The Potato Processor

Technical Reference Manual

KRISTIAN KLOMSTEN SKORDAL
skordal@opencores.org

Project page:
http://opencores.org/project,potato

Report bugs and issues on
http://opencores.org/project,potato, bugtracker

Updated May 20, 2015

mailto:skordal@opencores.org
http://opencores.org/project,potato
http://opencores.org/project,potato,bugtracker

Contents

2 Quick Start Guide]
[2.1 Setting up the Vivado Project|
2.2 Adding IP Modules|
2.2.1 Clock Generatorl
[2.2.2 Instruction memory|.
(2.3 Running an Example Application|

[3 Instantiating|
[3.1 Customizing the Processor Corel
[3.2 Instantiating in a Wishbone System|.
[3.3 Instantiating in a Standalone System|
[3.4 Verifying|o

[4 Programming|

[4.1 Building a RISC-V Toolchain|
[4.2 Control and Status Registers|.

[5__Instruction Set]

[b.1 Status and Control Register Instructions|

[A Peripherals|
AT GPIOl

1

Introduction

The Potato processor is an implementation of the 32-bit integer subset of
the RISC-V instruction set v2.0. It is designed around a standard 5-stage
pipeline. All instructions execute in 1 cycle, with the exception of load and
store instructions when the processor has to wait for external memory.

The processor has been tested on an Artix 7 (xc7al00tcsg324-1) FPGA
from Xilinx, on the Nexys 4 board from Digilent. More details about the
test design can be found in chapter [2|

1.1 Features

Here is a highlight of the current features of the Potato processor:

Implements the complete 32-bit integer subset of the RISC-V ISA v2.0.

Implements the CSR* instructions from the RISC-V supervisor exten-
sions v1.0.

Supports using the FROMHOST/TOHOST registers for communicating
with a host environment, such as a simulator, or peripherals.

Supports exception handling, with support for 8 individually maskable
IRQ inputs.

Includes a wishbone B4 compatible interface.

1.2 Planned features

Here is a highlight of the future planned features of the Potato processor:

Caches.

Branch prediction.

e Hardware multiplication and division support (the RISC-V M exten-
sion).

e Compressed instruction support (the RISC-V C extension).

e Supervisor mode support

2 Quick Start Guide

This chapter contains instructions on getting started with the demo/example
design that is included in the Potato source distribution. The example design
targets the Nexys 4 board available from Digilent[']

2.1 Setting up the Vivado Project

Start by creating a new project in Vivado. Import all source files from the
src/ directory, which contains all source files required for using the processor.
Then import all source files from the example/ directory, which contains the
toplevel setup for the example SoC design, and from the soc/ directory,
which contains various peripherals for the processor.

2.2 Adding IP Modules

The example design requires two additional IP modules. These are not in-
cluded in the source distribution and must be added separately.

2.2.1 Clock Generator

Add a clock generator using the Clocking Wizard. Name the component
“clock_generator” and make sure that the checkboxes for “frequency syn-
thesis” and “safe clock startup” are selected.

Add two output clocks with frequencies of 50 MHz and 10 MHz. Rename
the corresponding ports to “system_clk” and “timer_clk”. Rename the
input clock signal to “clk”.

The added module should appear in the hierarchy under the toplevel
module as “clkgen”.

!See http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS4

http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS4

2.2.2 Instruction memory

Add a block RAM to use for storing the test application using the Block
Memory Generator. Choose “Single-port ROM” as memory type and name
the module “instruction_rom”. Set port A width to 32 bits and the depth
to 2048 words. Initialize the block RAM with your application or use one
of the provided benchmarks, such as the SHA256 benchmark, which, when
built, produces a .coe file that can be used for this purpose.

Note that in order to build a benchmark application, you have to install
a RISC-V toolchain. See section for instructions on how to accomplish
this.

2.3 Running an Example Application

Assuming you initialized the instruction memory with the SHA256 bench-
mark, synthesize and implement the design, generate a bitfile and load it into
the FPGA. Using a serial port application, such as minicom, watch as the
number of hashes per second are printed to the screen and rejoice because it
works!

3 Instantiating

The Potato processor can be used either with or without a wishbone interface.
Using the wishbone interface allows the processor to communicate with other
wishbone-compatible peripherals. However, if no such peripherals are to be
used, the processor can, for instance, be connected directly to block RAM
memories for full performance without needing to use caches.

3.1 Customizing the Processor Core

The processor can be customized using generics. The following list details
the parameters that can be changed:

PROCESSOR_ID: Any 32-bit value used as the processor ID. This value can be
read back from the hardware thread ID register, HARTID.

RESET_ADDRESS: Any 32-bit value used as the address of the first instruction
fetched by the processor after it has been reset.

3.2 Instantiating in a Wishbone System

In order to integrate the Potato processor into a wishbone-based system,
the module pp_potato is used. It provides signals for the wishbone master
interface, prefixed with wb_, and inputs for interrupts and the HTIF interface.

The specifics of the wishbone interface is listed in table 3.1 To see an
example of the processor used in a Wishbone system, see the example design
under the example/ directory.

Wishbone revision B4

Interface type Master
Address port width 32 bits

Data port width 32 bits

Data port granularity 8 bits
Maximum operand size 32 bits
Endianess Little endian
Sequence of data transfer | Not specified

Table 3.1: Wishbone Interface Specifics

3.3 Instantiating in a Standalone System

The processor can also be used without connecting it to the Wishbone bus.
An example of this can be seen in the processor testbench, tb_processor.vhd.

3.4 Verifying

The processor provides an automatic testing environment for verifying that
the processor correctly executes the instructions of the ISA. The tests have
been extracted from the official test suite available at https://github.com/
riscv/riscv-tests and covers most of the available instructions.

Two testbenches are used to execute the test programmes: tb_processor.vhd,
in which the processor is directly connected to block-RAM-like memories so
the processor never stalls to wait for memory operations to finish (see section
for more details about this kind of setup), and tb_soc.vhd, which models
a simple system-on-chip with the processor connected to memories through
the wishbone interface (see section for more information about this kind
of setup).

To run the test suites, run make run-tests or make run-soc-tests.

Make sure that xelab and xsim is in your PATH or the tests will fail.

https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests

4 Programming

The processor implements the RISC-V instruction set, and can be pro-
grammed with tools such as GCC.

4.1 Building a RISC-V Toolchain

An “official” toolchain is provided by the RISC-V project. In order to install
it, clone the “riscv-tools” Git repository from https://github.com/riscv/
riscv-tools and follow the instructions provided by the README file.

4.2 Control and Status Registers

The supported control and status registers are shown in table 1.1 The
registers can be manipulated using the cSrR* family of instructions, listed in

B.Il

https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools

Name ID Description

HARTID 0x50b | Hardware thread ID

EVEC 0x508 | Exception vector address

EPC 0x502 | Return address for exceptions

CAUSE 0x509 | Exception cause

supr0 0x500 | Support register 0, for operating system use
suprl 0x501 | Support register 1, for operating system use
BADVADDR | 0x503 | Bad address, used for invalid address exceptions
STATUS 0xb0a | Processor status and control register

TOHOST 0x51e | Register for sending data to a host system
FROMHOST | 0x51f | Register where data received from a host system is stored
CYCLE 0xc00 | Cycle counter, low 32 bits

CYCLEH 0xc80 | Cycle counter, high 32 bits

TIME 0OxcO01 | Timer tick counter, low 32 bits

TIMEH 0xc81 | Timer tick counter, high 32 bits

INSTRET 0xc02 | Retired instruction counter, low 32 bits
INSTRETH | 0xc82 | Retired instruction counter, high 32 bits

Table 4.1: List of Control and Status Registers

5 Instruction Set

The Potato processor is designed to support the full 32-bit integer subset of
the RISC-V instruction set, version 2.0. The ISA documentation is available

from http://riscv.org.

5.1 Status and Control Register Instructions

In addition to the base ISA, some additional instructions have been imported
from the RISC-V supervisor specification] version 1.0.

Mnemonic Description

scall System call

sbreak Breakpoint instruction
sret Exception return

csrrw rd, rsl, CSR
csrrs rd, rsl, CSR
csrrc rd, rsil, CSR
csrrwi rd, imm, CSR
csrrsi rd, imm, CSR
csrrci rd, imm, CSR

Writes rsl into CSR, place sold value in rd

Ors rsl with CSR, places old value in rd

Ands the inverse of rs1 with CSR, places old value in rd
Writes imm into CSR, places old value in rd

Ors CSR with imm, places old value in rd

Ands the inverse of imm with CSR, places old value in rd

Table 5.1: List of CSR Instructions

IThe processor is in the process of being upgraded to the new specification.

10

http://riscv.org

A Peripherals

The source distribution of the processor contains several peripheral modules
that can be used in system-on-chip designs using the Potato processor (or
other processors).

This chapter briefly describes each of the modules.

A.1 GPIO

The GPIO module provides a simple GPIO interface for up to 32 general
purpose pins. Each pin can be separately configured to work as either an
input or an output pin.

Registers are provided to set the direction of each pin. Additional regis-
ters provide the ability to read or write the values of the pins.

A.2 Timer

The timer module provides a timer that fires off an interrupt at a specified
interval.

A.3 UART

The UART module provies a fixed-baudrate serial port interface. It features
separate FIFOs for buffering input and output data, and interrupts for when
the module is ready to send or has received data.

A.4 Memory

The memory module is basically a simple block RAM wrapper with support
for byte-writes.

11

	Introduction
	Features
	Planned features

	Quick Start Guide
	Setting up the Vivado Project
	Adding IP Modules
	Clock Generator
	Instruction memory

	Running an Example Application

	Instantiating
	Customizing the Processor Core
	Instantiating in a Wishbone System
	Instantiating in a Standalone System
	Verifying

	Programming
	Building a RISC-V Toolchain
	Control and Status Registers

	Instruction Set
	Status and Control Register Instructions

	Peripherals
	GPIO
	Timer
	UART
	Memory

