
UNIVERSITÄT AUGSBURG

A Simple Capture/Compare Timer

Florian Kluge

Report 2015-01 Juni 2015

INSTITUT FÜR INFORMATIK
D-86135 AUGSBURG

Copyright © Florian Kluge
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.informatik.uni-augsburg.de
— all rights reserved —

SCCT is a Simple Capture/Compare Timer written in Verilog. It provides multiple cap-
ture/compare channels that use a common counter. Events occurring in the single channels
thus can be related to a global time base. SCCT is developed as an IP core that can be attached
to the Altera Avalon bus.

4

Contents

1 Overview 7

2 Structure and Functionality 9
2.1 Overview . 9
2.2 Counter Unit . 10
2.3 Capture/Compare Channel . 10

2.3.1 Input Capture . 11
2.3.2 Output Compare . 11

2.4 Top-level Module . 11
2.5 Extending SCCT . 12

2.5.1 Adding/Removing Channels . 12

3 Programming Interface 13
3.1 Registers . 13

3.1.1 Counter value register (CTR) . 14
3.1.2 Prescaler register (PSC) . 14
3.1.3 Counter interrupt enable register (CTR_IE) 14
3.1.4 Counter interrupt status register (CTR_IS) 14
3.1.5 Channel mode select register (CH_MS) . 15
3.1.6 Channel action select register (CH_AS) . 15
3.1.7 Channel interrupt enable register (CH_IE) 16
3.1.8 Channel interrupt status register (CH_IS) 16
3.1.9 Channel force action register (CH_OCF) . 16
3.1.10 Channel input pin status (CH_INP) . 17
3.1.11 Channel output pin status (CH_OUT) . 17
3.1.12 Channel x capture/compare register (CCRx) 17

3.2 Programming Notes . 17

4 Tools and Files 19
4.1 Verilog Sources . 19
4.2 Tools . 19
4.3 Test Environment . 19
4.4 C Header . 20

5 Bibliography 21

5

Contents

6

1 Overview

Parts of our research are dealing with the development of real-time capable multicore proces-
sors for embedded systems. Prototypes of these processors are deployed on field-programmable
gate arrays (FPGAs). Use cases for such systems, like management of an internal combus-
tion engine, require that certain reactions performed by the computer are well aligned in time
with input events. On microcontroller level, this can be achieved by utilising capture/compare
timers. Neither the Altera IP core suite (which we are using in our research) provides one, nor
did we find a free one available on the Internet. We provide the SCCT IP core to the public in
the hope that someone might find it useful for his own work.

The source code of SCCT can be downloaded from OpenCores1. It is made available under
the conditions of the GNU General Public Licence Version 32.

The remainder of this report is structured as follows: In the next chapter, we present the
structure of SCCT and how the single modules interact. Chapter 3 describes the programming
interface of SCCT. Finally, in chapter 4, we describe additional tools that are part of the SCCT
package.

1http://opencores.org/project,scct
2http://www.gnu.org/copyleft/gpl.html

7

http://opencores.org/project,scct
http://www.gnu.org/copyleft/gpl.html

1 Overview

8

2 Structure and Functionality

2.1 Overview

SCCT comprises one counter and multiple channel modules. A coarse overview of the whole
SCCT module is shown in figure 2.1. The counter module provides the current counter value
to all channels. Each channel is connected to an input and an output pin.

Counter

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

IPin0 OPin0

IPin1 OPin1

IPin2 OPin2

IPin3 OPin3

IPin4 OPin4

IPin5 OPin5

IPin6 OPin6

IPin7 OPin7

Figure 2.1: Overview of the simple capture/compare timer

9

2 Structure and Functionality

2.2 Counter Unit

The counter unit provides the common counter for all channels of SCCT. Its internal structure
is depicted in figure 2.2. The counter register is the heart of the counter unit. Advance of
the counter register is controlled by a prescaler. Setting of the prescaler is performed via
the prescaler register. Prescaler comparisons are based on the prescaler shadow register
prescaler_sh. The prescaler count register is incremented each clock cycle. If it reaches
the value of the prescaler_sh register, an event is generated that has several consequences:
(1) The counter register is incremented by 1, (2) a counter_changed output signal is set for
one cycle to notify connected units about this event, and (3) the current value of the prescaler
register is copied to the prescaler_sh register. Increment events for the counter register thus
are generated each prescaler+ 1 clock cycles. Changing the prescaler register will not im-
mediately affect the counter, but just when the current prescale interval elapses.

prescaler prescaler_sh prescaler_count

=

counterOF

System clock

Overflow
Event

Figure 2.2: The counter unit

If the counter overflows, an interrupt can be raised. At the moment, an overflow can only oc-
cur if the counter value exceeds the maximum value that can be represented by the width of the
counter register. Overflow detection is implemented in the following manner: The actual width
of the counter register is one bit more than required by the counter resolution. This higher-most
bit (OF) is automatically set to 1 when an overflow occurs (concerning the counter’s resolution)
and directly triggers the overflow event. It is reset to 0 after the overflow event has been regis-
tered. All other bits of the counter register are automatically set to 0 due to the overflow.

2.3 Capture/Compare Channel

Each capture/compare channel of SCCT is constructed in the same manner. The structure of
a single channel is depicted in figure 2.3. The channel receives the counter value and the
counter_changed signal that are generated by the counter unit. A channel can be configured
either as input capture or output compare.

10

2.4 Top-level Module

Capture/compare registerEdge detectionIPinX OPinX

Counter

Figure 2.3: Structure of a single capture/compare channel

2.3.1 Input Capture

If the channel is configured as input capture channel, it reacts on level changes of its input pin.
It can react on rising, falling, or both types of edges. Edge detection is performed each clock
cycle by comparing the level of the current cycle with the one of the previous cycle that is stored
in a register. If an edge of interest is detected, an input capture event is emitted. The current
counter value then is stored in the capture/compare register. Additionally, an interrupt can be
raised.

2.3.2 Output Compare

In output compare mode, the channel reacts if the counter value reaches the value that was
written to the capture/compare register. The reaction is only triggered in that cycle, during which
the counter value changed, indicated by the counter_changed signal. On a reaction, it can
either toggle the level of the output pin, or set it to low or high state. Like in input capture
mode, an interrupt can be raised.

The counter_changed signal as an additional trigger condition was added to deal with the
following scenario: Assume that no counter_changed signal is used, and that the prescaler is
set to a very large value. If the counter reaches the value that is set in the capture/compare reg-
ister of an OC channel, an interrupt is raised, and a software interrupt handler is executed. At
some point, the handler resets the interrupt status of the channel and returns. If the prescaler
value is larger than the execution time of the interrupt handler (in clock cycles), another in-
terrupt would be raised immediately as the counter value still equals the capture/compare
value of the channel. This behaviour is prohibited through the use of a counter_changed sig-
nal.

2.4 Top-level Module

The top-level module has two tasks: On the one hand, it connects the channels with the outputs
of the counter module. On the other hand, it implements the interface to the Altera Avalon bus
[1]. The connection of the counter and channel modules mainly consists of routing the counter
and counter_changed signals from the counter unit to the channels. For the bus interface, the
module combines channel register interfaces with the same functionality into single memory-
mapped registers. More information on the register map can be found in the next chapter. The
signals for connection to the Avalon bus are shown in table 2.1. Their widths are based on
the current implementation that assumes a word width of 32 bits, requires 5 bits to address all
registers of SCCT (see chap. 3), and implements 8 capture/compare channels.

11

2 Structure and Functionality

Table 2.1: Avalon bus interface of the SCCT top-level module
Name Direction Width (Bits) Description

clk in 1 Clock signal
rst in 1 Reset signal
address in 5 Read/write address
read in 1 Read request
readdata out 32 Data returned for a read request
writedata in 32 Data to be written
write in 1 Write request
irq out 1 Interrupt pending

pins_i in 8 Input signals, to be connected externally
pins_o out 8 Output signals, to be connected externally

2.5 Extending SCCT

2.5.1 Adding/Removing Channels

Changing the number of capture/compare channels is performed in the following manner:

1. Change the value of SCCT_N_CHANNELS in scct_constants.v (see sect. 4.1).

2. Add/remove channel definitions from scct.v. If channel definitions should be added,
the mkch.pl script can be used to generated these (see sect. 4.2).

When adding channels, keep in mind that the register map of the current implementation can
only support up to 16 channels (cf. chap. 3). If you need more channels, you must also adjust
the register map.

12

3 Programming Interface

3.1 Registers

The register map of SCCT is shown in table 3.1. Note that the offsets are shown in terms of
words. To calculate the effective address, they must be multiplied by the actual word with.
The current implementation is based on words of 32 bit.

Table 3.1: Register map of SCCT
Offset Name r/w Description
0x00 CTR r Counter value register
0x04 PSC rw Prescaler register
0x08 CTR_IE rw Counter interrupt enable register
0x0c CTR_IS rw Counter interrupt status register
0x10 - - Reserved
0x14 - - Reserved
0x18 - - Reserved
0x1c - - Reserved

0x20 CH_MS rw Channel mode select register
0x24 CH_AS rw Channel action select register
0x28 CH_IE rw Channel interrupt enable register
0x2c CH_IS rw Channel interrupt status register
0x30 CH_OCF w Channel force action register
0x34 CH_INP r Channel input pin status
0x38 CH_OUT r Channel output pin status
0x3c - - Reserved

0x40 CCR0 r/w Channel 0 capture/compare register
0x44 CCR1 r/w Channel 1 capture/compare register
0x48 CCR2 r/w Channel 2 capture/compare register
0x4c CCR3 r/w Channel 3 capture/compare register
0x50 CCR4 r/w Channel 4 capture/compare register
0x54 CCR5 r/w Channel 5 capture/compare register
0x58 CCR6 r/w Channel 6 capture/compare register
0x5c CCR7 r/w Channel 7 capture/compare register
0x60 - - Reserved
...

...
...

...
0xfc - - Reserved

13

3 Programming Interface

3.1.1 Counter value register (CTR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CTR[31..16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CTR[15..0]

r r r r r r r r r r r r r r r r

3.1.2 Prescaler register (PSC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PSC[31..16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSC[15..0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

3.1.3 Counter interrupt enable register (CTR_IE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved OIE

- - - - - - - - - - - - - - - rw

OIE: Overflow interrupt enable bit
0 : Overflow interrupts are disabled
1 : Overflow interrupts are enabled

3.1.4 Counter interrupt status register (CTR_IS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved OIS

- - - - - - - - - - - - - - - rw

14

3.1 Registers

OIS: Overflow interrupt status bit
OIS:
0 : No overflow interrupt pending
1 : Overflow interrupt pending

Write 1 to OIS to reset interrupt. Writing 0 has no effect.

3.1.5 Channel mode select register (CH_MS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved MS7 MS6 MS5 MS4 MS3 MS2 MS1 MS0

- - - - - - - - rw rw rw rw rw rw rw rw

MSx: Mode selection bit for channel x
0 : Channel is configured as input capture
1 : Channel is configured as output compare

3.1.6 Channel action select register (CH_AS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CH7_IC[1:0] CH6_IC[1:0] CH5_IC[1:0] CH4_IC[1:0] CH3_IC[1:0] CH2_IC[1:0] CH1_IC[1:0] CH0_IC[1:0]

CH7_OC[1:0] CH6_OC[1:0] CH5_OC[1:0] CH4_OC[1:0] CH3_OC[1:0] CH2_OC[1:0] CH1_OC[1:0] CH0_OC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Depending on the status of the corresponding mode selection bit of the channel, the action
select register is either used to configure the input capture reaction (CHx_IC) or the output
compare action (CHx_OC) of channel x.

CHx_IC: select type of edge to react on
00 : Ignore all edges
01 : React on rising edge
10 : React on falling edge
11 : React on either edge

CHx_OC: select action on output pin
00 : No OC output action (may still raise an interrupt)
01 : Pull output to high
10 : Pull output to low
11 : Toggle status of output pin

15

3 Programming Interface

3.1.7 Channel interrupt enable register (CH_IE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

- - - - - - - - rw rw rw rw rw rw rw rw

IEx: Interrupt enable bit for channel x
0 : Interrupts from channel x are disabled
1 : Interrupts from channel x are enabled

3.1.8 Channel interrupt status register (CH_IS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0

- - - - - - - - rw rw rw rw rw rw rw rw

ISx: Interrupt status bit for channel x
0 : No capture/compare interrupt in channel x
1 : Capture/compare interrupt from channel x is pending

Write 1 to ISx to reset the corresponding channel interrupt. Writing 0 has no effect.

3.1.9 Channel force action register (CH_OCF)

Output pins cannot be set directly, instead a force register is provided. It is used in combination
with the CH_ACT register. Use this register to set the output pin of an OC channel to a desired
level. The behaviour of applying a force action to a channel that is configured as Input-Capture
is undefined.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved OCF7 OCF6 OCF5 OCF4 OCF3 OCF2 OCF1 OCF0

- - - - - - - - w w w w w w w w

OCFx: write to this bit to force an output action
0 : No action in channel x
1 : Force channel x OC action

16

3.2 Programming Notes

3.1.10 Channel input pin status (CH_INP)

Use this register to read the current state of the input pins.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved INP7 INP6 INP5 INP4 INP3 INP2 INP1 INP0

- - - - - - - - r r r r r r r r

INPx: state of channel x input pin

3.1.11 Channel output pin status (CH_OUT)

Use this register to read the current state of the output pins.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved

- - - - - - - - - - - - - - - -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0

- - - - - - - - r r r r r r r r

OUTx: state of channel x output pin

3.1.12 Channel x capture/compare register (CCRx)

If the channel is configured as input-capture, the CCRx register holds the timestamp of the last
captured edge. For an output-compare channel, write the time of the output action to the CCRx
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CCRx[31..16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CCRx[15..0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

3.2 Programming Notes

Deactivation of a channel Set the IENx bit to 0 and the channel action bits to 00. This can be
done in any channel mode. If the value of the CCRx register should be retained, set the
channel to OC mode (MSx=1).

17

3 Programming Interface

18

4 Tools and Files

4.1 Verilog Sources

The Verilog source of SCCT are located in the verilog/ subdirectory.

scct_constants.v contains constants use in the whole implementation, e.g. register widths,
flag definitions, etc.

scct_counter.v implements the counter module.

scct_channel.v implements a single capture/compare channel.

scct.v implements the top-level module and the interface to the Altera Avalon bus.

4.2 Tools

mkch.pl is used to generate the channel instantiations for scct.v. If you change the channel
interface, remember to adjust data section of this script. The output of the script must be
copied/pasted into scct.v

4.3 Test Environment

Currently, two test cases are implemented for SCCT:

test_channel.v Test case for a single channel.

test_scct.v Test case for the whole SCCT module.

They can be found in the test/ subdirectory of the package.
Test cases can be built using the Makefile. This requires that the iverilog package1 is

installed. Additionally, the Makefile requires that the variable ${CASE} is set to either channel
or scct. The following functions are supported by the Makefile:

• Building:

$ CASE=${CASE} make

• Executing (automatically builds the project):

1http://iverilog.icarus.com/

19

http://iverilog.icarus.com/

4 Tools and Files

$ CASE=${CASE} make run

Exit the simulation by typing finish. The simulation trace is written to the file specified
by the $(DUMP) variable in the Makefile.

• Viewing (run the simulation before!):

$ CASE=${CASE} make view

Requires that gtkwave2 is installed on the system.

If you want to add further test cases, name them test_TESTCASENAME.v. Calls to make then
have the following form:

$ CASE=TESTCASENAME make ...

4.4 C Header

A C header file for SCCT can be found in the include/ directory. The file contains definitions
for the register offsets defined in the memory map (see table 3.1) and some macros to calculate
actual bitmasks.

2http://gtkwave.sourceforge.net/

20

http://gtkwave.sourceforge.net/

5 Bibliography

[1] Altera Corporation, 101 Innovation Drive, San Jose, CA 95134. Avalon Interface Specifications,
2015.

21

	Overview
	Structure and Functionality
	Overview
	Counter Unit
	Capture/Compare Channel
	Input Capture
	Output Compare

	Top-level Module
	Extending SCCT
	Adding/Removing Channels

	Programming Interface
	Registers
	Counter value register (CTR)
	Prescaler register (PSC)
	Counter interrupt enable register (CTR_IE)
	Counter interrupt status register (CTR_IS)
	Channel mode select register (CH_MS)
	Channel action select register (CH_AS)
	Channel interrupt enable register (CH_IE)
	Channel interrupt status register (CH_IS)
	Channel force action register (CH_OCF)
	Channel input pin status (CH_INP)
	Channel output pin status (CH_OUT)
	Channel x capture/compare register (CCRx)

	Programming Notes

	Tools and Files
	Verilog Sources
	Tools
	Test Environment
	C Header

	Bibliography

