
PSS TRM, April 2016

1

PSS Open Source Project

Technical Reference Manual

(ver. 0.9)

April, 2016

Alexander Antonov

153287@niuitmo.ru

PSS TRM, April 2016

2

Table of contents
1. Introduction .. 3

1.1 Overview ... 3

1.2 Block diagram .. 3

2. Programming view .. 5

2.1 Introduction... 5

2.2 Address map .. 5

2.3 System control registers .. 5

2.4 Processor core ... 6

2.5 Interrupts .. 7

2.6 DMA ... 7

2.7 Trap ... 7

2.8 UART debug module (udm) ... 7

3. System integration .. 9

3.1 Introduction... 9

3.2 Hardware interfaces .. 9

Clocking and resets.. 9

UART interface .. 9

Host port interface and CPU bus ... 9

Expansion port .. 10

Interrupt inputs ... 11

3.3 RTL configuration .. 11

4. Host-side software .. 12

5. Demo project description.. 13

Heartbeat .. 13

SWLED ... 13

SWnLED ... 13

Interrupts .. 13

Trap ... 13

PSS TRM, April 2016

3

1. Introduction

1.1 Overview
PSS (Programmable Supervisor for Systems-on-chip) is a soft IP core that targets to provide the basic

means for conducting service operations independently from the main processing logic within system-

on-chip (SoC) design. The system offers data exchange capabilities, directed via UART interface (host

interface), optional central processing unit and a set of tcl commands to control the system from the

host computer.

The motivation for the project is to provide simple, but yet functional starting point in system-on-chip or

system-on-FPGA design with data transfer and onboard processing capabilities, but when the solution

should not be resource-hungry to make design cycles as short as possible (primarily if you use FPGA) or

leave maximum resources for custom data processing units. On modern machines, PSS alone typically

takes minutes to progress through the whole compilation flow. PSS can be utilized for system

initialization, debug, or programmed (either statically or dynamically) to support complex host interface

transactions, that may include integrity verification, decompression, etc. Besides being used as a core

unit of an initial SoC design prototype or a controller for accelerator-intensive designs, it can be used as

auxiliary monitoring and debug processor in addition to the main and more powerful application

processor.

At the moment, the core is not intended to run complex software stacks (i.e. operating system).

Generally, the system targets the gap between the designs where the CPU core is not needed and those

that require significant CPU horsepower.

Current implementation of PSS uses FreeBSD-licensed ZPU core as a central processing unit. PSS itself is

licensed under FreeBSD as well.

1.2 Block diagram
The core provides some basic facilities to run C programs and interact with the SoC units using

expansion bus unit with the simple RAM-like interface. Also, the project includes the special unit that

utilizes UART interface to initiate transactions to the core. The block diagram of PSS system is shown in

Fig. 1.

PSS TRM, April 2016

4

Fig. 1. PSS block diagram

Reset controller converts external asynchronous reset to internal synchronous reset that is used by the

units of PSS.

UART debug module (udm) processes commands from external environment via UART interface. It uses

host interface to connect to the main processing unit. See Section 2.8 for more details.

ZPU_uC is a module that contains central processing unit (see Section 2.4), RAM unit, system registers

that allow to control and monitor the PSS operation (see Section 2.3), interrupt controller (see Section

2.5) and DMA (see Section 2.6).

RAM unit serves as a data buffer for udm-CPU and udm-DMA communication and as a main memory

unit for CPU.

PSS TRM, April 2016

5

2. Programming view

2.1 Introduction
This chapter describes the system facilities that are visible from the programmer’s viewpoint.

2.2 Address map
Address space of PSS system is divided between embedded RAM memory (eRAM), system registers and

expansion port. Address map is shown in Table 1

Table 1. Address map overview

Address range
Unit

From To Size

0x 0000 0000 0x 0003 FFFF 1 GB eRAM

0x 0004 0000 0x 0004 FFFF 64 KB System registers

0x 0005 0000 0x 7FFF FFFF ~ 1 GB Reserved

0x 8000 0000 0x FFFF FFFF 2 GB Expansion port

eRAM unit is exclusive for PSS system. The amount of memory is configurable, making the actual main

memory address space unique for certain configuration. However, it cannot exceed 1 GB. Processor

stack is automatically assigned to the greatest addresses of eRAM and grows down to the lower

addresses. The actual stack size is not restricted in hardware, which may cause data corruption.

However, PSS has a trap that can trigger interrupts once the certain address has been requested (see

Section 2.7). The stack border can be programmed into the trap address register, and stack overflow

situations can be processed in interrupt service routine.

For description of system registers addresses, please refer to Section 4.1.

Expansion port address space is directly mapped onto expansion bus. However, since expansion port

space is restricted by 2 GB value, address MSB has been made separately accessible. So, the whole 4 GB

external address space can be potentially accessible by both CPU core and host agent. CPU and host

have separate external address MSB bits in system registers unit. See Section 2.3 for more details.

2.3 System control registers
The core includes some basic facilities that will be essential for majority of projects: interrupt controller,

DMA and host control interface.

Addresses of system control registers are summarized in Table 2.

PSS TRM, April 2016

6

Table 2. System control registers overview

Address Register R/W State on reset Functional description

0x 0004 0000 CPU_CONTROL R/W

[0] – 1
[1] – 0

[31] – depends on
configuration

[0] – reset
[1] – cpu in break state
[31] – CPU present (read)

0x 0004 0004 CPU_PC R 0x 0000 0000 CPU program counter

0x 0004 0008 ExBUS_CPU_A31 R/W [0] - 1
address MSB for CPU external
transactions

0x 0004 000C ExBUS_DBG_A31 R/W [0] - 1
address MSB for host external
transactions

0x 0004 0010 INTC_CONTROL R/W 0x 0000 0000 interrupt controller state

0x 0004 0014 INTC_MASK R/W 0x 0000 0000
[7:0] – interrupt mask
[31:8] – reserved

0x 0004 0018 INTC_REQ R/W 0x 0000 0000
number of active interrupt
request

0x 0004 001C MEM_SIZE_KB R memory size embedded memory size in KB

0x 0004 0020 DMA_CONTROL R/W 0x 0000 0000

read [1:0] - DMA status:
 00 – ready;
 01 – ready, error occurred;
 10 – DMA read in progress;
 11 – DMA store in progress
write [1] – DMA command:
 0 - DMA load,
 1 - DMA store

0x 0004 0024 DMA_SOURCEADDR R/W 0x 0000 0000 DMA source address

0x 0004 0028 DMA_DESTADDR R/W 0x 0000 0000 DMA destination address

0x 0004 002C DMA_SIZE R/W 0x 0000 0000 DMA transfer size (in bytes)

0x 0004 0030 SGI_REQ W undefined 0 - SGI request

0x 0004 0034 - reserved

0x 0004 0038 BUS_ERROR_ADDR R 0x 0000 0000 invalid address being requested

0x 0004 003C BUS_ERROR_PC R 0x 0000 0000
PC value when invalid request
occurred

0x 0004 0040 TRAP_CONTROL R/W 0x 0000 0000
[0] – trap enable;
[31:1] – reserved

0x 0004 0044 TRAP_ADDR R/W 0x 0000 0000 trap address

0x 0004 0048 - 0x 0004 FFFF - reserved

IMPORTANT NOTICE: Current implementation of PSS DMA supports only 4-byte aligned addresses

and transfer sizes with the factor of 4. Any other requests cause undefined behavior.

2.4 Processor core
Current implementation of PSS utilizes the processor core and the corresponding C toolchain from ZPU

open source project. For the detailed description of ZPU core, please refer to:

http://opencores.org/project,zpu

PSS TRM, April 2016

7

2.5 Interrupts
PSS system provides four external and four internal interrupts. External interrupts are triggered using

interrupt inputs. Internal interrupts have a fixed function and are sourced from the internal units of PSS.

Interrupts have a fixed priority: lower number means higher priority.

Interrupts in PSS are summarized in Table 3.

Table 3. Interrupts overview

Number Name Functional description

0 BUS_ERROR
Incorrect address requested from CPU. The actual address is stored in
BUS_ERROR_ADDR register, PC value is stored in BUS_ERROR_PC
register.

1 TRAP Trap fired.

2 SGI SGI fired.

3 DMAI DMA has finished a transaction.

4-7 EXTI0-EXTI3 External interrupt fired.

2.6 DMA
PSS contains DMA unit that allows the data packets to be transferred from external units to main

memory and vice versa almost at the clock speed. At the moment DMA does NOT support the main-

memory-to-main-memory and external-units-to-external-units transactions. However, the latter can be

achieved by allocating the DMA buffer in memory and transferring data firstly from source to main

memory and then from main memory to destination.

DMA uses the separate port to the main memory unit that allows it to operate independently from the

processor. For I/O-intensive applications, DMA transfers of the next data package can be initiated prior

to having the previous package processed.

DMA is directed by the system control registers (see Tab. 2).

2.7 Trap
Traps are interrupts that are triggered once CPU has accessed the predefined address. Current

implementation of PSS has a single trap. Trap can be programmed to trigger by any address within the

whole 4 GB address space.

DMA transfers do not cause the trap triggering.

To set the trap, the following actions are required:

1) set the triggering address TRAP_ADDR register;

2) enable the trap by asserting 1 in TRAP_CONTROL[0].

The trap can be useful either for debug purposes or stack border monitoring (to prevent the stack from

damaging other main memory content).

2.8 UART debug module (udm)
UART debug module (udm) serves as a host interface controller, directed via UART. Udm has full access

to PSS system memory, auxiliary system facilities and expansion bus. Therefore, visibility of both internal

and external resources for host port is generally the same as for the processor core. Udm can reset and

PSS TRM, April 2016

8

start the processor, reprogram it, use DMA for expansion port transfers, communicate with the

processor using shared RAM and SGI.

Udm commands are summarized in Table 4.

Table 4. Udm commands overview

Command Name Functional description

0x00 PSS_CHECK Check udm accessibility (udm will return 0x55)
0x80 PSS_HRESET Reset PSS using the dedicated pin.
0x81

<4-byte address>

<4-byte length>

<data words>

PSS_WR_INC

Write data with address autoincrement.

0x81

<4-byte address>

<4-byte length>

PSS_RD_INC
Read data with address autoincrement.

0x82

<4-byte address>

<4-byte length>

<data words>

PSS_WR_NOINC

Write data without address autoincrement.

0x83

<4-byte address>

<4-byte length>

PSS_RD_NOINC
Read data without address autoincrement.

Udm uses the special synchronization byte (0x55) to signal the beginning of the transaction. Another

special byte (0x5a) byte is used as escape character (including the cases when the escape character

should be escaped itself).

Udm has baud rate autodetection feature. It uses synchronization byte to detect the current baud rate

of UART channel. If you want to change baud rate, reset the device and reconfigure the serial channel

on the host.

Udm does not have internal buffering and flow control features – it operates synchronously to host port

interface. Therefore, it is not recommended to initiate intensive write transfers directly to expansion

port address space due to possible data loss situations. Instead, buffer the data in embedded RAM and

use DMA to exchange the data between embedded RAM and expansion port.

PSS TRM, April 2016

9

3. System integration

3.1 Introduction
This chapter describes how to integrate PSS into your SoC design and configure it correctly.

3.2 Hardware interfaces
The following describes the hardware interfaces that have to be connected to your design or I/O pins of

your FPGA board.

Clocking and resets

PSS resides in a single clock domain, and he clocking has to be attached to clk_i port. Since PSS adapts

to the UART baud rate automatically (see Section 2.8), the user does not have to care about the precise

ratio between clock speed and UART baud rate. However, the frequency being used should be sufficient

to manage UART transfers. It is recommended to use the clock frequency which is at least an order of

magnitude greater than the expected UART baud rates.

PSS uses asynchronous reset input (arst_i), which goes to embedded reset controller. Reset

controller generates a new reset signal that goes to internal units of PSS. Reset controller asserts reset

asynchronously, but deasserts it synchronously several clock periods after it has been deasserted on the

input port. The synchronous reset is forwarded to srst_o output port, so that it can also be used by

the other units outside PSS.

UART interface

UART interface comprises receiver input port (rx_i) and transmitter output port (tx_o). Receiver

input is buffered inside PSS before processing. No special considerations should be taken except locking

them on corresponding FPGA pins.

Host port interface and CPU bus

Host port interface and CPU bus are located inside PSS. However, understanding these interfaces can be

useful for simulation, debug, and in case you are going to use only specific units of PSS. If you treat PSS

as a black-box, you can skip this section.

Host and CPU interfaces are identical. Waveforms for read and write transactions are shown in Fig. 2.

PSS TRM, April 2016

10

a b

Fig. 2. Read (a) and write (b) transactions for host and CPU interfaces

The interface in synchronous to clock signal. Master unit holds REQ signal throughout the entire

transaction. WE signal identifies if the transaction is read or write. The transaction finishes when the

slave device asserts RESP signal. WDATA is the data that needs to be written, RDATA is data that is read

from the slave device. Waveforms for read and write transactions are shown in Fig. 3.

Expansion port

Expansion port is used for communication between PSS and other units within the remaining parts of

SoC design.

Organization of expansion port differs from host port and CPU interfaces. Read responses are split from

requests to utilize pipeline capabilities of modern interconnects. However, strong ordering should be

preserved.

a b

Fig. 3. Read (a) and write (b) transactions for host and CPU interfaces

The interface in synchronous to clock signal. Master device holds REQ signal until the slave device

asserts ACK. WE signal identifies if the transaction is read or write. If the transaction is write, WDATA is

the data that needs to be written and the transaction finishes once ACK signal is asserted. If the

transaction is read, master device waits for RESP signals that identifies that the data is ready. RDATA is

data that is read from the slave device.

PSS TRM, April 2016

11

Interrupt inputs

External interrupts are triggered by the dedicated input ports (INT_i). External interrupts are edge

triggered. Interrupt controller contains edge detection and metastability protection logic, therefore, the

source of interrupts can reside in separate clock domain. However, interrupt controller does NOT

contain debouncing logic, so, in case, for instance, you are going to source the interrupts from switches

on your FPGA board, consider using a debouncer.

3.3 RTL configuration
PSS RTL core has to be properly configured depending on your functional requirements. The parameters

are summarized in Table 4.

Table 4. PSS parameters overview

Name Default value Functional description

CPU_PRESENT 1
Presence of CPU in PSS system:
0 – CPU not present;
1 – CPU present.

CPU_RESET_DEFAULT 1
CPU reset condition after power-up:
0 – reset deasserted;
1 – reset asserted.

A31_DEFAULT 1
A31 bit definitions for CPU and udm units after power-
up.

MEM_SIZE_KB 1 Size of embedded RAM unit in kilobytes.

MEM_DATA - File name for RAM initialization.

PSS TRM, April 2016

12

4. Host-side software

PSS provides the script that defines the set of commands for interaction with the hardware. The script is

written in tcl and allows execution from generally any tcl environment, including, for instance, tcl

console in Xilinx ISE software. Dedicated tcl interpreters are also allowed.

To load the procedures, type in the tcl console:

source <path_to_PSS>/SW/terminal/pss.tcl

The available commands are summarized in Table 5.

Table 5. Host commands overview

Command Description

pss_connect com_num

baud_rate

[or pss_con com_num

baud_rate]

connect to serial interface (e.g. com4)

pss_disconnect

[or pss_discon]
disconnect from the serial interface

pss_check check response from udm unit

pss_cc connect to serial interface (e.g. com4) and check response
from udm unit

pss_sendword dataword send 4-byte data word with escape characters

pss_wr address

list_of_datawords

write 4-byte datawords to address

pss_rd address count read 4-byte datawords from address (total number of bytes
is specified by count)

pss_wrfile_le address

filename

write binary file content to address using little-endian

pss_wrfile_be address

filename

 write binary file content to address using big-endian

pss_reset assert reset to CPU

pss_start deassert reset from CPU

pss_restart restart CPU (assert and deassert reset)

pss_loadbin filename assert reset to CPU, load binary image and deassert reset

pss_dma_wr address

list_of_datawords

write 4-byte datawords to address using DMA

pss_sgi call SGI

IMPORTANT NOTICE: Current implementation of PSS supports only 4-byte aligned addresses and

transfer sizes with the factor of 4. Any other requests cause undefined behavior.

PSS TRM, April 2016

13

5. Demo project description

The project has been tested on Digilent Nexys-2 Spartan-3AN FPGA board. PSS unit is wrapped by

pss_soc_top unit that connects PSS to the register, mapped onto address 0x8A000000. Read request

to this address returns the values selected onto switches, while write requests drive the LEDs. The file

pss_soc_top is wrapped by either board-specific HDL file (located in project directory) or HDL testbench

(pss/tb/PSS_SoC_tb.v). Some of the host commands from Section 4 are duplicated in HDL testbench.

Also, the project provides a set of programs for embedded PSS processor that can be loaded to PSS unit

to test some of its features. The programs are located in pss/SW/onboard.

To test the programs, take the following steps:

1) compile and load the firmware to FPGA board;

2) connect instrumentation PC to FPGA board using UART cable;

3) type “source <path_to_PSS>/SW/terminal/pss.tcl“ to load PSS tcl procedures;

4) type “pss_cc <com number> <baud rate>“ to connect to PSS and check the

communication channel;

5) type “pss_loadbin <name of PSS software binary image>“ to load the binary

image to PSS.

The following describes the programs available in PSS distribution.

Heartbeat

This program iteratively increments the values on LEDs with delays to make it visible.

SWLED

This program iteratively reads the values of the switches and writes this value to LEDs.

SWnLED

This program iteratively reads the values of the switches and writes inverted value to LEDs.

Interrupts

This program outputs the 0x81 value to LEDs and puts the processor into infinite loop. SGI and

pushbutton external interrupt cause the processor to increment this value.

Trap

This program sets the trap to monitor stack overflow and implements recursive function that causes the

stack to overflow. Interrupt service routine outputs the 0xAA value to LEDs and stops the processor by

putting it into infinite loop.

