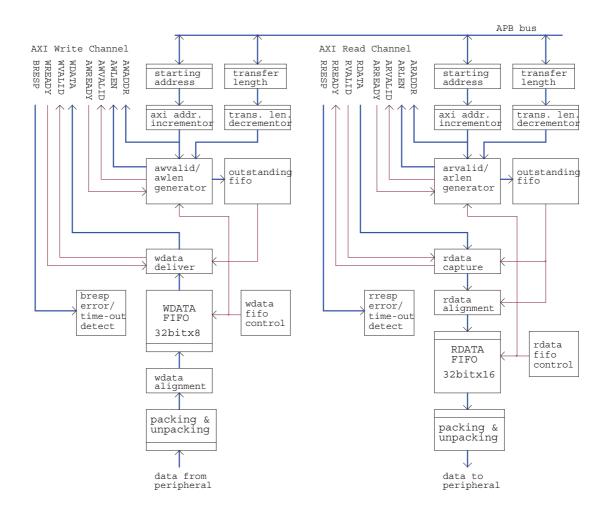
Generic AXI DMA

joe68.chou@msa.hinet.net

Revision History

Rev	Date	Description					
0.0	2017/05/27	irst release					


Description

An AXI DMA fits the peripheral (such as I2S, UART, SPI....) it needs DMA capability in SoC; the DMA will move data between the peripheral and system memory for efficient data transfer, also saving CPU computing power.

Overview

- AXI compliant; 32-bit data width.
- Bi-directional; independent read/write channel, and also read/write channel can be executed in parallel.
- Byte addressable; DMA starting address and transfer length could not have to be a multiple of 4.
- Maximum burst length is 8 words, and burst access won't cross 8-word boundary.
- Outstanding transaction support.
- Response error/time-out support.
- APB interface for register programing
- Peripheral interface protocol: AXI stream

Block Diagram

Hardware Description

- HW will break DMA transfer length into several AXI burst accesses. The maximum burst length is 8 words, and also burst access address will not cross 8-word boundary, and this is good for DDR efficiency if target slave is DDR. Up to DMA address and remaining DMA length situation the burst length could be smaller in order not to cross 8-word boundary while DMA starting and ending addresses are not located at 8-word boundary.
- HW will look ahead on internal data FIFO situation for issuing access to AXI. For read it will make sure FIFO has enough room for receiving next bursting RDATA before issuing read access; and for write it will make sure FIFO has bursting WDATA ready before issuing write access. This prevents data pending or waiting on AXI bus, which may cause AXI bus low efficiency.
- For supporting of outstanding access a FIFO is used to keep issued AxADDR and AxLEN information to handle RDATA receiving or WDATA delivering.

IO Interface Definition

General		
IO	name	description
input	clk	Clock input to DMA.
		The design is clocking by this clock only, and
		also only rising edge of the clock used.
input	rstn	Reset input to DMA, low active.
		The DMA used synchronous reset, the reset
		de-assertion needs to be synchronized with input
		clock.
output	dma_itr	DMA interrupt output; active high, level
		triggered. Registered output, glitch free. SW
		needs to clear the interrupt source within the
		design during ISR.
APB int	erface	
input	pselect	APB pselect input.
input	penable	APB penable input.
input	pwrite	APB pwrite input.
input	paddr[7:0]	APB address input
input	pwdata[31:0]	APB write data input.
output	prdata[31:0]	APB read data return.
AXI inte	erface	
output	arvalid	AXI arvalid output
input	arready	AXI arready input
output	araddr[31:0]	AXI araddr input
output	arlen[2:0]	AXI arlen output.
		The value could be from 3'b111 to 3'b000.
output	arsize[2:0]	AXI arsize output. Fixed at 3'b010(32-bit)
output	arburst[1:0]	AXI arburst output. Fixed at 2'b01(INCR)
input	rvalid	AXI rvalid input.
output	rready	AXI rready output
input	rdata[31:0]	AXI rdata input.
input	rresp[1:0]	AXI rresp input
input	rlast	AXI rlast input
output	awvalid	AXI awvalid output
input	awready	AXI awready input
output	awaddr[31:0]	AXI awaddr input
output	awlen[2:0]	AXI awlen output.

		The value could be from 3'b111 to 3'b000.
output	awsize[2:0]	AXI awsize output. Fixed at 3'b010(32-bit)
output	awburst[1:0]	AXI awburst output. Fixed at 2'b01(INCR)
output	wvalid	AXI wvalid output
input	wready	AXI wready input
output	wdata[31:0]	AXI wdata output
output	wstrb[3:0]	AXI wstrb output
output	wlast	AXI wlast output
input	bvalid	AXI bvalid input
output	bready	AXI bready output
input	bresp[1:0]	AXI bresp input
Peripher	al/RDMA interface (A)	XI stream protocol)
output	rdma_tvalid	To indicate data output from RDMA is valid to
		peripheral.
input	rdma_tready	Peripheral is ready to receive the tdata.
output	rdma_tdata[31:0]	RDMA data output to peripheral.
output	rdma_tstrb[3:0]	tdata strobe indication; only combinations below.
		tstrb[3:0]=4'b0001 indicate tdata[7:0] is valid.
		tstrb[3:0]=4'b0011 indicate tdata[15:0] is valid.
		tstrb[3:0]=4'b0111: indicate tdata[23:0] is valid.
		tstrb[3:0]=4'b1111: indicate tdata[31:0] is valid.
output	rdma_tlast	To indicate the last data to peripheral of a DMA.
Peripher	al/WDMA interface (A)	XI stream protocol)
input	wdma_tvalid	To indicate data input to WDMA is valid from
		peripheral.
output	wdma_tready	WDMA is ready to receive the tdata.
input	wdma_tdata[31:0]	WDMA data input from peripheral.
input	wdma_tstrb[3:0]	tdata strobe indication; only combinations below
		allowed
		tstrb[3:0]=4'b0001 indicate tdata[7:0] is valid.
		tstrb[3:0]=4'b0011 indicate tdata[15:0] is valid.
		tstrb[3:0]=4'b0111: indicate tdata[23:0] is valid.
		tstrb[3:0]=4'b1111: indicate tdata[31:0] is valid.

Register Definition

Read DMA starting register / RDMA_SADR_REG	0x00
--	------

bit#	name	type	reset	Description
31:0	Read DMA	R/W	none	Read DMA starting address.
	Starting			To specify the source starting address for DMA
	address			transfer.

Read I	OMA length r	egister	RDM	A_LEN_REG	0x04
bit#	name	type	reset	Description	
19:0	Read DMA	R/W	0x0	Read DMA transfer length, unit:	byte.
	Transfer			A non-zero value written to this r	egister will
	length			enable the read DMA transfer.	
				This register will be cleared to ze	ero by hardware
				while RDMA is started. Note: DM	MA starting
				address register and DMA transfe	er length register
				are double-buffered, and user ma	y prepare next
				DMA starting address and transfe	er length while
				previous DMA start flag/interrup	t has been set.
31:20	Reserved	R	0x0	Always zero while reading	

Read	DMA control	register	·/ RDM	/A_CTL_REG 0x08	
bit#	name	type	reset	Description	
0	Read DMA	R/W	0x0	0: mask	
	start			1: enable interrupt	
	interrupt				
	enable				
1	Read DMA	R/W	0x0	0: mask	
	finish			1: enable interrupt	
	interrupt				
	enable				
2	Read DMA	R/W	0x0	0: mask	
	RRESP			1: enable interrupt	
	error				
	interrupt				
	enable				
3	Read DMA	R/W	0x0	0: mask	
	RRESP			1: enable interrupt	
	time out				
	interrupt				
	enable				

4	Read DMA	R/W	0x0	0: mask
	RVALID			1: enable interrupt
	error			
	interrupt			
	enable			
7:5	Reserved	R	0x0	Always zero while reading
8	Read DMA	R/W	0x0	0: play
	pause			1: pause; to disable DMA request to AXI bus.
9	Read DMA	R/W	0x0	To terminate on-going DMA operation.
	flush			Set to 1 to terminate, and it will be auto-cleared
				by hardware while on-going AXI transaction has
				been finished.
31:10	Reserved	R	0x0	Always zero while reading

Write I	Write DMA starting register / WDMA_SADR_REG 0x10				
bit#	it# name type reset			Description	
31:0	Write DMA	R/W	none	Write DMA starting address.	
	Starting			To specify the source starting add	lress for write
	address			DMA transfer.	

Write I	OMA length r	egister	/ WDM	IA_LEN_REG	0x14
bit#	name	type	reset	Description	
19:0	Write DMA	R/W	0x0	Write DMA transfer length, unit:	byte.
	Transfer			A non-zero value written to this r	egister will
	length			enable the write DMA transfer.	
				This register will be cleared to ze	ero by hardware
				while WDMA is started. Note: D	MA starting
				address register and DMA transfe	er length register
				are double-buffered, and user ma	y prepare next
				DMA starting address and transfe	er length while
				previous DMA start flag/interrup	t has been set.
31:20	Reserved	R	0x0	Always zero while reading	

Write DMA control register / WDM				IA_CTL_REG	0x18
bit#	bit# name type reset			Description	
0	Write DMA	R/W	0x0	0: mask	
	start			1: enable interrupt	

	interrupt			
	enable			
1	Write DMA	R/W	0x0	0: mask
	finish			1: enable interrupt
	interrupt			
	enable			
2	Write DMA	R/W	0x0	0: mask
	BRESP			1: enable interrupt
	error			
	interrupt			
	enable			
3	Write DMA	R/W	0x0	0: mask
	BRESP			1: enable interrupt
	time out			
	interrupt			
	enable			
4	Write DMA	R/W	0x0	0: mask
	BVALID			1: enable interrupt
	error			
	interrupt			
	enable			
7:5	Reserved	R	0x0	Always zero while reading
8	Write DMA	R/W	0x0	0: play
	pause			1: pause; to disable DMA request to AXI bus.
9	Write DMA	R/W	0x0	To terminate on-going DMA operation.
	flush			Set to 1 to terminate, and it will be auto-cleared
				by hardware while on-going AXI transaction has
			ļ	been finished.
31:10	Reserved	R	0x0	Always zero while reading

DMA	DMA Status register / DMA_STT_REG 0x20				
bit#	name	type	reset	Description	
0	Read DMA	R/W	0x0	Read DMA start interrupt flag. A	n interrupt is
	start			generated while the DMA is start	ted. Software
	interrupt			may clear it by writing 1 to this b	oit.
	flag			0: no interrupt	
				1: interrupt	
				Writing 1 to clear this bit, 0 no et	ffect.

	-			
1	Read DMA	R/W	0x0	Read DMA finish interrupt flag. An interrupt is
	finish			generated while DMA is finished. Software may
	interrupt			clear it by writing 1 to this bit.
	flag			0: no interrupt
				1: interrupt
				Writing 1 to clear this bit, 0 no effect.
2	RRESP	R/W	0x0	RRESP error received. Software may clear it by
	error			writing 1 to this bit.
	interrupt			0: no interrupt
	flag			1: interrupt
				Writing 1 to clear this bit, 0 no effect
3	RRESP	R/W	0x0	RRESP didn't get back to RDMA within
	time out			specified time. Software may clear it by writing 1
	interrupt			to this bit.
	flag			0: no interrupt
				1: interrupt
				Writing 1 to clear this bit, 0 no effect
4	RVALID	R/W	0x0	Unexpected RVALID/RDATA received. Software
	error			may clear it by writing 1 to this bit.
	interrupt			0: no interrupt
	flag			1: interrupt
				Writing 1 to clear this bit, 0 no effect
7:5	Reserved	R	0x0	Always zero while reading
9:8	RRESP	R	0x0	00: OKAY
	error			01: EXOKAY
	message			10: SLVERR
				11: DECERR
				See AXI spec for details.
10	Read DMA	R	0x0	To indicate Read DMA is operating
	operating			0: no
				1: yes
15:11	Reserved	R	0x0	Always zero while reading
16	Write DMA	R/W	0x0	Write DMA start interrupt flag. An interrupt is
	start			generated while the DMA is started. Software
	interrupt			may clear it by writing 1 to this bit.
	flag			0: no interrupt
				1: interrupt
				Writing 1 to clear this bit, 0 no effect.

17	Write DMA	R/W	0x0	Write DMA finish interrupt flag. An interrupt is
l	finish			generated while DMA is finished. Software may
l	interrupt			clear it by writing 1 to this bit.
l	flag			0: no interrupt
l				1: interrupt
1				Writing 1 to clear this bit, 0 no effect.
18	BRESP	R/W	0x0	BRESP error received. Software may clear it by
l	error			writing 1 to this bit.
l	interrupt			0: no interrupt
l	flag			1: interrupt
1				Writing 1 to clear this bit, 0 no effect
19	BRESP	R/W	0x0	BRESP didn't get back to WDMA within
l	time out			specified time. Software may clear it by writing 1
l	interrupt			to this bit.
l	flag			0: no interrupt
1				1: interrupt
L				Writing 1 to clear this bit, 0 no effect
20	BVALID	R/W	0x0	Unexpected BVALID/BRESP received. Software
1	error			may clear it by writing 1 to this bit.
l	interrupt			0: no interrupt
l	flag			1: interrupt
L				Writing 1 to clear this bit, 0 no effect
23:21	Reserved	R	0x0	Always zero while reading
25:24	BRESP			00: OKAY
l	error			01: EXOKAY
l	message			10: SLVERR
1				11: DECERR
L				See AXI spec for details.
26	Write DMA	R	0x0	To indicate write DMA is operating.
I	operating			0: no
l				1: yes

Respor	Response Time-out period register / RSP_TOUT_REG 0x24				
bit#	name	type	reset	Description	
15:0	Response	R/W	0xFFF	To specify AXI BRESP or RRES	P time out
	time out		F	period. If BRESP or RRESP didn	't get back to
	period			DMA within specified time here,	then a time-out

				interrupt will be generated.
				This is a down counter, will be reloaded by preset
				value while access issued or BRESP/RRESP
				received but another outstanding access still
				on-going. The counter is clocking by DMA input
				clock, an interrupt is generated while count
				reaches zero value.
				Value 0xFFFF is defined as a time-out counter
				disable state.
31:16	Reserved	R	0x0	Always zero while reading

Application Note

- The DMA operating is simple, SW user firstly may enable the interrupt wanted and set up DMA starting address, and then DMA transfer length. A non-zero value written to transfer length register will enable the DMA operation. After DMA is enabled, SW may wait for the interrupt for further operation.
- There are two interrupts from DMA operation; DMA start, and DMA finish. Note; DMA starting address and transfer length registers are double-buffered, while DMA is started, the software programmed DMA starting address and transfer length registers will be copied to internal, and also transfer length register will be cleared to zero, at this moment DMA starting address and transfer length registers are available for next DMA programming. While previous DMA is finished, HW will check DMA transfer length right away, if the content of transfer length register is not zero, then next DMA is started. Such mechanism will form a gapless transfer between two DMAs.
- SW user may select conventional way, wait for previous DMA finish, and then program DMA starting address and transfer length register to start next DMA.
- DMA pause function is to temporally disable DMA access to AXI.
- DMA flush function is to terminate on-going DMA as well as next DMA if it is already prepared in DMA transfer length register. The termination is executed after all outstanding transactions being finish to prevent AXI bus hang-up.