getting exactly what one paid for. 
  
The Hive core is my offering for this problem area.  The essentially free and naturally emergent multi-threading / 
rigid scheduling mechanism in Hive is not unique; I believe it was implemented as far back as 1964 on the CDC 
6000 series peripheral barrel processors.  Hive shift distances are treated as signed, which works out rather 
nicely, but the ancient PDP 10 does this as well.  The notion of multiple stacks isn’t original, nor is the explicit 
control over the processor stack pointer, but I believe the register/stack hybrid as implemented and described 
here (indexed stacks, top-entry-only conservative access with pop bit override) is something relatively new. And 
the way extended arithmetic results are dealt with uniformly in Hive may possibly be somewhat novel as well.  But 
who knows?  Processors have been around long enough that most of the good ideas have been mined out and 
put to the test in one form or anther, which makes it difficult / unlikely to bring something fundamentally new or 
innovative to the table.   
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RREEGGIISSTTEERR  MMAACCHHIINNEESS  VVSS..  SSTTAACCKK  MMAACCHHIINNEESS  
Most modern processors are register based, and so have some form of register set tightly bound to the ALU – a 
tiny fast triple port memory in a sense.  This conveniently continues the memory hierarchy of faster and smaller 
the closer to the core, and has the advantage of being a mature target for compilers.   
 
Many registers are generally available because the register space grows exponentially with register address 
width.  But register opcode indexes still consume significant opcode space, particularly in a 3 operand machine, 
and register count is a limited resource that doesn’t scale with the rest of the design.  Registers are often reserved 
for special purposes, and some may be invisible to non-supervisory code.  It would seem the more registers 
available, particularly of the “special” variety, the more the programmer has to juggle in his/her head.  And a 
general purpose register may only be used if the programmer is absolutely certain that any data there is globally 
moot, or if the register contents are first saved to memory and later restored, which is something else to keep 
track of. 
 
Since my first exposure to data stacks via an HP calculator (won in a high school engineering contest) I've been 
fascinated with stack languages and stack machines.  With no explicit operands, a data stack, a return stack, and 
almost no internal state, a stack machine can have incredibly compact op codes - often 5 bits will do.  Due to the 
stacked registers, interrupts, subroutines, and other forms of code factoring can be quite efficient; all that is 
required is that they clean up after themselves.  I've studied many of these, and have coded a few of my own and 
had them running on an FPGA demo board.  They are surprisingly easy to implement but surprisingly 
cumbersome to program - one has to stick loop indices, conditional test values, and branch addresses under the 
operands on the stack or in memory somewhere, so there are a lot of operations and much real time wasted on 
stack manipulation which can get very confusing very quickly.  Laborious hand optimization of stack code leads to 
“write only” procedural programs that are difficult to decipher later, and with catastrophic stack faults all too likely.  
The tiny opcode widths produce a natural instruction caching mechanism, but having multiple opcodes per word is 
awkward when they aren’t powers of 2 wide, a nuisance when one must manually change the code by hand (one 
usually end up inserting no-ops to pad out the space), and interrupts / subroutines must either return to a word 
boundary (more no-ops / wasted program space) or the hardware must somehow store and retrieve a sub index 
into the return word (more state). 
 
Stack machines are often portrayed (perhaps inadvertently) as a panacea for computing ills, but with little in the 
way of formal analysis to back up these assertions.  They are something very different and on the fringe and as 
such don't get addressed by the mainstream, so there aren't many technical comparisons (speed, code density, 
etc.) to more conventional architectures – or detractors for that matter, so the stack machine noob encounters a 
situation rather like serving on a jury and hearing only the defendant’s side of the case.  My conclusion is their 
biggest strength – implicit operands – is also their biggest weakness.  One has to follow the intricate stack 
manipulations closely and with a very clear idea of what the programmer originally had in mind in order to make 
any sense of the code.  One can’t rely on, say, the loop index residing and staying put in register 4 and the like.  
There are of course stack machines out there that have register sets tacked on, but this tends to complicate the 
hardware and bloat out the opcodes, which doesn’t strike me as a very elegant solution. 
 
Another thing that isn’t discussed much regarding stack machines is that auto consumption of all input values is 
generally necessary.  While it is obvious that ALU operations pop the input operand(s) and push the result, what 
isn’t emphasized is that conditional branches generally consume the branch test value(s) and the branch address 
or address offset regardless of whether the branch is taken or not.  Auto consumption is an issue because it leads 
to much copying or restoring of values to be used both now and later, and it also means most instructions cannot 
be made individually conditional (ala the ARM, or via a skip instruction) because the stack pointer(s) will likely be 
different depending on whether the instruction was executed or not, something the programmer can’t generally 
track. 
 
So my own personal conclusion is this: a single data stack is a good fit for data input and intermediate results 
manipulation on a hand calculator.  But even with the inclusion of a second general purpose data stack or 
dedicated return stack, it’s not such a great paradigm on which to base processors and programming languages. 
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BBAACCKKGGRROOUUNNDD::  LLIIFFOOSS  
Since this paper is about a hybrid stack machine, it helps to understand stacks themselves, which are based on 
the LIFO (Last In First Out) construct. 

 
Figure 1.  LIFO symbols. 

The figure above shows two LIFO symbols, the one on the left is I/O centric, the one on the right more of a 
schematic memory view.  Unlike FIFOs, which need separate read and write side pointers, LIFOs only require a 
single pointer, which may implemented in such a way as to conveniently reflect the fullness of the LIFO.  The 
push side is only concerned with whether the LIFO is full or not, the pop side only concerned if it is empty or not.  
Push when full is an error because (depending on stack protection logic) it either drops the input data on the floor 
or corrupts data in the LIFO along with the LIFO pointer.  Pop when empty is an error because it may give false 
read data and also may corrupt the LIFO pointer. 

 
Figure 2.  LIFO stack operations – push then pop from empty state. 

The figure above shows LIFO operation from empty, to not empty, to empty again.  Note that the first write to 
memory is address 1 rather than address 0, which may seem a bit counter-intuitive.  This convention allows the 
level and pointer values to be the same. 

 
Figure 3.  LIFO stack operations – push from empty state to full state. 

The next figure shows LIFO operation from empty to full.  Note that the last write to memory is at address 0, which 
may also seem a bit counter-intuitive.  It helps here to think of the address as modulo (i.e. the MSB is removed 
from) the level value.  For this 4-deep LIFO there are actually 5 distinct states corresponding to levels 0 through 4.  
Indeed, when fully utilizing the LIFO memory space there will always 2n + 1 levels, and it is easiest and most 
straightforward to handle them with an extra MSB in the level counter, and present the LSBs of this counter to the 
LIFO memory address input (i.e. the stack pointer). 



 

 
Figure 4.  LIFO stack operations – pop from full state to empty state. 

The next figure shows the previously filled LIFO operation from full to empty.  At the end (in this case) the value D 
at memory location 0 is presented as output, but it is flagged as invalid by the empty indicator so the pop side 
knows not to use it.  

 
Figure 5.  LIFO stack operations – three pop & push scenarios. 

What happens if we pop and push at the same time?  For a canonical stack machine we need to read the pop 
side value, pop it off the stack, and then push the result onto the stack.  This is a pop & push (as opposed to a 
push & pop, which is nonsensical for this application).  At the above left we see a pop & push in action, the value 
B at address location 2 is overwritten with the value F, and there is no net pointer change.  In the center we see a 
pop & push when full, which is not an error because pop, which decrements the pointer, can be thought of as 
preceding push, which increments the pointer.  Finally, on the right we see a pop & push when empty.  This is 
obviously a pop error because the read data is invalid – but it is a pop error only!  If the pointers are internally 
protected from corruption then the correct net result is a push. 
 
Stack Protection 
Is it always best to protect the stack against the corruption of the pointer or memory contents?  It may seem that 
the answer to this is always “yes” but consider the following scenario.  Say a stack is almost full and a data value 
is pushed to it, making it full.  Then an address is pushed to the stack and the thread attempts to branch to this 
address.  If the pointer and stack memory are overflow protected then the address was dropped on the floor and 
the thread instead branches to the location given by the previously pushed data – off into the weeds it goes with 
one stack that is essentially stuck and can’t accept new data (unless it is a pop & push, or unless a pop is 
otherwise performed first).  The thread could be returned to sanity with an external clear (perhaps issued by 
another thread on supervisory duty) but the stuck stack means the thread itself has limited ability to fix its own 
problems.  Would it be better to not protect against push errors, and just let them corrupt the first stack entries so 
the thread could continue?  Granted this kicks the problem down the road, but perhaps the thread wasn’t going to 
use the earlier entries on the stack anyway and was about to issue a routine thread clear?  Or perhaps it was 
about to check itself for stack errors and if it found one would have cleared itself?  At least it isn’t immediately 
derailed and off corrupting the contents of main memory. 
 
In contrast, I believe pop (underflow) protection is generally good because it prevents the stack from rolling under 
and thereby offering up completely unrelated, non-local data and addresses to the thread. 
 
Contemplating how to deal with these “what if” conditions that shouldn’t happen (but likely will, at least during SW 
development) can drive you a little crazy.  In any case, pop and push protections are individually configurable 
build options in Hive so you can set them however you like.  And regardless of the protection settings, stack 
errors are always reported to the local register set. 
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RREEGGIISSTTEERR  //  SSTTAACCKK  HHYYBBRRIIDD  
Many register based machines have a return stack, and many stack machines have a one or more registers stuck 
somewhere, but beyond this could there be a more harmonious middle ground between stack based and register 
based machines?  If a register based machine were designed with a LIFO stack under each register, then 
perhaps the programmer could accomplish the same goals with fewer indexed register locations, meaning the 
register index could be made narrower giving a more compact and efficient opcode.  Multiple stacks would be 
more convenient than a single stack for complex algorithms, and would help keep inefficient and confusing stack 
thrash to a minimum.  Unlike register count, LIFO depth can easily scale as required by other aspects of the 
design.  Could the stacks indeed be indexed as register operands?  If so, how might multiple stacks be 
implemented and how would the stack push/pop mechanism behave?   
 
I recently encountered the J1 stack based processor (http://www.excamera.com/sphinx/fpga-j1.html) which is 
quite intriguing in that it has a two bit wide signed stack pointer increment field in the opcode.  This idea inspired 
me to investigate explicit rather than implicit stack control.  I decided that an array of simple stacks, where only 
the top stack values are presented to the ALU (as opposed to the top and second values as in a conventional 
stack machine) would suffice.  The stacks could then be indexed normally as register locations, with the usual one 
or two sources and one destination.  I then came up with a simple, inherently conservative stack mechanism: 
whenever anything is read from a stack, the value and stack pointer remain unchanged.  Whenever anything is 
written to a stack the value already there is pushed in to make room for the new value.  Each stack index is 
provided with an associated pop bit that influences this default conservative behavior:   
 

pop bit read / write Stack Behavior 
0 read no change Register type read. 
1 read pop Stack type read. 
0 write push Stack type write. 
1 write pop & push Register type write. 

Figure 6.  Hybrid register / stack behavior. 

This arrangement accommodates the full range of stack / register behaviors.  For example, say the operand 
source of an ALU single operand operation is stack index B and the result destination is stack index A: 
 

Case B pop  A pop  B stack A stack Behavior 
0 0 0 no change push Register type read, stack type write. 
1 0 1 no change pop & push Register type read & write. 
2 1 0 pop push Stack type read & write. 
3 1 1 pop pop & push Stack type read, register type write. 

Figure 7.  One and two operand hybrid register / stack behavior. 

Cases 1 and 2 respectively give the normal pure register and pure stack behaviors, while cases 0 and 3 give 
useful variations.  What about the two input operand case?  Say the primary input operand is stack index A, the 
secondary input operand is stack index B, with the result going to stack index A (e.g. a two operand opcode 
architecture).  It turns out that the same table above works for this scenario as well.  How do we handle the case 
where both of the sources and the destination point to the same stack?  The solution is to simply OR the two pop 
bits together.  Remember that there is no access to the value below the top LIFO entry as in most stack 
machines, so when index A = index B for a two operand instruction such as multiply, the result will be A2 pushed 
to A.  And in this case, if both of the A and B pop bits are set this won’t cause a double pop because the pop bits 
are simply ORed, causing a single pop of A (a pop & push, actually). 
 
Now that we have simpler stacks and more control over them, the conditional execution of single operations is a 
viable option.  Conventional stack machines generally don't have conditional single operations because operands 
are always consumed – the programmer wouldn’t be able to tell what state the stack is in after a conditional two 
operand operation, leading to stack faults.  With no auto-consumption of the input, and by setting the pop bit of 
the register being conditionally written to, we can ensure the stack pointers don't change during a single 
conditional operation. 

http://www.excamera.com/sphinx/fpga-j1.html
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OOPPEERRAANNDDSS  
How many operands should be in the opcode?   I picked 2 to keep the opcode small, so Hive is a 2 operand 
machine.  Here are the rules: 
 
• For single input ALU operations the source is B and the result destination is A.  For example: A:=not(B). 
• For two input ALU operations the primary source is A, the secondary source is B, and the result destination is 

A.  For example: A:=A-B. 
• For single input conditional branch statements A is tested against zero.  The address increment is B or is 

supplied as immediate data.  For example: PC:=(A>0)?PC+B:PC. 
• For two input conditional branch statements A is tested against B.  The address increment is supplied as 

immediate data.  For example: PC:=(A!=B)?PC+I:PC. 
• For memory reads the base address is B, the read value is written to A, and there is an immediate 4 bit 

positive address offset.  For example: A:=mem(B+I).  
• For memory writes the base address is B, the write value is read from A, and there is an immediate 4 bit 

positive address offset.  For example: mem(B+I):=A. 
• For internal register set access the absolute address is I and the data is read from or written to A.  Read 

example: A:=reg(I).  Write example: reg(I):=A. 
• For subroutines the subroutine absolute address is B and the return address (the PC) is pushed to A. 
• When an interrupt is taken the return address (the non-incremented PC) is automatically pushed to stack S0 

(this is the only “special” stack, and this is the only way in which it is “special”). 
 
So A is the primary data source and destination for two operand operations, is the primary data tested, receives 
subroutine return addresses, and is the only thing that can be written to.  B is the primary data source for one 
operand operations, the secondary data source for two operand operations, is the secondary data that A is tested 
against, and always provides the address or address offset. 

SSTTAACCKKSS  &&  SSTTAACCKK  DDEEPPTTHH  
How many stacks are needed?  I picked 8.  This gives a convenient hex nibble of 4 bits for each operand (one 
pop bit, three stack index bits) for a total of 8 bits of opcode consumed.  How deep should the stacks be?  I’ve 
read 32 entries are generally deep enough for single stack machines to not require auto spill-to-memory 
mechanisms and the like.  Since we have 8 stacks, and since coding for this core is likely to be done by hand, we 
could doubtless get by with less depth.  In any case the use of FPGA block RAM for the stacks sets a fairly 
generous practical lower limit (32 entries per stack per thread in our target device, set via a build-time parameter). 

AALLUU  DDAATTAA  WWIIDDTTHH  
Hive data is 32 bits wide.  Byte data is too narrow for many applications, and 16 bit data doesn’t have sufficient 
resolution to directly perform the internal computations required for audio DSP.  64 bit data is overkill for most 
applications that would be running on a small FPGA processor.  Non-power-of-2 widths can be excluded for 
efficiency reasons, which leaves us with 32 bits.  Data width directly dictates the top speed vs. pipelining depth 
because wider data requires more deeply cascaded combinatorial logic to perform adds, multiplies, etc. 

OOPPCCOODDEE  WWIIDDTTHH  
Hive opcodes are a compact 16 bits wide.  With careful planning and some field reuse there is sufficient room for 
operand indices and small immediates. 

MMAAIINN  MMEEMMOORRYY  DDAATTAA  WWIIDDTTHH  
Hive memory access width, and by that I mean main memory read / write and in-line literals, can be either 16 or 
32 bits, depending on the operation.  Both aligned and non-aligned 32 bit accesses are supported. 

MMAAIINN  MMEEMMOORRYY  PPCC  &&  AADDDDRREESSSS  WWIIDDTTHH  
PC and address width are parameterized and so are set at build-time.  PC width may be set to coincide with 
address width, or wider if so desired, up to and including the ALU data width.  Address width directly sets the 
depth of the main memory instantiation and BRAM resource usage (note that deeper settings may negatively 
impact the top speed of the core). 
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AARRIITTHHMMEETTIICC  RREESSUULLTTSS  WWIIDDTTHH  
Some ALU arithmetic operations invariably produce wider results than the input operands.  Traditional processors 
stick the extended results of add and subtract (carry, overflow, sign, etc.) in dedicated bit flag registers, and then 
have rules and special instructions that govern the updating, clearing, saving, and restoring of them.  The results 
of full width multiplies are often sent to special concatenated register pairs.  These practices may be efficient, but 
they introduce complexity and internal state. 
 
A simple and uniform method of handling wide arithmetic results is to treat them as double width regardless of 
operation (add, subtract, multiply) and select either the lower (i.e. normal) half of the result or the upper 
(extended) half of the result via instructions.  The obvious downside here is that obtaining the full width result 
takes two cycles even when the operation is actually performed in one.  For the full result it may seem wasteful to 
perform the same internal calculation both times, but one probably shouldn’t think of this as major effort for the 
ALU or as a huge opportunity lost.  All processors have to perform a full width subtraction in order to generate the 
arithmetic comparison flags between two numbers.  By examining the extended result of add / subtract first one 
can know beforehand if the result will overflow and perhaps not perform it (e.g. restoring division), and often only 
the lower or extended arithmetic result is required.   
 
Interestingly, the extended result of signed and unsigned subtraction always forms a convenient all ones or all 
zeros flag (easily negated with a NOT instruction).  The extended result of unsigned addition is a bit more 
complex.  Here are some 4 bit corner case examples to get a flavor of how this works: 
 
 

  
+ unsigned 15 + 15 = 30 = 0001,1110 max 

 0 + 0 = 0 = 0000,0000 min 
  

+ signed 7 + 7 = 14 = 0000,1110 max 
 -8 + -8 = -16 = 1111,0000 min 
  

- unsigned 15 - 0 = 15 = 0000,1111 max 
 0 - 15 = -15 = 1111,0001 min 
  

- signed 7 - -8 = 15 = 0000,1111 max 
 -8 - 7 = -15 = 1111,0001 min 
  

* unsigned 15 x 15 = 225 = 1110,0001 max 
 0 x 0 = 0 = 0000,0000 min 
  

* signed -8 x -8 = 64 = 0100,0000 max 
 7 x -8 = -54 = 1100,1000 min 
  

Figure 8.  4 bit input / 8 bit corner results. 

SSIIGGNNEEDD  VVSS..  UUNNSSIIGGNNEEDD  AARRIITTHHMMEETTIICC  
Although addresses are generally thought of as unsigned, unsigned subtraction will produce negative numbers 
whether one likes it or not.  The programmer obviously needs the resources to handle both, so the impact of 
signed vs. unsigned arithmetic is largely one of default behavior and instruction naming conventions.  Signed 
multiply is more basic due to sign/zero extension needs (hence Altera’s FPGA multiply hardware primitives being 
signed).  I feel that a signed half-width memory read can sometimes be more useful than unsigned because it 
influences the MSBs above.  Given the way that Hive deals with extended results, lower arithmetic operations are 
sign neutral (i.e. give the same results regardless of signed / unsigned operation) so only the right shift operations 
and the arithmetic operations that produce extended results as output need to be differentiated with respect to 
sign. 
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BBAACCKKGGRROOUUNNDD::  FFPPGGAA  RREESSOOUURRCCEESS  
The available physical resources and their detailed behavior, limitations, and timing characteristics in the target 
FPGA will strongly influence the top speed, size, and other important bulk metrics of any soft processor.  One 
may as well exploit these resources up front rather than be stymied by them later. 
 
Block RAM (BRAM) 
The primary FPGA component the soft processor designer needs to understand is block RAM. 

 
Figure 9.  Block RAM: simple (DQ) on left, true dual port (DP) on right. 

The figure above shows two common forms of block RAM: a simple dual port (DQ) on the left and a true dual port 
(DP) on the right.  Because it uses a single address, the DQ variant is a good fit for the LIFO stacks.  The DP 
variant is useful for main memory as it gives two independent accesses which enables a data read / write along 
with instruction fetch per cycle (thus sidestepping the “Von Neumann bottleneck”).  Main memory access is a 
huge driver in any processor design, and often the limitation encountered is insufficient address ports, not so 
much data ports. 
 
Block RAM resources have configurable variable widths, from some maximum down to a single bit.  For widths of 
8 and above an additional bit per byte (8+1, 16+2, 32+4) is provided for out-of-band signaling, individual byte 
enables, CRC, error correction, and other common uses.  I believe it is a mistake to employ these extra bits in 
order to increase the data width of the ALU or instructions, as this precludes the efficient use of conventional 2n 
width memory to store internal data / control information. 

 
Figure 10.  Block RAM internal resources. 

What resources are available within block RAMs?  The figure above shows a schematic view of the “inside” of a 
typical DQ RAM, though it applies to each side of a DP RAM as well.  Even though FPGA block RAMs are always 
fully synchronous, it is sometimes helpful to think of the base RAM entity inside of the block as asynchronous.  
This RAM entity is supplemented with “read through” logic in the form of a multiplexer, which enables two types of 
configurable (at build time) read-during-write behavior.  Without the multiplexer, a read-during-write delivers the 
old memory data to the read data port (I’ve dubbed this WAR – Write After Read).  With the multiplexer, a read-
during-write conveys the data being written to the read data port (RAW – Read After Write).  Note that these 
modes only apply to a given port of a DP RAM, read/write behavior between ports is never write-through.  The 
register following this optional multiplexer is always present.  Following this is yet another register; it is optional 
and generally part of the block RAM circuitry because it can dramatically speed up read clocking at the expense 
of one additional clock of latency. 
 



 

In terms of read-during-write behavior, Hive needs write-through mode for the LIFO stacks to function correctly.  
This mode is unimportant for the main memory however because we will never be simultaneously reading from 
and writing to the data port, and the fetch port is read-only.  In terms of speed, the write side can often tolerate a 
bit of combinatorial logic in front, while the read side is fairly slow if the additional output register isn’t used.  So if 
our architecture can tolerate the latency of the additional read side output register we should certainly use it 
because it speeds things up and is essentially free. 

 
Figure 11.  True dual port block RAM utilized as DQ RAM. 

There is a way to convert DP RAM to DQ RAM, and this is shown in the figure above.  Feeding the same clock, 
address, and write enable to both sides, along with splits / concatenations of the read / write data, accomplishes 
this simple transformation.  In fact the tool will do this automatically when necessary.  For our target Cyclone 3 
device, DP data ports are limited to a maximum of 16 (+2) bits wide, and DQ data ports to a maximum of 32 (+4) 
bits wide – and the 1:2 ratio of these width limits makes sense given the above transformation.  Since our LIFO 
stacks can employ DQ RAM (due to the single pointer) we can make them 32 bits wide using a single device. 

 
Figure 12.  Block RAMs combined via bit-slice. 

We may need our main memory to be considerably larger than a single 9k bit block RAM found in our target 
device.  The tool will automatically combine multiple block RAM devices together, and often with no speed 
decrease – how does it accomplish this?  The trick to making the largest and fastest block RAM amalgam is to 
configure the block RAMs to be one bit wide and maximum depth, 8k in this case, and then simply split / 
concatenate the write / read data by bit slicing the blocks together.  Going above this size requires write enable 
steering and output multiplexing, which will also be inserted automatically by the tool when needed, but this extra 
logic tends to slow things down, particularly on the read side (though pipelining this logic could certainly get it 
back up to speed). 
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DSP Hardware 
Since even quite low-end FPGAs these days have fairly fast hardware multipliers in some form of a DSP block, 
we should undertake any new designs with the knowledge and trust that they will be there.  There is little point in 
leaving multiply operations out of our instruction set, and no point in trying to outsmart the FPGA manufacturers 
by constructing what would inevitably be slower and larger multipliers out of shifters, adders, etc. – both of which 
would needlessly strand this valuable resource. So it behooves us to understand the dedicated multiply hardware. 

 
Figure 13.  Signed multiplier hardware typically found in an FPGA. 

Basic hardware multiplier width is 18 bits, which follows the convention of block RAM widths (2n + 1 extra bit per 
byte).  Being a full multiplier, the result is obviously double this, or 36 bits wide.  As with add hardware, leaving 
some of the MSBs or LSBs unused will allow the remaining utilized multiply hardware to run faster due to fewer 
carry propagations, etc. 
  
Altera multiplier blocks are signed by default, which makes sense because this convention simplifies sign 
extension of the inputs.  To make a signed multiplier perform unsigned math all that is necessary is to construct it 
one MSB wider at the inputs and force those MSBs to zero (zero extension).  Conveniently, this same construct 
can be used to do signed multiplication simply by driving these MSBs with the signs of the inputs (sign extension).  
Though of course this requires an extra bit and therefore negatively impacts top speed slightly.  The extra output 
MSBs generated with this scheme are unused (left unconnected) which may generate tool warnings. 
 
The multiplier hardware can be used in a purely combinatorial sense, but registering will speed it up considerably 
so manufacturers provide “free” internal registers at the inputs and outputs that are not part of the general FPGA 
fabric.  As in the case of block RAM output registers, if our architecture can tolerate the latency of the additional 
multiplier I/O registering we would be crazy not to use it.  This leads one almost inexorably to ALU pipelining. 
 
Digital Clock Managers (DCMs) 
Virtually all FPGAs have some kind of DCM in the form of one or more PLLs (Phase Locked Loops), and/or DLLs 
(Delay Locked Loops) which may be used for a variety of purposes.  A DCM can move the clock edge around to 
change external setup / hold / data out timing, trade internal cycle time margins for tighter external I/O timing, 
condition the input clock duty cycle, multiply and divide the input clock, generate multiple clocks with phase 
offsets, etc.  Probably the main use for a DCM in a processor core is to manipulate the input clock frequency 
(multiply / divide) so that the clock feeding the core is at or a bit below the top theoretical speed of the core in 
order to get the best performance from it.   
 
Note that there is some lower frequency limit below which a DCM will not be able to lock to or otherwise process 
the input clock, and this figure is given in the AC specifications datasheet for the FPGA.  Also note that running 
the core at high frequencies will increase dynamic power consumption, and may make other logic which is not in 
the core but supplied by the core clock more difficult to construct due to the tighter timing constraints.  It is entirely 
possible to have multiple clock domains inside the FPGA, but then one must take special care to condition data 
(particularly vectors) that cross domain boundaries. 
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AALLUU  DDEESSIIGGNN  
Building an ALU for all but the most trivial of processors is more involved than “compute all results and pick the 
one you want” (though in the future we may see sufficient unification of DSP blocks across devices and 
manufacturers and new HDL constructs that allow for more naïve ALU instantiations).  Arithmetic and logical 
calculations aside, the wide output multiplexer itself can be a speed bottleneck.  The design of the ALU drives 
much of the rest of the processor design, particularly one that is pipelined, so it’s not surprising if it takes a fair 
amount of effort to fully develop and implement it. 
 
Multiplication 
Let’s start with the elephant in the room – the multiply unit.  If we want to do audio DSP we need 16 x 16 = 32 bits 
signed as a fairly unsuitable absolute bare minimum.   We could probably get by with 16 x 32 = 48 bits signed, 
with 16 bit samples, 32 bit filter coefficients, and a 48 bit result.  For the sake of symmetry and simplicity, let’s set 
the goal as full 32 x 32 = 64 bits signed and unsigned.  The use of a signed base entity requires 33 x 33 = 66 to 
accommodate unsigned, which conveniently is slightly less than twice the width of a single 18 x 18 FPGA 
hardware multiplier.   
 
Just as multiplication is performed using pencil and paper, addition and concatenation enable the utilization of 
several hardware multipliers in parallel, thus increasing the input and output widths.  Xilinx and Altera both have 
nice application notes describing how to do this.  Consider the following base 10 example: 
 

98 
*   67 

    

56 
+  630 
+  480 
+ 5400 

 
 
=> 

56

+ 54__

 
 
=> 

63_
+  48_

 
 
=> 

 
 

111_ 
+ 5456 

6566  5456  111_  6566 

Figure 14.  Multiplication example. 

On the left 98 and 67 are multiplied together in the usual manner, 7x8, 7x90, 60x8, and 60x90.  All of the results 
of multiplication are added together to get the final answer, which requires three additions – or does it?  Looking 
closely, 5400 and 56 can be simply concatenated, which eliminates one addition.  630 and 480 will always have 
zero as their least significant digits, so this addition is simplified to adding 63 and 48 giving 111.  The result 1110 
will also always have a zero as the least significant digit, so adding it to 5456 simplifies to adding 545 and 111 
and concatenating the 6 to the least significant digit location.  So 4 half width multiplications must be performed, 
but the three additions have been reduced to two, narrowed, simplified, and therefore likely sped up. 

 
Figure 15.  Three stage 33 x 33 = 66 bit signed pipelined multiplication. 

The figure above shows these same methods implemented in binary 2s complement logic.  The inputs are split in 
half, with the lower parts zero extended to make them unsigned (interpreting their MSBs as signs would give 
incorrect results).  In the first stage the cross multiplications are performed, in the second stage the outer 
concatenation and inner add are performed, and in the third stage the final add / concatenation is carried out (the 
17 LSBs of the add are automatically implemented by the compiler as a concatenation). 



 

 
In terms of speed, the 18 bit multiplies in the first stage will likely be the slowest logic in the entire design, though 
the 47 bit add in the third stage may be close or possibly slightly worse.  In the target EP3C5E144C8 device the 
multiply is restricted to 200 MHz, which means we should endeavor to make all of the other logic at least 
somewhat faster in order to have a chance of hitting 200 MIPS with the final design.  The dedicated I/O 
registering in the multiplier hardware should certainly be used, with interstage registering to isolate the addition 
hardware, giving three stages and four clocks of latency. 
 
Shifting 
One thing that really nagged me about my earlier designs was that their rudimentary ALUs didn’t exploit the 
overlapping properties of shift and multiply.  It takes a fair amount of FPGA fabric logic to shift a number to the 
right and left some arbitrary distance and the result isn’t super speedy.  Having a multiplier just sitting there doing 
nothing useful during the shift is a missed opportunity. 

 
Figure 16.  The Multiply and Shift unit. 

When a number is multiplied by a power of 2, say 25, it is shifted to the left 5 bit positions.  So if a full multiplier is 
already present, the positioning of a simple one-hot shifter at the front (1 << n) can eliminate the left shift 
hardware.  Can a right shift be accomplished with the same hardware?  Yes, the trick is to consider the shift 
distance input as signed, with positive inputs causing shifts to the left and negative inputs shifts to the right.  The 
shift distance MSB (the sign bit) is stripped off and used to select the upper (or extended) multiplication result 
when set (negative), and the lower result when zero (non-negative).  The remaining shift distance LSBs are 
treated as unsigned and simply routed to the (1 << n) unit at the input as before.  Here is an 8 bit example that 
may help clarify things: 
 

Shift {s,n} MSB (s) LSBs (n) LSBs (n) B input (1<<n) A input X output 
+7 0 111 7 10000000 10110111 01011011,10000000
+6 0 110 6 01000000 10110111 00101101,11000000
+5 0 101 5 00100000 10110111 00010110,11100000
+4 0 100 4 00010000 10110111 00001011,01110000
+3 0 011 3 00001000 10110111 00000101,10111000
+2 0 010 2 00000100 10110111 00000010,11011100
+1 0 001 1 00000010 10110111 00000001,01101110
 0 0 000 0 00000001 10110111 00000000,10110111
-1 1 111 7 10000000 10110111 01011011,10000000
-2 1 110 6 01000000 10110111 00101101,11000000
-3 1 101 5 00100000 10110111 00010110,11100000
-4 1 100 4 00010000 10110111 00001011,01110000
-5 1 011 3 00001000 10110111 00000101,10111000
-6 1 010 2 00000100 10110111 00000010,11011100
-7 1 001 1 00000010 10110111 00000001,01101110
-8 1 000 0 00000001 10110111 00000000,10110111

Figure 17.  8 bit example of left and unsigned right shifting using a full multiplier. 

Though we are thinking of the shift distance input as signed, the shifted one must be presented to the multiplier as 
unsigned for the 100…000 case to work correctly.  Then presenting the input data to be shifted as unsigned or 
signed will conveniently produce unsigned (“logical” or zero extended) and signed (“arithmetic” or sign extended) 
right shifts.  (Note that independent control over the input signedness is required for this to work, global 
signedness is not sufficient, which restricts the construction of signed shift from a series of more basic 
instructions.)  So we have left shift covered, which is sign neutral, as well as unsigned and signed right shift.   
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Other Uses 
Can more be done with this construct?  A multiplexer on port A with a fixed input value of one can be used for a 
couple of things.  The first is copying the B input shifted one result to the output of the multiplier, which is useful 
for generating powers of 2, bit setting & masking, etc.  The second is even simpler – multiplication by one 
replicates the B input to the output of the multiplier, which provides us with a free and convenient “copy B” route 
through the ALU (though this copy feature is currently unused in Hive). 
 
Note that signed and unsigned left shift are identical (zero padding from the right).  With a bit of logic governing 
the input multiplexers, one of these redundant modes may be replaced with the power of 2 described above.  I 
chose to replace immediate unsigned shift left, non-negative input shift value, with power of 2, which makes it 
something of an odd man out in terms of operations but hopefully not too confusing.  Signed shift left works as 
expected.  These are summarized below: 
 

Shift Value Instruction Operation Example 
- Shift left, signed Shift right, signed B=-3, A=10110111, Out=11110110 

+,0 Shift left, signed Shift left, signed B=+3, A=10110111, Out=10111000 
- Shift left, unsigned Shift right, unsigned B=-3, A=10110111, Out=00010110 

+,0 Shift left, unsigned Power of 2 B=+3, A=xxxxxxxx, Out=00001000 

Figure 18.  Shifting and power of 2 functions as implemented. 

 
Addition and Subtraction 
Next we need to consider addition and subtraction.  Signed and unsigned can be handled with the same method 
employed in the multiplier, i.e. by making the inputs one MSB wider and sign or zero extending them depending 
on whether that input value is to be considered signed or not.  As with multiplication, overflow / carry out is 
extended into the double width data space and selected with instructions.  Note that the lower word result is sign 
neutral, so only the extended result will vary based on input signed / unsigned status.  The add / subtract unit is 
also used to compare (A<B) and (A<0) for conditional branching. 
 
Logical Functions 
For logical functions, the usual suspects are implemented: 
 

Operation Description Examples 
AND A & B A=1100, B=0101 : A=0100 
ORR A | B A=1100, B=0101 : A=1101 
XOR A ^ B A=1100, B=0101 : A=1001 
NOT ~B A=xxxx, B=0101 : A=1010 

BRA &B A=xxxx, B=0101 : A=0000 
A=xxxx, B=1111 : A=1111 

BRO |B A=xxxx, B=0101 : A=1111 
A=xxxx, B=0000 : A=0000 

BRX ^B A=xxxx, B=0101 : A=0000 
A=xxxx, B=0111 : A=1111 

Figure 19.  Logical functions as implemented (examples here limited to 4 bits). 

Note that “BR” stands for “bit reduction” though it is also a mnemonically convenient reminder that B is the input to 
these single operand functions.  The logical unit is also used to compare (A!=B) and (A!=0) for conditional 
branching. 
 
Miscellaneous Functions 
Functions also performed by the logic unit are move / copy full 32 bits, move / copy lower 16 bits both sign and 
zero extended, 32 bit end-over-end flip, sign bit inversion, and leading zero count. 
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Pulling It All Together 

 
Figure 20.  The Arithmetic and Logic Unit (ALU). 

The figure above shows the complete ALU.  The blue dashed lines represent register boundaries of a pipeline.  
Data enters from the left and proceeds through the pipe, with the result emerging on the right 6 clocks later.  
Inputs are multiplexed in, and the desired results multiplexed out.  The PC (Program Counter) is multiplexed in 
between stages 2 and 3 for reading and subroutine / interrupt return address use.  Read data from the local 
register set is also multiplexed in between stages 2 and 3.  Read and literal data from main memory is multiplexed 
in between stages 4 and 5. This pipeline structure provides natural intermediate value storage, so the ALU can be 
presented with new input data on every clock without worry that the new data will be somehow mixed in or 
confused with previous or later data.  Pipeline interstage registering speeds things up and is an otherwise largely 
stranded FPGA resource, so it might as well be used (my earlier processor designs only employed a few percent 
of the fabric registers, and not surprisingly were relatively slow). 
 
A somewhat thorny issue with ALU design is working out what the control inputs should be and how they should 
be implemented.  So as not to slow things down with elaborate encoding and decoding, I decided to encode them 
one-hot, but with a precedence that is not actually relied upon in practice.  The control signals are also pipelined, 
so the data and the desired operation on it may be conveniently presented together on the left.  The multiply and 
shift unit is complex enough to have its own controls internally pipelined. 
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PPIIPPEELLIINNEEDD  CCOORREE  

 
Figure 21.  Hive core – view from 100 feet up. 

Shown above is the full Hive core.  The dotted lines and numbered boxes represent interstage registering.  I’ll 
refer to the logic following a line of registers with the same numbering as the registers to the left, e.g. stage 3 logic 
is located between the “3” and “4” register lines.  Pipeline stage numbering is relative to data path operations, 
rather than control path operations.  I chose this convention because the lion’s share of the core logic – ALU & 
LIFOs – is contained in the data path. 
 
It is vitally important to note that the left and right edges of the figure are connected, which converts the horizontal 
paths into loops, and so the core may be thought of as one large ring structure.  As with the ALU, the pipeline 
interstage registering provides natural storage for intermediate results.  With the pipelines configured as rings, 
values such as the PC and the LIFO pointers are not only buffered but actually stored in the interstage registering.  
Clearly this also forms a natural and simple scheduling mechanism, with packets of data and associated control 
information spinning around a global ring like horses on a carousel, all independent of one another, isolated by 
and stored within the pipe interstage registering, passed from stage to stage in a circular bucket brigade fashion.  
Let’s call these packets “threads” – each stage of the core pipeline can receive and temporarily store, process, 
and pass on data and control information for a single thread, and there are 8 stages, so we have 8 threads.  
(Given extra buffering, one could have more threads than pipeline stages with this scheme, but not vice-versa.) 
 
The core may then be thought of as eight processors running at 1/8 the clock speed, sharing a memory (code and 
data) space which facilitates intercommunication between them as well as code compaction / factoring (the 
sharing of common constants, subroutines, and data).  The ring structure of the core forms a “barrel” type 
scheduler for the threads.  Each thread is unique, has as much real time as the next, and gets equal access to the 
core resources in a strictly offset / overlapped / non-interfering manner.  It is up to the programmer to keep the 
threads busy doing something, though of course unused threads could simply loop, perhaps waiting for an 
interrupt or a semaphore in memory to change (i.e. “camping on a bit”). 
 



 

Let’s look at the individual rings in a bit more detail. 
 

 
Figure 22.  The Time ID “Ring”. 

Threads needs an identification number to correctly time the injection of thread clear and interrupt events into the 
ring, for stack error reporting, and to generate thread clear and interrupt addresses.  (All threads could vector to 
the same clear and interrupt address, but that would require overhead for the thread when emerging from start up 
or when servicing an interrupt: read the thread ID from the local register set, use it to lookup or offset an address, 
jump there, etc.)  A simple up-counter at the beginning of the ring generates the thread ID.  A true ring structure 
sans counter could be used here, but that would rely on everything going well from hard reset to infinite time 
(never do this if you can avoid it) so we break the ring and use a counter and pipe construct instead because it is 
inherently self-correcting.  The interstage registers emerge from asynchronous reset with the values they would 
normally have if previously fed by the counter, and thread ID 0 is the first to emerge from a global reset / clear, 
followed by 1, 2, etc.  Note that this isn’t a true scheduler, just a round-robin doling out of identifiers, and that any 
scheme which produces a continuously repeating fixed pattern where each and every ID is generated once and 
only once every 8 clocks would suffice.  ID here is actually the 3 lowest bits of the 32 bit “Time” counter. 

 
Figure 23.  The Program Counter Ring. 

Above is the program counter ring.  At stage 0 the PC is replaced by the thread clear address is if the thread is 
being cleared, left alone if the thread is taking an interrupt, or incremented to get the next instruction (or in-line 
literal).  In stage 1 the PC is used as the address for the main memory data port if retrieving in-line literal data, 
and the PC is incremented by 1 or 2 if retrieving an in-line 16 or 32 bit literal (to get the next instruction).  In stage 
2 the PC is sent to the data path for reading, or as a return address if taking a subroutine or interrupt, and is 
replaced with the thread interrupt address if taking an interrupt.  In stage 3 the PC is incremented by B (or an 
immediate value) if taking a relative jump, or replaced by B if performing an absolute jump or subroutine.  In stage 
4 the PC is used as the address for the main memory instruction port to fetch the next instruction. 

 
Figure 24.  The Control Ring. 

The thread ID ring and PC ring, together with the opcode decoding unit and the vector controller, form the control 
ring.  Opcode decoding takes place in several stages in order to speed it up, and as a consequence the 
instruction fetch must happen fairly early in the pipeline, which means conditional testing has to take place even 
earlier.  The vector controller uses the thread ID to correctly inject thread clear and interrupt events into the 
control ring structure (and to simultaneously retire these events once injected); these events are handed off to the 
opcode decoder where they are prioritized and decoded.  Note that each thread has its own separate clear and 
interrupt.  The clearing or interruption of one or more threads won’t disturb the other normally functioning threads.  
The abundance of independent interrupts means that hierarchical interrupt logic / code won’t likely be necessary 
for most applications. 
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Figure 25.  The Stack Level Ring. 

Shown above is the stack level ring.  In stage 0 the stack levels are cleared if the thread is being cleared.  In 
stage 1 valid pop events decrement the relevant stack level(s).  In stage 2 valid push events increment the 
relevant stack level.  Not shown in stages 1 and 2 is logic that measures fullness and prevents push when full / 
pop when empty from corrupting the stack levels (if so configured at build time).  These error events are reported 
to the local register set for debugging purposes.  Separating the clear, pop, and push logic in this manner actually 
simplifies combined pop & push actions, as well as error tracking and reporting.  Valid pushes also generate write 
enables for the LIFO memories, which are pipelined and applied in stage 6.  Also in stage 6 the stack levels are 
stripped of their MSB to form pointers, and are concatenated with the thread ID to form the LIFO memory write / 
read address, and the ALU result is written to one of the stack memories.  This pointer / thread ID concatenation 
scheme gives each thread its own private set of stacks in shared block RAM, and renders stack corruption from 
one thread to another impossible.  Stack to stack corruption within a thread is also impossible due to the 
physically separate block RAMs employed for each stack. 

 
Figure 26.  The Data Ring. 

As shown above, the stack output multiplexer, ALU, LIFO memories, and stack pointer ring constitute the data 
ring. 
 
The control ring, data ring, main memory, and local register set make up the Hive core. 
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IINNSSTTRRUUCCTTIIOONNSS  //  OOPPCCOODDEESS  
With the basic hardware structure in place we can now decide on the basic operations and their encoding.  In 
actuality the design process isn’t this cut and dried, and the inclusion and format of certain instructions will 
obviously ripple back into the hardware structure.   
 
Beyond Turing completeness, selecting a sufficiently self-contained and balanced set of “basic building block” 
instructions for general purpose use is something of a conundrum – you want to at least minimally accommodate 
your own early coding examples, but how do you guarantee efficient coverage for all future code you and others 
may write without resorting to a “kitchen sink” design?  Studying the instruction sets of similar processors is useful 
here, as is coding up often used simple functions like division and others which are not supported directly by the 
ALU.  If the coding process feels particularly laborious, or the resulting code strikes you as unusually awkward or 
cryptic, then you likely have more work to do.  It’s difficult to qualify – much less quantify – this process. 
 
Determining how to best fit the instructions into the opcode space can be a challenge, and you will likely 
experience design push-back due to opcode space limitations – if you don’t you probably left out something 
important or aren’t otherwise utilizing the space efficiently.  From the previous discussion, we know there are at 
most 2 stack indexes of 3 bits each, with 1 pop bit for each index.  This consumes 8 bits of opcode space, leaving 
8 bits remaining.  Most processors utilize the operand select field room freed up when fewer operands are 
required for a particular operation, and Hive does this as well. 
 
In-Line Data (and addresses?) 
The bandwidth consumed by immediate / literal data is quite important; some processor designs devote (literally!) 
half of the opcode space to a single immediate data operation.  With Hive, the way to insert larger literal data 
values from the instruction stream is via an in-line mechanism (the value immediately follows the literal instruction 
in program space).  The in-line literal instructions use 32 or 48 bits: the 16 bit literal instruction followed by 16 or 
32 bits of data (the data is used “literally” rather than decoded) but just one cycle to push 16 or 32 bits of data.  
There is a full width literal instruction, as well as signed and unsigned literal low instructions. 
 
At the excellent suggestion of one Hive reviewer, I experimented with this in-line mechanism as a source of both 
absolute addresses and offsets.  Doing so conveniently obviates the need for an immediate data field in the 
branch instructions, which frees up the second stack index and gives generic (A?0) and (A?B) conditional and 
unconditional relative and absolute jumps (and subroutines if desired) of 16 or 32 bits.  I very reluctantly 
abandoned this avenue because of the timing pinch point it created between conditional evaluation, address / 
offset selection, next address calculation, fetch, and decoding, which unacceptably slowed down the core logic.  It 
also introduced a bit of confusion as to what the address offsets was relative to, the jump instruction or the 
following in-line value?   
 
Immediates 
Instructions that contain an immediate data or address offset field can be quite effective, though they quickly 
gobble up opcode space so they need to be firmly in the frequent use category to earn their keep.  The immediate 
field width and position within the opcode need not be fixed, and I decided to implement immediate 6 and 4 bit 
signed instructions, as well as immediate 6 and 4 bit unsigned instructions.  The 6 bit unsigned immediate is used 
exclusively as the register space address, and the 4 bit unsigned immediate is used exclusively as a memory 
access address offset. 
 
Immediate instruction types and opcode space consumption: 
 
• Two 6 bit unsigned immediate address instructions: register access – 2048 codes. 
• Four 4 bit unsigned immediate address instructions: memory access – 16384 codes. 
• Six 4 bit signed immediate address instructions: conditional (A?B) jump – 24576 codes. 
• Four 6 bit signed immediate address instructions: conditional (A?0) jump – 4096 codes. 
• Four 6 bit signed immediate data instructions: signed data, signed add, signed shift left, power / unsigned 

right shift – 4096 codes. 
 



 

Immediate Jumps  
The longer a loop is, the less we tend to be concerned with loop overhead.  But immediate branching is vital to 
the production of fast, compact, iterated code.  Even if we constrain the maximum immediate jump distance to be 
quite small, the plethora of fundamental and therefore essential conditional tests means the immediate branch 
instructions will likely consume a huge portion of the total opcode space. 
 
In the end I decided to implement six 4 bit immediate signed distance [+7/-8] conditional (A?B) jump instructions, 
and four 6 bit immediate signed distance [+31/-32] conditional (A?0) jump instructions.  Jumps are relative to the 
PC and jump the signed immediate distance if the test is true. 
 

1 C N IM[3:0] PB B PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
                
1 1 1 0 C N IM[5:0] PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 27.  Immediate address instruction formats (top to bottom): (A?B) conditional jump; (A?0) 
conditional jump. 

All relative branching is relative to the next instruction address, and not this instruction address, which seems like 
the most natural convention: a relative jump of 0 does nothing, a relative jump of +1 skips over the next 
instruction, and a relative jump of -1 is an infinite loop. 
 
The only thing conditional about a conditional instruction is whether or not the branch is taken.  Pops are always 
performed if pop bits are set in the conditional instruction. 
 
Other than equality, the most useful conditional tests tend to split the numerical space under test in half via sign 
(less than zero, not less than zero), and subtraction sign (less than, not less than).  I’ve found other combinations 
of less than, equal to, and greater than testing to be less useful, and so are not directly supported in Hive.  Odd / 
even testing could be included but the need for it seems less pressing, I ran out of immediate room, and it can be 
performed when necessary via a flip or shift and sign test.  (A?B) testing seems to happen more rarely than (A?0) 
testing, though it unfortunately consumes more Hive opcode space overall due to the necessary inclusion of the 
second operand selector field.  Less than, and not less than, comparisons have both signed and unsigned 
variants.  Note that there is an unconditional non-immediate jump, but there is no unconditional immediate jump – 
for short unconditional immediate jumps you can use the (A==B) immediate jump with both A and B fields pointing 
to the same stack (even an empty stack will work here), or use one of the zero test immediate jumps with A 
pointing to a stack that has a known quantity. 
 
Some conditional sign conventions / observations: 
 
• The conditional comparisons L (A<Z), and NL (A!<Z) of A to zero necessarily treat A as signed.   
• All conditional comparisons of A and B that are signed | unsigned treat both A and B as signed | unsigned. 
• The equivalency comparisons Z (A=0), NZ (A!=0), E (A=B), and NE (A!=B) are obviously sign neutral. 
 
Immediate Memory Access 
There are 4 instructions for memory access: two for read and two for write.  There is a full 32 bit read, and a low 
16 bit read which is sign extended.  Similarly, there is a full 32 bit write and low 16 bit write.  An unsigned 4 bit 
immediate field provides a group of 16 convenient memory slots off of a base address, and it is up to the 
programmer to manage this field correctly for 32 bit accesses (note that they need not be aligned to even base 
addresses). 
 

0 1 W L IM[3:0] PB B PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 28.  Immediate address instruction format: memory access. 

Data and code space are shared, which enables the programmer to freely allocate and partition it, and enables 
the copying in of new code via this data read / write mechanism.  These instructions use up a lot of the opcode 
space, but memory operations consume a lot of cycles on average, so they should be made as efficient as 
possible. 
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Immediate Register Access 
There are 2 instructions for register set access: full 32 bit read and write.  An unsigned 6 bit immediate field 
provides for access of up to 64 registers. 
 

0 0 0 0 1 W IM[5:0] PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 29.  Immediate address instruction format: register access. 

 
Immediate Data 
With Hive, the immediate signed data instruction is the way to insert small data values from the instruction stream.  
The immediate data instruction uses 16 bits and one cycle to push 6 signed bits of data.   
 

1 1 1 1 OP IM[5:0] PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 30.  Immediate data instructions format: data, add, and shift / power. 

 
Immediate Shifts / Power of 2 
Shifts distances / directions known at “compile time” can be most efficiently coded as 6 bit wide signed 
immediates.  Immediate shift instructions are highly useful because they allow for full 32 bit left or right shifting in 
a single cycle, and one or two shifts can perform many chores that would otherwise require dedicated instructions 
and hardware (full width MSB flag, arbitrary width sign / zero extension, isolation of contiguous bit fields, 2n 
integer modulo, etc.).   
 
The immediate unsigned shift performs a power of 2 (one hot bit) function when the shift distance is non negative, 
and unsigned right shift when the shift distance is negative.  This dual functionality replaces the redundant left 
shift (signed and unsigned left shift otherwise produce identical results) with a useful secondary operation.   
 
Immediate Add 
An immediate signed add is provided for small quick increments and decrements [+31/-32]. 
 
Branching 
There are four types of non-immediate branches – jump, go to, ISR return, and subroutine: 
 
• JMP (jump) is relative to the PC and is either conditional or unconditional.  It jumps a signed distance given 

by B if either the test (A?0) is true, or unconditionally. 
• GTO (go to) is absolute and unconditional.  It loads the PC with the value given by B. 
• RTN (return) is a GTO that re-enables the ISR state machine. 
• GSB (go to subroutine) is absolute and unconditional.  It loads the PC with the value given by B and stores 

the return address to A. 
 

0x3 0 0 C N PB B PA A 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 31.  (A?0) conditional jump instruction format. 

Note that there is no explicit return from subroutine operation – a GTO is used here.  The return address can be 
simultaneously popped at this point as well for cleanup. 
 
After much deliberation I decided against the inclusion of conditional GTO and GSB instructions as being too 
confusing and not having sufficient need / utility. 
  
Shifts / Powers of 2 
Variable shifts in both signed and unsigned variants are provided.  I felt it was important to keep the variable shifts 
unmixed in functionality (i.e. no power of 2 here as exists in the immediate form) so that there could not be 
unexpected behavior, and so sign testing of the shift variable would not be necessary.  A separate variable power 
function generates powers of 2 and is sign agnostic regarding the shifted 1 distance input value. 
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Arithmetic & Logical 
Add, subtract, multiply, shift, and all of the logical operations have been described previously.  Functions also 
performed by the logic unit are move / copy, 32 bit end-over-end flip, sign bit inversion, and leading zero count. 
 
Pop 
By repurposing the entire stack / pop selector area of the opcode, the pop instruction is able to pop all, none, or 
any combination of stacks at once. 
 

0 0 0 0 0 0 0 1 POP[7:0] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 32.  Pop instruction format. 

Other Instructions 
There are several stack and miscellaneous instructions: 
 
• PCP pushes the current program counter (pointing to the next instruction) to A. 
• NOP is a do nothing instruction; all functionality including pops is disabled. 
 
Naming Conventions 
Consistency is important with instruction naming conventions so that one can easily remember them or, failing 
that, quickly construct them knowing some basic rules.  The letters “op_” precede all Hive instructions, and this is 
mainly to avoid conflict with SystemVerilog reserved words.  After this is the three letter operation, usually 
followed (but not necessarily) by a second underscore and one or more option letters.  Obviously all operations do 
not support all options. 
 

op_* Function 
nop No OPeration (no pops either) 
pop POP : one hot bit per stack 
pcp Program Counter Plus : A:=PC++ 
lit In-line LITeral data : A:=mem(PC) 

reg REGister access : A:=reg(I); reg(I):=A 
cpy CoPY : A:=B 
isg Invert SiGn : A:={~B[31], B[30:0]} 
not Logical NOT : A:=~B 
and Logical AND : A:=A&B 
orr Logical ORR : A:=A|B 
xor Logical XOR : A:=A^B 
bra Bit Reduction And : A:=&B 
bro Bit Reduction Or : A:=|B 
brx Bit Reduction Xor : A:=^B 
flp FLiP : A=:B[0:31] 
lzc Leading Zero Count : A:=lzc(B) 
add Arithmetic ADDition : A:=A+B 
sub Arithmetic SUBtraction : A:=A-B 
mul Arithmetic MULtiplication : A:=A*B 
shl Shift Left : A:=A<<(B or I) 

pow POWer : A:=1<<B 
jmp JuMP : PC:=PC+(B or I) 
gto Go TO : PC:=B 
rtn ReTurN : PC:=B (re-enable ISR) 
gsb Go SuBroutine : PC:=B, A:=PC 

mem MEMory access : A:=mem(B+I); mem(B+I):=A 
dat DATa : A:=I 
pus Power | Unsigned Shift right 

Figure 33. Instruction operations. 
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Op_*_? Function 

i Immediate 
x eXtended 
r Read 
w Write 
n Not 
e Equal 
l Less / Low 
z Zero 
s Signed 
u Unsigned 

Figure 34.  Operation options. 

Rules for these options are: 
 
• No underscore between options. 
• The option i if present comes first. 
• The options x, r, or w if present come next. 
• The conditional options n, e, l, and z if present come next, and in that order. 
• The options s, u, or h if present go last. 
• Some operations exist only in an immediate form (dat, reg, mem) and the rule here is to always include the 

immediate i option regardless. 
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Encoding 
When assigning the actual numerical values to the instructions – the operational encoding or opcodes – it is 
important to make the decoding as straightforward and orthogonal as possible.  I initially used a spreadsheet to 
keep track of them, with a column for each output control signal.  This helped to reveal similar decoding patterns 
which were then grouped together / advantageously arranged for ease of interpretation by the decoding logic. 
 

Codes Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
256 nop 0x0 0x0 - - 
256 pop 0x0 0x1 P7 P6 P5 P4 P3 P2 P1 P0
256 pcp 0x0 0x3 PB B PA A 
768 lit 0x0 0 1 L U PB B PA A 
2048 reg_i 0x0 1 W IM[5:0] PA A 
768 cpy 0x1 0 0 L U PB B PA A 
256 isg 0x1 0x1 PB B PA A 
256 not 0x1 0x4 PB B PA A 
256 and 0x1 0x5 PB B PA A 
256 orr 0x1 0x6 PB B PA A 
256 xor 0x1 0x7 PB B PA A 
256 bra 0x1 0x8 PB B PA A 
256 bro 0x1 0x9 PB B PA A 
256 brx 0x1 0xA PB B PA A 
256 flp 0x1 0xC PB B PA A 
256 lzc 0x1 0xD PB B PA A 
768 add 0x2 0 0 X U PB B PA A 
768 sub 0x2 0 1 X U PB B PA A 
768 mul 0x2 1 0 X U PB B PA A 
512 shl 0x2 1 1 0 U PB B PA A 
256 pow 0x2 0xE PB B PA A 
1024 jmp (A?0) 0x3 0 0 L N PB B PA A 
256 jmp 0x3 0xC PB B PA A 
256 gto 0x3 0xD PB B PA A 
256 rtn 0x3 0xE PB B PA A 
256 gsb 0x3 0xF PB B PA A 
16384 mem_i 0 1 W L IM[3:0] PB B PA A 
24576 jmp_i (A?B) 1 C N IM[3:0] PB B PA A 
4096 jmp_i (A?0) 0xE L N IM[5:0] PA A 
1024 dat_i 0xF 0 0 IM[5:0] PA A 
1024 add_i 0xF 0 1 IM[5:0] PA A 
1024 shl_is 0xF 1 0 IM[5:0] PA A 
1024 pus_i 0xF 1 1 IM[5:0] PA A 

Figure 35.  Opcode encoding. 

As seen in the table above, the single instructions are arranged by functionality in four groups of 16, with the first 
group something of a catch-all, the logical group second, arithmetic third, and branching fourth.  The immediates 
follow, with memory access first, (A?B) jumps next, (A?0) jumps following, and immediate data, add, and shifts 
bringing up the rear.  Most instructions are conveniently segmented into hex fields, which facilitates human 
reading / interpretation. 
  
There are some opcode slots open for future expansion, but the opcode space is otherwise largely consumed by 
instructions with immediate fields, and this probably is as it should be for a processor with compact opcodes.  It 
can be a long road leading up to the final selection of operations and their encoding, with much inserting and 
deleting of operations, resizing of immediate fields, and reshuffling of the encoding space, and I’m not sure there 
is any way to abbreviate this activity and still really do it justice. 
 

Hive_Design_2014-07-15.doc Page 27 of 53  



 

Hive_Design_2014-07-15.doc Page 28 of 53  

MMAAIINN  MMEEMMOORRYY  
Hive data and program memory space are shared.  If we desire full 32 bit single cycle access to the data port then 
the underlying physical memory must be 32 bits wide.  If this is the case then the 16 bit opcode port must strip off 
the PC LSB, use the truncated result as the address, and use the pipelined LSB as the high or low 16 bit selector.  
Simple enough so far. 
 
However, if we don’t want to restrict 32 bit data access alignment to even base addresses, then additional 
steering logic is necessary at the input and output of the data port memory.  A strong driver here is full 32 bit 
literal values in-line with the code – it would be nice to be able to place them anywhere in 16 bit based code 
space with no restrictions.  For 32 bit values at even base addresses the access is straightforward.  But for 32 bit 
values at odd base addresses we need to swap the 16 bit values both going into and coming out of the data 
memory port, and swap the 16 bit write enables as well.  But most importantly we must also increment the lower 
16 bit address by one to get the next higher value.  FPGA BRAM ports only have a single address, so differing 
address values necessitates the use of separate ports – the high and low 16 bit memories must be physically 
separate BRAM entities.  This opens a can of worms for defining initial memory contents (boot code) via the 
SystemVerilog “initial” construct.  To skirt this issue I defined a dual memory within a single SystemVerilog file, 
and then used a temporary continuous / contiguous “ram” array to initialize the high and low real ram arrays via 
odd / even index. 
 

 
Figure 36.  Hive main memory. 

The main memory module for Hive is shown in the above figure.  In stage 1 the PC is selected as the address for 
literals, and B+IM is selected otherwise for data access.  The LSB is stripped off to swap input 16 bit data chunks 
and write enables.  In stage 2 the address with its LSB stripped off is use as the upper BRAM address, the 
incremented address with its LSB stripped off is use as the lower BRAM address, and the write data and enables 
are applied.  Note that always incrementing but stripping off the LSB gives an incremented output address for odd 
input address but not for even addresses, so no multiplexing or switching is necessary here.  In stage 4 the 
pipelined address LSB is used to swap the read 16 bit data chunks, with the result registered in stage 5 and sent 
to the ALU multiplexer, where it is used full width or the lower 16 bits are zero or sign extended. 
 
The program space port is just as describe previously, with the PC LSB stripped off in stage 4 and the truncated 
result applied to both high and low memory address ports.  The pipelined LSB is used to select the output in stage 
6, the result of which is fed to the opcode decoding unit.  
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IINNTTEERRNNAALL  RREEGGIISSTTEERR  SSEETT  
Any processor core will need a local, or internal register set to manage things like the reporting of basic 
operational errors, enabling and disabling of interrupts, general purpose I/O communications, timers, UARTs, 
watchdog sanity timers, shoot yourself in the head resets, etc.  But register set implementation can be a dull, 
repetitive, and bug prone exercise.  To automate this to some degree and to reduce the chance of errors, at the 
foundation of the Hive register set is a configurable multi-function single base register component with many 
parameter-based options.   

 
Figure 37.  Configurable base register component. 

The figure above shows a schematic view of the single base register component.  On the left is the common 
processor expansion bus, on the right are the individual inputs and outputs of the single register.  Not shown is 
logic that detects the address match, nor the read / write / in / out signal conditioning.  The two large multiplexers 
set the read and output modes via parameters at build time.  Any number and combination of bits can be “live” 
(provided with functional logic) and initialized to a known value at reset.  Register input data can be optionally 
resynchronized and/or made edge sensitive.  Most common register types can be formed via various 
combinations of the modes, most others can be implemented by adding a bit of circuitry to this base construct.  
Mixed mode bits in a single register aren’t directly supported. 
 

Parameter Output Mode 
“ZERO” zero output 
“THRU” no latch, direct connect 
“REGS” outputs registered (not latched) 
“LTCH” output data latched 
“LOOP” no output latch, output selected read data 

Figure 38.  Output mode options. 

 
Parameter Read Mode 

“THRU” no latch, direct connect 
“CORD” set on input one, clear on read 
“COW1” set on input one, clear on write one 
“DFFE” D type flip flop with enable 
“LOOP” no read latch, read selected out data 

Figure 39.  Read mode options. 

Multiple base register components are assembled into a register set by using a big OR gate to combine their bus 
side data read port bits.  Placement of each individual base register within the register set address space is 
governed by an input parameter to each base register component.  Access to the register set is via special REG 
instructions and the internal ALU mux. 
 
Unlike their ASIC brethren, one nice thing that soft processor cores have going for them is they don’t need huge 
gobs of configuration registers.  Want a timer?  Write one in SystemVerilog, connect it to an interrupt, and it’s 
game over.  Want 8 UARTs?  No problem – you don’t have to put them in until you really need them and you can 
take them out later if / when you don’t. 



 

The Hive internal register set includes the following basic functionality: 
 
Decode: 
- 0x00 : Core version register - ver_reg 
- 0x01 : Error register - error_reg 
- 0x02 : Time / ID register - time_id_reg 
- 0x03 : Vector register - vector_reg 
- 0x04 : UART register - uart_reg 
- 0x05 : I/O register - io_reg 
- 0x06 - 0x3F : UNUSED 
 
 
================================================================================ 
- 0x00 : Core version register - ver_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-16  -                    0 
15-00  ver[15:0]            version info 
 
Notes:  
- Read-only. 
- Nibbles S/B BCD (0-9; no A-F) to be easily human readable,  
  and to eliminate confusion between decimal and hex here. 
 
================================================================================ 
- 0x01 : Error register - error_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-24  -                    0 
23-16  op_er[7:0]           1=opcode error; 0=OK 
15-08  push_er[7:0]         1=lifo push when full; 0=OK 
07-00  pop_er[7:0]          1=lifo pop when empty; 0=OK 
 
Notes: 
- Clear on write one. 
- Per thread error reporting. 
- All bits cleared @ async reset. 
 
================================================================================ 
- 0x02 : Time / ID register - time_id_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-00  time_id[31:0]        time / thread ID 
 
Notes:  
- Read-only. 
- Up-count @ core clock rising edges. 
- Threads can read this for relative time and to discover their  
  thread ID (3 LSBs). 
 
================================================================================ 
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================================================================================ 
- 0x03 : Vector register - vector_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-24  clr[7:0]             write 1 to clear thread 
23-16  isr[7:0]             write 1 to interrupt thread 
15-08  isr_arm[7:0]         1=thread interrupt arm 
07-00  isr_dis[7:0]         1=thread interrupt disarm 
 
Notes: 
- Per thread clear (non-maskable). 
- Per thread internal interrupt (ISR) (maskable). 
- Per thread disarm / arm of internal / external ISRs. 
- Set on write one radio buttons for ISR disarm / arm. 
- Clear takes precedence over ISR.  
  - e.g. write 0xFFFFFFFF clears all threads. 
- Disarm takes precedence over arm. 
  - e.g. write 0x0000FFFF disarms all threads. 
- ISRs disarmed @ clear and async reset (0x000000FF). 
- Next ISR automatically disarmed until op_rtn encountered. 
- ISR auto disarm gets reset with register disarm then arm. 
 
================================================================================ 
- 0x04 : UART register - uart_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-10  -                    0 
   09  tx_rdy               1=TX UART ready (for new data); 0=not ready 
   08  rx_rdy               1=RX UART ready (has new data); 0=not ready 
07-00  uart_data[7:0]       read RX UART data, write TX UART data 
 
Notes:  
- Reads from this register pop data from the RX UART. 
- To avoid RX data loss, read soon after RX UART might be ready. 
- Writes to this register push data to the TX UART. 
- To avoid TX data loss, restrict writes to when TX UART is ready. 
- UART ready bits will self clear after associated register operation. 
 
================================================================================ 
- 0x05 : I/O register - io_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-00  io[31:0]             I/O data 
 
Notes:  
- Separate read / write of I/O data. 
 
================================================================================ 
- 0x06 - 0x3F : UNUSED 
================================================================================ 
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VVEECCTTOORR  SSUUPPPPOORRTT  
Two types of vectoring, or breaking out of current execution, are supported in Hive.  The first is thread clearing, 
where the program counter (PC) is loaded with the initial base address for the thread, and the stack pointers are 
cleared.  The second is interrupt service routine (ISR) support, where the PC is pushed to stack 0 and the PC is 
loaded with the ISR address for that thread. 
 
Thread Clear 
A thread clear is issued via the VECTOR register by writing a one to the corresponding thread bit.  In this manner 
threads can clear themselves, and can clear any combination of other or all threads as well.  All relevant state 
such as stack pointers and interrupt service request arming is automatically cleared for the thread being cleared.  
This same mechanism is used at asynchronous reset of the core to initialize all threads. 
 
Thread Interruption 
A thread may be interrupted to run a service routine internally via a register-based mechanism similar to the 
thread clearing described above, and also via an external request.  The thread must be armed to handle ISRs 
before it will respond to them.  While servicing an interrupt the thread is automatically disarmed so that 
subsequent ISRs are ignored until completion of the current ISR.  The operation op_rtn simultaneously returns the 
thread to the point of execution before it was interrupted and rearms the thread for interrupt operation if it was 
armed in the first place.  This automatic arm/disarm action prevents stack overflow in the event of noise or a 
series of closely spaced interrupts.  Any interrupts requested during ISR execution are lost, so if your algorithm 
can’t afford to miss any interrupts you will need to modify this construct or add extra hardware to count / time 
stamp interrupts.  Clearing a thread automatically disarms its ISR. 
 
Arming and disarming the ISR for a thread is performed by writing a one to the associated arm or disarm bit.  
These bits behave like radio buttons, where the last one “pressed” is the one that is active, and in the case of 
contention disarming takes precedence over arming.  Writing zeros to these bit fields has no effect, which makes 
it safe for multiple access and control by all threads.  Reading these bit fields will reveal the current 
armed/disarmed state for all threads. 
 
At build time the user can chose per-thread external ISR input conditioning options.  Rising edges and / or falling 
edged may be detected.  If no edges are desired the input is disabled and the conditioning logic removed, though 
ISRs may still be issued internally via the register set. 

 
Figure 40.  Vector state machine. 

Each thread has a vector state machine as shown in the above figure.  At asynchronous reset, or when a one is 
written to the clear bit in the register set, the clear state is entered.  The machine stays in this state until the clear 
is issued to the opcode decoder, whereupon the machine moves to the disarmed state.  When a one is written to 
the arm bit in the register set, the machine moves to the armed state.  When an internal or external interrupt is 
requested the machine moves to the ISR state until the interrupt is issued to the op code decoder, whereupon the 
machine moves to the return state.  When an op_rtn instruction is decoded by the opcode decoder the machine 
moves back to the armed state.  Note that writing a one to the disarm bit will return the machine to the disarmed 
state, thus making it “forget” if it was currently waiting for an op_rtn instruction to be executed.  So disarming and 
then rearming the ISR, or issuing an op_rtn are two ways to return the state machine to the armed state where it 
can respond to a new ISR. 
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UUAARRTT  FFUUNNCCTTIIOONNAALLIITTYY  
For communication with the outside world, Hive has a double buffered UART with DDS (phase accumulation 
based) BAUD generator.  Parity and flow control are not supported.  The UART is accessed via the register set. 
 
The serial data is non-inverted, and the quiescent level is high.  An external inverting and level shifting serial 
buffer should be fitted if RS232 levels are desired.  The serial bits are in this order: one start bit (low), eight data 
bits with LSB first, MSB last, one or more stop bits (high).  The UART has several build-time parameters which 
include: BAUD rate, parallel data width, number of stop bits for the TX side, and oversampling rate.  Several 
errors are reported including bad start and stop bits on the RX side, and bad data buffering at the parallel RX 
interface (data loss due to neglect).  There is also a diagnostic serial loopback.  (But the errors and loopback 
aren’t currently brought to the register set.) 

 
Figure 41.  TX UART state machine. 

The TX UART state machine is shown above.  When parallel data is written to the UART register the ready bit 
goes low.  The machine transitions from the idle state to the wait state, and once synchronization from the BAUD 
generator is achieved it transitions to the load state, where the parallel data is taken, ready is returned high to 
signal new parallel data may be written to the register, and the machine then transitions to the data state.  Here 
the data is sent out over the serial line as described above.  Once this is done the machine goes idle if there is no 
new parallel data, or goes to the load state if there is new parallel data to transmit.  In the latter case the machine 
is already synchronized with the BAUD generator, so there is no need to resynchronize it.  Note that new parallel 
data can be written as soon as the current parallel data it is taken at the load state, making this a “double 
buffered” action. 

 
Figure 42.  RX UART state machine. 

The RX UART state machine is shown above.  When a low is seen on the serial line (i.e. the start bit) the machine 
transitions from the idle state to the data state, where the serial data is sampled mid bit and stored in a parallel 
form.  After 10 bits are stored (start, data, stop) the machine transitions to the load state and the parallel data is 
presented to the register set.  At this point the line is sampled for the current level.  If the level is high, the 
machine transitions to the idle state to wait for new data.  If the level is low this is an error, and the machine 
transitions to the wait state and waits for the error to clear, after which it goes idle.  The number of stop bits 
greater than one is irrelevant to the RX side.  This is a “double buffered” action because old parallel data is 
presented until new data is completely received. 
 
By default the UART is configured to be the standard 8n1, with a fixed 115200 baud rate, with the design 
parameters automatically calculated at build time given the core clock speed and desired baud rate. 
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VVEERRIIFFIICCAATTIIOONN  
Job #1 when building a processor is obviously wringing out all the bugs.  Processors that have caches, pipeline 
hazards and stalls, and lots of internal state are notoriously difficult to verify (and therefore fundamentally trust – 
Pentium division bug anyone?).  Much of engineering is the exercise of complexity management, and processor 
architectures themselves should be guided by principle as well.  Simplicity allows one to more easily juggle the 
processor model in one’s head, but it can also greatly ease the verification problem.  Hive has relatively simple 
control structures, minimal internal state, and the entire design is partitioned into hierarchical right-sized modules 
which are as self-contained as possible, making verification a straightforward and relatively painless task. 
 
It goes without saying that all basic blocks should be fully tested before being assembled together.  With Hive, 
most module port widths and associated internal logic are parameterized so, for example, full verification of the 
ALU may be accomplished by shrinking the data port widths to a trivial size and manually examining the results of 
all possible inputs.  The multiplier may be verified separately at full width by comparing its results to a second 
naively instantiated multiplier, both supplied identically with corner cases and random input (the inclusion of this 
test hardware is a parameterized option for the multiplier base module).  The intermediate control and data ring 
constructs allow for the testing of lower level aggregate functionality. 
  
Once basic functionality is up (thread clearing, immediate data, jumps) specially tailored boot code can enable the 
processor to essentially verify itself.  Stack functioning and error reporting may be fully tested for all threads.  
Jump distances and all associated conditionals may be confirmed.  Each opcode should be tested to make sure it 
is decoded and functioning correctly – distinctive signatures may be used here rather than exhaustive testing.  
This is also a good way to get some early experience hand coding the processor (the point at which I’ve became 
largely disillusioned with my past designs) which often leads to changes in the op codes or other parts of the 
fundamental design.   
 
Finally, several simple algorithms should be coded up, first in a spreadsheet and then in the simulated core, with 
the results compared.  When working on this phase of the design I find that I have to fight a strong inclination to 
tailor the instruction set to the algorithm du jour and keep my eye on the big picture.  For instance, after 
developing the log2 algorithm, a leading zero count instruction (lzc) seemed like it would be a valuable addition.  
So I coded up a fully parameterized SystemVerilog module and speed / functionally tested it.  But only after I 
recognized the general use of this function (it has floating point normalization uses as well) did I include it in the 
logical unit of the Hive ALU. 

SSPPEEEEDD  
Job #2 when building a processor is getting the top speed as high as possible.  To this end most Hive modules 
have configurable registering on inputs and outputs which can effectively isolate timing to the fabric rather than 
the FPGA I/O pins when doing individual module speed trial builds.  The component pipe.v can go from a single 
wire to any desired width and registering depth, and is used throughout the design for general registering and 
pipelining.  (A downside to this approach is that useful internal signal names get reduced to vector indexes, which 
can make them difficult to differentiate in simulation.) 
 
It is important during early testing to identify the slowest low level hardware path.  This then is the lower speed 
target for the remaining circuitry, which should be written / implemented at least 10% or so faster so as to have a 
bit of a cushion when it all comes together – the more margin the better because modules have a tendency to 
slow down considerably when spattered willy nilly onto the fabric with all of the other logic.  Just as C compilers 
can often beat the best human hand coders, there are various FPGA synthesis options that will likely produce a 
faster top speed, and an automated seed hunt with multiple options (e.g. Altera’s “Design Space Explorer”) will 
usually produce a faster point in the design space if you’ve got some time in your life to spare.  This is worth doing 
if only to know the top speed easily attainable. 
 
Watch the fitter resource allocation like a hawk, particularly for any extra block RAM creeping into your design.  It 
seems the synthesis / fitter likes to replace pipe stages with block RAM, which can sometimes slow things down. 
 
Use a DCM to get your board clock up to the maximum speed of the core if you want performance, or keep the 
clock speed lower to conserve power. 
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PPRROOGGRRAAMMMMIINNGG  EEXXAAMMPPLLEESS  
The SystemVerilog hardware description language has an “initial” construct that can be used along with other 
SystemVerilog syntax features to write fairly legible boot code, comments and all.  Hive boot code text resides in 
a text file (boot_code.h) that gets inserted into the main memory module with an include statement.  Let’s take a 
look at some sample boot code: 
 
 `include "boot_code_defs.h" 

 
This include pulls in our opcode encoding and internal address register locations so we can refer to them by name 
rather than by their rather cryptic numerical encoding. 
 
 integer i; 
 initial begin 

 
The above declares an integer we’ll use to keep from having to name each and every address, and marks the 
beginning of the initialization code. 
 
 
A Simple Example 
 
 // clr space // 
 i='h0;   ram[i] = { `lit_lu,           `__, `s7 };  // s1='h0040 
 i=i+1;   ram[i] =                      16'h0040  ;  //  
 i=i+1;   ram[i] = { `gsb,              `P7, `s3 };  // gsb, pop s7 
 i=i+1;   ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 // all others : loop forever 
 i='h04;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h08;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h0c;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h10;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h14;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h18;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 i='h1c;  ram[i] = { `jmp_ie,    -4'd1, `s0, `s0 };  // loop forever 
 
 // intr space // 
 
 // code & data space // 
 
 // sub : read core version & write to GPIO, return to (s3) 
 i='h40;  ram[i] = { `reg_ir,        `VER_A, `s0 };  // s0=reg(VER_A) 
 i=i+1;   ram[i] = { `reg_iw,         `IO_A, `P0 };  // reg(IO_A)=s0, pop s0 
 i=i+1;   ram[i] = { `gto,              `P3, `__ };  // return, pop s3 
 

 
The first line is located at address 0, which is where thread 0 vectors to when cleared.  The instruction puts an 
unsigned literal in S7, the value of which is the address of a subroutine.  The second line is the unsigned in-line 
literal value, 0x0040.  The third line calls the subroutine and pushes the return address to S3, and it 
simultaneously pops the subroutine address in S7 (stack cleanup).  The fourth line is an immediate jump -1, which 
is an infinite loop. 
 
The next seven lines are for threads 1 through 7, which are instructed to twiddle their thumbs by looping infinitely.  
Note that the clear addresses are spaced 4 apart (both this distance and the base address are configurable at 
build time for the clear and interrupt vector groups).  The interrupt instruction address space is blank because the 
interrupts won’t be enabled nor used for this program. 
 
The subroutine code at address 0x40 reads the core version and then writes the core version to the I/O port, pops 
the data simultaneously with the write (stack cleanup), then issues a gto S3 and pops S3 (stack cleanup), which is 
the way subroutines are returned from in Hive.   
 



 

Binary Search Division Subroutine Example 
A somewhat meatier example is division.  The binary search division algorithm is shown below: 
 

 
Figure 43.  Binary search division algorithm flow chart. 

 
This algorithm divides two unsigned inputs using a binary search.  The idea is to light up one-hot bits going from 
MSB to LSB in a trial number Q, multiply it by the denominator D, and compare it to the numerator N. 
 
Setting the one-hot (OH) start value to LZC(D) prevents internal overflow at D*(Q+OH) and speeds up the 
average case by reducing the number of loops. 
 
The shifted one-hot value one used in the loop can also be used as the loop counter: when the one is completely 
shifted out (the vector = 0) exit the loop.  This saves one step in the loop and one storage register. 
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 // sub : unsigned divide & modulo remainder, return to (s7) 
 // 
 // algorithm: binary search 
 // 
 // s0 : N, D(top)/N(under) input, Q(top)/R(under) output 
 // s1 : D 
 // s2 : Q 
 // s3 :  
 // s4 :  
 // s5 :  
 // s6 : one-hot (& loop test) 
 // s7 : sub return address 
 // 
 // (D=0)? is an error, return 
 i='h90;  ram[i] = { `jmp_inz,         6'd1, `s0 };  // (s0!=0) ? skip return 
 i=i+1;   ram[i] = { `gto,              `P7, `__ };  // return to (s7), pop s7 
 // loop setup 
 i=i+1;   ram[i] = { `cpy,              `P0, `s1 };  // s0=>s1 (s1=D, s0=N) 
 i=i+1;   ram[i] = { `dat_is,          6'd0, `s2 };  // s2=0 (s2=init Q) 
 i=i+1;   ram[i] = { `lzc,              `s1, `s6 };  // s6=lzc(s1) 
 i=i+1;   ram[i] = { `pow,              `s6, `P6 };  // s6=1<<s6, pop s6 (s6=init OH) 
 // loop start 
 i=i+1;   ram[i] = { `add,              `s6, `P2 };  // s2+=s6 (s2=new trial Q) 
 i=i+1;   ram[i] = { `mul,              `s2, `s1 };  // s1=s1*s2 (s1=D*Q) 
 // jump start 
 i=i+1;   ram[i] = { `jmp_inlu,   4'd1, `P1, `s0 };  // (s0>=s1) ? skip restore, pop s1 (N>=D*Q) 
 i=i+1;   ram[i] = { `sub,              `s6, `P2 };  // s2-=s6 (s2=restored Q) 
 // jump end 
 i=i+1;   ram[i] = { `pus_i,          -6'd1, `P6 };  // s6>>=1 (new OH) 
 i=i+1;   ram[i] = { `jmp_inz,        -6'd6, `s6 };  // (s6!=0) ? do again 
 // loop end 
 // calc remainder, move Q 
 i=i+1;   ram[i] = { `mul,              `s2, `P1 };  // s1*=s2 (s1=D*Q) 
 i=i+1;   ram[i] = { `sub,              `P1, `P0 };  // s0-=s1, pop both (s0=N-D*Q=R) 
 i=i+1;   ram[i] = { `cpy,              `P2, `s0 };  // s0=s2, pop s2 (s0=Q) 
 // return 
 i=i+1;   ram[i] = { `gto,              `P7, `P6 };  // return to (s7), pop s7 & s6 
 // end sub 

 
The subroutine code is above.  The return is not skipped if the denominator value is zero, which is mathematically 
undefined (+/- infinity).  The denominator is pushed to S1, S2 is initialized to zero, the LZC of the denominator is 
converted to a one-hot value and is pushed to S6, and the loop begins.   
 
The one-hot value is added to the quotient, which is then multiplied by the denominator and compared to the 
numerator.  If greater, the one-hot value is subtracted from the quotient (restoring it).  The one-hot value is shifted 
right once and the loop is performed again until the one-hot one is shifted out of the LSB position, leaving all 
zeros and the loop is exited. 
 
Finally the remainder is calculated and pushed onto S0, the quotient is pushed on top of it, and some cleanup is 
performed at subroutine return. 
 
In terms of real time, assuming the denominator isn’t zero and the return is skipped, it takes 5 cycles to test the 
input and setup the loop, 5 cycles per loop best case and 6 cycles worst case, with 4 cycles after the loop.  For 32 
worst case iterations with all being 6 worst case loops this gives: 
 
 5 + 6*32 + 4 = 201 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 8.04 us worst case. 
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Binary Search SQRT Subroutine Example 
A somewhat similar example to division is the calculation of the square root shown below.  The binary search 
algorithm in a processor that has single cycle unsigned multiply is likely faster than other methods due to fewer 
necessary loop instructions: 

 
Figure 44.  Binary search square root algorithm flow chart. 

The idea is to light up the bits going from MSB to LSB in a trial number, square it, and compare it to the input.  If 
the input x is an 8 bit unsigned integer (i.e. N=8) then the output needs at most 4 bits for the integer portion, and 
carrying out the looping 4 more times gives a result with 4 decimal places.  So N bits in gives n.n bits out where n 
= N/2. 
 
Note that picking the upper half of the square result will truncate the lower half, or the decimal portion.  The 
negative influence of this can be largely ameliorated by the use of '<' rather than '<=' for comparison to the input, 
and this gives an underestimated result which is too small by at most 1 LSB.  Computing the squared result and 
the square of the incremented result, and picking the one closest to the input corrects this and obviously adds 
complexity, but provides a significant benefit by making the loop smaller. 
 
Since the loop underestimates q, we know the q is either OK or needs at most 1 LSB of value added to it.  The 
generic expression to evaluate this is: 
 
  abs{x - q^2}  <  abs{x - (q+LSB)^2} ? 
 
If the result is true we pick q as the output, if false we pick q+LSB (= q++). 
 
Since LSB > 0, then q < q+LSB, and q^2 < (q+LSB)^2.  So we don't need to use absolute value functions to 
evaluate the expressions.  Also, q^2 will always be in the range (x-2:x] and (q+LSB)^2 will always be in the range 
[x:x+2). 
 
What we really want to know is the influence of adding LSB/2 to the input.  We can square the result and compare 
it to the input to know whether or not to increment q. 
 
  (q+LSB/2)^2  >=  x ? 
 
Expanding the above gives: 
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  q^2 + 2qLSB/2 + (LSB/2)^2  >=  x ? 
  q^2 + qLSB + (LSB/2)^2  >=  x ? 
   
Since (LSB/2)^2 is very tiny we can safely discard it which gives: 
 
  q^2 + q*LSB  >=  x ? 
 
The term q*LSB is a simple right shift of n; even more simply it is the uncorrected value of q as it sits in the 
processor register!  This gives: 
 
  q^2 + q>>n  >=  x ? 
 
Which can be rearranged as: 
 
  q>>n  >=  x - q^2 ? 
 
If true we pick q as the result, otherwise we pick q+LSB (= q++). 
 
We can actually eliminate the above conditional: 
 
 Q = q + x - integer[q^2] - int[q>>n + decimal[q^2]] 
 
Note that the shifted one-hot one used in the loop can also be used as the loop counter: when the one is 
completely shifted out (the vector = 0) exit the loop.  This saves one storage register, but more importantly 
eliminates one step in the loop. 
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 // sub : s0=sqrt(s0), return to (s7) 
 // 
 // input is unsigned 32 integer 
 // output is unsigned 16.16 integer 
 // 
 // algorithm: binary search 
 // iterate 32 times 
 // 
 // s0 : input (x), output (Q) 
 // s1 : running q 
 // s2 : temp: q^2 + q 
 // s3 :  
 // s4 :  
 // s5 :  
 // s6 : one-hot (& loop test) 
 // s7 : sub return address 
 // 
 // loop setup 
 i='h90;  ram[i] = { `dat_is,          6'd0, `s1 };  // s1=0 (init Q) 
 i=i+1;   ram[i] = { `pus_i,          6'd31, `s6 };  // s6 MSB=1 (init OH) 
 // loop start 
 i=i+1;   ram[i] = { `add,              `s6, `P1 };  // s1+=s6 
 i=i+1;   ram[i] = { `mul_xu,           `s1, `s1 };  // s1=s1*s1 (square, integer portion) 
 // jump start 
 i=i+1;   ram[i] = { `jmp_ilu,    4'd1, `s0, `P1 };  // (s1<s0) ? jump 1  pop s1 (skip restore) 
 i=i+1;   ram[i] = { `sub,              `s6, `P1 };  // s1-=s6 (restore) 
 // jump end 
 i=i+1;   ram[i] = { `pus_i,          -6'd1, `P6 };  // s6>>=1 (new OH) 
 i=i+1;   ram[i] = { `jmp_inz,        -6'd6, `s6 };  // (s6!=0) ? do again 
 // loop end 
 i=i+1;   ram[i] = { `mul_xu,           `s1, `s1 };  // s1=s1*s1 (square, integer portion) 
 i=i+1;   ram[i] = { `sub,              `P1, `P0 };  // s0-=s1, pop s1 : x -= q^2 
 i=i+1;   ram[i] = { `add,              `s1, `P0 };  // s0+=s1 : Q = q + x - q^2 
 i=i+1;   ram[i] = { `mul,              `s1, `s1 };  // s1=s1*s1 (square, decimal portion) : (q>>n)^2 
 i=i+1;   ram[i] = { `cpy,              `P1, `s2 };  // s2=s1, move 
 i=i+1;   ram[i] = { `add_xu,           `P1, `P2 };  // s2+=s1 (carry out, integer portion), pop s1 : 
int[q>>n + (q>>n)^2] 
 i=i+1;   ram[i] = { `sub,              `P2, `P0 };  // s0+=s2, pop s2 : Q = q + (x - q^2) - int[q>>n 
+ (q>>n)^2] 
 i=i+1;   ram[i] = { `gto,              `P7, `P6 };  // return, pop s7 & s6 
 // end sub 

 
The subroutine code is above.  S2 is initialized to zero, the initial one-hot value and is pushed to S6, and the loop 
begins.   
 
The one-hot value is added to q, which is then squared and compared to the input value.  If greater than or equal, 
the one-hot value is subtracted from q (restoring it).  The one-hot value is shifted right once and the loop is 
performed again until the one-hot one is shifted out of the LSB position, leaving all zeros and the loop is exited. 
 
Finally q is corrected and pushed to S0, and some cleanup is performed at subroutine return. 
 
In terms of real time, it takes 2 cycles to setup the loop, 5 cycles per loop best case and 6 cycles worst case, with 
8 cycles after the loop.  If all 32 iterations are 6 worst case loops this gives: 
 
 2 + 6*32 + 8 = 202 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 8.08 us worst case. 
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Log2 Subroutine Example 
Presented here is the calculation of the 32 bit base 2 logarithm of an unsigned 32 bit input number.  The algorithm 
shown exploits the fact that log2(x2) = 2*log2(x), and is implemented by a looped squaring processes.   
 

 
Figure 45.  Log base 2 algorithm flow chart. 

This algorithm is shown above as a flow chart.  The initial test makes sure the input is non-zero because the log 
of zero is undefined.  Next is the input normalization.  Finally we have the square / mantissa loop, with the loop 
exit test and result negation at the end.  
 
The first section normalizes the input by shifting it to the left until the MSB is equal to 1 (which tests as negative).  
This is accomplished efficiently with the LZC instruction followed by a shift.  This number is also subtracted from 
31 to form the log characteristic, which is the 5 bit number to the left of the decimal place in the result. 
 
After normalization, the normalized input is squared and the resulting MSB examined.  If it is equal to 1 then a 1 is 
left shifted into the characteristic.  If it is equal to 0 both the characteristic and the squared input are left shifted 
once (which should make the characteristic LSB = 0 and the squared input MSB = 1).  This loop is executed 32 – 
5 = 27 times to find all bits to the right of the decimal place in the result, AKA the log mantissa. 
 
It is actually possible to skip the input normalization subtraction and use the same jump test within the loop for 
both operations that are conditionally jumped over, then simply negate the result at the end.  This somewhat tricky 
but more efficient algorithm is the one implemented.  (Whenever it feels like you are fighting the binary, it’s likely 
that are – there may be a simpler, more elegant approach to be found with a bit more thought.) 
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 // sub : s0=log2(s0), return to (s7) 
 // 
 // input is in[31:0] an unsigned 32 bit integer 
 // output is c[31:27].m[26:0] unsigned fixed decimal 
 // 
 // s0 : input, normalize, square, output 
 // s1 : lzc, result 
 // s2 :  
 // s3 :  
 // s4 :  
 // s5 :  
 // s6 : loop index 
 // s7 : sub return address 
 // 
 // (input=0)? is an error, return 
 i='h90;  ram[i] = { `jmp_inz,         6'd1, `s0 };  // (s0!=0) ? skip return 
 i=i+1;   ram[i] = { `gto,              `P7, `__ };  // return to (s7), pop s7 
 // normalize 
 i=i+1;   ram[i] = { `lzc,              `s0, `s1 };  // s1=lzc(s0) 
 i=i+1;   ram[i] = { `shl_s,            `s1, `P0 };  // s0<<=s1 (normalize) 
 // loop setup 
 i=i+1;   ram[i] = { `dat_is,         6'd26, `s6 };  // s6=26 (loop index) 
 // loop start 
 i=i+1;   ram[i] = { `mul_xu,           `s0, `P0 };  // s0*=s0 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P1 };  // s1<<=1 
 // jump start 
 i=i+1;   ram[i] = { `jmp_ilz,         6'd2, `s0 };  // (s0[31]==1) ? jump 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P0 };  // s0<<=1 
 i=i+1;   ram[i] = { `add_is,          6'd1, `P1 };  // s1++ 
 // jump end 
 i=i+1;   ram[i] = { `add_is,         -6'd1, `P6 };  // s6-- 
 i=i+1;   ram[i] = { `jmp_inlz,       -6'd7, `s6 };  // (s6>=0) ? do again 
 // loop end 
 // cleanup, return 
 i=i+1;   ram[i] = { `not,              `P1, `P0 };  // s0=~s1, pop both 
 i=i+1;   ram[i] = { `gto,              `P7, `P6 };  // return, pop s7 & s6 
 // end sub 

 
The subroutine code is above.  The return is not skipped if the input value is zero.  Input normalization shifts the 
input value to the left until the MSB is 1, the number of shifts necessary to do this gives the inverse of the 
characteristic.   
 
The square loop uses a shift and a conditional immediate add to left shift either a 0 or 1 into the mantissa LSB.  
Unsigned extended multiplication is the operation used for squaring.  After the loop has completed, the result in 
S1 is negated and copied to S0 with both popped to form a move.  The return address and loop index are both 
popped at return to complete the cleanup. 
 
In terms of real time, assuming the input isn’t zero and the return is skipped, it takes 4 cycles to test the input, 
normalize it, and setup the loop, 5 cycles per loop best case and 7 cycles worst case, with 2 cycles after the loop.  
For 26 iterations with all being 7 worst case loops this gives: 
 
 4 + 7*26 + 2 = 188 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 7.52 us worst case. 
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Exp2 Subroutine Example 
Presented is the calculation of the 32 bit base 2 exponentiation of an unsigned 32 bit fixed decimal input.  

 
Figure 46.  Exponential of 2 algorithm flow chart. 

The idea is that exponentiation (2^n) where n is a real positive fixed point number is straightforward because 
binary numbers are themselves constructed of powers of 2.   
 
For example:  
 
  5.5 = 101.1 = (1*2^2)+(0*2^1)+(1*2^0)+(1*2^-1).   
 
So  
 
  2^5.5 = 2^[(1*2^2)+(0*2^1)+(1*2^0)+(1*2^-1)] = (2^(2^2))*(2^(2^0))*(2^(2^-1)) = 16*2*1.414... = 45.254...   
 
So we need to find (and selectively multiply together) successive square roots of 2 (difficult), or start at some 
2^(2^-m) root of 2 and square our way up (much easier but prone to error due to repeated squaring of the limited 
resolution base number). 
 
For a 32 bit input, log2 gives 5 bits of characteristic and 32 - 5 = 27 bits of mantissa.  If we use this fixed decimal 
form to "undo" the log2 with 2^n, then the input n to the 2^n function is: 
 
  [31:27] = 2^4, ..., 2^0 
  [26:0] = 2^-1, ..., 2^-27 
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Therefore, the first root we need is 2^(2^-m) = 2^(2^-27) = 1.00000000516...  which is approximated by the 32 bit 
number 0x8000000B.  Squaring this and picking the upper 32 bits requires a left shift of one to re-align the result.  
Shifting truncates the LSB, and squaring doubles the initial error, so the results tend to be underestimated and 
deviate more from the ideal with each iteration.  We can add a small (0 or 1 LSB) "fudge" factor after each 
multiply & shift to make up for this, and dramatically increase the overall precision.  The fudge factor bits were 
arrived via trial and error with an eye towards minimizing both local and final error.  Without the fudge factor full 
scale output is off by approx. -0.56%.  With the fudge factor full scale output is good to approximately 8 significant 
(base 10) digits. 
 
After we hit the square root of 2 (i.e. 2^-1) the remaining operations are simple right shifts which can be performed 
as a single bulk right shift (thus likely tossing away many hard-won calculated digits). 
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 // sub : s0=exp2(s0), return to (s7) 
 // 
 // input is c[31:27].m[26:0] unsigned fixed decimal 
 // output is out[31:0] an unsigned 32 bit integer 
 // 
 // s0 : input, output 
 // s1 : running multiply 
 // s2 : running root 
 // s3 : fudge factor 
 // s4 : 
 // s5 : 
 // s6 : loop index 
 // s7 : sub return addr 
 // 
 // setup 
 i='h90;  ram[i] = { `flp,              `s0, `P0 };  // flp(s0) (to examine lsbs via msb) 
 i=i+1;   ram[i] = { `pus_i,          6'd31, `s1 };  // s1=0x8000,0000 (starting value = 1) 
 i=i+1;   ram[i] = { `cpy,              `s1, `s2 };  // s2=0x8000,000b (starting root = 2^2^-27) 
 i=i+1;   ram[i] = { `add_is,          6'hb, `P2 };  //  
 i=i+1;   ram[i] = { `lit,              `__, `s3 };  // s3=0x173c,e500 (fudge factor bits) 
 i=i+1;   ram[i] =                      16'he500  ;  //  
 i=i+1;   ram[i] =                      16'h173c  ;  // 
 i=i+1;   ram[i] = { `dat_is,         6'd26, `s6 };  // s6=26 (loop index) 
 // loop start 
 // jump 0 start 
 i=i+1;   ram[i] = { `jmp_inlz,        6'd2, `s0 };  // (s0[31]==0) ? jump +2 (skip running mult) 
 i=i+1;   ram[i] = { `mul_xu,           `s2, `P1 };  // s1*=s2 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P1 };  // s1<<=1 (so msb=1) 
 // jump 0 end 
 i=i+1;   ram[i] = { `mul_xu,           `s2, `P2 };  // s2*=s2 (square to get next root) 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P2 };  // s2<<=1 (so msb=1 & lsb=0) 
 // jump 1 start 
 i=i+1;   ram[i] = { `jmp_inlz,        6'd1, `s3 };  // (s3[31]==0) ? jump +1 (no fudge bit) 
 i=i+1;   ram[i] = { `add_is,          6'd1, `P2 };  // s2++ (set lsb of running root) 
 // jump 1 end 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P0 };  // s0<<=1 (get next input bit) 
 i=i+1;   ram[i] = { `shl_is,          6'd1, `P3 };  // s3<<=1 (get next fudge bit) 
 i=i+1;   ram[i] = { `add_is,         -6'd1, `P6 };  // s6-- (loop index--) 
 i=i+1;   ram[i] = { `jmp_inlz,      -6'd11, `s6 };  // (s6>=0) ? jump -11 (loop again) 
 // loop end 
 // final shift 
 i=i+1;   ram[i] = { `flp,              `s0, `P0 };  // flp(s0) (flip remaining bits) 
 i=i+1;   ram[i] = { `add_is,        -6'd31, `P0 };  // s0-=31 
 i=i+1;   ram[i] = { `shl_u,            `P0, `P1 };  // s1<<=s0, pop s0 
 // cleanup, return 
 i=i+1;   ram[i] = { `cpy,              `P1, `s0 };  // s0=s1, pop s1 (move) 
 i=i+1;   ram[i] = { `pop,           8'b01001100 };  // pop s2, s3, s6 
 i=i+1;   ram[i] = { `gto,              `P7, `__ };  // return, pop s7 
 // end sub 

 
The subroutine code is above.  The input is flipped to test the LSBs sequentially via the MSB (the “sign” bit).  The 
running multiply is initialized to ‘1’ and pushed to S1.  The initial running root of 2 is pushed to S2.  The fudge 
factor is pushed to S3.  The loop index is pushed to S6. 
 
There are two conditional jumps in the loop.  The first tests the input LSB and skips the running multiplication of 
the current root of two and shift if the bit is zero.  After this the next root is found via squaring and shifting, and the 
second test applies the fudge bit.  Then the input and fudge vectors are shifted left once to expose the next bits, 
the loop index is decremented, and the loop repeats until the loop index goes negative. 
 
When the loop is exited, the remaining input bits are flipped back, -31 is added to them, and the running multiply 
is shifted left by this amount.  The result is pushed to S0, some cleanup occurs, and the subroutine returns. 
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In terms of real time, it takes 7 cycles to setup the loop, 8 cycles per loop best case and 11 cycles worst case, 
with 6 cycles after the loop.  For 26 iterations with all being 11 worst case loops this gives: 
 
 7 + 11*26 + 6 = 299 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 11.96 us worst case. 
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“Bouncing Ball” LED PWM Display Example 
An interesting digital concept that seems rather unlikely to work in actual practice is the cross coupled integrator 
sine / cosine oscillator.  The output of an accumulator is fed to the input of a second accumulator, the output of 
this second accumulator is inverted fed back to the input of the first.  By identically scaling the accumulator inputs 
by a number generally much less than one (call it “alpha”) the frequency of the oscillations may be controlled or 
set.  The first accumulator generates cosine, the second sine.  It may be best seen as a ringing state variable 
band pass filter with infinite Q.  Sine and cosine amplitude is set by placing an initial value in one accumulator and 
zeroing the other one out, and then letting it “ring” for infinity.  Sine and cosine frequency ~= total cycle frequency 
* alpha / Pi. 
 
Mathematically this construct works because the integral of cosine = sine, and the integral of sine = -cosine.  
Numerically this construct works only if there is a single register delay in the loop, and given this condition 
truncation errors due to integrator input scaling rather mysteriously don’t build up or otherwise become a long-
term problem. 
 
If we feed a sine wave to an absolute value circuit (invert the entire value if the sign bit is negative) and find the 
power of 2 of this value we can make a one-hot “bouncing ball” type LED display.  To add smoothness we can 
interpret the absolute sine wave value as a fixed decimal, use the integer portion to nominally select the LED, and 
use the decimal portion to perform PWM (pulse width modulation).  First order PWM is most easily accomplished 
by accumulating the PWM value and looking for accumulator overflow (smaller inputs cause infrequent overflows, 
and larger inputs cause more frequent overflows).  When there is overflow we select the next higher LED.  Rather 
than a flow diagram, a block diagram of this is shown below: 
 

 
Figure 47.  Bouncing ball block diagram. 

 
In terms of design, we need to establish the frequency and amplitude of the sine wave, as well as fix the decimal 
place.  The core clock is 160 MHz and dividing this by 8 clocks per cycle gives 20 MHz.  Our loop takes 14 cycles 
to execute once, so to get a roughly 1 Hz bounce rate we need an alpha of 14 * 2 * pi / 20 MHz ~= 0.0000044 
which is roughly 0x00003000.  The Cyclone demo board I’m using has 4 LEDs, which correspond to the values 0, 
1, 2, and 3, so if we set the most significant hex digit to be our integer portion, then the initialization value should 
be 0x30000000. 
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 // "bouncing ball" 4 LED display w/ PWM 
 // 
 // s0 : sin 
 // s1 : cos 
 // s2 : alpha (attenuation factor = speed) 
 // s3 : rectified sin, val, one-hot(val) 
 // s4 :  
 // s5 : pwm counter 
 // s6 :  
 // s7 : 
  
 i='h100; ram[i] = { `dat_is,          6'd0, `s0 };  // s0=0  (sin init) 
 i=i+1;   ram[i] = { `lit,              `__, `s1 };  // s1=0x3000,0000 (cos init) 
 i=i+1;   ram[i] =                      16'h0000  ;  //  
 i=i+1;   ram[i] =                      16'h3000  ;  //  
 i=i+1;   ram[i] = { `lit_u,            `__, `s2 };  // s2=0x3000 (alpha) 
 i=i+1;   ram[i] =                      16'h3000  ;  //  
 i=i+1;   ram[i] = { `dat_is,          6'd0, `s5 };  // s5=0  (pwm init) 
 // loop start 
 // sin & cos 
 i=i+1;   ram[i] = { `mul_xs,           `s2, `s0 };  // s0=s0*s2 (sin*alpha) 
 i=i+1;   ram[i] = { `sub,              `P0, `P1 };  // s1-=s0 (cos-=sin*alpha) 
 i=i+1;   ram[i] = { `mul_xs,           `s2, `s1 };  // s1=s1*s2 (cos*alpha) 
 i=i+1;   ram[i] = { `add,              `P1, `P0 };  // s0+=s1 (sin+=cos*alpha) 
 // |sin| 
 i=i+1;   ram[i] = { `cpy,              `s0, `s3 };  // s3=s0 
 i=i+1;   ram[i] = { `jmp_inlz,        6'd1, `s3 };  // (s3!<0) ? jmp +1 
 i=i+1;   ram[i] = { `not,              `s3, `P3 };  // s3~=s3 
 // decimal( |sin| ) + pwm to update, + pwm to get ofl 
 i=i+1;   ram[i] = { `shl_is,          6'd4, `s3 };  // s3=s3<<4 
 i=i+1;   ram[i] = { `add,              `s3, `P5 };  // s5+=s3 (update pwm count) 
 i=i+1;   ram[i] = { `add_xu,           `P3, `s5 };  // s5=s5+s3, pop s3 (get pwm ofl) 
 // one-hot( int( |sin| ) + pwm ofl ) 
 i=i+1;   ram[i] = { `shl_is,        -6'd28, `P3 };  // s3>>=28 
 i=i+1;   ram[i] = { `add,              `P5, `P3 };  // s3+=s5, pop s5 (add pwm ofl) 
 i=i+1;   ram[i] = { `pow,              `s3, `P3 };  // s3=1<<s3, pop s3 (one-hot) 
 // output 
 i=i+1;   ram[i] = { `not,              `s3, `P3 };  // s3~=s3 for dark spot 
 i=i+1;   ram[i] = { `reg_iw,           `IO, `P3 };  // reg(IO)=s3, pop s3 
 i=i+1;   ram[i] = { `jmp_inz,       -6'd16, `s2 };  // loop forever 
 // loop end 

 
Code is above.  The initial values are loaded and the loop is entered.  Cosine is updated first, then sine.  The 
absolute value of sine is found and pushed to stack 3.   This value is left shifted 4 places to obtain the decimal 
portion, which is added to the PWM counter to update it, after this it is added again but only to check for overflow.  
The absolute sine value is right shifted 28 places to obtain the integer portion, the overflow is added to it, the 
result of this converted to a power of 2, which is output to the LEDs.   
 
There is a bit of cheating going on here.  We really should check for PWM overflow before we update its value, 
but for slowly changing inputs the order isn’t too important.  Also, the total loop time varies by one cycle 
depending on the sign of the sine value (due to the negation jump) but this isn’t noticeable even if you know about 
it. 
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Generic Boot Code 
If one has a UART level shifter attached to one of the FPGA inputs (or the USB equivalent), the boot code may 
consist of a simple boot loader capable of uploading and storing executable code, and the boot code itself 
wouldn’t need to be touched much after that.  Simple scripting could be used to convert SystemVerilog boot text 
(or similar assembly) into uploadable binary data.  A ~$1 SPI FLASH device tacked onto a few spare FPGA pins 
could hold gobs of uploaded programming goodness. 
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BBZZZZZZ!!  
I would be remiss if I didn’t point out the less positive aspects of Hive that I’m aware of: 
 

 The instruction set of Hive was hatched more intuitively than scientifically by a person who doesn’t exactly 
have loads of practical experience programming assembly (that probably just scared off most readers).  I’ve 
put more time into selecting operations, sizing immediate fields, and shuffling things around in the opcode 
encoding space than I’ve spent actually programming Hive (at this point). 

 Common data & instruction memory space (Von Neumann architecture) enables many good things, but it 
generally prevents code from executing directly from ROM, and it also makes it that much likelier for wild data 
writes to clobber code.  A single thread caught out in the weeds means you should probably clear them all.  (I 
should point out that the “Von Neumann bottleneck” is not an issue for Hive because it uses dual port BRAM 
for main memory.) 

 With any stack machine, stack fullness is something the programmer must track in order to avoid stack faults, 
and Hive has more stacks than usual to keep track of (though to be fair they are used in a simpler manner). 

 Strict equal bandwidth multi-threading forces the programmer to implement some kind of load sharing 
arrangement for algorithms that require more real-time / less latency than a single thread can provide. 

 Real-time response to an interrupt can be somewhat long and variable (though depending on the application 
this could perhaps be compensated for with additional interrupt time stamp & register set logic). 

 FPGA logic will likely never be as fast, power efficient, inexpensive, etc. as an ASIC, so any soft processor 
core is in some sense a solution in search of a problem. 

 

EETTCC..  
 Hive was developed (including simulation / verification) with Altera Quartus II 9.1sp2 Web Edition 

(unfortunately the last edition with integrated simulator) running on WinXP Pro (sadly past the end of support). 
 TextCrawler was used extensively to perform multi-file text search and replace (freeware from Digital 

Volcano). 
 Pictures were drawn in AutoCAD 2006 (it is ironically nearly impossible to export good looking image files 

from AutoCAD) plotted to Adobe Generic PS printer (free from Adobe, good luck finding a suitable *.inf file) 
and rasterized with Paint Shop Pro X (pretty much broken in Win7/64). 

 The Hive document was written in MS Word 2003 (also sadly past the end of support), and converted to PDF 
with Adobe Acrobat 8 Professional (which is free-ish due to license server retirement). 

 There are inexpensive FPGA demo boards readily available on eBay.  A very nice Cyclone 4 board can be 
had for $27 USD or thereabouts.  Comparable Xilinx Spartan offerings will require boot code initialization 
changes and will run slower – Altera apparently uses faster, and consequently leakier and more power 
hungry, transistors (it’s a two-edged sword). 

 I wrote a MS Excel VBA based simulator that allows the user to easily enter and exercise code (but only for a 
single thread). 

 
 
Comments? 
Found a bug in Hive (ha ha)?  If you have questions, comments, criticisms, improvements, etc. regarding Hive I’d 
love to hear them!  Contact me at: tammie_eric@verizon.net (note the ‘_’ underscore). 
 

mailto:tammie_eric@verizon.net
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DDOOCCUUMMEENNTT  CCHHAANNGGEE  CCOONNTTRROOLL  
(YYYY-MM-DD) Hive version Notes 

2014-07-15 06.01 Updates to reflect 32 bit memory access, new / changed opcodes, 
transition to SystemVerilog code base. 

2014-06-07 05.03 Text for enhanced interrupt support, register set changes.  Additional 
UART discussion. 

2014-04-21 04.06 More / rearranged text for the instructions /  opcodes section, also 
more text re. register access. 

2014-02-15 04.06 Minor opcode renaming, fixed a few typos in the document. 

2014-01-05 04.05 
Major edits to reflect 8 stacks and somewhat different opcodes / 
resized immediates, UART, etc.  Updated and expanded the coding 
examples. 

2013-07-07 01.10 
Edits to reflect reshuffled opcodes.  Fixed immediate add range on 
page 23.  Added “barrel” processor classification and PDP 10 signed 
shift reference.  Other sporadic minor edits. 

2013-06-19 01.09 First public release. 
 

CCOOPPYYRRIIGGHHTT  
Copyright © Eric David Wallin, 2013 & 2014. 
Permission to use, copy, modify, and/or distribute this design for any purpose without fee is hereby granted, 
provided it is not used for spying or "surveillance" uses, military or "defense" projects, weaponry, or other 
nefarious purposes.  Furthermore the above copyright and this permission notice must appear in all copies. 
 



 

 
Figure 48.  Hive core. 
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  // misc - 16 x 16 x 16 = 4096 codes 
  op_nop  = { `nop,    `bx,   `ax }, // do nothing (no pops either) 
  op_pop  = { `pop,    `popx      }, // pop[7:0] none/one/some/all stacks 
  op_pcp  = { `pcp,    `bx,   `ax }, // A:=PC  read PC++ (unsigned) 
  op_lit  = { `lit,    `bx,   `ax }, // A:=mem(PC)  literal data 
  op_lit_ls = { `lit_ls, `bx,   `ax }, // A:=$signed(mem(PC)[lo])  literal data low signed 
  op_lit_lu = { `lit_lu, `bx,   `ax }, // A:=mem(PC)[lo]  literal data low unsigned 
  op_reg_ir = { `reg_ir, `im6x, `ax }, // A:=reg(I)  register immediate read 
  op_reg_iw = { `reg_iw, `im6x, `ax }, // reg(I):=A  register immediate write 
  // logical & other - 16 x 16 x 16 = 4096 codes 
  op_cpy  = { `cpy,    `bx,   `ax }, // A:=B  copy 
  op_isg  = { `isg,    `bx,   `ax }, // A[MSB]:=~B[MSB]  invert sign 
  op_cpy_ls = { `cpy_ls, `bx,   `ax }, // A:=$signed(B[lo])  low sign extend 
  op_cpy_lu = { `cpy_lu, `bx,   `ax }, // A:=B[lo]  low zero extend 
  op_not  = { `not,    `bx,   `ax }, // A:=~B  logical NOT 
  op_and  = { `and,    `bx,   `ax }, // A:=A&B  logical AND 
  op_orr  = { `orr,    `bx,   `ax }, // A:=A|B  logical OR 
  op_xor  = { `xor,    `bx,   `ax }, // A:=A^B  logical XOR 
  op_bra  = { `bra,    `bx,   `ax }, // A:=&B  logical AND bit reduction 
  op_bro  = { `bro,    `bx,   `ax }, // A:=|B  logical OR bit reduction 
  op_brx  = { `brx,    `bx,   `ax }, // A:=^B  logical XOR bit reduction 
  op_flp  = { `flp,    `bx,   `ax }, // A:=flip(B)  flip bits end for end 
  op_lzc  = { `lzc,    `bx,   `ax }, // A:=lzc(B)  leading zero count 
  // arithmetic - 16 x 16 x 16 = 4096 codes 
  op_add  = { `add,    `bx,   `ax }, // A:=A+B  add 
  op_add_xs = { `add_xs, `bx,   `ax }, // A:=A+B  add extended signed 
  op_add_xu = { `add_xu, `bx,   `ax }, // A:=A+B  add extended unsigned 
  op_sub  = { `sub,    `bx,   `ax }, // A:=A-B  subtract 
  op_sub_xs = { `sub_xs, `bx,   `ax }, // A:=A-B  subtract extended signed 
  op_sub_xu = { `sub_xu, `bx,   `ax }, // A:=A-B  subtract extended unsigned 
  op_mul  = { `mul,    `bx,   `ax }, // A:=A*B  multiply 
  op_mul_xs = { `mul_xs, `bx,   `ax }, // A:=A*B  multiply extended signed 
  op_mul_xu = { `mul_xu, `bx,   `ax }, // A:=A*B  multiply extended unsigned 
  op_shl_s  = { `shl_s,  `bx,   `ax }, // A:=A<<<B  shift left A signed 
  op_shl_u  = { `shl_u,  `bx,   `ax }, // A:=A<<B  shift left A unsigned 
  op_pow  = { `pow,    `bx,   `ax }, // A:=1<<B  power of 2 
  // branching - 16 x 16 x 16 = 4096 codes 
  op_jmp_z  = { `jmp_z,  `bx,   `ax }, // PC:=(A?0)?PC+B  jump zero conditional 
  op_jmp_nz = { `jmp_nz, `bx,   `ax }, 
  op_jmp_lz = { `jmp_lz, `bx,   `ax }, 
  op_jmp_nlz = { `jmp_nlz,`bx,   `ax }, 
  op_jmp  = { `jmp,    `bx,   `ax }, // PC:=PC+B  jump unconditional 
  op_gto  = { `gto,    `bx,   `ax }, // PC:=B  go to unconditional 
  op_rtn  = { `rtn,    `bx,   `ax }, // PC:=B  ISR return (go to unconditional) 
  op_gsb  = { `gsb,    `bx,   `ax }, // PC:=B, A=PC  subroutine call unconditional 
  // immediate memory access - 4 x 16 x 16 x 16 = 16384 codes 
  op_mem_ir = { `mem_ir,   `im4x, `bx, `ax }, // A:=mem(B+I)  memory read 
  op_mem_irls = { `mem_irls, `im4x, `bx, `ax }, // A:=$signed(mem(B+I)[lo])  memory read low signed 
  op_mem_iw = { `mem_iw,   `im4x, `bx, `ax }, // mem(B+I):=A  memory write 
  op_mem_iwl = { `mem_iwl,  `im4x, `bx, `ax }, // mem(B+I):=A[lo]  memory write low 
  // immediate conditional (A?B) jumps - 6 x 16 x 16 x 16 = 24576 codes 
  op_jmp_ie = { `jmp_ie,   `im4x, `bx, `ax }, // PC:=(A?B)?PC+I  jump immediate conditional 
  op_jmp_ine = { `jmp_ine,  `im4x, `bx, `ax }, 
  op_jmp_ils = { `jmp_ils,  `im4x, `bx, `ax }, 
  op_jmp_inls = { `jmp_inls, `im4x, `bx, `ax }, 
  op_jmp_ilu = { `jmp_ilu,  `im4x, `bx, `ax }, 
  op_jmp_inlu = { `jmp_inlu, `im4x, `bx, `ax }, 
  // immediate conditional (A?0) jumps - 4 x 64 x 16 = 4096 codes 
  op_jmp_iz = { `jmp_iz,   `im6x, `ax }, // PC:=(A?0)?PC+I  jump immediate conditional 
  op_jmp_inz = { `jmp_inz,  `im6x, `ax }, 
  op_jmp_ilz = { `jmp_ilz,  `im6x, `ax }, 
  op_jmp_inlz = { `jmp_inlz, `im6x, `ax }, 
  // immediate data - 1 x 64 x 16 = 1024 codes 
  op_dat_is = { `dat_is,   `im6x, `ax }, // A:=I  data immediate signed 
  // immediate add - 1 x 64 x 16 = 1024 codes 
  op_add_is = { `add_is,   `im6x, `ax }, // A:=A+I  add immediate signed 
  // immediate shifts - 2 x 64 x 16 = 2048 codes 
  op_shl_is = { `shl_is,   `im6x, `ax }, // A:=A<<<I  shift left A signed 
  op_pus_i  = { `pus_i,    `im6x, `ax } // A:=1<<I  power of 2; A=A<<I  shift A unsigned 

Figure 49.  Hive opcodes. 
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