
 

 

Register & Stack Hybrid  32-Bit  Multi-Threaded  Barrel Pipelined 
SystemVerilog Soft Processor Core



 

Hive_Design_2015-09-03.doc Page 2 of 77  

IINNTTRROODDUUCCTTIIOONN  
Hive is a general-purpose soft processor core intended for instantiation in an FPGA when CPU functionality is 
desired but when an ARM or similar would be overkill.  The Hive core is complex enough to be useful, with a wide 
data path, a relatively full set of instructions, and high code density and ALU utilization – but with very basic 
control structures and minimal internal state, so it is simple enough for humans to easily grasp and program at the 
lowest level without any special tools.  It fits in current low end FPGAs with sufficient resources left over for 
peripherals and other unrelated logic, and operates at or near the top speed of the device DSP hardware. 
  
Hive isn’t an acronym, instead the name is meant to suggest the swarm of activity in an insect hive: many threads 
sharing the same program and data space, individually beavering away on separate tasks, and cooperating 
together to accomplish larger goals.  Because of the shared memory space, thread intercommunication is 
facilitated, and threads can all share single instances of code, subroutines, and data sets which enables code 
compaction via global factoring. 
 
The novel hybrid stack / register construct employed reduces the need for a plethora of registers which allows for 
small operand indexes in the opcode.  This construct, coupled with explicit stack pointer control in the form of a 
pop bit for each stack index, minimizes the confusing and inefficient stack gymnastics (swap, pick, roll, copy to 
thwart auto-consumption, etc.) normally associated with conventional stack machines, and minimizes the saving 
and restoring of register contents at context switch points. 
 
Hive employs a naturally emergent form of multi-threaded scheduling which eliminates all pipeline hazards and 
provides the programmer with as many equal bandwidth threads – each with its own independent interrupt – as 
pipeline stages.  Processors which employ this form of pipelining are classified as barrel processors. 
 
Hive is a largely stateless design (no pipeline bubbles, no registered ALU flags that may or may not be 
automatically updated, no reserved data registers, no pending operations, no branch prediction, etc.) so 
subroutines require no overhead, interrupts consume a single vector cycle, and their calculations can be 
performed directly and immediately with almost complete disregard for what may be transpiring in other contexts. 
 
This paper presents the design of Hive along with some general background.  Even if you don’t find the 
architecture of this core to your liking, you may possibly find something else of use. 
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HHIIVVEE  FFEEAATTUURREESS  LLIISSTT  
 

 A simple, compact, relatively stateless, high speed, barrel pipelined, multi-threaded, little endian design 
based on novel RASHTM  (Register And Stack Hybrid) technology. 

 8 independent, isolated, general purpose LIFO data stacks per thread with parameterized depth and 
fault protections. 

 8 strictly equal bandwidth threads. 

 8-stage pipeline with no stalls or hazards. 

 32-bit data path / ALU with extended width arithmetic results. 

 2 operand machine with operand select and stack pointer control fields in the opcode. 

 16-bit compact opcode.  16 & 32 bit memory data access widths, both aligned and unaligned. 

 8 fully independent internal / external interrupts with no hierarchical limitations (one per thread). 

 32-bit internal register set in separate I/O space with highly configurable base register module that may 
be easily modified / expanded to provide coprocessor interfacing, enhanced I/O, detailed debug, etc. 

 All instructions execute in a single thread cycle, including 32 x 32 = 64 bit signed / unsigned multiply 
(normal or extended). 

 Common data & instruction memory space (Von Neumann architecture) enables dynamic code / data 
partitioning, combined code and data constructs, code copy & move, etc. 

 All threads share the entire common data / code space, which facilitates global data / code factoring and 
thread intercommunication. 

 Variable width address (set via a build time parameter) – up to 32 bits of directly addressable space. 

 Double buffered UART with BAUD generator and several parameterized options. 

 32 bits of general purpose I/O. 

 Written in 100% highly portable SystemVerilog (no vendor specific or proprietary language constructs) 
and partitioned into easy to understand and verify modules. 

 May be programmed via a SystemVerilog initial text file, no complex tool chain is necessary. 

 Achieves aggregate throughput of ~200 MIPS in a bargain basement Altera EP3C5E144C8 (Cyclone 3, 
speed grade 8, the target device for initial development) while consuming ~2500 logic elements, or 
<50% of the FPGA fabric. 

 Free to use, modify, distribute, etc. (but only for the greater good, please see the copyright). 
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MMOOTTIIVVAATTIIOONN  
As a (mostly) digital designer who works primarily in FPGAs, I am often on the lookout for simple processor cores 
because projects often underutilize the hardware due to low data rates (e.g. a UART, or a sampled audio stream).  
If latency isn't a big issue, then why not multiplex the high-speed hardware with a processor construct?  But the 
core needs to be simple, not consume too much in the way of logic (LUTs, block RAMs, multipliers), have 
compact op codes (internal block RAM isn't limitless nor inexpensive), keep the ALU sufficiently busy, and be 
easy to program at the machine code level without the need for a compiler or even an assembler. 
 
FPGA vendors have off-the-shelf designs that are quite polished and bug-free, but they, and therefore the larger 
design and the designer, are generally legally chained to that vendor's silicon and tool set.  There are many free 
cores available on the web, but one may end up getting exactly what one paid for. 
  
The Hive core is my offering for this problem area.  The essentially free and naturally emergent multi-threading / 
rigid scheduling mechanism in Hive isn’t unique; I believe it was implemented as far back as 1964 on the CDC 
6000 series peripheral processors.  Hive bit shift distances are treated as signed which works out rather nicely, 
but the ancient PDP 10 did this as well.  The notion of multiple stacks isn’t original, nor is the explicit control over 
the processor stack pointer, but I believe the register/stack hybrid as implemented and described here (indexed 
stacks, top-entry-only conservative access with pop bit override) is something relatively new. And the way 
extended arithmetic results are dealt with uniformly in Hive may possibly be somewhat novel as well.  But who 
knows?  Processors have been around long enough that most of the good ideas have been mined out and put to 
the test in one form or another, which makes it difficult / unlikely to bring something fundamentally new or 
innovative to the table. 
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RREEGGIISSTTEERR  MMAACCHHIINNEESS  VVSS..  SSTTAACCKK  MMAACCHHIINNEESS  
Most modern processors are register based, and so have some form of register set tightly bound to the ALU – a 
tiny fast triple port memory in a sense.  This conveniently continues the memory hierarchy of faster and smaller 
the closer to the core, and has the advantage of being a mature target for compilers.   
 
Many registers are generally available because the register space grows exponentially with register address 
width.  However, register opcode indexes still consume significant opcode space, particularly in a 3 operand 
machine, and register count is a limited resource that doesn’t scale with the rest of the design.  Registers are 
often reserved for special purposes, and some may be invisible to non-supervisory code.  It would seem the more 
registers available, particularly of the “special” variety, the more the programmer has to juggle in his/her head.  In 
addition, a general-purpose register may only be used if the programmer is certain that any data there is globally 
moot, or if the register contents are first saved to memory and later restored, which is something else to keep 
track of. 
 
Since my first exposure to data stacks via an HP calculator (won in a high school engineering contest), I have 
been fascinated with stack languages and stack machines.  With no explicit operands, a data stack, a return 
stack, and almost no internal state, a stack machine can have incredibly compact op codes - often 5 bits will do.  
Interrupts, subroutines, and other forms of code factoring can be quite efficient due to the stacked registers; all 
that is required is that they clean up after themselves.  I have studied many of these, and have coded a few of my 
own and had them running on an FPGA demo board.  They are surprisingly easy to implement but surprisingly 
cumbersome to program - one has to stick loop indices, conditional test values, and branch addresses under the 
operands on the stack or in memory somewhere, so there are a lot of operations and much real time wasted on 
stack manipulation which can get very confusing very quickly.  Laborious hand optimization of stack code leads to 
“write only” procedural programs that are difficult to decipher later, and with catastrophic stack faults all too likely.  
The tiny opcode widths produce a natural instruction caching mechanism, but having multiple opcodes per word is 
awkward when they aren’t powers of 2 wide, a nuisance when one must manually change the code by hand (one 
usually ends up inserting no-ops to pad out the space), and interrupts / subroutines must either return to a word 
boundary (more no-ops / wasted program space) or the hardware must somehow store and retrieve a sub index 
into the return word (more state). 
 
Stack machines are often portrayed (perhaps inadvertently) as a panacea for computing ills, but with little in the 
way of formal analysis to back up these assertions.  They are something very different and on the fringe and as 
such don't get addressed by the mainstream, so there aren't many technical comparisons (speed, code density, 
etc.) to more conventional architectures – or detractors for that matter, so the stack machine noob encounters a 
situation rather like serving on a jury and hearing only the defendant’s side of the case.  My conclusion is their 
biggest strength – implicit operands – is also their biggest weakness.  One has to follow the intricate stack 
manipulations closely and with a very clear idea of what the programmer originally had in mind in order to make 
any sense of the code.  One cannot rely on, say, the loop index residing and staying put in register 4 and the like.  
There are of course stack machines out there that have register sets tacked on, but this tends to complicate the 
hardware and bloat out the opcodes, which does not strike me as a very elegant solution. 
 
Another thing that isn’t discussed much regarding stack machines is that auto consumption of all input values is 
generally necessary.  While it is obvious that ALU operations pop the input operand(s) and push the result, what 
isn’t emphasized is that conditional branches generally consume the branch test value(s) and the branch address 
or address offset regardless of whether the branch is taken or not.  Auto consumption is an issue because it leads 
to copying or restoring of values to be used both now and later, and it also means most instructions cannot be 
made individually conditional (ala the ARM, or via a skip instruction) because the stack pointer(s) will likely be 
different depending on whether the instruction was executed or not, something the programmer can’t generally 
track. 
 
Others may reasonably disagree, but my own conclusion is this: a stack is a good fit for data input and 
intermediate results manipulation on a scientific calculator.  However, even with the inclusion of a second 
dedicated return stack, pure stack machines are not such a great paradigm on which to base processor hardware 
or programming languages.  The indexed register set is simply too powerful and useful a concept to leave by the 
wayside. 
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BBAACCKKGGRROOUUNNDD  ::  LLIIFFOOSS  
Since this paper is about a hybrid stack machine, it helps to understand stacks themselves, which are LIFO (Last 
In First Out) constructs. 

 
Figure 1.  LIFO symbols. 

The figure above shows two LIFO symbols, the one on the left is I/O centric, the one on the right more of a 
schematic memory view.  Unlike FIFOs, which need separate read and write side pointers, LIFOs only require a 
single pointer, which may implemented in such a way as to conveniently reflect the fullness of the LIFO.  The 
push side is only concerned with whether the LIFO is full or not, the pop side is only concerned with whether it is 
empty or not.  Push when full is an error because (depending on the stack protection logic) this action either drops 
the input data on the floor or corrupts data in the LIFO along with the LIFO pointer.  Pop when empty is an error 
because it gives false read data and (depending on the stack protection logic) may corrupt the LIFO pointer. 

 
Figure 2.  LIFO stack operations – push then pop from empty state. 

The figure above shows LIFO operation from empty, to not empty, to empty again.  Note that the first write to 
memory is address 1 rather than address 0, which may seem a bit counter-intuitive.  This convention allows the 
level and pointer values to be the same. 

 
Figure 3.  LIFO stack operations – push from empty state to full state. 

The next figure shows LIFO operation from empty to full.  Note that the last write to memory is at address 0, which 
may also seem a bit counter-intuitive.  It helps here to think of the address as a modulo (i.e. the MSB is removed 
from) of the level value.  For this 4-deep LIFO there are actually five distinct states corresponding to levels 0 
through 4.  Indeed, when fully utilizing the LIFO memory space there will always 2n + 1 levels, and it is easiest 
and most straightforward to handle them with an extra MSB in the level counter, and present all but the MSB of 
this counter to the LIFO memory address input (i.e. the stack pointer).  This arrangement gives us 2n - 1 unused 
states, but they are fairly easy to decode: full is indicated by a set MSB, empty indicated by all bits zero. 



 

 
Figure 4.  LIFO stack operations – pop from full state to empty state. 

The figure above shows the previously filled LIFO operation from full to empty.  At the end (in this case) the value 
D at memory location 0 is presented as output, but the pop side should be keeping track and so know not to use 
it.  

 
Figure 5.  LIFO stack operations – three pop & push scenarios. 

What happens if we pop and push at the same time?  For a canonical stack machine, we need to read the pop 
side value, pop it off the stack, and then push the new value onto the stack.  This is a pop & push (as opposed to 
a push & pop, which would be nonsensical for this application).  At the above left we see a pop & push in action, 
the value B at address location 2 is overwritten with the value F, and there is no net pointer change.  In the center 
we see a pop & push when full, which is not an error because pop, which decrements the pointer, can be thought 
of as preceding push, which increments the pointer.  Finally, on the right we see a pop & push when empty.  This 
is obviously a pop error because the read data is invalid – but it is a pop error only!  If the pointer is internally 
protected from corruption then the correct net result is a push. 

Stack Protection 
Is it always best to protect the stack against the corruption of the pointer or memory contents?  I believe that the 
answer to this is always “yes” – when pointer corruption occurs fullness tracking is lost and so the associated 
error reporting is confounded.  Pop (underflow) protection is clearly advantageous because it prevents the stack 
from rolling under and thereby offering up completely unrelated, non-local data and addresses to the thread. 
 
On the other hand, push (overflow) protection creates a stuck stack which limits the ability of a thread to fix its 
own problems.  Would it be better to not protect against push errors, and just let them corrupt the first stack 
entries so the thread could continue?  Granted this kicks the problem down the road, but perhaps the thread 
wasn’t going to use the earlier entries on the stack anyway and was about to issue a routine stack or thread 
clear?  Perhaps it was about to check itself for stack errors and if it found one would have cleared itself?  At least 
its not possibly derailed, off corrupting the contents of main memory. 
 
Contemplating how to deal with these “what if” conditions that should not happen (but likely will, at least during 
SW development) can drive you a little crazy.  In any case, pop and push protections are individually configurable 
build options in Hive so you can set them however you like.  Regardless of the protection settings, stack errors 
are always reported to the local register set. 
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RREEGGIISSTTEERR  //  SSTTAACCKK  HHYYBBRRIIDD  
Many register-based machines have a return stack, and many stack machines have a one or more registers stuck 
somewhere, but beyond this, could there be a more harmonious middle ground between stack based and register 
based machines?  If a register based machine were designed with a LIFO stack under each register, then 
perhaps the programmer could accomplish the same goals with fewer indexed register locations, meaning the 
register index could be made narrower, giving a more compact and efficient opcode.  Multiple stacks would be 
more convenient than a single stack for complex algorithms, and would minimize inefficient and confusing stack 
thrash.  Unlike register count, LIFO depth can easily scale as required by other aspects of the design.  Could the 
stacks indeed be indexed as register operands?  If so, how might multiple stacks be implemented and how would 
the stack push/pop mechanism behave?   
 
I recently encountered the J1 stack based processor (http://www.excamera.com/sphinx/fpga-j1.html) which is 
quite intriguing in that it has a two bit wide signed stack pointer increment field in the opcode.  This idea inspired 
me to investigate explicit rather than implicit stack control.  I decided that an array of simple stacks, where only 
the top stack values are presented to the ALU (as opposed to the top and second values as in a conventional 
stack machine) would suffice.  The stacks could then be indexed normally as register locations, with the usual one 
or two sources and one destination.  I then came up with a simple, inherently conservative stack mechanism: 
whenever anything is read from a stack, the stack value and stack pointer remain unchanged.  Whenever 
anything is written to a stack, the top stack value is pushed in to make room for the new value.  Each stack index 
is provided with an associated pop bit to alter this default conservative behavior:   
 

pop bit read / write Stack Behavior 
0 read no change Register type read. 
1 read pop Stack type read. 
0 write push Stack type write. 
1 write pop & push Register type write. 

Figure 6.  Hybrid register / stack behavior. 

This arrangement accommodates the full range of stack and register behaviors.  To illustrate this, say the 
operand source of an ALU single operand operation is stack index B and the result destination is stack index A: 
 

Case B pop  A pop  B stack A stack Behavior 
0 0 0 no change push Register type read, stack type write. 
1 0 1 no change pop & push Register type read & write. 
2 1 0 pop push Stack type read & write. 
3 1 1 pop pop & push Stack type read, register type write. 

Figure 7.  One and two operand hybrid register / stack behavior. 

Cases 1 and 2 respectively give the normal pure register and pure stack behaviors, while cases 0 and 3 give 
useful variations.  What about the two input operand case?  Say the primary input operand is stack index A, the 
secondary input operand is stack index B, with the result going to stack index A (e.g. a two operand opcode 
architecture).  It turns out that the same table above works for this scenario as well.  How do we handle the case 
where both of the sources and the destination point to the same stack?  The solution is to simply OR the two pop 
bits together.  Remember that there is no access to the value below the top LIFO entry as in most stack 
machines, so when index A = index B for a two operand instruction such as multiply, the result will be A2 pushed 
to A.  And in this case, if both of the A and B pop bits are set this won’t cause a double pop because the pop bits 
are simply ORed, causing a single pop of A (a pop & push, actually). 
 
Now that we have simpler stacks and more control over them, the conditional execution of single operations is a 
viable option.  Conventional stack machines generally do not have conditional single operations because 
operands are always consumed – the programmer would not be able to tell how many items were left on the stack 
after a conditional two operand operation, which would lead directly to stack faults.  With no auto-consumption of 
the input, and by setting the pop bit of the register being conditionally written to, we can ensure the stack pointers 
do not change during a single conditional operation. 

http://www.excamera.com/sphinx/fpga-j1.html
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BBAASSIICC  DDEESSIIGGNN  DDEECCIISSIIOONNSS  

Operands 
How many operands should be in the opcode?   I picked 2 to keep the opcode small, so Hive is a 2 operand 
machine.  Here are the rules: 
 
• For single input ALU operations, the source is B and the result destination is A.  For example: A=not(B). 
• For two input ALU operations, the primary source is A, the secondary source is B, and the result destination is 

A.  For example: A=A-B. 
• For single input conditional branch statements, A is tested against zero.  The signed address increment is B 

or is supplied as immediate data.  For example: PC=(A>0)?PC+B:PC. 
• For two input conditional branch statements, A is tested against B.  The signed address increment is supplied 

as immediate data.  For example: PC=(A!=B)?PC+I:PC. 
• For memory reads, the base address is B, the read value is written to A, and there is an immediate 4 bit 

positive address offset.  For example: A=mem(B+I).  
• For memory writes, the base address is B, the write value is read from A, and there is an immediate 4 bit 

positive address offset.  For example: mem(B+I)=A. 
• For internal register set access, the absolute address is I and the data is read from or written to A.  Read 

example: A=reg(I).  Write example: reg(I)=A. 
• For subroutines, the subroutine absolute address is B and the return address (the PC) is pushed to A. 
• When an interrupt is taken the return address (i.e. the non-incremented PC) is automatically pushed to stack 

0 – making it a bit of an odd man out, but it is the only “special” stack, and this is the only way in which it is 
“special”. 

 
Therefore, A is the primary data source and destination for two operand operations, is the primary data tested, 
receives subroutine return addresses, and is the only thing that can be written to.  B is the primary data source for 
one operand operations, the secondary data source for two operand operations, is the secondary data that A is 
tested against, and always provides the address or address offset. 

Stacks & Stack Depth 
How many stacks are needed?  I picked eight.  This gives a convenient hex nibble field of 4 bits for each operand 
(one pop bit and three stack index bits) for a total of 8 bits of opcode consumed.  How deep should the stacks be?  
I have read that 32 entries are deep enough for single stack machines to not require auto spill-to-memory 
mechanisms and the like.  Since we have eight stacks, and since coding for this core is likely to be done by hand, 
we could doubtless get by with less depth.  In any case, the use of FPGA block RAM for the stacks sets a 
generous practical lower limit (32 entries per stack per thread in our target device, set via a build-time parameter). 

ALU Data Width 
Non-power-of-2 widths can be excluded for efficiency reasons, byte data has too little resolution for most cases, 
16-bit data can store audio PCM and Unicode text efficiently but it doesn’t have sufficient resolution to directly 
perform the internal computations required for audio DSP, and 64-bit data is overkill for most applications that 
would be running on a small FPGA processor.  Which leaves us with 32 bits.  Data width directly dictates the top 
speed vs. pipelining depth because wider data requires more deeply cascaded combinatorial logic to perform 
adds, multiplies, etc. 

Opcode Width 
Hive opcodes are a compact and efficient 16 bits wide, which means the PC is an index into a 16-bit wide 
memory.  With careful planning and some field reuse there is sufficient room for operand indices and small 
immediates. 

Main Memory Data Width 
Hive memory access width, and by that I mean main memory read / write data and in-line literals, can be either 16 
or 32 bits, depending on the operation.  Both aligned and non-aligned 32-bit accesses are supported. 

Main Memory PC & Address Width 
PC and address width are parameterized and so are set at build-time.  PC width may be set to coincide with 
address width, or wider if so desired, up to and including the ALU data width.  Address width directly sets the 



 

depth of the main memory instantiation and BRAM resource usage (note that deeper settings may negatively 
impact the top speed of the core). 

Arithmetic Results Width 
Some ALU arithmetic operations invariably produce wider results than the input operands.  Traditional processors 
stick the extended results of add and subtract (carry, overflow, sign, etc.) in dedicated bit flag registers, and then 
have rules and special instructions that govern the updating, clearing, saving, and restoring of them.  The results 
of full width multiplies are usually sent to special concatenated register pairs.  These practices may be efficient, 
but they introduce complexity and internal state. 
 
A simple and uniform method of handling wide arithmetic results is to treat them as double width regardless of 
operation (add, subtract, multiply) and select either the lower (i.e. normal) half of the result or the upper (i.e. 
extended) half of the result via instructions.  The obvious downside here is that obtaining the full width result takes 
at least two cycles even when the operation is actually performed in one.  For the full result, it may seem wasteful 
to perform the same internal calculation both times, but one probably should not think of this as major effort for 
the ALU or as a huge opportunity lost.  All processors have to perform a full width subtraction in order to generate 
the arithmetic comparison flags between two numbers.  By examining the extended result of add / subtract first 
one can know beforehand if the result will overflow and perhaps not perform it (e.g. restoring division), and often 
only the lower or extended arithmetic result is required.   
 
Interestingly, the extended results of signed and unsigned subtraction and signed addition always form a 
convenient all ones or all zeros flag (easily negated with a NOT instruction).  The extended result of unsigned 
addition is a bit more complex.  Here are some 4 bit corner case examples to get a flavor of how this works: 
 

  
+ unsigned 15 + 15 = 30 = 0001,1110 max 

 0 + 0 = 0 = 0000,0000 min 
  

+ signed 7 + 7 = 14 = 0000,1110 max 
 -8 + -8 = -16 = 1111,0000 min 
  

- unsigned 15 - 0 = 15 = 0000,1111 max 
 0 - 15 = -15 = 1111,0001 min 
  

- signed 7 - -8 = 15 = 0000,1111 max 
 -8 - 7 = -15 = 1111,0001 min 
  

* unsigned 15 x 15 = 225 = 1110,0001 max 
 0 x 0 = 0 = 0000,0000 min 
  

* signed -8 x -8 = 64 = 0100,0000 max 
 7 x -8 = -54 = 1100,1000 min 
  

Figure 8.  4 bit input / 8 bit result corner cases. 

Signed vs. Unsigned Arithmetic 
Addresses are generally thought of as unsigned, but unsigned subtraction will produce negative numbers whether 
one likes it or not.  The programmer obviously needs the resources to handle both, so the impact of signed vs. 
unsigned arithmetic is in deciding how to handle both, determining what will be considered the default behavior, 
and instruction naming conventions.  Signed multiply is more basic due to sign/zero extension needs (hence 
Altera’s FPGA multiply hardware primitives being signed).  I feel that a signed half-width memory read can 
sometimes be more useful than unsigned because it influences the MSBs above.  Given the way that Hive deals 
with extended results, lower arithmetic operations are sign neutral (i.e. give the same results regardless of signed 
/ unsigned operation) so only the right shift operations and the arithmetic operations that produce extended 
results need to be differentiated with respect to sign. 

Endianness 
Hive can’t be big endian because that would require byte addressing.  That and it’s asinine (see appendix). 
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BBAACCKKGGRROOUUNNDD  ::  FFPPGGAA  RREESSOOUURRCCEESS  
The available physical resources and their detailed behavior, limitations, and timing characteristics in the target 
FPGA will strongly influence the top speed, size, and other important bulk metrics of any soft processor.  One 
may as well exploit these resources up front rather than be stymied by them later. 

Block RAM (BRAM) 
The primary FPGA component the soft processor designer needs to understand is block RAM. 

 
Figure 9.  Block RAM: simple (DQ) on left, true dual port (DP) on right. 

The figure above shows two common forms of block RAM: a simple dual port (DQ) on the left and a true dual port 
(DP) on the right.  Because it uses a single address, the DQ variant is a good fit for the LIFO stacks.  The DP 
variant is useful for main memory as it gives two independent accesses, which enables a data read / write along 
with instruction fetch per cycle (thus sidestepping the “Von Neumann bottleneck”).  Main memory access is a 
huge driver in any processor design, and often the limitation encountered is insufficient address ports rather than 
data ports. 
 
Block RAM resources have configurable variable widths, from some maximum down to a single bit.  For widths of 
eight and above an additional bit per byte (8+1, 16+2, 32+4) is provided for out-of-band signaling, individual byte 
enables, CRC, error correction, and other common uses.  I feel that it is a mistake to employ these extra bits in 
order to increase the data width of the ALU or instructions, as this precludes the efficient use of conventional 2n 
width memory to store internal data / program information. 
 
The two ports of a dual port block RAMs have independently variable aspect ratios.  The only sane address 
mapping that can accommodate this arrangement is little endian. 
 

Width Index / Address 
1 31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
4 7 6 5 4 3 2 1 0 
8 3 2 1 0 

16 1 0 
32 0 

Figure 10.  FPGA Block RAM port aspect ratio address mapping. 

As shown above, the address of a bit in the FPGA block RAM is simply the bit address.  The address of a two bit 
entity is the address of its LSb divided by 2.  The address of a four bit entity is the address of its LSb divided by 4, 
and so on.  So the address of 2n bit wide data is the bit address with n address bits lopped off the right end. 

 
Figure 11.  Block RAM internal resources. 



 

What resources are available within block RAMs?  The figure above shows a schematic view of the “inside” of a 
typical DQ RAM, though it applies to each side of a DP RAM as well.  Even though FPGA block RAMs are always 
fully synchronous, it is sometimes helpful to think of the base RAM entity inside of the block quasi asynchronous.  
This RAM entity is supplemented with bypass logic in the form of a multiplexer, which enables two types of 
configurable (at build time) read-during-write behavior.  Without the multiplexer, a read-during-write delivers the 
old memory data to the read data port (I have dubbed this RAW – Read Ahead of Write or Read And then Write) 
also known as read-first mode.  With the multiplexer, a read-during-write conveys the data being written to the 
read data port (WAR – Write Ahead of Read or Write And then Read) also known as write-through mode.  Note 
that these modes only apply to a given port of a DP RAM, read/write behavior between ports is never write-
through (RAW, not WAR).  The register following this optional multiplexer is always present making the output 
synchronous.  Following this is yet another register; it is optional and generally part of the block RAM circuitry 
because it can dramatically speed up read clocking at the expense of one additional clock of latency. 
 
In terms of read-during-write behavior, Hive needs write-through mode (WAR) for the LIFO stacks to function 
correctly.  This mode is unimportant for the main memory however because we will never be simultaneously 
reading from and writing to the data port, and the instruction fetch port is read-only.  In terms of speed, the write 
side can often tolerate a bit of combinatorial logic in front, while the read side is fairly slow if the additional output 
register isn’t used.  So if our architecture can tolerate the latency of the additional read side output register we 
should certainly use it because it speeds things up and is essentially free. 

 
Figure 12.  True dual port block RAM utilized as DQ RAM. 

There is a way to convert DP RAM to DQ RAM, and this is shown in the figure above.  Feeding the same clock, 
address, and write enable to both sides, along with splits / concatenations of the read / write data, accomplishes 
this simple transformation.  In fact the tool will do this automatically when necessary.  For our target Cyclone 3 
device, DP data ports are limited to a maximum of 16 (+2) bits wide, and DQ data ports to a maximum of 32 (+4) 
bits wide – and the 1:2 ratio of these width limits makes sense given the above transformation.  Since our LIFO 
stacks can employ DQ RAM (due to the single pointer / single address port) we can make them 32 bits wide using 
a single device. 

 
Figure 13.  Block RAMs combined via bit-slice. 

We may need our main memory to be considerably larger than a single 9k bit block RAM found in our target 
device.  The tool will automatically combine multiple block RAM devices together, and often with no speed 
decrease – how does it accomplish this?  The trick to making the largest and fastest block RAM amalgam is to 
configure the block RAMs to be one bit wide and maximum depth, 8k in this case, and then simply split / 
concatenate the write / read data by bit slicing the blocks together.  Going above this size requires write enable 
steering and output multiplexing, which will also be inserted automatically by the tool when needed, but this extra 
logic tends to slow things down, particularly on the read side (though pipelining this logic could certainly get it 
back up to speed). 
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DSP Hardware 
Since even quite low-end FPGAs these days have fairly fast hardware multipliers in some form of a DSP block, 
we should undertake any new designs with the knowledge and trust that they will be there.  There is little point in 
leaving multiply operations out of our instruction set, and no point in trying to outsmart the FPGA manufacturers 
by constructing what would inevitably be slower and larger multipliers out of shifters, adders, etc. – both of which 
would needlessly strand this valuable resource. Therefore, it behooves us to understand the dedicated multiply 
hardware. 

 
Figure 14.  Signed multiplier hardware typically found in an FPGA. 

Basic hardware multiplier width is 18 bits, which follows the convention of block RAM widths (2n + 1 extra bit per 
byte).  Being a full multiplier, the result is obviously double this, or 36 bits wide.  As with add hardware, leaving 
some of the MSBs or LSBs unused will allow the remaining utilized multiply hardware to run faster due to fewer 
carry propagations, etc. 
  
Altera multiplier blocks are signed by default, which makes sense because this convention simplifies sign 
extension of the inputs.  In order to make a signed multiplier perform unsigned math, all that is necessary is to 
construct it one MSB wider at the inputs and force those MSBs to zero (zero extension).  Conveniently, this same 
construct can be used to do signed multiplication simply by driving these MSBs with the signs of the inputs (sign 
extension).  This of course requires an extra bit and therefore negatively impacts top speed slightly.  The extra 
output MSBs generated with this scheme are unused (left unconnected) which may generate tool linter warnings if 
not manually limited in the code. 
 
The multiplier hardware can be used in a purely combinatorial sense, but registering will speed it up considerably 
so manufacturers provide “free” internal registers at the inputs and outputs that are not part of the general FPGA 
fabric.  As in the case of block RAM output registers, if our architecture can tolerate the latency of the additional 
multiplier I/O registering we would be crazy not to use it.  This leads one almost inexorably to ALU pipelining. 

Digital Clock Managers (DCMs) 
Virtually all FPGAs have some kind of DCM in the form of one or more PLLs (Phase Locked Loops), and/or DLLs 
(Delay Locked Loops) which may be used for a variety of purposes.  A DCM can move the clock edge around to 
change external setup / hold / data out timing, trade internal cycle time margins for tighter external I/O timing, 
condition the input clock duty cycle, multiply and divide the input clock, generate multiple clocks with phase 
offsets, etc.  The main use for a DCM in a processor core is to manipulate the input clock frequency (multiply / 
divide) so that the clock feeding the core is at or a bit below the top theoretical speed of the core in order to get 
the best performance from it.   
 
Note that there is some lower frequency limit below which a DCM will not be able to lock to or otherwise process 
the input clock, and this figure is given in the AC specifications datasheet for the FPGA.  Also note that running 
the core at high frequencies will increase dynamic power consumption, and may make other logic which isn’t in 
the core but supplied by the core clock more difficult to construct due to the tighter timing constraints.  It is entirely 
possible to have multiple clock domains inside the FPGA, but then one must take special care to condition and 
properly constrain the timing of data (particularly vectors) that cross clock domain boundaries. 
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AALLUU  DDEESSIIGGNN  
The ALU drives much of the rest of the processor design.  Building an ALU for anything but the most trivial of 
processors is more involved than “compute all results and pick the one you want” though there will probably be a 
lot of that going on.  The wide output multiplexer produced by this naïve approach can be a bottleneck, so 
intermediate multiplexing and registering must be employed judiciously in order to keep both the required logic to 
a minimum and the top speed up.  Furthermore, some of the logic can be used to calculate more than one type of 
final result. 

Multiplication 
Let’s start with the elephant in the room – the multiply unit.  If we want to do audio DSP, we need 16 x 16 = 32 bits 
signed as a rather unsuitable bare minimum.  We could probably get by with 16 x 32 = 48 bits signed, with 16-bit 
samples, 32-bit filter coefficients, and a 48-bit result.  For the sake of symmetry and simplicity, let us set the goal 
as full 32 x 32 = 64 bits signed and unsigned.  The use of a signed base entity requires 33 x 33 = 66 to 
accommodate unsigned, which conveniently is slightly less than twice the width of a single 18 x 18 = 36 FPGA 
hardware multiplier. 
 
Just as multiplication is performed by hand using pencil and paper, addition and concatenation enable the 
utilization of several hardware multipliers in parallel, thus increasing the input and output widths.  Consider the 
following base 10 example: 
 

98 
*   67 

    

56 
+  630 
+  480 
+ 5400 

 
 
=> 

56

+ 54__

 
 
=> 

63_
+  48_

 
 
=> 

 
 

111_ 
+ 5456 

6566  5456  111_  6566 

Figure 15.  Multiplication example. 

On the left 98 and 67 are multiplied together in the usual manner, 7x8, 7x90, 60x8, and 60x90.  All of the results 
of multiplication are added together to get the final answer, which requires three additions – or does it?  Looking 
more closely, 5400 and 56 can be simply concatenated, which eliminates one addition.  630 and 480 will always 
have zero as their least significant digits, so this addition is simplified to adding 63 and 48 giving 111.  The result 
1110 will also always have a zero as the least significant digit, so adding it to 5456 simplifies to adding 545 and 
111 and concatenating the 6 to the least significant digit location.  So four half-width multiplications must be 
performed, but the three additions have been reduced to two, narrowed, simplified, and therefore likely sped up. 

 
Figure 16.  Three stage 33 x 33 = 66 bit signed pipelined multiplication. 

The figure above shows these same methods implemented in binary 2s complement logic.  The inputs are split in 
half, with the lower parts zero extended to make them unsigned (interpreting their MSBs as signs would give 
incorrect results).  In the first stage the cross multiplications are performed, in the second stage the outer 



 

concatenation and inner add are performed, and in the third stage the final add / concatenation is carried out (the 
17 LSBs of the add are automatically implemented by the compiler as a concatenation). 
 
In terms of speed, the 18 bit multiplies in the first stage will likely be the slowest logic in the entire design, though 
the 47 bit add in the third stage may be close or possibly slightly worse.  In the target EP3C5E144C8 device the 
multiply is restricted to 200 MHz, which means we should endeavor to make all of the other logic somewhat faster 
in order to have a chance of hitting 200 MIPS aggregate with the final design.  The dedicated I/O registering in the 
multiplier hardware should certainly be used, with interstage registering to isolate the addition hardware, giving 
three stages and four clocks of latency. 

Shifting 
One thing that really nagged me about my earlier designs was that their rudimentary ALUs did not exploit the 
overlapping properties of shift and multiply.  It takes a fair amount of FPGA fabric logic to shift a number to the 
right and left some arbitrary distance and the result isn’t super speedy.  Having a multiplier just sitting there doing 
nothing useful during the shift is a missed opportunity. 

 
Figure 17.  The Multiply and Shift unit. 

When a number is multiplied by a power of 2, say 25, it is shifted to the left 5 bit positions.  So if a full multiplier is 
already present, the positioning of a simple one-hot shifter at the front (1 << n) can eliminate the left shift 
hardware.  Can a right shift be accomplished with the same hardware?  Yes, the trick is to consider the shift 
distance input as signed, with positive inputs causing shifts to the left and negative inputs shifts to the right.  The 
shift distance MSB (the sign bit) is stripped off and used to select the upper (or extended) multiplication result 
when set (negative), and the lower result when zero (non-negative).  The remaining shift distance LSBs are 
treated as unsigned and simply routed to the (1 << n) unit at the input as before.  Here is an 8-bit example that 
may help clarify things: 
 

Shift {s,n} MSB (s) LSBs (n) LSBs (n) B input (1<<n) A input X output 
+7 0 111 7 10000000 10110111 01011011,10000000
+6 0 110 6 01000000 10110111 00101101,11000000
+5 0 101 5 00100000 10110111 00010110,11100000
+4 0 100 4 00010000 10110111 00001011,01110000
+3 0 011 3 00001000 10110111 00000101,10111000
+2 0 010 2 00000100 10110111 00000010,11011100
+1 0 001 1 00000010 10110111 00000001,01101110
 0 0 000 0 00000001 10110111 00000000,10110111
-1 1 111 7 10000000 10110111 01011011,10000000
-2 1 110 6 01000000 10110111 00101101,11000000
-3 1 101 5 00100000 10110111 00010110,11100000
-4 1 100 4 00010000 10110111 00001011,01110000
-5 1 011 3 00001000 10110111 00000101,10111000
-6 1 010 2 00000100 10110111 00000010,11011100
-7 1 001 1 00000010 10110111 00000001,01101110
-8 1 000 0 00000001 10110111 00000000,10110111

Figure 18.  8 bit example of left and unsigned right shifting using a full multiplier. 

Though we are thinking of the shift distance input as signed, the shifted one must be presented to the multiplier as 
unsigned for the 100…000 case to work correctly.  Then presenting the input data to be shifted as unsigned or 
signed will conveniently produce unsigned (“logical” or zero extended) and signed (“arithmetic” or sign extended) 
right shifts.  (Note that independent control over the input signedness is required for this to work, global 
signedness is not sufficient, which restricts the construction of signed shift from a series of more basic 
instructions.)  With this we have left shift covered, which is sign neutral, as well as unsigned and signed right shift. 

Hive_Design_2015-09-03.doc Page 16 of 77  



 

Other Uses 
Can more be done with this construct?  A multiplexer on port A with a fixed input value of one can be used for a 
couple of things.  The first is copying the B input shifted one result to the output of the multiplier, which is useful 
for generating powers of 2, bit setting & masking, etc.  The second is even simpler – multiplication by one 
replicates the B input to the output of the multiplier, which provides us with a free and convenient “copy B” route 
through the ALU (though this copy feature is currently unused in Hive). 
 
Note that signed and unsigned left shift are identical (zero padding from the right).  With a bit of logic governing 
the input multiplexers, one of these redundant modes may be replaced with the power of two described above.  I 
chose to replace immediate unsigned shift left operation, non-negative input shift value, with the power of 2 
operation, which makes it something of an odd man out in terms of operations, but hopefully isn’t too confusing.  
Immediate signed shift left works as expected.  These are summarized below: 
 

Shift Value Instruction Operation Example 
- Shift left, signed Shift right, signed B=-3, A=10110111, Out=11110110 

+,0 Shift left, signed Shift left, signed B=+3, A=10110111, Out=10111000 
- Shift left, unsigned Shift right, unsigned B=-3, A=10110111, Out=00010110 

+,0 Shift left, unsigned Power of 2 B=+3, A=xxxxxxxx, Out=00001000 

Figure 19.  Immediate shifting and power of 2 functions as implemented. 

Addition and Subtraction 
Next we need to consider addition and subtraction.  Signed and unsigned can be handled with the same method 
employed in the multiplier, i.e. by making the inputs one MSB wider and sign or zero extending them depending 
on whether that input value is to be considered signed or not.  As with multiplication, overflow / carry out is 
extended into the double width data space and selected via instructions.  Note that the lower word result is sign 
neutral, so only the extended result will vary based on input signed / unsigned status.  The add / subtract unit is 
also used to compare (A<B) and (A<0) for conditional branching. 

Logical Functions 
For logical functions, the usual suspects are implemented: 
 

Operation Description Examples 
AND A & B A=1100, B=0101 : A=0100 
ORR A | B A=1100, B=0101 : A=1101 
XOR A ^ B A=1100, B=0101 : A=1001 
NOT ~B A=xxxx, B=0101 : A=1010 

BRA &B A=xxxx, B=0101 : A=0000 
A=xxxx, B=1111 : A=1111 

BRO |B A=xxxx, B=0101 : A=1111 
A=xxxx, B=0000 : A=0000 

BRX ^B A=xxxx, B=0101 : A=0000 
A=xxxx, B=0111 : A=1111 

Figure 20.  Logical functions as implemented (examples here limited to 4 bits). 

Note that “BR” stands for “bit reduction”.  The logical unit is also used to compare (A!=B) and (A!=0) for 
conditional branching. 

Miscellaneous Functions 
Functions also performed by the logic unit are move / copy, move / copy lower 16 bits both sign and zero 
extended, 32-bit end-over-end flip, sign bit inversion, and leading zero count. 
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The Completed ALU 

 
Figure 21.  The Arithmetic and Logic Unit (ALU). 

The figure above shows the full ALU.  The dotted lines and numbered boxes represent interstage registering.  
Data enters from the left and proceeds through the pipe, with the result emerging on the right six clocks later.  
Inputs are multiplexed in, and the desired results multiplexed out.  The PC (Program Counter) is multiplexed in 
between stages 2 and 3 for subroutine / interrupt return address use and for simple reading.  Read data from the 
local register set is multiplexed in between stages 3 and 4.  Read and literal data from main memory is 
multiplexed in between stages 4 and 5. This pipeline structure provides natural intermediate value storage, so the 
ALU can be presented with new input data on every clock without worry that the new data will be somehow mixed 
in or confused with previous or later data.  Pipeline interstage registering speeds things up and is an otherwise 
largely stranded FPGA resource, so it might as well be used (my earlier processor designs only employed a few 
percent of the fabric registers, and not surprisingly were relatively slow). 
 
A somewhat thorny issue with ALU design is working out how the control inputs should be implemented.  So as 
not to slow things down with elaborate encoding and decoding, I decided to encode them one-hot, but with a 
precedence that is not actually relied upon in practice.  The control signals are also pipelined, so the data and the 
desired operation on it may be conveniently presented together on the left.  The multiply and shift unit is complex 
enough to have its own controls internally pipelined. 
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MMAAIINN  MMEEMMOORRYY  
Hive data and program memory space are shared.  If we desire full 32-bit single cycle access at the data port 
then the underlying physical memory must be 32 bits wide.  If this is the case then the 16 bit opcode port must 
strip off the PC LSB, use the truncated result as the address, and use the pipelined LSB as the high or low 16 bit 
selector - simple enough so far. 
 
However, if we do not want to restrict 32-bit data access alignment to even base addresses, then additional 
steering logic is necessary at the input and output of the data port.  A strong driver here is full 32-bit literal values 
in-line with the code – it would be nice to be able to place them anywhere in 16-bit width code space with no 
even/odd address restrictions.  For 32-bit values at even addresses the access is straightforward.  However, for 
32-bit values at odd addresses, we need to swap the 16-bit values both going into and coming out of the data 
port, and swap the 16-bit write enables as well.  Most importantly, we must also increment the lower 16-bit 
address by one to get the next higher value.  FPGA BRAM ports only have a single address, so the need for 
differing address values necessitates the use of separate ports – the high and low 16 bit memories must be 
separate physical BRAM entities.  This opens a can of worms for defining initial memory contents (boot code) via 
the SystemVerilog “initial” construct.  To skirt this issue I defined a dual memory within a single SystemVerilog file, 
and then used a temporary continuous / contiguous “ram” array to initialize the high and low real ram arrays via 
odd / even indexing. 

 
Figure 22.  Hive main memory. 

The main memory module for Hive is shown in the above figure.  The ovals represent the points at which the 
internal memory arrays are physically read from and written to.  Not shown is logic in the op decoder that 
multiplies the IM value by two when 32-bit read/write access is desired.  In the first stage, the PC is selected as 
the address for literals, otherwise B+IM is selected as the address for data access.  The LSB is used to swap 16 
bit input data chunks and write enables.  In the next stage, the address with its LSB stripped off is used as the 
upper BRAM address, the incremented address with its LSB stripped off is used as the lower BRAM address and 
the write data and enables are applied.  Note that always incrementing but stripping off the LSB gives an 
incremented address for odd input addresses but not for even addresses, so multiplexing or switching is 
unnecessary here.  In the final stage the pipelined address LSB is used to swap the read 16-bit data chunks, with 
the result sent to the ALU multiplexer - where it is used full width, or the lower 16 bits are zero or sign extended. 
 
The program space port is just as describe previously, with the PC LSB stripped off in the first stage and the 
truncated result applied to both high and low memory address ports.  The pipelined LSB is used to select the 
output in the last stage, the result of which is fed to the opcode decoding unit.  
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RREESSEETT  &&  VVEECCTTOORRIINNGG  

Resets 
There are several ways to reset or clear the Hive core.  Let us go through them from most to least significant: 
 
• The first and most comprehensive way to reset the core is via FPGA (re) configuration, which places all of the 

registers in a known state, and is the only way to unambiguously load or restore the boot code in the main 
memory block RAMs. 

• The second is via asynchronous reset of the fabric registers.  This obviously loads the registers with initial 
values but does not change the contents of block RAM.  Asynchronous reset is a top-level pin (rst_i). 

• The third is via synchronous core clear, which clears all relevant state such as stack pointers and interrupt 
history, and vectors all threads back to their reset addresses.  Core clear is a top-level pin (cla_i or “clear all”). 

• The fourth is by writing ones to all of the vector register thread clear bits.  In this manner, threads can clear 
themselves and all other threads (as well as any combination) as well.  The effect is identical to a core clear 
above (for the threads being cleared). 

 
Figure 23.  Reset bridge. 

The asynchronous reset pin is conditioned and resynchronized to the core clock via a reset bridge, shown above.  
This well-known construct provides asynchronous set and synchronous release of reset, which is necessary to 
eliminate race conditions and to prevent block RAM contents from being corrupted.  Register depth (to eliminate 
various metastability issues throughout the design) is set by the global parameter SYNC_W. 

Vectoring 
Two types of vectoring, or breaking out of current execution, are supported in Hive.  The first is via thread 
clearing, which is described in the reset section above.  The second is via an interrupt service routine (ISR), 
where the PC is pushed to stack zero and the PC is loaded with the ISR address for that thread. 
 
A thread may be interrupted to run a service routine internally via a register-based mechanism similar to that of 
thread clearing described above (ISR) and via an external interrupt request input (XSR).  The thread must be 
armed to handle I/XSRs before it will respond to them.  While servicing an interrupt the thread automatically 
disables I/XSR response so that subsequent I/XSRs are ignored until the current I/XSR is completed.  The 
operation op_irt simultaneously returns the thread to the point of execution before it was interrupted, and re-
enables the thread for interrupt operation.  This automatic disable/enable action prevents stack overflow / 
underflow errors in the event of noise on the interrupt input pin or any other series of too closely spaced requests.  
Any interrupts requested during I/XSR execution are lost, so if your algorithm can’t afford to miss any interrupts 
you need to either modify this construct or add extra hardware to count / time stamp interrupts.  Clearing a thread 
automatically disarms its I/XSR. 
 
Arming and disarming the I/XSR for a thread is performed by writing a one to the associated arm or disarm bit in 
the register set.  These bits behave like radio buttons, where the last one “pressed” or set is the one that is active, 
and in the case of contention disarming takes precedence over arming.  Writing zeros to these bit fields has no 
effect, which makes the mechanism safe for multiple access and control by all threads.  Reading these bit fields 
will reveal the current armed/disarmed state for all threads. 
 



 

 
Figure 24.  XSR input conditioning logic. 

At build time, the user can chose per-thread XSR input conditioning options, the logic for which is shown above.  
The inputs may be resynchronized or not, after that rising edges and / or falling edges may be detected.  This 
same optional input conditioning logic is used for the register set inputs. 

 
Figure 25.  Vector control logic. 

Each thread has single layer of vector logic as shown in the above figure.  Think of the top most set/reset input of 
a given flop as having priority over the bottom input in the case of both being asserted.  These are clocked flops 
with the clock inputs omitted for clarity.  The top flop delays the enable by one clock.  The second flop down is set 
when a write to the arm register bit is performed, and reset via a write to the disarm register bit or via a thread 
clear.  The flop output is sent to the register set to indicate arm/disarm status for the thread.  The third flop down 
is set when the thread is armed and an internal register-based interrupt or external interrupt is initiated, and reset 
via an interrupt return (an op_irt instruction decoded by the opcode decoder) or via a thread clear.  The flop output 
is sent to the register set to indicate whether the thread is currently servicing an interrupt.  The fourth flop down is 
set when an interrupt is requested and the thread is not currently servicing an interrupt; the flop output is held 
(queued up) until the ISR signal is sent to the decoder unit, after which it is retired.  The bottom flop employs 
identical logic to issue thread clears initiated via the register set or via an external synchronous core clear. 
 
Note that there is no distinction made between internally and externally initiated interrupts, which obviates the 
need for prioritization between them.  Because of this, it is recommended that only one or the other be used (per 
thread). 
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RREEGGIISSTTEERR  SSEETT  
Any processor core will need a local, or internal register set to manage things like the reading and retirement of 
basic operational errors, enabling and disabling of interrupts, general purpose I/O communications, reading of 
timers, care and feeding of UARTs and watchdog sanity timers, etc.   

RBUS 
RBUS is the internal expansion bus that connects all of the registers together and provides communication to / 
from the core. Multiple registers are assembled into a register set by using a big OR gate to combine their read 
data vectors.  Access to the register set is via two op_reg instructions and the internal ALU multiplexer.  
 
The base registers that form the complete register set need not all be instantiated in a single component.  They 
can hang off the RBUS anywhere in the design, thus enhancing modularity and reducing I/O count. 

Base Register Component 
Register set implementation can be a dull, repetitive, bug prone, and difficult to verify exercise.  To automate this 
to some degree and to reduce the chance of errors creeping in, at the foundation of the Hive register set is a 
configurable multi-function single base register component with many parameter-based options.   

    
Figure 26.  Configurable base register component (two views). 

Above are two different schematic views of the interface to the configurable single base register component.  The 
view on the left is interface-centric, with the RBUS interface on left and the per-register logic interface on the right.  
The view on the right is pipeline-centric; with the RBUS write interface on the left, RBUS read interface on the 
right, and per-register logic interface on the top.  With the interface-centric view the read and write options are 
more distinct, but the pipeline timing is less obvious.  Note that, depending on configured functionality, the 
pipeline-centric view per-register inputs and outputs are not necessarily shown as residing in the correct pipeline 
stages.  The goal here is to make the selected options plus the external logic “look” or behave like a single layer 
of stage 2 pipeline registering as this simplifies the consequences of thread interaction via the register set. 
 
Placement of each individual base register within the register set address space is governed by a bus address 
input parameter to each base register component.  Via masks, any number and combination of read / write bits 
can be “live” (provided with functional logic) with any read / write registers initialized to a known value at reset.   



 

Write Modes 
The five possible write side configuration logic modes are shown below and summarized in the following table: 

 
Figure 27.  Write modes. 

 
WR Mode Notes 
“THRU” Write bits directly drive output bits (no latch). 
“LOOP” Read bits looped back to drive output bits (no latch). 
“REGS” Write bits continuously registered (not latched), register drives output bits. 
“LTCH” Write bits latched @ write, latch drives output bits. 
“COW1” Output bits set @ input 1, cleared @ write 1 (set has priority). 

Figure 28.  Write mode descriptions. 

Read Modes  
The five possible read side configuration logic modes are shown below and summarized in the following table: 

 
Figure 29.  Read modes. 

 
RD Mode Notes 
“THRU” Input bits directly drive read bits (no latch). 
“LOOP” Output bits looped back to drive read bits (no latch). 
“REGS” Input bits continuously registered (not latched), register drives read bits. 
“LTCH” Input bits latched @ read, latch drives read bits (weird!). 
“CORD” Read bits set @ input 1, cleared @ read (set has priority). 

Figure 30.  Read mode descriptions. 

Note that all of the constructs supply read and write event information to the per-register logic interface, and these 
strobes are timed to indicate the point at which data changes at that interface. 
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Input Conditioning 
Via masks, register input data can be optionally resynchronized and/or made edge sensitive via the circuitry 
shown below: 

 
Figure 31.  Input conditioning logic. 

Also, please note that the “COW1” and “CORD” options were carefully constructed in such a way as to not miss 
any input events happening at the time of clearing; this was accomplished by giving the set inputs priority over the 
clear inputs.  Missed inputs could lead to the underreporting of events, software lock-up, and other bad things. 

Examples 
The following table lists the read and write modes for some typical cases: 
 

WR Mode RD Mode Notes 
“LTCH” “LOOP” Your basic read / write register. 
“COW1” “LOOP” Clear On Write 1 register. 
“LOOP” “CORD” Clear On ReaD register (and provides feedback to external logic). 
“THRU” “THRU” Pass-through register to / from external logic. 

Figure 32.  Some typical examples. 

Most common register types can be formed via various combinations of the modes, most others can be 
implemented by adding a bit of circuitry to this base construct.  Mixed mode bits in a single register are not 
directly supported but two or more base registers could be concatenated if this is desired.   
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Hive Register Set 
The Hive internal register set includes the following basic functionality (note that the first four registers reside in 
the core and the remaining reside at the top level): 
 
 
Decode: 
- 0x00 : Core version register - ver_reg 
- 0x01 : Time register - time_reg 
- 0x02 : Vector register - vect_reg 
- 0x03 : Error register - error_reg 
- 0x04 : UART register - uart_reg 
- 0x05 : I/O register - io_reg 
- 0x06 - 0x3F : UNUSED 
 
 
================================================================================ 
- 0x00 : Core version register - ver_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-00  ver[31:0]            version info 
 
Notes:  
- Read-only. 
- Nibbles S/B BCD (0-9; no A-F) to be easily human readable,  
  and to eliminate confusion between decimal and hex here. 
 
================================================================================ 
- 0x01 : Time register - time_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-00  time[31:0]           time 
 
Notes:  
- Read-only. 
- Up-count @ core clock rising edges. 
- Threads can read this for relative time. 
- Threads can read this & mask off time[2:0] for thread ID. 
 
================================================================================ 
- 0x02 : Vector register - vect_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
07-00  isr_dis[7:0]         1=thread interrupt disarm 
15-08  isr_arm[7:0]         1=thread interrupt arm 
23-16  isr_req/isr_act[7:0] write 1 request thread interrupt, read ISR status 
31-24  clt_req[7:0]         write 1 request thread clear 
 
Notes: 
- Per thread internal interrupt (maskable). 
- Per thread clear (non-maskable). 
- Per thread arm & disarm masking of interrupts. 
- Set on write one radio buttons for ISR arm / disarm. 
- Clear takes precedence over ISR: 
  - e.g. write 0xFFFFFF00 clears all threads. 
- Disarm takes precedence over ISR arm: 
  - e.g. write 0x0000FFFF disarms all ISRs for all threads. 
- Thread must be armed before ISR can be issued. 
- Thread ISRs disarmed @ associated thread clear and async reset. 
- ISR ignored during interrupt servicing until op_irt encountered. 
 
================================================================================ 
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================================================================================ 
- 0x03 : Error register - error_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
07-00  pop_er[7:0]          1=lifo pop when empty; 0=OK 
15-08  push_er[7:0]         1=lifo push when full; 0=OK 
23-16  op_er[7:0]           1=opcode error; 0=OK 
31-24  -                    0 
 
Notes: 
- Clear on write one. 
- Per thread error reporting. 
- All bits cleared @ async reset. 
 
================================================================================ 
- 0x04 : UART register - uart_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
07-00  uart_data[7:0]       read RX UART data, write TX UART data 
   08  rx_rdy               1=RX UART ready (has new data); 0=not ready 
   09  tx_rdy               1=TX UART ready (for new data); 0=not ready 
31-10  -                    0 
 
Notes:  
- Reads from this register pop data from the RX UART. 
- To avoid RX data loss, read soon after RX UART might be ready. 
- Writes to this register push data to the TX UART. 
- To avoid TX data loss, restrict writes to when TX UART is ready. 
- UART ready bits will self clear after associated register operation. 
 
================================================================================ 
- 0x05 : I/O register - io_reg 
-------------------------------------------------------------------------------- 
 
  bit  name                 description 
-----  ----                 ----------- 
31-00  io[31:0]             I/O data 
 
Notes:  
- Separate read / write of I/O data. 
 
================================================================================ 
- 0x06 - 0x3F : UNUSED 
================================================================================ 
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UUAARRTT  
For communication with the outside world, Hive has a double buffered UART with DDS (Direct Digital Synthesis) 
BAUD generator.  Parity, flow control, and break detection are not supported.  The UART is accessed via the 
register set. 

Conventions 
Internally the serial data is non-inverted, and the quiescent level is high.  An external inverting and level shifting 
serial buffer should be fitted if RS232 electrical levels are desired, but no additions or changes are necessary for 
intercommunication via TTL levels.  The serial bits are little endian and in this order: one start bit (low), eight data 
bits with LSB first, MSB last, one or more stop bits (high).  Common BAUD rates are 2400 and 3600, and 2n 
multiples of these: 2400, 4800, 9600, 19200, 38400, 76800, 153600; 3600, 7200, 14400, 28800, 57600, 115200. 

Transmit Side 
The TX UART state machine is shown below:   

 
Figure 33.  TX UART state machine. 

When parallel data is written to the UART register the ready bit goes low.  The machine transitions from the idle 
state to the wait state, and once synchronization to the BAUD generator is achieved it transitions to the load state, 
where the parallel data is taken, ready is returned high to signal that new parallel data may be written to the 
register, and the machine then transitions to the data state.  Here the data is sent out over the serial line as 
described above.  Once this is done, the machine goes idle if there is no new parallel data, or goes to the load 
state if there is new parallel data to transmit.  In the latter case, since the machine is already synchronized with 
the BAUD generator, there is no need to resynchronize it.  Note that new parallel data can be written as soon as 
the current parallel data it is taken at the load state, making this a “double buffered” action. 

Receive Side 
The RX UART state machine is shown below: 

 
Figure 34.  RX UART state machine. 

When a low is seen on the serial line (i.e. the start bit) the machine transitions from the idle state to the data state, 
where the serial data is sampled mid bit and stored in a parallel form.  After 10 bits are stored (start, data, stop) 
the machine transitions to the load state and the parallel data is presented to the register set.  At this point, the 
line is sampled for the current level.  If the level is high, the machine transitions to the idle state to wait for new 
data.  If the level is low this is an error, and the machine transitions to the wait state and waits for the error to 
clear, after which it goes idle.  The number of stop bits greater than one is irrelevant to the RX side.  This is a 
“double buffered” action because old parallel data is presented until new data is completely received, after which 
the old data is overwritten with the new data. 



 

BAUD Generator 
The BAUD generator consists of a modulo phase accumulator.  This construct is deceptively simple though quite 
powerful and broadly applicable.   

 
Figure 35.  UART BAUD generator. 

Successive additions of the unsigned input value cause the accumulated value to steadily increase until rollover, 
where it naturally restarts from the modulo remainder.  The frequency of the rollover rate is therefore directly 
proportional on the input value, and inversely proportional to the value of 2 raised to the power of the accumulator 
width D (i.e. the number of unique values a binary number of width D can represent).  In mathematical terms: 
 
 clk_o = clk_i * FREQ / 2D 
 
Where clk_i is the system clock frequency and clk_o is the accumulator rollover rate.  The input width N governs 
the output frequency resolution, and I chose 8 bits here to give a maximum possible error of 1/(28) or 0.39% for a 
full-scale input.  For input values smaller than full-scale, the maximum possible error is governed by the input 
value itself, which is automatically calculated by the code (at build time) to be in the range [0.5:1.0) of 2N in order 
to minimize this error.  The qualifier “maximum possible” is used here because, depending on the system clock 
frequency, the desired output frequency, and D, the specific error may be anywhere between zero and the 
maximum.  Zero error obviously occurs for the cases when clk_o / clk_i = FREQ / 2D, where all of the numbers 
are integers. 
 
The MSB of the accumulator is employed as the UART BAUD clock input, with a roughly square wave duty cycle.  
It isn’t actually used as a clock per se (which would be bad form), but rather it is examined for level changes by 
the UART logic which runs off of the system clock.  When used as a square wave clock source, the phase 
accumulator construct is known for generating spurious spectral components.  There are various techniques that 
can be applied in order to reduce these, such as setting the FREQ LSB permanently to a '1' and/or dithering the 
accumulated value with noise, but for UART use I believe spectral purity concerns are moot. 

Options 
The UART has several build-time parameters, which include BAUD rate, parallel data width, number of stop bits 
for the TX side, and oversampling rate (generator BAUD rate / line BAUD rate).  Errors reported include bad start 
and stop bits on the RX side, and bad data buffering at the parallel RX interface (data loss due to neglect).  There 
is also a diagnostic serial loopback.  Note that the errors and loopback are not currently connected to the UART 
register. 
 
By default, the UART is configured for 8n1 @ 115.2k.  All internal parameters are automatically calculated at build 
time given the core clock speed, desired baud rate, oversampling ratio, data width, stop bits, etc.  BAUD rate is 
currently fixed, though this could be easily altered in order to accommodate other rates, common (RS232) or 
uncommon (e.g. MIDI).  
 
If so desired, one could add RX side logic that times the error wait state in order to detect break events.  Breaks 
are traditionally used to interrupt or reset the processor, or to initiate other high level system events. 
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PPIIPPEELLIINNEEDD  CCOORREE  

 
Figure 36.  Hive core. 

Shown above is the full Hive core.  The dotted lines and numbered boxes represent interstage registering.  I’ll 
refer to the logic following a line of registers with the same numbering as the registers to the left, e.g. stage 3 logic 
is located between the “3” and “4” register lines.  Pipeline stage numbering is relative to the results of opcode 
decoding being presented to the core logic. 
 
It is vitally important to note that the left and right edges of the figure are connected, which converts the horizontal 
paths into loops, and so the core may be thought of as one large ring structure.  As with the ALU, the pipeline 
interstage registering provides natural storage for intermediate results.  With the pipelines configured as rings, 
values such as the PC and the LIFO pointers are not only buffered but actually stored in the interstage registering 
(much of which would be required anyway were we to implement multi-threading sans pipelining).  Clearly, this 
also forms a natural and simple scheduling mechanism, with packets of data and associated control information 
spinning around a global ring, passed from stage to stage in a circular bucket brigade fashion, all independent of 
one another, isolated by and stored within the pipe interstage registering.  Let’s call these packets “threads” – 
each stage of the core pipeline can receive and temporarily store, process, and pass on data and control 
information for a single thread, and there are 8 stages, so we have 8 threads.  (Given extra buffering, one could 
have more threads than pipeline stages with this scheme, but not vice-versa.) 
 
The core may then be thought of as eight processors running at 1/8 the clock speed, sharing a memory (code and 
data) space which facilitates intercommunication between them as well as code compaction / factoring (the 
sharing of common constants, subroutines, code, and data).  The ring structure of the core forms a “barrel” type 
scheduler for the threads.  Each thread is unique, has as much real time as the next, and gets equal access to the 
core resources in a strictly offset / overlapped / non-interfering manner.  It is up to the programmer to keep the 



 

threads busy doing something, though of course unused threads could simply loop, perhaps waiting for an 
interrupt or a semaphore in memory to change (i.e. “camping on a bit”). 
 
Let us look at the individual rings in a bit more detail. 

Time ID Ring 
 

 
Figure 37.  The Time ID “Ring”. 

Threads needs an identification number to correctly time the injection of thread clear and interrupt events into the 
ring, for stack error reporting, and to generate thread clear and interrupt addresses.  (All threads could vector to 
the same clear and interrupt address, but that would require overhead for the thread when emerging from start up 
or when servicing an interrupt: read the thread ID from the local register set, use it to lookup or offset an address, 
jump there, etc.).  A simple up counter at the beginning of the ring generates the thread ID.  A true ring structure 
sans counter could be used here, but that would rely on everything going well from hard reset to infinite time 
(never do this if you can avoid it) so we break the ring and use a counter and pipe construct instead because it is 
inherently self-correcting.  The interstage registers emerge from reset with the values they would normally have if 
previously fed by the counter, and thread ID zero is the first to emerge from a global reset, followed by one, two, 
etc.  Note that this isn’t a true scheduler, just a round robin doling out of identifiers, and any scheme that produces 
a continuously repeating fixed pattern where each ID is generated once every eight clocks would suffice.  ID here 
is actually just the three lowest bits of the 32-bit “Time” counter. 

Program Counter Ring 

 
Figure 38.  The Program Counter Ring. 

Above is the program counter ring.  At stage zero the PC is replaced by the thread clear address is if the thread is 
being cleared, left alone if the thread is taking an interrupt, or incremented to get the next instruction (or in-line 
literal).  In stage one the PC is used as the address for the main memory data port if retrieving in-line literal data.   
In stage two, the PC is sent to the data path for reading, or as a return address if taking a subroutine or interrupt, 
and is replaced with the thread interrupt address if taking an interrupt.  In stage three, the PC is incremented by B 
(or an immediate value) if taking a relative branch, or replaced by B if performing an absolute branch or 
subroutine.  In stage four, the PC is used as the address for the main memory instruction port to fetch the next 
instruction. 
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Control Ring 

 
Figure 39.  The Control Ring. 

The thread ID ring and PC ring, together with the opcode decoding unit and the vector controller, form the control 
ring.  Opcode decoding takes place in several stages in order to speed it up, and consequently the instruction 
fetch must happen early in the pipeline, which means conditional testing has to take place even earlier.  The 
vector controller uses the thread ID to inject thread clear and interrupt events into the control ring structure (and to 
retire these events once injected).  These events are handed off to the opcode decoder where they are prioritized 
and decoded.  Note that each thread has its own separate clear and interrupt.  The clearing or interruption of one 
or more threads will not disturb the other normally functioning threads.  The abundance of independent interrupts 
means that hierarchical interrupt logic / code will not be necessary for most applications. 

Stacks Ring 

 
Figure 40.  The Stacks Ring. 

Shown above is the stacks ring.  In stage zero the stack levels are cleared if the thread is being cleared.  In stage 
1 valid pop events decrement the relevant stack level(s).  In stage five valid push events increment the relevant 
stack level.  Not shown in stages one and five is logic that measures fullness and prevents push when full / pop 
when empty from corrupting the stack levels (if so configured at build time).  These error events are reported to 
the local register set for debugging purposes.  Separating the clear, pop, and push logic in this manner actually 
simplifies combined pop & push actions, as well as error tracking and reporting.  Valid pushes also generate write 
enables for the LIFO memories, which are pipelined and applied in stage six.  Also in stage six the stack levels 
are stripped of their MSB to form pointers, and are concatenated with the thread ID to form the LIFO memory 
write / read addresses, and the ALU result is written to one of the stack memories.  This pointer / thread ID 
concatenation scheme gives each thread its own private set of stacks in shared block RAM, and renders stack 
corruption from one thread to another impossible.  Stack to stack corruption within a thread is also impossible due 
to the physically separate block RAMs employed for each stack. 
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Data Ring 

 
Figure 41.  The Data Ring. 

As shown above, the stack output multiplexer, ALU, and stacks ring constitute the data ring. 
 
Finally, the control ring, data ring, main memory, and local register set make up the Hive core.  Note that the time 
counter in the ID ring and the vector unit in the controller ring both line up with the register set component 
read/write oval.  This is not a coincidence, this placement facilitates the pipelining of the register set logic and so 
keeps thread interaction via the register set from “time traveling” in the overall pipeline. 
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IINNSSTTRRUUCCTTIIOONNSS  //  OOPPCCOODDEESS  
With the hardware structure in place, we can now decide on the operations and their encoding.  In actuality, the 
design process isn’t this cut and dried, and the inclusion and format of certain instructions will obviously ripple 
back into the hardware structure.   
 
Beyond Turing completeness, selecting a sufficiently self-contained and balanced set of “basic building block” 
instructions for general purpose use is something of a conundrum – you want to accommodate your own early 
coding examples, but how do you guarantee efficient coverage for future code you and others may write without 
resorting to a “kitchen sink” design?  Studying the instruction sets of similar processors is a useful activity here, as 
is coding up often-used simple functions like division and others, which are not supported directly by the ALU.  If 
the coding process feels particularly laborious, or the resulting code strikes you as unusually awkward or cryptic, 
then you likely have more work to do. 
  
Determining how to best fit the instructions into the opcode space can be a challenge and you will likely 
experience design pushback due to opcode space limitations – if you don’t you probably left out something 
important or aren’t otherwise utilizing the space efficiently.  From the previous discussion, we know there are at 
most two stack indexes of three bits each, with one pop bit for each index.  This consumes eight bits of opcode 
space, leaving eight bits remaining.  Most processors utilize the operand select field room freed up when fewer 
operands are required for a particular operation, and Hive does this as well. 

In-Line Data 
The bandwidth consumed by immediate / literal data is quite important; some processor designs devote (literally!) 
half of the opcode space to a single immediate data operation.  With Hive, the way to insert larger literal data 
values from the instruction stream is via an in-line mechanism, where the data value immediately follows the 
op_lit instruction in program space.  The in-line literal instructions use 32 or 48 bits: the 16-bit literal instruction 
followed by 16 or 32 bits of data (the data is used “literally” rather than decoded) but just one cycle to push 16 or 
32 bits of data.  So there is a full width literal instruction, as well as signed and unsigned literal low instructions.  
One bad thing about the in-line literal mechanism is that you can’t be 100% sure what is code and what is data 
without starting at the very beginning of execution and decoding everything up to the point you are interested in.  
Luckily this is exactly what the processor does anyway, but it can create issues when displaying disassembled 
memory dumps and the like. 

In-Line Addresses? 
At the excellent suggestion of one Hive reviewer, I experimented with this in-line mechanism as a source of 
absolute addresses and address offsets.  Doing so conveniently obviates the need for an immediate data field in 
the branch instructions, which frees up the second stack index and gives generic (A?0) and (A?B) conditional and 
unconditional relative and absolute jumps (and subroutines if desired) of 32 bits.  I very reluctantly abandoned this 
tantalizing avenue because of the timing pinch point it created between conditional evaluation, address / offset 
selection, next address calculation, fetch, and decoding, which unacceptably slowed down the core logic.  It also 
introduced a bit of confusion as to what exactly the address offset was relative to - the jump instruction or the 
following in-line value?   

Immediates 
Instructions that contain an immediate data or address offset field can be quite effective, though they quickly 
gobble up opcode space so they need to be firmly in the frequent use category to earn their keep.  The immediate 
field width and position within the opcode need not be fixed.  I decided to implement immediate 8-bit and 6-bit 
signed instructions, as well as immediate 8-bit, 6-bit, and 4-bit unsigned instructions.  The 8-bit unsigned 
immediate is used for operations that require the selection of one or more of the stacks, the 6-bit unsigned 
immediate as the register space address, and the 4-bit unsigned immediate as a memory access address offset. 
 
Immediate instruction types and opcode space consumption: 
 
• Two 8-bit unsigned immediate instructions: stack operations – 512 codes. 
• Two 6-bit signed immediate data instructions: signed shift left, power of 2 / unsigned right shift – 2048 codes. 
• Two 6-bit unsigned immediate address instructions: register access – 2048 codes. 
• Seven 8-bit signed immediate address instructions: unconditional jump, data, add, conditional (A?0) jump – 

24832 codes. 
• Four 4-bit unsigned immediate address instructions: memory access – 16384 codes. 



 

 
These are shown below in tabular form: 
 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
OPCODE B A 
OPCODE IM[8] 

OPCODE IM[6] A 
OPCODE IM[8] A 
OPCODE IM[4] B A 

Figure 42.  Instruction formats (top to bottom): Non-immediate instruction, 8-bit signed / unsigned; 6-bit 
signed / unsigned; 8-bit signed; 4-bit unsigned. 

Immediate Jumps  
The longer a loop is, the less we tend to be concerned with loop overhead.  However, immediate branching is vital 
to the production of fast, compact, iterated code.  Even if we constrain the maximum immediate jump distance to 
be quite small, the plethora of fundamental and therefore essential conditional tests means the immediate branch 
instructions can easily consume a huge portion of the total opcode space. 
 
In the end I decided to implement eight skip [PC+1] conditional (A?B) jump instructions, eight skip 2 [PC+2] 
conditional (A?B) jump instructions, four 8 bit immediate signed distance [PC+127/PC-128] conditional (A?0) jump 
instructions, and one 8 bit immediate signed distance [PC+127/PC-128] unconditional jump instruction.  Jumps 
are relative to the PC and jump the signed immediate distance if the test is true. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x0 0x4 IM[8] 

                
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 L N IM[8] PA A 

Figure 43.  Immediate address instruction formats (top to bottom): unconditional jump; (A?0) conditional 
jump. 

All relative branching is relative to the next instruction address, and not this instruction address, which is the most 
natural convention: a relative jump of 0 does nothing, a relative jump of +1 skips over the next instruction, and a 
relative jump of -1 is an infinite loop. 
 
The only thing conditional about a conditional instruction is whether the branch is taken.  Pops are always 
performed if pop bits are set in the conditional instruction. 
 
Other than equality, the most useful conditional tests tend to split the numerical space under test in half via sign 
(less than zero, not less than zero), and subtraction sign (less than, not less than).  I have found other 
combinations of less than, equal to, and greater than testing to be less useful, and so are not directly supported in 
Hive.  (A?B) testing seems to happen more rarely than (A?0) testing, so these comparisons are relegated to the 
skip groups; swapping the positions of A and B in the tests provides more in the way of useful combinations; the 
comparisons less than, and not less than, have both signed and unsigned variants.  Odd / even testing is included 
but the need for it seems less pressing so it is placed in the skip groups. 
 
Some conditional sign conventions / observations: 
 
• The comparisons L (A<0), and NL (A>=0) of A to zero necessarily treat A as signed.   
• All comparisons of A and B that are signed | unsigned treat both A and B as signed | unsigned. 
• The equality comparisons Z (A=0), NZ (A!=0), E (A=B), and NE (A!=B) are obviously sign neutral. 

Immediate Memory Access 
There are 4 instructions for memory access: two for read and two for write.  There is a full 32-bit read, and a low 
16-bit sign extended read.  Similarly, there is a full 32-bit write and low 16-bit write.  An unsigned 4-bit immediate 
field provides a group of 16 convenient memory slots from a base address.  This offset is automatically resized 
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according to access width (*2 for full access), and full access can be across non-even address boundaries (where 
the base address pointed to by B is odd). 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 L W IM[4] PB B PA A 

Figure 44.  Immediate address instruction format: memory access. 

Data and code space are shared, which enables the programmer to freely allocate and partition it, and enables 
the copying in of new code via this data read / write mechanism.  These instructions use up a lot of the opcode 
space, but memory operations consume many cycles on average, so they should be made as efficient as 
possible. 

Immediate Register Access 
There are two instructions for register set access: full 32-bit read and write.  An unsigned 6-bit immediate field 
provides access to as many as 64 registers. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x9 1 W IM[6] PA A 

Figure 45.  Immediate address instruction format: register access. 

Immediate Shifts / Power of two 
Shifts distances / directions known at “compile time” are most efficiently coded as 6-bit wide signed immediates.  
Immediate shift instructions are highly useful because they allow for full 32-bit left or right shifting in a single cycle, 
and one or two shifts can perform many chores that would otherwise require dedicated instructions and hardware 
(full width MSB / sign flag, arbitrary width sign / zero extension, isolation of contiguous bit fields, 2n integer 
modulo, etc.). 
   

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x9 0 U IM[6] PA A 

Figure 46.  Immediate shift instruction format. 

The immediate unsigned shift performs a power of two (one hot bit) function when the shift distance is non 
negative, and unsigned right shift when the shift distance is negative.  This dual functionality replaces the 
redundant left shift (signed and unsigned left shift otherwise produce identical results) with a useful secondary 
operation.   

Immediate Add 
An immediate signed add is provided for small quick increments / decrements [+127/-128].  Conveniently for 
memorization purposes, the most significant nibble is 0xA. 
   

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0xA IM[8] PA A 

Figure 47.  Immediate add instruction format. 

Immediate Byte 
With Hive, the immediate signed data instruction is the way to insert small data values from the instruction stream.  
The immediate data instruction uses 16 bits and one cycle to push eight signed bits of data to the stack selected 
by A.  Conveniently for memorization purposes, the most significant nibble is 0xB. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0xB IM[8] PA A 

Figure 48.  Immediate data instruction format: byte. 

Branching 
There are four types of non-immediate branches – jump, go to, I/XSR return, and subroutine: 
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• JMP (jump) is relative to the current PC and is either conditional or unconditional.  It jumps a signed distance 
given by B either unconditionally or if the test (A?0) is true. 

• GTO (go to) is absolute and is either conditional or unconditional.  It loads the PC with the value given by B 
either unconditionally or if the test (A?0) is true. 

• IRT (interrupt return) is an unconditional GTO that re-enables the I/XSR state logic. 
• GSB (go to subroutine) is absolute and unconditional.  It loads the PC with the value given by B and stores 

the return address (the current PC) to A. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x3 0 0 C N PB B PA A 

Figure 49.  (A?0) conditional jump instruction format. 

Note that there is no explicit return from subroutine operation – a GTO is used here.  The return address can be 
simultaneously popped at this point as well for cleanup. 
 
After some deliberation, I deemed conditional IRT and GSB instructions as too confusing and not possessing 
sufficient need / utility, so they are not implemented (though they easily could be). 

Shifts / Powers of 2 
Variable shifts in both signed and unsigned variants are provided.  I felt it was important to keep the variable shifts 
unmixed in functionality (i.e. no power of two here as exists in the immediate form) so that there could not be 
unexpected behavior, and so sign testing of the shift variable might not be necessary.  A separate variable power 
function generates powers of two and is sign agnostic regarding the shifted one distance input value. 

Arithmetic & Logical 
Add, subtract, multiply, shift, and all of the logical operations have been described previously.  Functions also 
performed by the logic unit are move / copy, 32-bit end-over-end flip, sign bit inversion, and leading zero count. 

Stack Pop 
By repurposing the entire operands area of the opcode, the stack pop instruction is able to pop all, none, or any 
combination of stacks at once. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x0 0x1 IM[8] 

Figure 50.  Stack pop instruction format. 

Stack Clear 
By repurposing the entire operands area of the opcode, the stack clear instruction is able to clear all, none, or any 
combination of stacks at once. 
 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0x0 0x2 IM[8] 

Figure 51.  Stack clear instruction format. 

Other Instructions 
There are several stack and miscellaneous instructions: 
 
• PGC pushes the current program counter (pointing to the next instruction) to A. 
• NOP is a do nothing instruction; all functionality including pops is disabled. 
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Naming Conventions 
Consistency is important with instruction naming conventions so that one can easily remember them or, failing 
that, quickly construct them knowing some basic rules.  The letters “op_” precede all Hive instructions, and this is 
mainly to avoid conflict with SystemVerilog reserved words.  After this is the three-letter operation, usually 
followed (but not necessarily) by a second underscore and one or more option letters.  Obviously not all 
operations support all options. 
 

op_* Function 
nop No OPeration  // no pops either 
pop POP  // one-hot bit per stack 
cls CLear Stacks  // one-hot bit per stack 
pgc ProGram Counter  // A := PC 
lit In-line LITeral data  // A := MEM[PC] 

reg REGister access  // A := REG[I]; REG[I] := A 
cpy CoPY  // A := B 
nsb Not Sign Bit  // A := {~B[31], B[30:0]} 
not Bitwise logical NOT  // A := ~B 
and Bitwise logical AND  // A &= B 
orr Bitwise logical OR(R)  // A |= B 
xor Bitwise logical XOR  // A ^= B 
bra Bit Reduction And  // A := &B 
bro Bit Reduction Or  // A := |B 
brx Bit Reduction Xor  // A := ^B 
flp FLiP  // A := B[0:31] 
lzc Leading Zero Count  // A := LZC(B) 
add Arithmetic ADDition  // A += B 
sub Arithmetic SUBtraction  // A -= B 
mul Arithmetic MULtiplication  // A *= B 
shl Shift Left  // A <<= (B or I) 

pow POWer  // A := 1<<B 
jmp JuMP  // PC := PC+(B or I) 
gto Go TO  // PC := B 
irt Interrupt ReTurn  // PC := B (re-enable ISR) 

gsb Go SuBroutine  // PC := B, A := PC 
mem MEMory access  // A := MEM[B+I]; MEM[B+I] := A 
byt BYTe data  // A := I 
shp SHift (unsigned) | Power of 2 

Figure 52. Instruction operations. 

 
Op_*_? Function 

# Immediate field bit width 
r Read 
w Write 
n Not 
e Equal 
l Less / Low 
z Zero 
s Signed 
u Unsigned 

Figure 53.  Operation options. 

Rules for these options are: 
 
• Single underscore between instruction and options. 
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• The option # if present comes first. Some operations exist only in an immediate form (dat, reg, mem) and the 
rule here is to only include the immediate # option for disambiguation (with shp_6u the only exception). 

• The options r, or w if present come next. 
• The conditional options n, e, l, and z if present come next, and in that order. 
• The options s or u if present go last. 
• The s and u options for arithmetic operations imply extended results. 
• The s and u options for copy, literal, and memory access operations imply lower results. 
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Encoding 
When assigning the actual numerical values to the instructions – the operational encoding or opcodes – it is 
important to make the decoding as straightforward and orthogonal as possible.  I initially used a spreadsheet to 
keep track of them, with a column for each output control signal.  This helps to reveal similar decoding patterns, 
which allows the opcodes to be grouped together / advantageously arranged for ease of interpretation by the 
decoding logic. 
 

Codes Instruction 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
256 nop 0x0 0x0 - - 
256 pop 0x0 0x1 IM[8] 
256 cls 0x0 0x2 IM[8] 
256 jmp_8 0x0 0x4 IM[8] 
256 pgc 0x0 0x8 PB B PA A 
768 lit 0x0 1 1 L U PB B PA A 
2048 skp (A?B) 0x1 0 U L N PB B PA A 
2048 sk2 (A?B) 0x1 1 U L N PB B PA A 
1024 jmp (A?0) 0x2 0 0 L N PB B PA A 
1024 gto (A?0) 0x2 0 1 L N PB B PA A 
256 jmp 0x2 0xC PB B PA A 
256 gto 0x2 0xD PB B PA A 
256 irt 0x2 0xE PB B PA A 
256 gsb 0x2 0xF PB B PA A 
768 cpy 0x3 0 0 L U PB B PA A 
256 bnh 0x3 0x1 PB B PA A 
256 not 0x3 0x4 PB B PA A 
256 and 0x3 0x5 PB B PA A 
256 orr 0x3 0x6 PB B PA A 
256 xor 0x3 0x7 PB B PA A 
256 bra 0x3 0x8 PB B PA A 
256 bro 0x3 0x9 PB B PA A 
256 brx 0x3 0xA PB B PA A 
256 flp 0x3 0xC PB B PA A 
256 lzc 0x3 0xD PB B PA A 
16384 mem 0 1 L W IM[4] PB B PA A 
768 add 0x8 0 0 X U PB B PA A 
768 sub 0x8 0 1 X U PB B PA A 
768 mul 0x8 1 0 X U PB B PA A 
512 shl 0x8 1 1 0 U PB B PA A 
256 pow 0x8 0xE PB B PA A 
1024 shl_6s 0x9 0 0 IM[6] PA A 
1024 shp_6u 0x9 0 1 IM[6] PA A 
2048 reg 0x9 1 W IM[6] PA A 
4096 add_8 0xA IM[8] PA A 
4096 byt 0xB IM[8] PA A 
16384 jmp_8 (A?0) 1 1 L N IM[8] PA A 

Figure 54.  Opcode encoding. 

As seen in the table above, the single instructions are arranged by functionality in four groups of 16, with the first 
group something of a catchall, branching second, logical third, memory access fourth, and arithmetic fifth.  The 
immediates follow, with immediate shifts, add, and data first, and (A?0) jumps bringing up the rear.  Most 
instructions are conveniently segmented into hex fields, which facilitates human reading / interpretation. 
 
There are some opcode slots open for future expansion, but the opcode space is otherwise largely consumed by 
instructions with immediate fields. 
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IIMMPPLLEEMMEENNTTAATTIIOONN  

Coding 
Designing for ease of comprehension starts at the naming level, and unless one has clinical levels of OCD (likely 
an asset in this business) I honestly don’t believe there is any such thing as spending too much time coming up 
with terse, yet sufficiently descriptive, names for the various signals, parameters, and modules.  Likewise, often 
too little attention is paid to partitions, modularity, and local / global hierarchy.  Design for ease of verification 
starts at the module / component level, and one should always be looking for ways to make the partitions as 
useful and as meaningful as possible, rearranging things when it serves these purposes.  Base module 
composition should be a happy medium of non-trivial yet non-overwhelming amounts of common logic that 
verifies easily and that tends to minimize the interface (a good indication of commonality).  As one moves up the 
hierarchy, the aggregating modules should consist increasingly of instantiated sub modules, and decreasingly of 
additional miscellaneous logic (ideally none at the very top). 
 
With the exception of the UARTs, there is a general dearth of state machines in the Hive code, which is often an 
indication of poor coding style.  Earlier versions of the vector controller employed a state machine for each thread, 
but I removed these in order to have more direct control over the simple binary states that are largely orthogonal, 
and to make the logic a single register layer deep to better fit the register set pipelining.  It’s been my experience 
that state machines are not always the best choice when it comes to processing pipelined data streams – and I 
suppose processors themselves can be seen as vastly overgrown state machines. 
 
In terms of language logical constructs, I find that looping through vector bits usually translates surprisingly 
efficiently to hardware, so I don’t go out of my way to avoid this foreign seeming serial coding style.  Synthesis 
endeavors to eliminate duplicates to save logic and is quite good at this, so I feel free to replicate registers 
wherever it makes the modules easier to partition (e.g. the post stack selection multiplexer registers are replicated 
at the input of each ALU sub module).  On the flip side, the fitter inserts duplicate registering as necessary to 
meet timing (if instructed to do so via the fitter settings – usually this is the default) so there is no need to do this 
manually.  I attempted to generate the pipelined multiplier via the Altera HDL wizard instead of the literal 
translation of pen and paper multiplication, but only powers of two widths were supported (this design needs an 
extra MSB to handle both signed and unsigned inputs).  Even if the desired width construct were supported by the 
wizard, the resulting code would be less portable, so I decided not to go the wizard route.  More general tool-
based auto-pipeline inferencing does not strike me as ready for prime time with this kind of project. 
 
Any largish project will make one more familiar with the abilities and limitations of the languages and tools 
employed.  Hive started out in Verilog 2001, and while working on version 5 of the core I discovered that System 
Verilog was actually a straightforward update to Verilog, and not some radically different verification-centric 
language as the confusing name change (among other things) led me to believe.  (In particular, I encourage you 
to read the papers by Stuart Sutherland on both Verilog and SV synthesis).  The most welcome change in SV is 
the replacement of the cumbersome and confusing wire and reg basic types with the generic logic type, which 
establishes some sanity and makes optional registering of signals and ports simpler.  I found the added SV 
package support quite useful for holding magic numbers such as global parameters and derivations of them, as 
well as custom enumerated logic types, which helps greatly with things like opcode encoding and decoding.  (The 
use of don’t cares in enumerated types is particularly powerful when coupled with casex statement decode.)  SV 
multi-dimensional I/O comes in quite handy with the PC and ID ring ports, and SV default (*) port connect cuts 
down hugely on bug-prone inter-module wiring, while providing useful port linting checks.  Altera’s Quartus tool 
supports most of the SV enhancements to Verilog; Xilinx ISE surprisingly has no SV support, though Xilinx claims 
Vivado does. 

Verification 
Job #1 when building a processor is obviously wringing out all the bugs.  Processors that have caches, pipeline 
hazards and stalls, and lots of internal state are notoriously difficult to verify (and therefore fundamentally trust – 
Pentium division bug anyone?).  Much of engineering is the exercise of complexity management, and processor 
architecture should be guided by this principle as well.  Simplicity allows one to juggle the processor model in 
one’s head, but it can also greatly ease the verification problem.  Hive has relatively simple control structures, 
minimal internal state, and the entire design is partitioned into hierarchical right-sized modules that are as self-
contained as possible, making verification a straightforward and relatively painless task. 
 



 

All basic blocks should be fully tested before being assembled together.  With Hive, most module port widths and 
associated internal logic are parameterized so, for example, full verification of the ALU may be accomplished by 
shrinking the data port widths to a trivial size and manually examining the results of all possible inputs.  The 
multiplier may be verified separately at full width by comparing its results to a second naively instantiated 
multiplier, both supplied identically with corner cases and random input (the inclusion of this test hardware is a 
parameterized option for the multiplier base module).  The intermediate control and data ring constructs allow for 
the testing of lower level aggregate functionality. 
  
Once basic functionality is up (thread clearing, immediate data, jumps) specially tailored boot code enables the 
processor to verify itself.  Stack functioning and error reporting should be fully tested for all threads.  Jump 
distances and all associated conditionals should be confirmed.  Each opcode should be tested to make sure it is 
being decoded and functioning correctly – distinctive signatures may be used here rather than exhaustive testing.  
This is also a good way to get early experience hand coding the processor (the point at which I have became 
largely disillusioned with my past designs) which may lead to changes in the op codes and other parts of the 
fundamental design.   
 
Finally, several simple algorithms should be coded up, first in a spreadsheet and then in the simulated core boot 
code, with the results compared.  When working on this phase of the design I find that I had to fight a strong 
inclination to tailor the instruction set to the algorithm du jour and keep my eye on the big picture.  For instance, 
after developing the log2 algorithm, a leading zero count instruction (lzc) seemed like it would be a valuable 
addition.  I coded up a fully parameterized SystemVerilog module and speed / functionally tested it, but only after I 
recognized the general value of this function (it has many normalization uses) did I include it in the logical unit of 
the Hive ALU. 

Speed  
Another major goal when building a processor is getting the top speed as high as possible.  To this end, many 
Hive modules have configurable registering on their inputs and outputs, which can effectively isolate timing to the 
fabric rather than the FPGA I/O pins when doing individual module speed trial builds.  The component pipe.v can 
go from a single wire to any desired width and registering depth, and is used throughout the design for general 
registering and pipelining.  (A downside to this approach is that useful internal signal names get reduced to vector 
indexes, which can make them difficult to differentiate in simulation.) 
 
It is important during early testing to identify the slowest low-level hardware path.  This is the lower speed target 
for the remaining circuitry, which should be written / implemented at least 10% or so faster so as to have a bit of a 
cushion when it all comes together.  The more margin the better because modules have a tendency to slow down 
considerably when spattered willy-nilly onto the fabric with all of the other logic.  There are various FPGA 
synthesis options that will likely produce a faster top speed (e.g. higher fitter, placement, and router effort levels) 
and an automated seed hunt with multiple options (e.g. Altera’s “Design Space Explorer”) will usually produce a 
faster point in the design space if you’ve got the time to spare.  This is worth doing if only to know the top speed 
easily attainable. 
 
Watch the fitter resource allocation like a hawk, particularly for any extra block RAM creeping into your design.  It 
seems the synthesis / fitter likes to replace pipe stages with block RAM, which can really slow things down. 
 
Use a DCM to get your board clock up to the maximum speed of the core if you want performance, or keep the 
clock speed lower to conserve power. 
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AAPPPPEENNDDIIXX  AA  ::  HHIIVVEE  SSIIMMUULLAATTIIOONN  

Motivation 
The Hive core can of course be simulated in the native SystemVerilog – the ability to do so is indispensable when 
exercising the various core components in isolation, as well as the core as a whole with small snippets of boot 
code.  However one is more often interested in the simulation of software running on the core, as opposed to 
verification of the core logic, but SystemVerilog simulation at this higher level is cumbersome and slow.  Software 
entry and development can be streamlined as well through the use of an external tool.  

Early Attempts 
I’ve spent a frightening amount of time working on various simulators for Hive.  Besides the obvious utility of 
simulation itself, writing them gives me new perspectives on the design.  While combing back through the source 
I’ve uncovered several bugs, and my attention brought to other details that, while not incorrect per se, merited a 
re-write. 

Microsoft Excel 
Much state in a processor is tabular in nature: memory, stacks, registers, etc.  This led me to imagine that a 
simulator in a table-based calculator such as Excel might be viable.  And I was already quite familiar with Excel 
from the various electrical, analog, and digital simulations I’ve used it for.  But the ponderous nature of Visual 
Basic, and the multifarious ways VB vs. Excel have for doing the same thing made for rather tough sledding.  I 
first wrote custom functions to handle the modulo ALU calculations which Excel hated and/or gave incorrect 
results for, and built off of these functions to decode the opcode fields, maintain the stack pointers, etc.  The result 
is shown below in a screen grab: 

 
Figure 55.  Excel simulation of a single Hive thread. 



 

Given limitless time and patience, one could probably do just about anything in Excel including the simulation of 
any processor in existence.  The real questions are:  
 
1. Does the result have an intuitive and useful interface?  
2. Does it run fast enough? 
3. Is it maintainable?   
 
From this exercise, the answers I received to these questions were: 
 
1. Sort of.  If the separate worksheet windows would open in the same place every time, with the same window 

size and zoom level, the whole thing would work a lot better.  I also discovered that having the same 
worksheet open in two separate windows would cause any buttons on that worksheet to freeze up, which was 
often confusing and a minor pain to track down. 

2. Marginally.  Even though I liberally peppered the VB code with functions to keep the screen from updating 
when not necessary, it still ran pretty slow.  Faster than a SystemVerilog simulation, but that’s not saying a lot. 

3. No.  This is the crux of what made me abandon the Excel / VB approach.  The result was too much of a mish-
mash of high/low level functions, code, and widgets to really be able to maintain it as the SV code changed. 

 
The above was my experience simulating a single thread, not the full core, in Excel.  I was looking at a ton of 
extra work in expanding the sim to cover the entire core, with diminishing returns in terms of usability and 
maintainability.  Somewhere after version 5 of the core SV I reluctantly abandoned the Excel simulator.  Even 
though it came in handy by uncovering a bug in one of the test algorithms, it always felt kind of shaky and never 
really struck me as a coherent thing. 

Python 
After some research regarding basic GUI app construction, I turned to this fairly newish language, mainly because 
of the built-in TKInter support and not the language so much.  I got approximately halfway through describing Hive 
in Python before I abandoned this approach as well.  The forced indenting was a minor turn-off, particularly when 
coupled with the limited line length, but the weak typing and auto-sizing variables were an obvious poor fit for the 
simulation of hardware which is inherently modulo.  The lack of a compiler was the final nail in the coffin.  I was 
fearful that, after (yet again) putting a lot of effort into writing a sim, the result wouldn’t run fast enough, and 
forcing people to install Python on their machines just to run my sim seemed awkward and demanding.  Python is 
natively coded in C/C++, and that is the language I should have turned to in the first place. 
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C++ Console App (third time’s the charm) 
Programmers who hang out in web forums dispensing advice will adamantly wave you off if you even think of 
writing a console app.  There are few things that are more portable though.  And during my research I discovered 
commands exist which can be used in the Windows console to size the console itself, move the cursor around, 
justify the cursor fields, and the set text and background colors.  These may be used in lieu of the ANSI escape 
sequences which are supported in the consoles of most other, saner, operating systems.  Call me crazy, but 
armed with this I set out to describe Hive as a C/C++ console app. 
 
It took me about four months to write the core logic in a modular object oriented way.  In retrospect I probably 
should have just copied the SV as closely as possible, which would have been quicker to do and may have 
produced a slightly higher fidelity model.  But the OO approach is more powerful and flexible, and it forced me to 
carefully reevaluate the points where the cores interact (memory, and the register set in particular).  I spent 
another three months working on the GUI side of things.  I wanted a tool that would not just simulate code, but 
one that would facilitate interactive code development, and I feel that I’ve achieved that goal.  As I was nearing 
the end of the simulator development I took the opportunity to completely re-write the verification code for both it 
and the SV core.  This proved to be an excellent exercise that gave me invaluable experience interacting with the 
tool while working the quirks out of the interface. 

Code Container 
For file I/O I discovered that the MIF (*.mif) file format employed by the Quartus tool (to encode memory contents) 
entirely sufficient for my needs as it is fairly simple to parse and generate, and it supports both block and end-of-
line comments.  There are provisions in the simulator for entering and editing end-of-line comments, but any start 
of file block comments must be edited externally - this is because I wanted the simulator to be very memory slot 
oriented.  Start of file comments are always preserved however, as this is a handy place to include background 
information.  The MIF standard allows for compression of repeated lines, and this is done by the simulator only 
when the lines are contiguous comment-less NOPs.  The simulator kicks also kicks out two comment-less “even 
& odd” files for SV physical dual memory configuration whenever the main file is saved.  Writing the MIF parser 
was fairly eye-opening experience, as it brought into sharp focus the rules associated with comments, white 
space, numbers, keywords, and general tokenization of input streams.  I was able to parlay much of this when it 
came to implementing the command line interpreter.  I found myself re-writing many of the built-in C++ commands 
for conversion between chars, ints, and strings, as they either didn’t behave the way I wanted, or worse caused 
the program to crash when given unexpected input.  (IMO, this type of function should always have an associated 
function to test for input fitness pre-conversion, which lets everyone know what’s going on, and prevents bad data 
from contaminating / crashing things.) 

Command Line Interpreter 
My familiarity with Autocad made me desire a robust command line interface.  My familiarity with RPN made me 
desire a postfix command format, wherein the parser holds off until an action keyword is encountered, all 
parameters are listed before the function, and the function is executed immediately when typed and followed by 
white space.  Going this route forced me to give up doskey support (which relies heavily on the enter key for 
parsing), so I had to replicate many of the familiar doskey functions from scratch. 

Key Commands 
I feel that it’s important to keep interfaces as familiar as possible, so I endeavored to use as many of the keyboard 
shortcuts that PC users have become accustomed to, such as doskey line editing and the various CTRL 
combinations for cut, copy, paste, undo, etc. as possible.  For doskey-like command recall I employed the slightly 
unusual CTRL+up/dn combination in order to leave the arrow keys free for screen navigation.  CTRL+C is 
probably the most unusual in that it places the highlight address on the command line, rather than buffering 
anything to the clipboard.  CTRL+V must be used in conjunction with CTRL+C to copy blocks of code, and it 
performs a copy rather than an insert (a real insert is generally undesirable as it would move other code that could 
be relying on absolute addressing).  The order of the copy is automatically calculated so as not to destroy any 
lines in the process of copying them, and doing things this way eliminates the need for a temporary buffer.  
CTRL+X similarly relies on CTRL+C to mark memory blocks for deletion (implemented as NOP & comment clear).  
CTRL+Z and CTRL+Y call the undo / redo mechanism, a brute force circular buffer of complete memory images 
(including comments) which employs a new slot whenever the user (not core software execution) modifies 
memory / comments.  CTRL+S saves the current working file. 

Hive_Design_2015-09-03.doc Page 44 of 77  



 

F1 – F4: Views 
The function key group F1-F4 calls up a series of views into what is transpiring in the simulated core.  F1 calls up 
a series of three help screens, one for general keys and commands, a second for opcode keywords and formats, 
and a third for register set descriptions.  The selection among the three is via successive pressing of F1, and the 
last one viewed is “sticky” upon return from other non-help views. 
 

 
Figure 56.  F1 general help. 
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Figure 57.  F1 opcode help. 

 
Figure 58.  F1 register set help. 

F2 calls up a single view of the register set, as well as “mini-state” views of each thread which shows PC and 
operation history, as well as stack state. 
 

 
Figure 59.  F2 register set & “mini-state”. 
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F3 calls up two memory view screens, one a grid view of the main memory, the other a grid view of all stack 
memories for the given thread.  The selection among the two is via successive pressing of F3, and the last one 
viewed is “sticky” upon return from other non-memory views. 
 

 
Figure 60.  F3 main memory grid. 

 

 
Figure 61.  F3 stacks memory grid. 

Hive_Design_2015-09-03.doc Page 47 of 77  



 

F4 calls up a main memory disassembly list view with comments for a given thread.  This is where the bulk of 
user interaction takes place. 
 

 
Figure 62.  F4 main memory disassembly and comments listing. 

F5 – F8: Thread Focus 
This group controls the thread focus for the various views.  F5 sets the current actively displayed thread (the 
thread for which information pertaining to it is displayed below the F1-F4 views, and for which F11 & F12 
commands apply) to thread 0 or thread 1 and toggles between them in a “sticky” manner.  F6 thru F8 are the 
same but for threads 2/3, 4/5, and 6/7 respectively. 

F9 – F12: Code Execution Control 
This group controls the running of the core or code execution.  F9 executes a single core clock.  F10 executes a 
single core cycle (8 core clocks).  F11 executes multiple core cycles, using either the last cycle count value or a 
new value.  F12 executes to given breakpoint for the actively displayed thread, again using either the last value or 
a new value. 

Fixed Display Area 
The area below the function key selected screens always displays the recent execution history and current stack 
status of the thread selected via F5-F8, as well as the recent command history and the command line itself at the 
very bottom.  The command line history shows input on the left and response on the right. 

Highlight Bar 
There is a highlight in the main memory views that follows program execution for the current thread.  This 
highlight can also be manually moved about via the arrow keys and the page up/down keys.  The highlight is the 
command line focus for address marking and editing, which conveniently enables these features without having to 
rely on a separate edit view or mode. 
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AAPPPPEENNDDIIXX  BB  ::  TTHHEE  TTEENN  MMIINNUUTTEE  SSIIMM  TTOOUURR  
The following will hopefully be a fairly painless intro to the Hive console app simulator.  I assume you’ve read the 
appendix that came before this one as it provides some useful background. 

Startup – Files & Fonts 
The simulator is a single self-contained executable file named “hive_sim.exe”.  Stick it anywhere on a Windows 
machine (developed on XP, tested a bit on Win7/64) and run it.  By default the sim attempts to open “verify.mif” 
which should be in the same directory (if indeed you want that file opened).  If you want to open some other file it 
can be specified on the command line when invoking the simulator, or you can wait until the simulator starts up 
and proceed to load whatever file you want at that point.  Failure to open and parse “verify.mif” shouldn’t cause 
any trouble.  For the purposes of this tutorial I’ll assume “verify.mif” has been successfully loaded.   
 
If you get a message at startup that suggests you to adjust the console font, you need to make the font smaller in 
order for the console to fit on your desktop.  Otherwise you will get the message every time you start and the 
screen will look all jumbled up.  An 8x12 raster font seems to work well on my PC with HD monitor.  Change the 
default font by right clicking on the top bar of the console window to bring up the “Properties” menu.  Both XP and 
Win7 seems to remember the font defaults associated with various programs so you only have to do this once.  
Also, make sure the “Screen Buffer Size” width and height (132 x 66) are the same as those of the “Window Size” 
so that scrolling doesn’t take place. 

Views 
• Press the F1 key repeatedly to cycle through the various help screens.   
• Press F2 to see the register set / mini-state view.  Use the arrow keys to select thread 7. 
• Press F3 repeatedly to toggle between the main memory and stack memory grid views.   
• Press F4 to see the main memory listing view.  Stay on this view for now. 

Thread / Stage Selection 
• We want to see thread 7 execute a particular subroutine, so if thread 7 isn’t selected press F8 until it is.   
• Press F9 to clock the core until it is at stage 7.  We do this to be past the fetch point in the pipeline, so the 

future execution history display will be accurate.  If you go too far just keep pressing F9 until stage 7 comes 
around again. 

 

 
 

Single Stepping 
• Press F10 to single step until thread 7 gets to address 0x700. 
• Continue pressing F10 and note that the thread jumps to the DIV/MOD subroutine at address 0x760. 
 

 
 

Running To A Breakpoint 
We want to keep going past the DIV/MOD subroutine in order to see the INV_F subroutine in action.  Single 
stepping would take many tedious cycles to get through it all so we run to a breakpoint.   
 
• Type the following command (without quotes): “0x7a0”  



 

• Press F12.  Note the addition of “ bp ” to the command address, the confirmation of your command on the 
right, and the updating of the default F12 value. 

 

 
 
The sim should now be at the address immediately before the execution of the opcode at address 0x7a0, which is 
a GSB or subroutine instruction located at address 0x72d.  
 

 
 
• Press F10 to single step.  This should immediately take you to address 0x7a0 which is the start of the INV_F 

subroutine (floating point inverse using Newton’s Method). 
• Press F10 some more and note the looping behavior within the subroutine.  The loop should execute a total of 

5 times.  Stop pressing F10 when the sim hits the end of the subroutine at address 0x7b1. 
 

 
 

Data Display Radix 
Simulation addresses are always displayed in hexadecimal, but we can conveniently view data in three different 
radixes. 
 
• Type the following command (without quotes; and with a space, enter, or tab at the end): “h”   
 

 
 
Note the change in displayed data radix to hexadecimal (i.e. base 16). 
 
• Type the command “u“ for unsigned decimal (i.e. base 10) display of data. 
• Type the command “i“ for signed decimal display of data. 

Stacks View 
Let’s examine the results of running the INV_F subroutine. 
 
• Press F3 until you see the stacks memory grid view. 
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Stack 0 is at the top, stack 1 below it, etc.  A summary of the stack states is on the right, details of the contents on 
the left.  Keep in mind that the first item on an empty stack is at location 1 (not 0)  and the last item on a full stack 
is at location 0 (not 31).  Above we see that stack 0 has two items on it, the value 7 is the running verification test 
result for this thread, and the value -603862772 is the subroutine output.  Stack 1 also has two items on it, the 
value 8 is the running verification test value for this thread, and the value -62 is subroutine output.  -62 is the 
signed power of 2 denormalization value, and -603862772 is actually an unsigned value.  What is it? 
 
• Type the command “u“ for unsigned decimal display of data. 
 
Now we see that -603862772 in unsigned decimal radix is actually 3691104574.  Does any of this make sense?  
Well, the input value to the subroutine can be found in the calling code at address 0x728. 
 
• Press F4 to return to the main memory listing view. 
• Press F10 until subroutine return, which should be address 0x72e. 
• Use the arrow keys to move the highlight to address 0x728. 
• Type the command “h“ for hexadecimal decimal display of data. 
 
At address 0x728 we see the in-line literal value 0x4a7869e1 being pushed to stack 0. 
 

 
 
What is this as an unsigned decimal? 
 
• Press the down arrow once to move the highlight to address 0x729. 
• Type the command “u“ for unsigned decimal display of data. 
• Type the command “rm” to do a 32 bit memory read at the highlight address. 
 

 
 
Here we see the decimal value of the input to the subroutine is 1249405409.  Getting out the calculator: 
 
 1/1249405409 = 8.00380719338 * 10-10 
 
The result found in the stacks view was: 
 
 3691104574 * 2-62 = 8.003807196 * 10-10  
 
If you do these calculations as integers in a spread sheet you’ll find that the result here is actually only one count 
off from the rounded ideal.  Newton’s method converges quite quickly and is the method employed in AMD 
processors to do division and such. 

Thread Clearing, Editing Data & Comments, Save File 
Let’s change the input value of the INV_F subroutine and re-run it. 
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• Type the command “cv” to clear the current thread (7). 
• Press F10 several times until you see execution jump back to the starting address (0x1c for thread 7). 
 
Let’s browse our way to the literal address via the main memory grid view where we can cover ground more 
quickly than in the main memory listing view. 
 
• Press F3 until you see the main memory grid view.   
• Press the Page Down key 7 times, which should bring the highlight to the vicinity of address 0x700. 
• Use the arrow keys to move the highlight to address 0x729. 
• Press F4 to return to the main memory listing view.  The highlight should be at address 0x729 here as well. 
 
Let’s pick the new input number to be 18760359 (0x11e42a7).  Consulting my spreadsheet, the inverse of this 
should be 3840949634 * 2-56. 
 
• Type the command “18760359 wm” to do a 32 bit memory write. 
• Press the up arrow to move the highlight back to address 0x728. 
• Press the right arrow to move the highlight to the comment field. 
• Type the command “e” to put the existing comment on the command line. 
• Edit the comment to reflect the new number (0x11e42a7) and press ENTER to finish. 
 

 
 
Editing works identically for both opcodes and comments, it only depends on whether the highlight is on the left or 
on the right when you type the “e” command.  ENTER is only required at the end of editing (or entering) a 
comment, but is also useful when editing an opcode as it returns the cursor to the end of the line before adding 
white space. 
 
• Save your work to a new file by typing the command “test.mif wf” 
 

 
 
• Press F12 to run to breakpoint 0x7a0. 
• Press F10 once to actually execute to 0x7a0, which is the beginning of the INV_F subroutine. 
• Type the command “0x7b1” F12 to set a new breakpoint address and run to it. 
• Press F10 once to actually execute to 0x7b1. 
• Press F3 until you see the stacks memory grid view. 
 

 
 
Using the radix commands we see -56 as the exponent, and the value 3840949634 (-454017662) which is exactly 
what we expected.  

Copy & Delete 
Let’s move the INV_F subroutine to a new location and change the calling link to match. 
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• Navigate to address 0x7a0 either manually or by typing “0x7a0 g”. 
• Press F4 to see the main memory listing view.   
• Make sure the highlight is on address 0x7a0 (the first line of the subroutine) and press CTRL+C. 
• Using the arrow keys, move the highlight down to address 0x7b1 (the last line of the subroutine) and again 

press CTRL+C. 
 
Note that CTRL+C puts the highlight address on the command line, which we don’t want to disturb (typing would 
disturb it, pressing ESC would clear it).  Now we select a destination address, say 0x7c0: 
 
• Using the arrow keys, move the highlight down to address 0x7c0 and press CTRL+V. 
 
A copy of the subroutine at 0x7a0 through 0x7b1 should now exist also 0x7c0.  We need to delete the original to 
complete the move: 
 
• Move the highlight back to address 0x7a0 and press CTRL+C. 
• Move the highlight down to address 0x7b1 and press CTRL+X. 
 
That should have deleted the original.  Now edit the calling code to have the correct address: 
 
• Page up / arrow up to address 0x72c. 
• Ensure the highlight is on the opcode (left arrow) and type the command “e”. 
• Edit the literal value to “0x7c0 L” and press ENTER. 
• Move the highlight to the comment at address 0x72c (up and right arrow) and type the command “e”. 
• Edit the comment to reflect the new address and press the ENTER key to finish. 
• CTRL+S to save the file. 
 
Check for proper functioning now that the subroutine has been moved: 
 
• Type the command “cv” to clear the current thread (7). 
• Press F10 several times until you see execution jump back to the starting address (0x1c for thread 7). 
• Type the command “0x7d1” F12 to run to breakpoint 0x7d1. 
• Press F10 once to actually execute to 0x7d1. 
• Press F3 to examine the stacks memory grid view.  You should again see the values 3840949634 and -56 at 

the tops of stacks 0 and 1 respectively.  
 
Note that pressing the DELETE key (with a blank command line) when viewing the memory grid or listing will 
delete the opcode and comment at the highlight address and jump to the next line.  You don’t want to delete large 
blocks of code this way because each deletion event consumes a slot in the undo system, and you can quickly 
run out of slots when performing single line changes to memory. 

Core Reconfiguration 
We can restore the core to the “power up” reconfig state: 
 
• Type the command “cfg”. 
 
This reloads the *.mif file and pretty much resets everything, including the stack memories, thread focus, 
breakpoint address, register set data, etc. 

Speed Testing 
How fast is the C++ console sim compared to the real hardware FPGA instantiation?  The verification program will 
run forever with all threads doing real work if the IO port reads non-zero. 
  
• Load the verification MIF file and configure the core by typing the command “verify.mif cfg”. 
• Make the IO input non-zero by typing the command “1 wio”. 
• Press F2 to confirm the write to the IO input (or type “5 rr” to read the IO register). 
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• Type the command “1000000” then press the F11 key.  Time how long it takes for the command line to 

become active again. 
 
On my current PC (AMD Athlon II X2 250, 3 GHz, 2.75 GB) this takes about 10 seconds.  Since F11 performs 
cycles, the actual clocks are 8 times this or 8 million.  8 * 106 / 10 sec = 800 kHz.  The FPGA version of Hive can 
do ~200 MHz, so the software simulator is running at about 0.4% of the hardware speed. 
 
This sound kind of shabby but really isn’t, particularly when compared to Quartus functional simulation, where a 
210,000 ns @ 50 ns / clock sim of the SV core running the verification program takes around 90 seconds.  
210,000 ns / 50 ns =  4200 clocks; 4200 / 90 sec = 46 Hz!  800 kHz / 46 Hz = 17,391 times slower than the C++ 
sim.  It seems you spend your precious life writing efficient sims, or spend it waiting on profoundly less efficient 
sims to finish already! 
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AAPPPPEENNDDIIXX  CC  ::  PPRROOGGRRAAMMMMIINNGG  EEXXAAMMPPLLEESS  
The SystemVerilog hardware description language has an “initial” construct that can be used along with other SV 
syntax features to write legible boot code, comments and all.  Hive boot code text used to reside in a text file 
(boot_code.sv) that got inserted into the main memory module with an include statement.  (It now resides in a 
*.mif file.)  Let us take a look at some sample SV initial type boot code: 
 
 import hive_params::*; 
 import hive_defines::*; 
 

These includes pull in our opcode encoding and internal address register locations so we can refer to them by 
name rather than by their rather cryptic numerical encoding. 
  
 integer i, j; 
 logic     [DATA_W-1:0]   ram[0:MEM_DEPTH-1];  // temp memory 
 
initial begin 
 
 // zero out memory arrays 
 ram = '{ MEM_DEPTH{'0} };  // temp memory 
 ram0 = '{ DEPTH{'0} }; 
 ram1 = '{ DEPTH{'0} }; 
 

The above marks the beginning of the initialization code, declares the integers we will use to keep from having to 
name every address, instantiates a temporary RAM array, and zeros it and the real RAM arrays out. 

A Simple SV Initial Example 
 
 /////////////// 
 // clt space // 
 /////////////// 
 // thread 0 
 i='h0;   ram[i] = { `lit_u ,         `__, `s7 };  // s7 := 0x0040 
 i=i+1;   ram[i] =                    16'h0040  ;  //  
 i=i+1;   ram[i] = { `gsb,            `P7, `s3 };  // s3 := PC; PC := P7 
 i=i+1;   ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 // others loop forever 
 i='h04;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h08;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h0c;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h10;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h14;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h18;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 i='h1c;  ram[i] = { `jmp_8,        -4'd1, `s0 };  // loop forever 
 
 // code & data space // 
 
 // sub : read core version & write to GPIO, return to (s3) 
 i='h40;  ram[i] = { `reg_r,    `VER_ADDR, `s0 };  // s0 := reg[VER] 
 i=i+1;   ram[i] = { `reg_w ,  `GPIO_ADDR, `P0 };  // reg[GPIO] : = P0 
 i=i+1;   ram[i] = { `gto,            `P3, `__ };  // PC := P3 
 

 
The first line is located at address 0, which is where thread 0 vectors to when cleared.  The instruction puts an 
unsigned literal in S7, the value of which is the address of a subroutine.  The second line is the unsigned in-line 
literal value, 0x0040.  The third line calls the subroutine and pushes the return address to S3, and it 
simultaneously pops the subroutine address in S7 (stack cleanup).  The fourth line is an immediate jump -1, which 
is an infinite loop, and it get executed upon subroutine return. 
 
The next seven lines are for threads 1 through 7, which are instructed to twiddle their thumbs by looping infinitely.  
Note that the clear addresses are spaced 4 apart (both this distance and the base address are configurable at 
build time for the clear and interrupt vector groups).  The interrupt instruction address space is blank because the 
interrupts won’t be enabled nor used for this program. 
 
The subroutine code at address 0x40 reads the core version and then writes the core version to the I/O port, pops 
the data simultaneously with the write (stack cleanup), then issues a gto S3 and pops S3 (stack cleanup), which is 
the way subroutines are returned from in Hive.   



 

Binary Search Division Subroutine Example 
A somewhat meatier example is division.  The binary search division algorithm is shown below: 

 
Figure 63.  Binary search division algorithm flow chart. 

This algorithm divides two unsigned inputs using a binary search.  The idea is to light up one-hot bits going from 
MSB to LSB in a number OH, add this to Q, multiply by the denominator D, and compare this trial number to the 
numerator N.  If the numerator is greater than or equal to the trial number then Q retains the one-hot bit. 
 
Setting the one-hot (OH) start value to LZC(D) prevents internal overflow at D*(Q+OH) and speeds up the 
average case by reducing the number of loops. 
 
The shifted one-hot value one used in the loop can also be used as the loop counter: when the one is completely 
shifted out (the vector == 0) exit the loop.  This saves one step in the loop and one storage register. 
 
    ADDR     OC  SA  SB     IM       OP  Comments 
   0x760 0xd010  s0   .      1  JMP_8NZ  -- (s0 != 0) ? PC++  // DIV/MOD SUB START 
   0x761 0x2df0  s0  P7      .      GTO  -- PC := P7  // return if denom zero 
   0x762 0x3081  s1  P0      .      CPY  -- s1 := P0  // s1=D, s0=N 
   0x763 0xb002  s2   .      0      BYT  -- s2 := 0  // s2=Q 
   0x764 0x3d16  s6  s1      .      LZC  -- s6 := LZC(s1) 
   0x765 0x8e6e  P6  s6      .      POW  -- P6 := 1 << s6  // s6=OH 
   0x766 0x806a  P2  s6      .      ADD  -- P2 += s6  // trial Q - LOOP START 
   0x767 0x8821  s1  s2      .      MUL  -- s1 *= s2  // s1=D*Q 
   0x768 0x1790  s0  P1      .  SKP_NLU  -- (s0 >= P1) ? PC++  // skip restore 
   0x769 0x846a  P2  s6      .      SUB  -- P2 -= s6  // s2=restored Q 
   0x76a 0x97fe  P6   .     -1   SHP_6U  -- P6 >>= 1  // new OH 
   0x76b 0xdfa6  s6   .     -6  JMP_8NZ  -- ( s6 != 0) ? PC += -6 // LOOP END 
   0x76c 0x8829  P1  s2      .      MUL  -- P1 *= s2  // s1=D*Q 
   0x76d 0x8498  P0  P1      .      SUB  -- P0 -= P1  // s0=N-D*Q=R 
   0x76e 0x30a0  s0  P2      .      CPY  -- s0 := P2  // s0=Q 
   0x76f 0x2dfe  P6  P7      .      GTO  -- PC := P7  // return, P6 - DIV/MOD SUB END 
 

The subroutine code is above as it is found in the verification code, disassembled and displayed by the simulator.  
The return is not skipped if the denominator value is zero, which is mathematically undefined (+/- infinity).  The 
denominator is pushed to S1, S2 is initialized to zero, the LZC of the denominator is converted to a one-hot value 
and is pushed to S6, and the loop begins.   
 
The one-hot value is added to the quotient, which is then multiplied by the denominator and compared to the 
numerator.  If greater, the one-hot value is subtracted from the quotient (restoring it).  The one-hot value is shifted 
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right once and the loop is performed again until the one-hot one is shifted out of the LSB position, leaving all 
zeros and the loop is exited. 
 
Finally, the remainder is calculated and pushed onto S0, the quotient is pushed on top of it, and some cleanup is 
performed at subroutine return. 
 
In terms of real time, assuming the denominator is not zero and the return is skipped, it takes 5 cycles to test the 
input and setup the loop, 5 cycles per loop best case and 6 cycles worst case, with 4 cycles after the loop.  For 32 
worst-case iterations with all being 6 worst case loops this gives: 
 
 5 + 6*32 + 4 = 201 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 8.04 us worst-case. 
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Binary Search SQRT Subroutine Example 
A somewhat similar example to division is the calculation of the square root shown below.  The binary search 
algorithm in a processor that has single cycle unsigned multiply is likely faster than other methods due to fewer 
necessary loop instructions: 

 
Figure 64.  Binary search square root algorithm flow chart. 

The idea is to light up the bits going from MSB to LSB in a trial number, square it, and compare it to the input.  If 
the input x is an 8 bit unsigned integer (i.e. N=8) then the output needs at most 4 bits for the integer portion, and 
carrying out the looping 4 more times gives a result with 4 decimal places.  So N bits in gives n.n bits out where n 
= N/2. 
 
Note that picking the upper half of the square result will truncate the lower half, or the decimal portion.  The 
negative influence of this can be largely ameliorated by the use of '<' rather than '<=' for comparison to the input, 
and this gives an underestimated result which is too small by at most 1 LSB.  Computing the squared result and 
the square of the incremented result, and picking the one closest to the input corrects this at the end and 
obviously adds complexity, but provides a significant benefit by making the loop smaller. 
 
Since the loop underestimates q, we know the q is either OK or needs at most 1 LSB of value added to it.  The 
generic expression to evaluate this is: 
 
  abs{x - q^2}  <  abs{x - (q+LSB)^2} ? 
 
If the result is true we pick q as the output, if false we pick q+LSB (= q++). 
 
Since LSB > 0, then q < q+LSB, and q^2 < (q+LSB)^2.  So we don't need to use absolute value functions to 
evaluate the expressions.  Also, q^2 will always be in the range (x-2:x] and (q+LSB)^2 will always be in the range 
[x:x+2). 
 
What we really want to know is the influence of adding LSB/2 to the input.  We can square the result and compare 
it to the input to know whether to increment q. 
 
  (q+LSB/2)^2  >=  x ? 
 
Expanding the above gives: 
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  q^2 + 2qLSB/2 + (LSB/2)^2  >=  x ? 
  q^2 + qLSB + (LSB/2)^2  >=  x ? 
   
Since (LSB/2)^2 is very tiny we can safely discard it which gives: 
 
  q^2 + q*LSB  >=  x ? 
 
The term q*LSB is a simple right shift of n; even more simply it is the uncorrected value of q as it sits in the 
processor register!  This gives: 
 
  q^2 + q>>n  >=  x ? 
 
Which can be rearranged as: 
 
  q>>n  >=  x - q^2 ? 
 
If true we pick q as the result, otherwise we pick q+LSB (= q++). 
 
We can actually eliminate the above conditional: 
 
 Q = q + x - integer[q^2] - int[q>>n + decimal[q^2]] 
 
Note that the shifted one-hot one used in the loop can also be used as the loop counter: when the one is 
completely shifted out (the vector = 0) exit the loop.  This saves one storage register, but more importantly 
eliminates one step in the loop. 
 
    ADDR     OC  SA  SB     IM       OP  Comments 
   0x780 0xb001  s1   .      0      BYT  -- s1 := 0  // Q - SQRT SUB START 
   0x781 0x95f6  s6   .     31   SHP_6U  -- s6 := 1 << 31  // OH 
   0x782 0x8069  P1  s6      .      ADD  -- P1 += s6  // new Q - LOOP START 
   0x783 0x8b11  s1  s1      .    MUL_U  -- s1 *= s1  // square, int portion 
   0x784 0x1609  P1  s0      .   SKP_LU  -- (P1 < s0) ? PC++  // skip restore 
   0x785 0x8469  P1  s6      .      SUB  -- P1 -= s6  // restore 
   0x786 0x97fe  P6   .     -1   SHP_6U  -- P6 <<= -1  // new OH 
   0x787 0xdfa6  s6   .     -6  JMP_8NZ  -- (s6 != 0) ? PC += -6  // LOOP END 
   0x788 0x8b11  s1  s1      .    MUL_U  -- s1 *= s1  // square, int portion 
   0x789 0x8498  P0  P1      .      SUB  -- P0 -= P1  // x-=q^2 
   0x78a 0x8018  P0  s1      .      ADD  -- P0 += s1  // Q=q+x-q^2 
   0x78b 0x8811  s1  s1      .      MUL  -- s1 *= s1  // square, dec portion : (q>>n)^2 
   0x78c 0x3092  s2  P1      .      CPY  -- s2 := P1  // move 
   0x78d 0x839a  P2  P1      .    ADD_U  -- P2 += P1  // carry out, int 
   0x78e 0x84a8  P0  P2      .      SUB  -- P0 -= P2 
   0x78f 0x2dfe  P6  P7      .      GTO  -- PC := P7; P6  // return - SQRT SUB END 
 

The subroutine code is above as it is found in the verification code, disassembled and displayed by the simulator.  
S2 is initialized to zero, the initial one-hot value and is pushed to S6, and the loop begins.   
 
The one-hot value is added to q, which is then squared and compared to the input value.  If greater than or equal, 
the one-hot value is subtracted from q (restoring it).  The one-hot value is shifted right once and the loop is 
performed again until the one-hot one is shifted out of the LSB position, leaving all zeros and the loop is exited. 
 
Finally, q is corrected and pushed to S0, and some cleanup is performed at subroutine return. 
 
In terms of real time, it takes 2 cycles to setup the loop, 5 cycles per loop best case and 6 cycles worst-case, with 
8 cycles after the loop.  If all 32 iterations are 6 worst case loops this gives: 
 
 2 + 6*32 + 8 = 202 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 8.08 us worst-case. 

Hive_Design_2015-09-03.doc Page 59 of 77  



 

Log2 Subroutine Example 
Presented here is the calculation of the 32-bit base 2 logarithm of an unsigned 32-bit input number.  The 
algorithm shown exploits the fact that log2(x2) = 2*log2(x), and is implemented by a looped squaring processes.   

 
Figure 65.  Log base 2 algorithm flow chart. 

This algorithm is shown above as a flow chart.  The initial test makes sure the input is non-zero because the log 
of zero is undefined.  Next is the input normalization.  Finally, we have the square / mantissa loop, with the loop 
exit test and result negation at the end.  
 
The first section normalizes the input by shifting it to the left so that the MSB is equal to 1.  This is accomplished 
efficiently with the LZC instruction followed by a shift.  This number is also subtracted from 31 to form the log 
characteristic, which is the 5-bit number to the left of the decimal place in the result. 
 
After normalization, the normalized input is squared and the resulting MSB examined.  If it is equal to 1 then a 1 is 
left shifted into the characteristic.  If it is equal to 0 then both the characteristic and the squared input are left 
shifted once (which should make the characteristic LSB = 0 and the squared input MSB = 1).  This loop is 
executed 32 – 5 = 27 times to find all bits to the right of the decimal place in the result, AKA the log mantissa. 
 
It is actually possible to skip the input normalization subtraction and use the same jump test within the loop for 
both operations that are conditionally jumped over, then simply negate the result at the end.  This somewhat tricky 
but more efficient algorithm is the one implemented.  (Whenever it feels like you are fighting the binary, there is 
likely a simpler, more elegant approach to be found by giving a bit more thought.) 
 
    ADDR     OC  SA  SB     IM       OP  Comments 
   0x640 0xd010  s0   .      1  JMP_8NZ  -- (s0 != 0) ? PC++  // LOG2 SUB START 
   0x641 0x2df0  s0  P7      .      GTO  -- PC := P7  // return if input zero 
   0x642 0x3d01  s1  s0      .      LZC  -- s1 := LZC(s0) 
   0x643 0x8c18  P0  s1      .    SHL_S  -- P0 <<= s1  // normalize 
   0x644 0xb1a6  s6   .     26      BYT  -- s6 := 26  // loop index 
   0x645 0x8b08  P0  s0      .    MUL_U  -- P0 *= s0  // square - LOOP START 
   0x646 0x9019  P1   .      1   SHL_6S  -- P1 <<= 1 
   0x647 0xe020  s0   .      2  JMP_8LZ  -- (s0 < 0) ? PC += 2  // test MSB 
   0x648 0x9018  P0   .      1   SHL_6S  -- P0 <<= 1 
   0x649 0xa019  P1   .      1    ADD_8  -- P1++ 
   0x64a 0xaffe  P6   .     -1    ADD_8  -- P6-- 
   0x64b 0xff96  s6   .     -7 JMP_8NLZ  -- (s6 >= 0) ? PC -= 7  // LOOP END 
   0x64c 0x3498  P0  P1      .      NOT  -- P0 := ~P1 
   0x64d 0x2dfe  P6  P7      .      GTO  -- PC := P7, pop P6  // LOG2 SUB END 
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The subroutine code is above as it is found in the verification code, disassembled and displayed by the simulator.  
The return is not skipped if the input value is zero.  Input normalization shifts the input value to the left until the 
MSB is 1, the number of shifts necessary to do this gives the inverse of the characteristic.   
 
The square loop uses a shift and a conditional immediate add to left shift either a 0 or 1 into the mantissa LSB.  
Unsigned extended multiplication is the operation used for squaring.  After the loop has completed, the result in 
S1 is negated and copied to S0 with both popped to form a move.  The return address and loop index are both 
popped at return to complete the cleanup. 
 
In terms of real time, assuming the input is not zero and the return is skipped, it takes 4 cycles to test the input, 
normalize it, and set up the loop, 5 cycles per loop best-case and 7 cycles worst-case, with 2 cycles after the 
loop.  For 26 iterations with all being 7 worst-case loops this gives: 
 
 4 + 7*26 + 2 = 188 cycles worst case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 7.52 us worst-case. 
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Exp2 Subroutine Example 
Presented is the calculation of the 32-bit base 2 exponentiation of an unsigned 32-bit fixed decimal input.  

 
Figure 66.  Exponential of 2 algorithm flow chart. 

The idea is that exponentiation (2n) where n is a real positive fixed point number is straightforward because binary 
numbers are themselves constructed of powers of 2.   
 
For example:  
 
  5.5 = 101.1 = (1*2^2)+(0*2^1)+(1*2^0)+(1*2^-1).   
 
So  
 
  2^5.5 = 2^[(1*2^2)+(0*2^1)+(1*2^0)+(1*2^-1)] = (2^(2^2))*(2^(2^0))*(2^(2^-1)) = 16*2*1.414... = 45.254...   
 
So we need to find and selectively multiply together successive square roots of 2 (difficult), or start at some 2^(2^-
m) root of 2 and square our way up (much easier but prone to error due to repeated squaring of the limited 
resolution base number). 
 
For a 32-bit input, log2 gives 5 bits of characteristic and 32 - 5 = 27 bits of mantissa.  If we use this fixed decimal 
form to "undo" the log2 with 2^n, then the input n to the 2^n function is: 
 
  [31:27] = 2^4, ..., 2^0 
  [26:0] = 2^-1, ..., 2^-27 
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Therefore, the first root we need is 2^(2^-m) = 2^(2^-27) = 1.00000000516...  which is approximated by the 32 bit 
number 0x8000000B.  Squaring this and picking the upper 32 bits requires a left shift of one to re-align the result.  
Shifting truncates the LSB, and squaring doubles the initial error, so the results tend to be underestimated and 
deviate more from the ideal with each iteration.  We can add a small (0 or 1 LSB) "fudge" factor after each 
multiply & shift to make up for this, and dramatically increase the overall precision.  The fudge factor bits were 
arrived at via trial and error in the spreadsheet version, with an eye towards minimizing both local and final error.  
Without the fudge factor, full scale output is off by as much as -0.56%.  With the fudge factor, full-scale output is 
good to approximately 8 significant (base 10) digits. 
 
After we hit the square root of 2 (i.e. 2^-1) the remaining operations are simple right shifts which can be performed 
as a single bulk right shift (thus likely tossing away many hard-won calculated digits). 
  
    ADDR     OC  SA  SB     IM       OP  Comments 
   0x650 0x95f1  s1   .     31   SHP_6U  -- s1 := 0x8000,0000 (start value = 1)  // EXP2 SUB START 
   0x651 0x3012  s2  s1      .      CPY  -- s2 := 0x8000,000b  // start root = 2^2^-27 
   0x652 0xa0ba  P2   .     11    ADD_8 
   0x653  0xc03  s3  s0      .      LIT  -- s3 := 0xa73ce8  // fudge factor 
   0x654 0x3ce8   .   .  15592        L 
   0x655   0xa7   .   .    167        L 
   0x656 0xb1a6  s6   .     26      BYT  -- s6 := 26  // loop idx 
   0x657 0x1d00  s0  s0      .   SK2_NO  -- (s0 != odd) ? PC += 2  // skip LOOP START 
   0x658 0x8b29  P1  s2      .    MUL_U  -- P1 *= s2 (uns) 
   0x659 0x9019  P1   .      1   SHL_6S  -- P1 <<= 1  // so msb=1 
   0x65a 0x8b2a  P2  s2      .    MUL_U  -- P2 *= s2  // square to get next root 
   0x65b 0x901a  P2   .      1   SHL_6S  -- P2 <<= 1  // so msb=1 & lsb=0 
   0x65c 0x1533  s3  s3      .   SKP_NO  -- (s3 != odd) ? PC++  // skip if fudge bit=0 
   0x65d 0xa01a  P2   .      1    ADD_8  -- P2++  // set LSB of running root 
   0x65e 0x97f8  P0   .     -1   SHP_6U  -- P0 >>= 1  // get next intput bit 
   0x65f 0x97fb  P3   .     -1   SHP_6U  -- P3 >>= 1  // get next fudge bit 
   0x660 0xaffe  P6   .     -1    ADD_8  -- P6--  // dec loop idx 
   0x661 0xff56  s6   .    -11 JMP_8NLZ  -- (s6 >= 0) ? PC += -11  // LOOP END 
   0x662 0xae18  P0   .    -31    ADD_8  -- P0 += -31 
   0x663 0x8d89  P1  P0      .    SHL_U  -- P1 <<= P0 
   0x664 0x3090  s0  P1      .      CPY  -- s0 := P1 
   0x665  0x14c   .   .     76      POP  -- P6, P3, P2 
   0x666 0x2df0  s0  P7      .      GTO  -- return to P7  // EXP2 SUB END 
 

The subroutine code is above as it is found in the verification code, disassembled and displayed by the simulator.  
The running multiply is initialized to ‘1’ and pushed to S1.  The initial running root of 2 is pushed to S2.  The fudge 
factor is pushed to S3.  The loop index is pushed to S6. 
 
There are two conditional jumps in the loop.  The first tests the input LSB and skips the running multiplication of 
the current root of two and shift if the bit is zero.  After this, the next root is found via squaring and shifting, and 
the second test applies the fudge bit.  Then the input and fudge vectors are shifted right once to expose the next 
bits to testing, the loop index is decremented, and the loop repeats until the loop index goes negative. 
 
When the loop is exited, -31 is added to the remaining input bits, and the running multiply is shifted left by this 
amount.  The result is pushed to S0, some cleanup occurs, and the subroutine returns. 
 
In terms of real time, it takes 5 cycles to set up the loop, 8 cycles per loop best-case and 11 cycles worst-case, 
with 5 cycles after the loop.  For 26 iterations with all being 11 worst-case loops this gives: 
 
 5 + 11*26 + 5 = 296 cycles worst-case 
 
For a 200 MHz clock and 8 clocks per cycle, this is 11.84 us worst-case. 
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Inverse Subroutine Example 
Presented is the calculation of the inverse of an unsigned 32-bit integer input via Newton’s Method.  

 
Figure 67.  Inverse algorithm flow chart. 

Newton's method is iterative: 
 
 x(n+1) = x - f(x) / f'(x) 
 
For input D the reciprocal function is: 
 
  x = 1/D  or  D = x^-1 
 
to find the root of this: 
 
  f(x) = D - x^-1 
  f'(x) = x^-2 
  x(n+1) = f(x)/f'(x) 
 
So the iteration is: 
 
  x(n+1) = x * (2 - D * x) 
 
In general the reciprocal is kind of a problem.  Integer division doesn't give useful output when the numerator is 1, 
though we could scale the numerator up.  We know that precision will be lost if the input is larger than ~1/2 of the 
total bits wide, so it would be nice to scale things in order to maximize the precision of the result.  To do this we 
first scale the input so as to have a one in the most significant bit position, which gives a normalized number in 
the range [0.5:1).  Rearranging Newton's method a bit: 
 
  x(n+1) = 2 * x * (1 - D * x/2) 
 
Dividing both sides by 2: 
 
  x(n+1)/2 = 2 * x/2 * (1 - D * x/2) 
 

Hive_Design_2015-09-03.doc Page 64 of 77  



 

The equation is now in terms of x/2 rather than x, which allows intermediate values to fit in a fixed register width. 
 
If D is normalized to the interval [0.5:1) then the reciprocal x is in the interval [2:1) and x/2 is in the interval [1:0.5).  
Since D * x/2 is around 1/2, one minus this is around 1/2, so the result of the difference also conveniently 
occupies the same width register space.  But the inclusion of 1 in the range of x/2  is potentially problematic as it 
can cause overflow.  It appears that the choice of initial guess and limiting the iterations to only those necessary 
can prevent this.  Overflow is most likely with powers of 2 input where D is smallest, which is easy to test for. 
 
Input normalization also allows the use of a constant initial guess.  Using 0.6875 (0x.B or 0b.1011) doesn't seem 
to require more than 5 iterations with 32 bit operations.  The result appears to be off by no more than +2/-2 counts 
from the ideal rounded result.   
 
The exponent returned is the value required to denormalize the number to a non-float, which is: 
 
 EXP = 1 + LZC(D) - 2 * (I/O bit width) 
 
The offset of positive one is required because we are returning x/2 rather than x. 
 
If the result will be multiplied by another number, normalize the number, do the multiplication, then denormalize 
the result to maintain resolution. 
  
    ADDR     OC  SA  SB     IM       OP  Comments 
   0x7a0 0xd010  s0   .      1  JMP_8NZ  -- (s0 != 0) ? PC++  // skip return - INV_F SUB START 
   0x7a1 0x2df0  s0  P7      .      GTO  -- PC := P7  // return 
   0x7a2 0x3d01  s1  s0      .      LZC  -- s1 = LZC(s0)  // normalize input 
   0x7a3 0x8d18  P0  s1      .    SHL_U  -- P0 <<= s1 
   0x7a4 0xbb02  s2   .    -80      BYT  -- s2 = 0xb0  // initial guess 
   0x7a5 0x918a  P2   .     24   SHL_6S  -- P2 <<= 24 
   0x7a6 0xb003  s3   .      0      BYT  -- s3 = 0 
   0x7a7 0xb046  s6   .      4      BYT  -- s6 = 4 (loop index) 
   0x7a8 0x8b02  s2  s0      .    MUL_U  -- s2 *= s0  // LOOP START 
   0x7a9 0x84a3  s3  P2      .      SUB  -- s3 -= P2 
   0x7aa 0x8bba  P2  P3      .    MUL_U  -- P2 *= P3 
   0x7ab 0x901a  P2   .      1   SHL_6S  -- P2 <<= 1 
   0x7ac 0xaffe  P6   .     -1    ADD_8  -- P6 += -1 
   0x7ad 0xffa6  s6   .     -6 JMP_8NLZ  -- (s6 >= 0) ? PC += -6  // LOOP END 
   0x7ae 0xac19  P1   .    -63    ADD_8  -- P1 += -63  // exponent is 1 + lzc - (2 * bit_width) 
   0x7af 0x30a8  P0  P2      .      CPY  -- P0 = P2 
   0x7b0  0x148   .   .     72      POP  -- P6, P3 
   0x7b1 0x2df0  s0  P7      .      GTO  -- PC := P7  // return - INV_F SUB END 
 

The subroutine code is above as it is found in the verification code, disassembled and displayed by the simulator.  
The initial test makes sure the input is non-zero because the inverse of zero is undefined.  Next is the input 
normalization, and the loading of the initial guess and loop index.  Next is the iterative implementation of Newton’s 
method as described above.  Finally we have the exponent calculation and some cleanup at the end.  
 
The first section normalizes the input by shifting it to the left so that the MSB is equal to 1.  This is accomplished 
efficiently with the LZC instruction followed by a shift.  This number is also added to -63 to form the 
denormalization exponent. 
 
In terms of real time, it takes 7 cycles to set up the loop, 6 cycles per loop, with 4 cycles after the loop.  For 5 
iterations this gives: 
 
 7 + 6*5 + 4 = 41 cycles 
 
For a 200 MHz clock and 8 clocks per cycle, this is 1.64 us - significantly faster than the binary search division 
method. 
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“Bouncing Ball” LED PWM Display Example 
An interesting digital concept that seems rather unlikely to work in actual practice is the cross-coupled integrator 
sine / cosine oscillator.  The output of an accumulator is fed to the input of a second accumulator; the output of 
this second accumulator is arithmetically negated and fed back to the input of the first.  By identically scaling the 
accumulator inputs by a number generally much less than one (call it “alpha”) the frequency of the oscillations 
may be controlled or set.  The first accumulator generates cosine, the second sine.  It may be best seen as a 
ringing state variable band pass filter with infinite Q.  Sine and cosine amplitude is set by placing an initial value in 
one accumulator and zeroing the other one out, and then letting it “ring” for infinity.  Sine and cosine frequency ~= 
cycle frequency * alpha / ( 2 * Pi ). 
 
Mathematically this construct works because the integral of cosine = sine, and the integral of sine = -cosine.  
Numerically this construct will only work if there is a single register delay in the loop, and provided this 
requirement is met then truncation errors due to integrator input scaling rather mysteriously do not build up or 
otherwise become a long-term problem. 
 
If we feed a sine wave to an absolute value circuit (invert the entire value if the sign bit is negative) and find the 
power of two of this value, we can make a one-hot “bouncing ball” type LED display.  To add smoothness we can 
interpret the absolute sine wave value as a fixed decimal, using the integer portion to nominally select the LED, 
and using the decimal portion to perform PWM (pulse width modulation).  First order PWM is most easily 
accomplished by accumulating the PWM value and looking for accumulator overflow (smaller inputs cause 
infrequent overflows, and larger inputs cause frequent overflows).  When there is overflow, we select the next 
higher LED.  Rather than a flow diagram, a block diagram of this is shown below: 

 
Figure 68.  Bouncing ball block diagram. 

To complete the design we need to establish the frequency and amplitude of the sine wave, as well as fix the 
decimal place.  The core clock is 160 MHz and dividing this by 8 clocks per cycle gives 20 MHz.  Our loop takes 
14 cycles to execute once, so to get a roughly 1 Hz bounce rate we need an alpha of 14 * 2 * pi / 20 MHz ~= 
0.0000044 which is roughly 0x00003000.  The Cyclone demo board I am using has four LEDs, which correspond 
to the values zero, one, two, and three, so if we set the most significant hex digit to be our integer portion, then 
the initialization value should be 0x30000000. 
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    ADDR     OC  SA  SB     IM       OP  Comments 
    0x40 0xb000  s0   .      0      BYT  -- s0 := 0  // sin init - THREAD 0 BEGIN 
    0x41  0xc01  s1  s0      .      LIT  -- s1 := 0x3000,0000  // cos init 
    0x42      0   .   .      0        L 
    0x43 0x3000   .   .  12288        L 
    0x44  0xf02  s2  s0      .    LIT_U  -- s2 := 0x3000  // alpha 
    0x45 0x3000   .   .  12288        L 
    0x46 0xb005  s5   .      0      BYT  -- s5 := 0  // pwm init 
    0x47 0x8a20  s0  s2      .    MUL_S  -- s0 *= s2  // sin * alpha  - LOOP START 
    0x48 0x8489  P1  P0      .      SUB  -- P1 -= P0  // cos -= sin * alpha 
    0x49 0x8a21  s1  s2      .    MUL_S  -- s1 *= s2  // cos * alpha 
    0x4a 0x8098  P0  P1      .      ADD  -- P0 += P1  // sin += cos * alpha 
    0x4b 0x3003  s3  s0      .      CPY  -- s3 := s0 
    0x4c 0xf013  s3   .      1 JMP_8NLZ  -- (s3 !< 0) ? PC++ 
    0x4d 0x343b  P3  s3      .      NOT  -- ~P3 
    0x4e 0x9043  s3   .      4   SHL_6S  -- s3 <<= 4 
    0x4f 0x803d  P5  s3      .      ADD  -- P5 += s3  // update pwm count 
    0x50 0x83b5  s5  P3      .    ADD_U  -- s5 += P3  // get pwm ofl 
    0x51 0x924b  P3   .    -28   SHL_6S  -- P3 <<= -28 
    0x52 0x80db  P3  P5      .      ADD  -- P3 += P5  // add pwm ofl 
    0x53 0x8e3b  P3  s3      .      POW  -- P3 := 1 << s3  // one-hot 
    0x54 0x9c5b  P3   .      5    REG_W  -- reg[5] := P3  // led reg 
    0x55  0x4f1   .   .    -15    JMP_8  -- PC -= 15  // loop forever - LOOP END 

 
The subroutine code is above, disassembled and displayed by the simulator.  The initial values are loaded and 
the loop is entered.  Cosine is updated first, then sine.  The absolute value of sine is found and pushed to stack 
three.  This value is left shifted 4 places to obtain the decimal portion, which is added to the PWM counter to 
update it, after this it is added again but only to check for overflow.  The absolute sine value is right shifted 28 
places to obtain the integer portion, the overflow is added to it, the result of this converted to a power of 2, which 
is output to the LEDs.   
 
There is a bit of cheating going on here.  We really should check for PWM overflow before we update its value, 
but for slowly changing inputs the order isn’t too important.  Note also that the total loop time varies by one cycle 
depending on the sign of the sine value (due to the negation jump) but this isn’t noticeable even if you know about 
it. 
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AAPPPPEENNDDIIXX  DD  ::  AASSSSEEMMBBLLYY  NNOOTT  RREEQQUUIIRREEDD??  
While writing the opcodes as a sort of pseudo code in my notes and code comments, I became enamored with 
the idea of creating a higher level language for Hive.  But now that I’ve written and used the C++ interactive 
simulator I’m not so sure that is entirely desirable.   
 
A few people have contacted me since publishing earlier versions of this paper and the core SV code asking if an 
assembler or compiler were in the works, expressing their need for such tools before they could seriously 
consider using Hive in their projects.  I do understand these sentiments, though I wonder how much of the 
perceived need is driven by the (IMO needless) complexity of even the most modern of RISC processors at the 
lowest level.  The minute you have things like shared internal busses and caches the user can’t really rely on 
strict timing or even the ordering of events handled and generated by the processor.  Lots of registers, flags, 
modes, etc. all interacting geometrically must cause most people to throw up their hands even at the assembly 
level.  It is likely the norm at this point that engineers who require a certain level of processing power opt for a full 
blown high level language on top of a full blown operating system because they can’t realistically deal with the full 
blown processor sitting on the board.   
 
It’s likely I’m too wet behind the ears at this point to speak authoritatively, but it seems the more I interact with 
Hive the less I feel the need for even a low level assembly language between me and it.  This reaction has 
surprised me, as I was almost certain there was another level of things to implement on top of the interactive 
simulator (processors need more support than kids).  At this point anyway I don’t want dumb software managing 
where I put constants, variables, and subroutines in memory.  I really like seeing where the code is physically 
located and where there are blank places in the linear address space.  If I want legible pseudo code I might write 
an auto-comment mechanism to generate it from opcode disassembly, rather than the other way around.  Micro 
management of the memory is somewhat painful I suppose, but for the kinds of things I want to use Hive for it 
seems appropriate, and there doesn’t seem to be any easy substitute (outside of a much more powerful 
processor with gobs of memory to support the layers upon layers of unknown fluff other coders tend to bring to 
things). 
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AAPPPPEENNDDIIXX  EE  ::  EENNDDIIAANNNNEESSSS  

Introduction 
Endianness has to do with how data bytes, and sometimes the bits within those bytes, are arranged in memory.   
 
LE (little endian) aligns all of the natural binary indices at zero (the little end) and employs one of these indices for 
the address, but LE is not restricted to the byte index for the address – any larger index (16-bit, 32-bit, etc.), or 
smaller index all the way down to serial (1-bit) will work equally well.  Indeed, variable aspect ratio memories such 
as those found in FPGAs are LE for this reason. 
 
BE (big endian) elevates the importance of the byte above all other stored data widths.  It does this by forcing 
byte addressing on the architecture, and then reversing the byte order within multi-byte values stored in memory.  
The MSB (most significant byte) – the big end – is therefore stored at the smallest value byte address location for 
the wider type, and the LSB (least significant byte) is stored at the largest value byte address location for the 
wider type, with any intermediate bytes following the gradient.  Often the bits within the wider stored type are 
labeled counter to their natural binary index, and sometimes the bits with the bytes themselves are actually 
reversed.  Thus the address is necessarily byte-based but actually runs counter to the byte and higher indices 
within a wider stored type.   
 
BE can lead to grammatical confusion because it renders common phraseology like “the upper byte” ambiguous.  
It means what we think it means when referring to the PC or to multi-byte registers inside the processor, but it 
means the opposite when referring to a multi-byte value in memory, where the byte with the highest address and 
the byte with the most numeric significance are (at least) two different things. 
 
There is much tut-tutting that endianness is academic, that both little and big have their merits, just pick one but 
don’t become an advocate or you’ll start a holy war.  Along with this we get endian diagrams glossing over the 
details and thereby portraying the choice of endian as much more arbitrary than it actually is, and a too clever by 
half tie-in to Swiftian satire pushing the BE agenda.  I imagine this notion of “distinction without a difference” is 
held and promulgated mainly by software types who only have to deal with endianness at the highest levels, 
where the fits it gives them are mistakenly chalked up to the mixing of endianness, rather than to the continued 
existence of rival and conflicting systems of numerical representation in memory (BE) that should have been 
weeded out back when other bad ideas such as one’s complement were culled from the herd.   

Simplistic Diagrams and Byte Access 
The simplistic diagram below portrays a processor connected to byte addressable memory.  The processor 
almost certainly has a PC (program counter) that is more than 8 bits wide, and its ALU can most likely generate 
16-bit or wider internal arithmetic results  – how should these wider values be stored in byte addressable 
memory?  The diagram shows 32-bit LE memory storage on the left and BE storage on the right.  When drawn 
this way, in so called “Chinese” vertical fashion with byte addressable memory, the differences appear superficial. 
 

 
Figure 69.  Common little / big endian diagram. 

Even here there is an obvious best choice:  For calculation purposes (e.g. carry propagation) the ALU is generally 
is more “interested” in obtaining the little end of a wider stored value first, so the little end should be encountered 
first in the natural progression of things (i.e. as the address increases).  This way, should it have the opportunity, 
the ALU can be working on the calculation in parallel with the retrieval of the big end of the stored value. 
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Background : Natural Indices 
We name the digit positions of the decimal system ones, tens, hundreds, etc.  We do so because they are 
weightings, or multipliers for the digits in their positions.  Weightings are found by raising the base, ten in this 
case, to the power of the distance from the ones position.  For example: 
 
 16310 = 1(102) + 6(101) +3(100).   
 
This conveniently works for the fractional side of things if we consider distances in the opposite direction from the 
ones position as negative, e.g.: 
 
 3.1410 = 3(100) + 1(10-1) +4(10-2).   
 
This scheme works for any number base, e.g. binary: 
 
 101000112 = 1(27) + 0(26) + 1(25) + 0(24) + 0(23) + 0(22) + 1(21) + 1(20) = 12810 + 3210 + 210 + 110 = 16310. 
 
Indeed, this is how we convert numbers from one base to another.  So the distance from the ones position forms 
a natural index into the digits of any base, and this index is mathematically meaningful so therefore quite useful 
beyond mere indexing. 
 
As is the custom for Arabic numbering, we list the positions, and therefore the positional weightings (BasePosition), 
as increasing from right to left.  Regardless of whatever direction or order the majority of us have decided is the 
“correct” way to read, write, vocalize, etc. numbers, these are entirely arbitrary conventions that have nothing to 
do with endianness.   This is because integers are, in a very basic sense, (and I’m not just talking about byte 
order here) LE.  They are anchored by their little ends and increase in the direction of their big ends, and we align 
their little ends before we perform arithmetic on them.  I’m using integers here because I believe that is what 
processors operate on most, even if the higher level representation may be fixed point, float, character, etc. 
 

31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binary Index 
7 6 5 4 3 2 1 0 Hex Index 

3 2 1 0 Byte Index 
1 0 16-bit Index 

 
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 Binary / Hex 

1 0 1 0 1 0 1 0 Hex / Byte 
1 0 1 0 Byte /16-Bit 

1 0 16-bit / 32-bit

Figure 70.  Natural 2n Indices: Absolute (top), Relative (bottom). 

As can be seen above, the natural indices of powers of two representations are particularly interesting as they 
form a nested hierarchy.  For example, a memory can be seen as a linear sequence of bits, which can be divided 
up into a sequence of nibbles, nibbles into bytes, byes into 16-bit values, and so on.  Aligning their little ends 
allows us to employ any absolute index as our memory address.  This is LE and there really isn’t too much more 
to say about it.  It’s as simple as anything ever gets and that means something. 

Internal vs. External Storage 
Since everything in the processor world is binary, let’s take a closer look at the natural 2n indices of an integer 
stored both internally in a general purpose register and externally in main memory. 
 

31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binary Index 
7 6 5 4 3 2 1 0 Hex Index 

3 2 1 0 Byte Index 
1 0 16-bit Index 

 
1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 Binary 

0xD 0x4 0xC 0x3 0xB 0x2 0xA 0x1 Hex 
0xD4 0xC3 0XB2 0xA1 Byte 

0xD4C3 0xB2A1 16-bit 
0xD4C3B2A1 32-bit 

Figure 71.  LE / BE register storage of the value 0xD4C3B2A1. 

The above shows how any 32-bit processor, LE or BE, would store value 0xD4C3B2A1 in one of its internal 
general purpose registers.  Absolute positional 2n indexing is shown at the top, and values in various 2n 
representations of the value itself at the bottom.  Note that, because position indices are mathematically tied to 



 

weighting, all values and indices, regardless of width, grow in the same direction. How are 32-bit values stored in 
the memories of LE and BE machines? 
 

31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binary Addr 
7 6 5 4 3 2 1 0 Hex Addr 

3 2 1 0 Byte Addr 
1 0 16-bit Addr 

 
31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binary Index 

7 6 5 4 3 2 1 0 Hex Index 
3 2 1 0 Byte Index 

1 0 16-bit Index 

 
1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 Binary 

0xD 0x4 0xC 0x3 0xB 0x2 0xA 0x1 Hex 
0xD4 0xC3 0XB2 0xA1 Byte 

0xD4C3 0xB2A1 16-bit 
0xD4C3B2A1 32-bit 

Figure 72.  LE memory storage of the value 0xD4C3B2A1 at address 0. 

Above we see the way a LE processor stores the same value 0xD4C3B2A1 at address 0.  The only thing different 
from the internal register storage representation here is the addition of an addresses table at the top.  Note that 
the address is identical to a natural index.  We can pick any 2n natural index we like for the address and the 
memory contents will look exactly the same as the internal register contents. 
 

3 2 1 0 Byte Addr 

 
31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binary Index 

7 6 5 4 3 2 1 0 Hex Index 
0 1 2 3 Byte Index 

0 1 16-bit Index 

 
1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 Binary 

0xA 0x1 0xB 0x2 0xC 0x3 0xD 0x4 Hex 
0xA1 0xB2 0XC3 0xD4 Byte 

0xA1B2 0xC3D4 16-bit 
0xA1B2C3D4 32-bit 

Figure 73.  BE memory storage of the value 0xD4C3B2A1 at byte address 0. 

Above we see the way a BE processor stores the same value 0xD4C3B2A1 at byte address 0.  Here we have 
removed the other possible types of 2n addressing and left byte addressing, as byte addressing dominates in any 
BE discussion.  Note that sub-byte absolute (and relative as well) indices increase in the direction of the address, 
but the byte and 16-bit indices run counter to the address.  The byte positions within the 32-bit value have been 
jumbled, which jumbles the higher 16-bit and 32-bit representations 
 
BE proponents may ask us at this point to literally turn the tables, claiming that the above is somehow unfair or 
unrepresentative because memory dumps are byte oriented affairs listed from left to right.  This is quite a reach, 
and allows them to artificially reframe the terms of the debate by cosmetically reversing the very real and 
confusing byte reversal that BE imposes on the lowest level.  Of them I would ask: why not order the memory 
presentation in order to maximize dump readability, rather than order of the actual memory itself?  This is how it 
can be done with LE: provide two separate listings, one right-to-left (with increasing address) for hex numbers, 
and another left-to-right for ASCII.  There is usually a separate listing for ASCII anyway as hex and text are 
rendered differently. 
 
As a further twist, the bits within BE bytes may also be reversed.  Which shouldn’t be confused with something 
else BE proponents tend to do, and that is: re-labeling the bit index to start with 0 as signifying the MSb (most 
significant bit).  It’s pretty wild encountering this physically on, say, the PowerPC peripheral bus pins during a 
schematic review, where everything you naturally assume is suddenly wrong.  There must be mountains of failed 
prototypes resting quietly in landfills due to wacky bus bit enumeration alone. 
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Pros and Cons 
It should be clear by now that LE is the natural order of things, which is the biggest pro you can give anything, and 
has no substantive cons that I’m aware of.  Let’s go through the supposed BE pros that I’ve encountered: 
 
1. The big end of a number comes first when reading and writing them in most languages. 
2. The sign of a big endian number is always in the LSB position so it is trivial to locate and test.  Also, the BE 

byte arrangement enables more efficient binary to decimal conversion algorithms. 
3. BE is needed in our system for backward compatibility. 
4. BE is just as consistent as LE so it’s a wash. 
 
To which I reply: 
 
1. Integers are little endian, and readability direction is a poor reason to jumble byte storage in memory. 
2. These arguments seem to be advocating software end runs around the hardware load / store mechanism.  

Retrieving only a single byte of a multi-byte data type in memory strikes me as bad form, and particularly so if 
it requires the software to be endian aware. Memory operations of modern processors are almost always 
wider than one byte, so there is little or no efficiency to be gained by rearranging bytes in memory for testing 
or conversion purposes.  

3. It’s been my experience that backward compatibility should be resisted with every fiber of one’s being. 
4. No, there is simply no configuration of BE that is as simple and uniform as LE endian when it come to the 

overriding issues of addressing and natural indices. 

Endianness In Serial Protocols 
Processors usually employ dedicated serial communication hardware in order to serialize / deserialize parallel 
data, provide parallel data demarcation, and in general unburden the processor.  So the endianness of serial 
communication seems fairly moot when it comes to picking LE or BE for the processor architecture. 
  
Though the most straightforward protocols are those that impose the least “need to know” burden on the protocol 
ends.  Serial LE wins here because when sending / receiving the first bit of a message, how much more “first” can 
it be than the least significant bit of the first nibble of the first byte of the first 16-bit word etc.?  With BE all bets are 
off, though you will definitely receive the MSb of something, somehow, first.  Perhaps a minor point, but LE bit 
streams are much easier to perform carry propagation serial math on at the hardware level as well.   
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AAPPPPEENNDDIIXX  FF  ::  SSUUNNDDRRIIEESS  

Bzzz! 
I would be remiss if I did not point out the less positive aspects of Hive that I am aware of: 
 

 In its present state, Hive cannot execute instructions directly from external memory, and I think this is 
probably its biggest weakness.  The whole point of a processor is to leverage fast computation over large 
cheap storage, and FPGA RAM is neither large nor cheap.  (That said, why do modern hard processors not 
have integrated DRAM or similar in place of their huge on-chip caches?  Hans Moravec notes that the ratio of 
memory size to processor speed has remained a fairly constant one megabyte per MIPS throughout the 
history of general computing, which is a strong argument for fixed size, tightly integrated, on-chip RAM.) 

 The instruction set of Hive was hatched more intuitively than scientifically by a person who does not exactly 
have loads of practical experience programming assembly.  I have put more time into selecting operations, 
sizing immediate fields, and shuffling things around in the opcode encoding space than I have spent actually 
programming Hive. 

 Common data & instruction memory space (Von Neumann architecture) enables many good things, but it 
generally hinders code from executing directly from ROM, and it also makes it that much likelier for wild data 
writes to clobber code.  A single thread caught out in the weeds means you should probably clear all threads 
and refresh the memory space.  (I should point out that the “Von Neumann bottleneck” isn’t an issue for Hive 
because it uses dual port BRAM for main memory.) 

 With any stack machine, stack fullness is something the programmer must track in order to avoid stack faults, 
and Hive has more stacks than usual to keep track of (though to be fair they are used in a simpler manner). 

 Strict equal bandwidth multi-threading forces the programmer to implement some kind of load sharing 
arrangement for algorithms that require more real-time / less latency than a single thread can provide. 

 Real-time response to an interrupt can be somewhat long and variable (though, depending on the application, 
this could perhaps be compensated for with additional interrupt time stamp & register set logic). 

 FPGA logic will likely never be as fast, power efficient, inexpensive, etc. as an ASIC, so any soft processor 
core is in some sense a solution in search of a problem. 

Notes 
 As a test, I edited the v6.09 core to have a 16-bit wide ALU.  This resulted in 4 BRAMs for the 8 stacks / 

thread, 1747 LEs, and a top speed of 215MHz.  Stated relatively, this resulted in 50% stack BRAM count, 
~70% LE count, and 107% top speed when compared to the full 32-bit core.  These figures don’t strike me as 
significant enough to warrant further pursuit of a 16-bit variant of Hive. 

 Hive was developed (including simulation / verification) with Altera Quartus II 9.1sp2 Web Edition 
(unfortunately the last edition with integrated simulator) running on WinXP Pro (sadly past the end of support). 

 TextCrawler was used extensively to perform multi-file text search and replace (freeware from Digital 
Volcano). 

 Pictures were drawn in AutoCAD 2006 (I’ve found it ironically difficult to export good-looking image files from 
AutoCAD) plotted to Adobe Generic PS printer (free from Adobe, good luck finding a suitable *.inf file) and 
rasterized with Paint Shop Pro X (pretty much broken in Win7/64). 

 The Hive document was written in MS Word 2003 (also past end of support), and converted to PDF with 
Adobe Acrobat 8 Professional (free-ish due to license server retirement). 

 There are inexpensive FPGA demo boards readily available on eBay.  A very nice Cyclone 4 board can be 
had for $27 USD or thereabouts.  Comparable Xilinx Spartan offerings will require boot code initialization 
changes, and will likely be more expensive and run slower (Altera apparently uses faster transistors). 

 If one has a UART attached to the FPGA inputs (there are quite inexpensive USB to TTL level cables out 
there that can simultaneously power the FPGA demo board), the boot code may consist of a simple boot 
loader capable of uploading, storing, and loading executable code.  The boot code itself would not need to be 
touched much after that.   

 Simple scripting could be used to convert SystemVerilog boot text (or similar assembly) into uploadable 
binary data.  A ~$1 SPI FLASH or EEPROM device tacked onto a few spare FPGA pins could hold gobs of 
uploaded programming goodness. 



 

About Me 
I am primarily a digital designer with 15 years of experience targeting programmable 
logic devices (i.e. FPGAs and CPLDs made by Altera, Xilinx, and Lattice) with side 
experience in the mixed signal and analog fields.  I have designed many types of 
digital structures including general purpose processors, DPLLs, TSIs, UARTs, I2C & 
SPI masters / slaves / arbiters, UTOPIA interfaces, generic FIFOs as well as Ethernet 
packet and ATM cell FIFOs.  I strive for high levels of portability, readability, and 
craftsmanship in my code, and very much enjoy the documentation phase. 
 
For ten years I was a Member of Technical Staff for a large telecom.  Prior to that I 
held the positions of Assistant Mechanical Engineer, CNC Programmer, CNC 
Machinist, QA Inspector, and Vacuum Former Machine Operator. 
 
I received the degrees of BSEE and MSEE from The University of Virginia in 1996 and 1998, respectively.  I've 
published one journal paper, and hold one patent. 
 
I list the above merely to give the curious some sense of my background.  Literally anyone can do digital design 
and I highly encourage all to do so – I find it to be an incredibly creative, as well as an incredibly useful, activity. 
 
I’ve spent the last couple of years researching, experimenting, and prototyping in the digital / analog Theremin 
field – one reason for which Hive was developed.  My hope is to ultimately produce one or more novel electronic 
musical instruments with an emphasis on playability and other ergonomic factors. 

Comments? 
Found a bug in Hive (ha ha)?  If you have questions, comments, criticisms, improvements, etc. regarding Hive I’d 
love to hear them!  Contact me at: tammie_eric@verizon.net (note the ‘_’ underscore). 

Copyright 
Copyright © Eric David Wallin, 2013, 2014, 2015. 
Permission to use, copy, modify, and/or distribute this design for any purpose without fee is hereby granted, 
provided it is not used for spying or "surveillance" uses, military or "defense" projects, weaponry, or other 
nefarious purposes.  Furthermore, the above copyright and this permission notice must appear in all copies. 
 
RASHTM 
Register And Stack Hybrid 
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DDOOCCUUMMEENNTT  CCHHAANNGGEE  CCOONNTTRROOLL  
(YYYY-MM-DD) Hive version Notes 

2015-09-03 08.06 
Finished sim appendix, added sim tour, INV_F subroutine, many small 
edits.  Switch from SV initial type boot code to MIF based boot code as 
generated by the C++ simulator. 

2015-04-14 07.01 Added appendix on simulator.  Expanded register set and vector 
support sections.  New endianness screed. 

2015-02-24 06.03 
Revamped vector control and thread initialization. 
Register set additions / changes due to above. 
WAR & RAW sense reversed for clarity. 

2014-12-25 06.02 New opcode op_cls_8, some style-driven opcode renaming 
(particularly the immediate field), other minor edits. 

2014-07-15 06.01 Updates to reflect 32 bit memory access, new / changed opcodes, and 
transition to SystemVerilog code base. 

2014-06-07 05.03 Text for enhanced interrupt support, register set changes.  Additional 
UART discussion. 

2014-04-21 04.06 More / rearranged text for the instructions /  opcodes section, also 
more text re. register access. 

2014-02-15 04.06 Minor opcode renaming, fixed a few typos in the document. 

2014-01-05 04.05 
Major edits to reflect 8 stacks and somewhat different opcodes / 
resized immediates, UART, etc.  Updated and expanded the coding 
examples. 

2013-07-07 01.10 
Edits to reflect reshuffled opcodes.  Fixed immediate add range on 
page 23.  Added “barrel” processor classification and PDP 10 signed 
shift reference.  Other sporadic minor edits. 

2013-06-19 01.09 First public release. 
 
 



 

 
Figure 74.  Hive core. 
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// misc 
op_nop  = {`nop,               }, // do nothing (no pops either) 
op_pop  = {`pop,           `i8x}, // pop[7:0] none/one/some/all stacks 
op_cls  = {`cls,           `i8x}, // clear[7:0] none/one/some/all stacks 
op_jmp_8  = {`jmp_8,         `i8x}, // PC += I[7:0]  jump immediate unconditional 
// 
op_pgc  = {`pgc,      `bx,  `ax}, // A := PC  read PC++ (unsigned) 
op_lit  = {`lit,      `bx,  `ax}, // A := mem(PC)  literal data 
op_lit_s  = {`lit_s,    `bx,  `ax}, // A := mem_lo(PC)  literal data low signed 
op_lit_u  = {`lit_u,    `bx,  `ax}, // A := mem_lo(PC)  literal data low unsigned 
// conditional (A?B) skips 
op_skp_e  = {`skp_e,    `bx,  `ax}, // (A?B) ? PC++  skip 1 conditional 
op_skp_ne  = {`skp_ne,   `bx,  `ax}, 
op_skp_ls  = {`skp_ls,   `bx,  `ax}, 
op_skp_nls  = {`skp_nls,  `bx,  `ax}, 
op_skp_o  = {`skp_o,    `bx,  `ax}, 
op_skp_no  = {`skp_no,   `bx,  `ax}, 
op_skp_lu  = {`skp_lu,   `bx,  `ax}, 
op_skp_nlu  = {`skp_nlu,  `bx,  `ax}, 
// 
op_sk2_e  = {`sk2_e,    `bx,  `ax}, // (A?B) ? PC += 2  skip 2 conditional 
op_sk2_ne  = {`sk2_ne,   `bx,  `ax}, 
op_sk2_ls  = {`sk2_ls,   `bx,  `ax}, 
op_sk2_nls  = {`sk2_nls,  `bx,  `ax}, 
op_sk2_o  = {`sk2_o,    `bx,  `ax}, 
op_sk2_no  = {`sk2_no,   `bx,  `ax}, 
op_sk2_lu  = {`sk2_lu,   `bx,  `ax}, 
op_sk2_nlu  = {`sk2_nlu,  `bx,  `ax}, 
// branching 
op_jmp_z  = {`jmp_z,    `bx,  `ax}, // (A?0) ? PC += B  jump conditional 
op_jmp_nz  = {`jmp_nz,   `bx,  `ax}, 
op_jmp_lz  = {`jmp_lz,   `bx,  `ax}, 
op_jmp_nlz  = {`jmp_nlz,  `bx,  `ax}, 
op_gto_z  = {`gto_z,    `bx,  `ax}, // (A?0) ? PC := B  go to conditional 
op_gto_nz  = {`gto_nz,   `bx,  `ax}, 
op_gto_lz  = {`gto_lz,   `bx,  `ax}, 
op_gto_nlz  = {`gto_nlz,  `bx,  `ax}, 
op_jmp  = {`jmp,      `bx,  `ax}, // PC += B  jump unconditional 
op_gto  = {`gto,      `bx,  `ax}, // PC := B  go to unconditional 
op_irt  = {`irt,      `bx,  `ax}, // PC := B  IRQ return (go to unconditional) 
op_gsb  = {`gsb,      `bx,  `ax}, // PC := B, A := PC  subroutine call unconditional 
// logical & other 
op_cpy  = {`cpy,      `bx,  `ax}, // A := B  copy 
op_bnh  = {`bnh,      `bx,  `ax}, // A := {~B[31], B[30:0]}  bit not high 
op_cpy_s  = {`cpy_s,    `bx,  `ax}, // A := B[15:0]  low sign extend 
op_cpy_u  = {`cpy_u,    `bx,  `ax}, // A := B[15:0]  low zero extend 
op_not  = {`not,      `bx,  `ax}, // A := ~B  logical NOT 
op_and  = {`and,      `bx,  `ax}, // A &= B  logical AND 
op_orr  = {`orr,      `bx,  `ax}, // A |= B  logical OR 
op_xor  = {`xor,      `bx,  `ax}, // A ^= B  logical XOR 
op_bra  = {`bra,      `bx,  `ax}, // A := &B  logical AND bit reduction 
op_bro  = {`bro,      `bx,  `ax}, // A := |B  logical OR bit reduction 
op_brx  = {`brx,      `bx,  `ax}, // A := ^B  logical XOR bit reduction 
op_flp  = {`flp,      `bx,  `ax}, // A := FLP(B)  flip bits end for end 
op_lzc  = {`lzc,      `bx,  `ax}, // A := LZC(B)  leading zero count 
// immediate memory access 
op_mem_r  = {`mem_r,   `i4x, `bx, `ax}, // A := MEM(B+2*I[3:0])  memory read 
op_mem_w  = {`mem_w,   `i4x, `bx, `ax}, // MEM(B+2*I[3:0]) := A  memory write 
op_mem_rs  = {`mem_rs,  `i4x, `bx, `ax}, // A[15:0] := MEM(B+I[3:0])  memory read low signed 
op_mem_wl  = {`mem_wl,  `i4x, `bx, `ax}, // MEM(B+I[3:0]) := A[15:0]  memory write low 
// arithmetic 
op_add  = {`add,      `bx,  `ax}, // A += B  add 
op_add_s  = {`add_s,    `bx,  `ax}, // A += B  add extended signed 
op_add_u  = {`add_u,    `bx,  `ax}, // A += B  add extended unsigned 
op_sub  = {`sub,      `bx,  `ax}, // A -= B  subtract 
op_sub_s  = {`sub_s,    `bx,  `ax}, // A -= B  subtract extended signed 
op_sub_u  = {`sub_u,    `bx,  `ax}, // A -= B  subtract extended unsigned 
op_mul  = {`mul,      `bx,  `ax}, // A *= B  multiply 
op_mul_s  = {`mul_s,    `bx,  `ax}, // A *= B  multiply extended signed 
op_mul_u  = {`mul_u,    `bx,  `ax}, // A *= B  multiply extended unsigned 
op_shl_s  = {`shl_s,    `bx,  `ax}, // A <<<= B  shift left signed 
op_shl_u  = {`shl_u,    `bx,  `ax}, // A <<= B  shift left unsigned 
op_pow  = {`pow,      `bx,  `ax}, // A := 1<<B  power of 2 
// immediate shifts 
op_shl_6s  = {`shl_6s,   `i6x, `ax}, // A <<<= I[5:0]  shift left signed 
op_shp_6u  = {`shp_6u,   `i6x, `ax}, // A := 1<<I[5:0]  power of 2;  A <<= I[5:0]  shift unsigned 
// immediate register access 
op_reg_r  = {`reg_r,    `i6x, `ax}, // A := REG(I[5:0])  register immediate read 
op_reg_w  = {`reg_w,    `i6x, `ax}, // REG(I[5:0]) := A  register immediate write 
// immediate add 
op_add_8  = {`add_8,    `i8x, `ax}, // A += I[7:0]  add immediate signed 
// immediate data 
op_byt  = {`byt,      `i8x, `ax}, // A := I[7:0]  byte immediate signed 
// immediate conditional (A?0) jumps 
op_jmp_8z  = {`jmp_8z,   `i8x, `ax}, // (A?0) ? PC += I[7:0]  jump immediate conditional 
op_jmp_8nz  = {`jmp_8nz,  `i8x, `ax}, 
op_jmp_8lz  = {`jmp_8lz,  `i8x, `ax}, 
op_jmp_8nlz  = {`jmp_8nlz, `i8x, `ax} 

Figure 75.  Hive opcodes. 
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