| 1 |
52 |
Agner |
/**************************** emulator1.cpp ********************************
|
| 2 |
|
|
* Author: Agner Fog
|
| 3 |
|
|
* date created: 2018-02-18
|
| 4 |
|
|
* Last modified: 2021-07-14
|
| 5 |
|
|
* Version: 1.11
|
| 6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
| 7 |
|
|
* Description:
|
| 8 |
|
|
* Basic functionality of the emulator
|
| 9 |
|
|
*
|
| 10 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
| 11 |
|
|
*****************************************************************************/
|
| 12 |
|
|
|
| 13 |
|
|
#include "stdafx.h"
|
| 14 |
|
|
|
| 15 |
|
|
|
| 16 |
|
|
///////////////////
|
| 17 |
|
|
// CEmulator class
|
| 18 |
|
|
///////////////////
|
| 19 |
|
|
|
| 20 |
|
|
// constructor
|
| 21 |
|
|
CEmulator::CEmulator() {
|
| 22 |
|
|
memory = 0; // initialize
|
| 23 |
|
|
memsize = 0;
|
| 24 |
|
|
stackp = 0;
|
| 25 |
|
|
// set defaults. may be changed by command line or file header:
|
| 26 |
|
|
MaxVectorLength = 0x80; // 128 bytes = 1024 bits
|
| 27 |
|
|
maxNumThreads = 1; // multithreading not supported yet
|
| 28 |
|
|
stackSize = 0x100000; // 1 MB. data stack size for main thread
|
| 29 |
|
|
callStackSize = 0x800; // call stack size for main thread
|
| 30 |
|
|
heapSize = 0; // heap size for main thread
|
| 31 |
|
|
environmentSize = 0x100; // maximum size of environment and command line data
|
| 32 |
|
|
}
|
| 33 |
|
|
|
| 34 |
|
|
// destructor
|
| 35 |
|
|
CEmulator::~CEmulator() {
|
| 36 |
|
|
if (memory) delete[] memory; // free allocated program memory
|
| 37 |
|
|
}
|
| 38 |
|
|
|
| 39 |
|
|
// start
|
| 40 |
|
|
void CEmulator::go() {
|
| 41 |
|
|
threads.setSize(maxNumThreads); // initialize threads
|
| 42 |
|
|
load(); // load executable file
|
| 43 |
|
|
if (err.number()) return;
|
| 44 |
|
|
if (fileHeader.e_flags & EF_RELOCATE) relocate();
|
| 45 |
|
|
if (err.number()) return;
|
| 46 |
|
|
|
| 47 |
|
|
// set up disassembler for output list
|
| 48 |
|
|
if (cmd.outputListFile) disassemble();
|
| 49 |
|
|
|
| 50 |
|
|
// prepare main thread
|
| 51 |
|
|
threads[0].setRegisters(this);
|
| 52 |
|
|
// run main thread
|
| 53 |
|
|
threads[0].run();
|
| 54 |
|
|
}
|
| 55 |
|
|
|
| 56 |
|
|
// load executable file into memory
|
| 57 |
|
|
void CEmulator::load() {
|
| 58 |
|
|
const char * filename = cmd.getFilename(cmd.inputFile);
|
| 59 |
|
|
read(filename); // read executable file
|
| 60 |
|
|
if (err.number()) return;
|
| 61 |
|
|
split(); // extract components
|
| 62 |
|
|
if (getFileType() != FILETYPE_FWC || fileHeader.e_type != ET_EXEC) {
|
| 63 |
|
|
err.submit(ERR_LINK_FILE_TYPE_EXE, filename);
|
| 64 |
|
|
return;
|
| 65 |
|
|
}
|
| 66 |
|
|
// calculate necessary memory size
|
| 67 |
|
|
uint64_t blocksize = 0; // size of block of segments with same base pointer
|
| 68 |
|
|
uint32_t ph; // program header index
|
| 69 |
|
|
uint64_t align; // program header alignment
|
| 70 |
|
|
uint64_t address; // current address
|
| 71 |
|
|
uint32_t flags, lastflags; // flags of program header
|
| 72 |
|
|
bool hasDataSegment = false; // check if there is a data segment header
|
| 73 |
|
|
const uint32_t dataflags = SHF_READ | SHF_WRITE | SHF_ALLOC | SHF_DATAP; // expected flags for data segment
|
| 74 |
|
|
|
| 75 |
|
|
memsize = environmentSize; // reserve space for environment in the beginning
|
| 76 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
| 77 |
|
|
if (programHeaders[ph].p_vaddr == 0) {
|
| 78 |
|
|
// start of a new block
|
| 79 |
|
|
memsize += blocksize;
|
| 80 |
|
|
|
| 81 |
|
|
if ((programHeaders[ph].p_flags & SHF_READ) && (ph+1 == programHeaders.numEntries())) {
|
| 82 |
|
|
// This is the last data section
|
| 83 |
|
|
// Make space for reading a vector beyond the end
|
| 84 |
|
|
// Note: we cannot do this after the const section because the space there must have fixed size, provided by the linker
|
| 85 |
|
|
uint32_t extraSpace = MaxVectorLength;
|
| 86 |
|
|
if (extraSpace < DATA_EXTRA_SPACE) extraSpace = DATA_EXTRA_SPACE;
|
| 87 |
|
|
programHeaders[ph].p_memsz += extraSpace;
|
| 88 |
|
|
}
|
| 89 |
|
|
align = (uint64_t)1 << programHeaders[ph].p_align;
|
| 90 |
|
|
memsize = (memsize + align - 1) & -(int64_t)align;
|
| 91 |
|
|
blocksize = programHeaders[ph].p_memsz;
|
| 92 |
|
|
}
|
| 93 |
|
|
else {
|
| 94 |
|
|
// continuation of previous block
|
| 95 |
|
|
blocksize += programHeaders[ph].p_vaddr + programHeaders[ph].p_memsz;
|
| 96 |
|
|
}
|
| 97 |
|
|
if ((programHeaders[ph].p_flags & dataflags) == dataflags) hasDataSegment = true;
|
| 98 |
|
|
}
|
| 99 |
|
|
if (!hasDataSegment) { // there is no data segment. make one for the stack
|
| 100 |
|
|
ElfFwcPhdr dataSegment;
|
| 101 |
|
|
zeroAllMembers(dataSegment);
|
| 102 |
|
|
dataSegment.p_type = PT_LOAD;
|
| 103 |
|
|
dataSegment.p_flags = dataflags;
|
| 104 |
|
|
dataSegment.p_align = 3;
|
| 105 |
|
|
programHeaders.push(dataSegment);
|
| 106 |
|
|
}
|
| 107 |
|
|
|
| 108 |
|
|
// end of last block
|
| 109 |
|
|
memsize += blocksize;
|
| 110 |
|
|
align = (uint64_t)1 << MEMORY_MAP_ALIGN;
|
| 111 |
|
|
memsize = (memsize + align - 1) & -(int64_t)align;
|
| 112 |
|
|
// add stack and heap
|
| 113 |
|
|
memsize += stackSize + heapSize;
|
| 114 |
|
|
// allocate memory
|
| 115 |
|
|
memory = new int8_t[size_t(memsize)];
|
| 116 |
|
|
if (!memory) {
|
| 117 |
|
|
err.submit(ERR_MEMORY_ALLOCATION);
|
| 118 |
|
|
return;
|
| 119 |
|
|
}
|
| 120 |
|
|
memset(memory, 0, size_t(memsize));
|
| 121 |
|
|
// start making memory map
|
| 122 |
|
|
address = 0;
|
| 123 |
|
|
flags = SHF_READ | SHF_IP; lastflags = flags;
|
| 124 |
|
|
SMemoryMap mapentry = {address, flags};
|
| 125 |
|
|
memoryMap.push(mapentry);
|
| 126 |
|
|
// make space for environment
|
| 127 |
|
|
address = environmentSize;
|
| 128 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
| 129 |
|
|
flags = programHeaders[ph].p_flags & (SHF_PERMISSIONS | SHF_BASEPOINTER);
|
| 130 |
|
|
if (flags != lastflags && (lastflags & SHF_IP) && (!(flags & SHF_IP))) {
|
| 131 |
|
|
// insert stack here
|
| 132 |
|
|
align = 8;
|
| 133 |
|
|
address = (address + align - 1) & -(int64_t)align;
|
| 134 |
|
|
flags = SHF_DATAP | SHF_READ | SHF_WRITE;
|
| 135 |
|
|
mapentry.startAddress = address;
|
| 136 |
|
|
mapentry.access_addend = flags;
|
| 137 |
|
|
memoryMap.push(mapentry);
|
| 138 |
|
|
address += stackSize;
|
| 139 |
|
|
stackp = address;
|
| 140 |
|
|
lastflags = flags;
|
| 141 |
|
|
flags = programHeaders[ph].p_flags & (SHF_PERMISSIONS | SHF_BASEPOINTER);
|
| 142 |
|
|
}
|
| 143 |
|
|
if ((flags & SHF_PERMISSIONS) != (lastflags & SHF_PERMISSIONS)) {
|
| 144 |
|
|
// start new map entry
|
| 145 |
|
|
align = (uint64_t)1 << programHeaders[ph].p_align;
|
| 146 |
|
|
address = (address + align - 1) & -(int64_t)align;
|
| 147 |
|
|
mapentry.startAddress = address;
|
| 148 |
|
|
mapentry.access_addend = flags;
|
| 149 |
|
|
memoryMap.push(mapentry);
|
| 150 |
|
|
}
|
| 151 |
|
|
if (programHeaders[ph].p_vaddr == 0) {
|
| 152 |
|
|
switch (flags & SHF_BASEPOINTER) {
|
| 153 |
|
|
case SHF_IP:
|
| 154 |
|
|
ip0 = address; break;
|
| 155 |
|
|
case SHF_DATAP:
|
| 156 |
|
|
datap0 = address; break;
|
| 157 |
|
|
case SHF_THREADP:
|
| 158 |
|
|
threadp0 = address; break;
|
| 159 |
|
|
}
|
| 160 |
|
|
}
|
| 161 |
|
|
// check integrity before copying data
|
| 162 |
|
|
if (address + programHeaders[ph].p_filesz > memsize
|
| 163 |
|
|
|| programHeaders[ph].p_filesz > programHeaders[ph].p_memsz
|
| 164 |
|
|
|| programHeaders[ph].p_offset + programHeaders[ph].p_filesz > dataSize()) {
|
| 165 |
|
|
err.submit(ERR_ELF_INDEX_RANGE);
|
| 166 |
|
|
return;
|
| 167 |
|
|
}
|
| 168 |
|
|
// store address in program header
|
| 169 |
|
|
programHeaders[ph].p_vaddr = address;
|
| 170 |
|
|
// copy data
|
| 171 |
|
|
memcpy(memory + address, dataBuffer.buf() + programHeaders[ph].p_offset, size_t(programHeaders[ph].p_filesz));
|
| 172 |
|
|
address += programHeaders[ph].p_memsz;
|
| 173 |
|
|
lastflags = flags;
|
| 174 |
|
|
}
|
| 175 |
|
|
// make terminating entry
|
| 176 |
|
|
mapentry.startAddress = address;
|
| 177 |
|
|
mapentry.access_addend = 0;
|
| 178 |
|
|
memoryMap.push(mapentry);
|
| 179 |
|
|
}
|
| 180 |
|
|
|
| 181 |
|
|
// relocate any absolute addresses and system function id's
|
| 182 |
|
|
void CEmulator::relocate() {
|
| 183 |
|
|
uint32_t r; // relocation index
|
| 184 |
|
|
uint32_t ph; // program header index
|
| 185 |
|
|
uint32_t rsection; // relocated section
|
| 186 |
|
|
uint32_t phFistSection; // first section covered by program header
|
| 187 |
|
|
uint32_t phNumSections; // number of sections covered by program header
|
| 188 |
|
|
uint64_t sourceAddress; // address of relocation source
|
| 189 |
|
|
uint64_t targetAddress; // address of relocation target
|
| 190 |
|
|
const char * symbolname; // name of target symbol
|
| 191 |
|
|
bool found; // program header found
|
| 192 |
|
|
for (r = 0; r < relocations.numEntries(); r++) {
|
| 193 |
|
|
// loadtime relocations are listed first. stop at first non-loadtime record
|
| 194 |
|
|
if (!(relocations[r].r_type & R_FORW_LOADTIME)) break;
|
| 195 |
|
|
// find program header containing relocated section
|
| 196 |
|
|
rsection = relocations[r].r_section;
|
| 197 |
|
|
found = false;
|
| 198 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
| 199 |
|
|
phFistSection = (uint32_t)programHeaders[ph].p_paddr;
|
| 200 |
|
|
phNumSections = (uint32_t)(programHeaders[ph].p_paddr >> 32);
|
| 201 |
|
|
if (rsection >= phFistSection && rsection < phFistSection + phNumSections) {
|
| 202 |
|
|
found = true; break;
|
| 203 |
|
|
}
|
| 204 |
|
|
}
|
| 205 |
|
|
if (!found) {
|
| 206 |
|
|
err.submit(ERR_REL_SYMBOL_NOT_FOUND); continue;
|
| 207 |
|
|
}
|
| 208 |
|
|
// calculate address of relocation source
|
| 209 |
|
|
sourceAddress = programHeaders[ph].p_vaddr + sectionHeaders[rsection].sh_addr - sectionHeaders[phFistSection].sh_addr + relocations[r].r_offset;
|
| 210 |
|
|
if (sourceAddress >= memsize) {
|
| 211 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); continue;
|
| 212 |
|
|
}
|
| 213 |
|
|
if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_ABS) {
|
| 214 |
|
|
// needs absolute address of target
|
| 215 |
|
|
uint32_t symi = relocations[r].r_sym;
|
| 216 |
|
|
if (symi >= symbols.numEntries()) {
|
| 217 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); return;
|
| 218 |
|
|
}
|
| 219 |
|
|
ElfFwcSym & targetSym = symbols[symi];
|
| 220 |
|
|
uint32_t tsec = targetSym.st_section; // section of target symbol
|
| 221 |
|
|
// find program header containing target section
|
| 222 |
|
|
found = false;
|
| 223 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
| 224 |
|
|
phFistSection = (uint32_t)programHeaders[ph].p_paddr;
|
| 225 |
|
|
phNumSections = (uint32_t)(programHeaders[ph].p_paddr >> 32);
|
| 226 |
|
|
if (tsec >= phFistSection && tsec < phFistSection + phNumSections) {
|
| 227 |
|
|
found = true; break;
|
| 228 |
|
|
}
|
| 229 |
|
|
}
|
| 230 |
|
|
if (!found) {
|
| 231 |
|
|
err.submit(ERR_REL_SYMBOL_NOT_FOUND); continue;
|
| 232 |
|
|
}
|
| 233 |
|
|
// calculate target address
|
| 234 |
|
|
targetAddress = programHeaders[ph].p_vaddr + sectionHeaders[rsection].sh_addr - sectionHeaders[phFistSection].sh_addr + targetSym.st_value;
|
| 235 |
|
|
if (targetAddress >= memsize) {
|
| 236 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); continue;
|
| 237 |
|
|
}
|
| 238 |
|
|
// scale (scaling of absolute addresses is rarely used, but allowed)
|
| 239 |
|
|
targetAddress >>= (relocations[r].r_type & R_FORW_RELSCALEMASK);
|
| 240 |
|
|
// insert relocation of desired size
|
| 241 |
|
|
switch (relocations[r].r_type & R_FORW_RELSIZEMASK) {
|
| 242 |
|
|
case R_FORW_8: // 8 bit relocation size
|
| 243 |
|
|
if (targetAddress >> 8) goto OVERFLW;
|
| 244 |
|
|
*(memory + sourceAddress) = int8_t(targetAddress);
|
| 245 |
|
|
break;
|
| 246 |
|
|
case R_FORW_16: // 16 bit relocation size
|
| 247 |
|
|
if (targetAddress >> 16) goto OVERFLW;
|
| 248 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress);
|
| 249 |
|
|
break;
|
| 250 |
|
|
case R_FORW_32: // 32 bit relocation size
|
| 251 |
|
|
if (targetAddress >> 32) goto OVERFLW;
|
| 252 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress);
|
| 253 |
|
|
break;
|
| 254 |
|
|
case R_FORW_32LO: // Low 16 of 32 bits relocation
|
| 255 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress);
|
| 256 |
|
|
break;
|
| 257 |
|
|
case R_FORW_32HI: // High 16 of 32 bits relocation
|
| 258 |
|
|
if (targetAddress >> 32) goto OVERFLW;
|
| 259 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress >> 16);
|
| 260 |
|
|
break;
|
| 261 |
|
|
case R_FORW_64: // 64 bit relocation size
|
| 262 |
|
|
*(uint64_t*)(memory + sourceAddress) = uint64_t(targetAddress);
|
| 263 |
|
|
break;
|
| 264 |
|
|
case R_FORW_64LO: // Low 32 of 64 bits relocation
|
| 265 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress);
|
| 266 |
|
|
break;
|
| 267 |
|
|
case R_FORW_64HI: // High 32 of 64 bits relocation
|
| 268 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress >> 32);
|
| 269 |
|
|
break;
|
| 270 |
|
|
default:
|
| 271 |
|
|
OVERFLW:
|
| 272 |
|
|
symbolname = symbolNameBuffer.getString(targetSym.st_name);
|
| 273 |
|
|
err.submit(ERR_LINK_RELOCATION_OVERFLOW, symbolname);
|
| 274 |
|
|
}
|
| 275 |
|
|
}
|
| 276 |
|
|
else {
|
| 277 |
|
|
// to do: get system function id from name
|
| 278 |
|
|
}
|
| 279 |
|
|
}
|
| 280 |
|
|
}
|
| 281 |
|
|
|
| 282 |
|
|
void CEmulator::disassemble() { // make disassembly listing for debug output
|
| 283 |
|
|
disassembler.copy(*this); // copy ELF file
|
| 284 |
|
|
disassembler.getComponents1(); // set up instruction list, etc.
|
| 285 |
|
|
if (err.number()) return;
|
| 286 |
|
|
//disassembler.outputFile = cmd.fileNameBuffer.pushString("ddd.txt");
|
| 287 |
|
|
disassembler.debugMode = 1; // produce disassembly for debug display/list
|
| 288 |
|
|
disassembler.go(); // disassemble
|
| 289 |
|
|
if (err.number()) return;
|
| 290 |
|
|
disassembler.getLineList(lineList); // get cross reference list from address to disassembly output file
|
| 291 |
|
|
lineList.sort(); // only needed if multiple segments in lineList
|
| 292 |
|
|
disassembler.getOutFile(disassemOut); // get disassembly output file
|
| 293 |
|
|
// replace all linefeeds by end of string
|
| 294 |
|
|
for (uint32_t i = 0; i < disassemOut.dataSize(); i++) {
|
| 295 |
|
|
if ((uint8_t)disassemOut.buf()[i] < ' ') disassemOut.buf()[i] = 0;
|
| 296 |
|
|
}
|
| 297 |
|
|
}
|
| 298 |
|
|
|
| 299 |
|
|
|
| 300 |
|
|
/////////////////
|
| 301 |
|
|
// CThread class
|
| 302 |
|
|
/////////////////
|
| 303 |
|
|
|
| 304 |
|
|
// constructor
|
| 305 |
|
|
CThread::CThread() {
|
| 306 |
|
|
numContr = 1 | (1<<MSK_SUBNORMAL); // default numContr. Bit 0 must be 1;
|
| 307 |
|
|
enableSubnormals (numContr & (1<<MSK_SUBNORMAL)); // enable or disable subnormal numbers
|
| 308 |
|
|
lastMask = numContr;
|
| 309 |
|
|
ninstructions = 0;
|
| 310 |
|
|
mapIndex1 = mapIndex2 = mapIndex3 = 0; // indexes into memory map
|
| 311 |
|
|
callDept = 0;
|
| 312 |
|
|
listLines = 0;
|
| 313 |
|
|
tempBuffer = 0;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
// destructor
|
| 317 |
|
|
CThread::~CThread() {
|
| 318 |
|
|
if (tempBuffer != 0) {
|
| 319 |
|
|
delete[] tempBuffer; // free temporary buffer
|
| 320 |
|
|
}
|
| 321 |
|
|
}
|
| 322 |
|
|
|
| 323 |
|
|
// initialize registers etc. from values in emulator
|
| 324 |
|
|
void CThread::setRegisters(CEmulator * emulator) {
|
| 325 |
|
|
this->emulator = emulator;
|
| 326 |
|
|
this->memory = emulator->memory; // program memory
|
| 327 |
|
|
memoryMap.copy(emulator->memoryMap); // memory map
|
| 328 |
|
|
// ip_base = emulator->ip_base; // reference point for code and read-only data
|
| 329 |
|
|
ip0 = emulator->ip0; // reference point for code and read-only data
|
| 330 |
|
|
datap = emulator->datap0 + emulator->fileHeader.e_datap_base; // base pointer for writeable data
|
| 331 |
|
|
threadp = emulator->threadp0 + emulator->fileHeader.e_threadp_base; // base pointer for thread-local data
|
| 332 |
|
|
ip = entry_point = emulator->fileHeader.e_entry + ip0; // start value of instruction pointer
|
| 333 |
|
|
MaxVectorLength = emulator->MaxVectorLength;
|
| 334 |
|
|
tempBuffer = new int8_t[MaxVectorLength * 2]; // temporary buffer for vector operands
|
| 335 |
|
|
memset(registers, 0, sizeof(registers)); // clear all registers
|
| 336 |
|
|
memset(vectorLength, 0, sizeof(vectorLength));
|
| 337 |
|
|
vectors.setDataSize(32*MaxVectorLength);
|
| 338 |
|
|
registers[31] = emulator->stackp; // stack pointer
|
| 339 |
|
|
memset(perfCounters, 0, sizeof(perfCounters)); // reset performance counters
|
| 340 |
|
|
// initialize capability registers
|
| 341 |
|
|
memset(capabilyReg, 0, sizeof(capabilyReg)); // reset capability registers
|
| 342 |
|
|
capabilyReg[0] = 'E'; // brand ID. E = emulator
|
| 343 |
|
|
capabilyReg[1] = FORWARDCOM_VERSION * 0x10000 + FORWARDCOM_SUBVERSION * 0x100; // ForwardCom version
|
| 344 |
|
|
capabilyReg[8] = 0b1111; // support for operand sizes in g.p. registers
|
| 345 |
|
|
capabilyReg[9] = 0b101101111; // support for operand sizes in vector registers
|
| 346 |
|
|
capabilyReg[12] = MaxVectorLength; // maximum vector length
|
| 347 |
|
|
capabilyReg[13] = MaxVectorLength; // maximum vector length for permute
|
| 348 |
|
|
capabilyReg[14] = MaxVectorLength; // maximum block size for permute??
|
| 349 |
|
|
capabilyReg[15] = MaxVectorLength; // maximum vector length compress_sparse and expand_sparse
|
| 350 |
|
|
listFileName = cmd.outputListFile; // name for output list file. to do: add thread number to list file name if multiple threads
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
// start running
|
| 354 |
|
|
void CThread::run() {
|
| 355 |
|
|
listStart(); // start writing debug output list
|
| 356 |
|
|
running = 1; terminate = false;
|
| 357 |
|
|
while (running && !terminate) {
|
| 358 |
|
|
|
| 359 |
|
|
fetch(); // fetch next instruction
|
| 360 |
|
|
if (terminate) break;
|
| 361 |
|
|
decode(); // decode instruction
|
| 362 |
|
|
if (terminate) break;
|
| 363 |
|
|
execute(); // execute instruction
|
| 364 |
|
|
}
|
| 365 |
|
|
// write debug output
|
| 366 |
|
|
if (listFileName) {
|
| 367 |
|
|
listOut.write(cmd.getFilename(listFileName));
|
| 368 |
|
|
}
|
| 369 |
|
|
}
|
| 370 |
|
|
|
| 371 |
|
|
// fetch next instruction
|
| 372 |
|
|
void CThread::fetch() {
|
| 373 |
|
|
// find memory map entry
|
| 374 |
|
|
while (ip < memoryMap[mapIndex1].startAddress) {
|
| 375 |
|
|
if (mapIndex1 > 0) mapIndex1--;
|
| 376 |
|
|
else {
|
| 377 |
|
|
interrupt(INT_ACCESS_EXE); return;
|
| 378 |
|
|
}
|
| 379 |
|
|
}
|
| 380 |
|
|
while (ip >= memoryMap[mapIndex1 + 1].startAddress) {
|
| 381 |
|
|
if (mapIndex1 + 2 < memoryMap.numEntries()) mapIndex1++;
|
| 382 |
|
|
else {
|
| 383 |
|
|
interrupt(INT_ACCESS_EXE); return;
|
| 384 |
|
|
}
|
| 385 |
|
|
}
|
| 386 |
|
|
// check execute permission
|
| 387 |
|
|
if (!(memoryMap[mapIndex1].access_addend & SHF_EXEC)) interrupt(INT_ACCESS_EXE);
|
| 388 |
|
|
// get instruction
|
| 389 |
|
|
pInstr = (STemplate const *)(memory + ip);
|
| 390 |
|
|
}
|
| 391 |
|
|
|
| 392 |
|
|
// List of instructionlengths, used in decode()
|
| 393 |
|
|
static const uint8_t lengthList[8] = {1,1,1,1,2,2,3,4};
|
| 394 |
|
|
|
| 395 |
|
|
// decode current instruction
|
| 396 |
|
|
void CThread::decode() {
|
| 397 |
|
|
|
| 398 |
|
|
listInstruction(ip - ip0); // make debug listing
|
| 399 |
|
|
// decoding similar to CDisassembler::parseInstruction()
|
| 400 |
|
|
op = pInstr->a.op1;
|
| 401 |
|
|
//rs = pInstr->a.rs;
|
| 402 |
|
|
|
| 403 |
|
|
// Get format
|
| 404 |
|
|
uint32_t format = (pInstr->a.il << 8) + (pInstr->a.mode << 4); // Construct format = (il,mode,submode)
|
| 405 |
|
|
|
| 406 |
|
|
// Get submode
|
| 407 |
|
|
switch (format) {
|
| 408 |
|
|
case 0x200: case 0x220: case 0x300: case 0x320: // submode in mode2
|
| 409 |
|
|
format += pInstr->a.mode2;
|
| 410 |
|
|
break;
|
| 411 |
|
|
case 0x250: case 0x310: // Submode for jump instructions etc.
|
| 412 |
|
|
if (op < 8) {
|
| 413 |
|
|
format += op; // op1 defines sub-format
|
| 414 |
|
|
op = pInstr->b[0] & 0x3F; // OPJ is in IM1 (other positions for opj fixed below
|
| 415 |
|
|
}
|
| 416 |
|
|
else {
|
| 417 |
|
|
format += 8;
|
| 418 |
|
|
}
|
| 419 |
|
|
break;
|
| 420 |
|
|
}
|
| 421 |
|
|
// Look up format details (lookupFormat() is in emulator2.cpp)
|
| 422 |
|
|
fInstr = &formatList[lookupFormat(pInstr->q)];
|
| 423 |
|
|
format = fInstr->format2; // Include subformat depending on op1
|
| 424 |
|
|
|
| 425 |
|
|
if (fInstr->imm2 & 0x80) { // alternative position of opj
|
| 426 |
|
|
if (fInstr->imm2 & 0x40) { // no opj
|
| 427 |
|
|
op = 63;
|
| 428 |
|
|
}
|
| 429 |
|
|
else if (fInstr->imm2 & 0x10) {
|
| 430 |
|
|
op = pInstr->b[7] & 0x3F; // OPJ is in high part of IM2 in format A2
|
| 431 |
|
|
}
|
| 432 |
|
|
}
|
| 433 |
|
|
if (fInstr->tmplate == 0xE && pInstr->a.op2 && !(fInstr->imm2 & 0x100)) {
|
| 434 |
|
|
// Single format instruction if op2 != 0 in E template and op2 not used as immediate operand
|
| 435 |
|
|
static SFormat form; // don't initialize static object.
|
| 436 |
|
|
form = *fInstr; // copy format record
|
| 437 |
|
|
form.category = 1; // change category
|
| 438 |
|
|
fInstr = &form; // point to static object
|
| 439 |
|
|
// operand tables for single-format instructions
|
| 440 |
|
|
if (format == 0x207 && pInstr->a.op2 == 1) nOperands = numOperands2071[op]; // table for format 2.0.7
|
| 441 |
|
|
else if (format == 0x226 && pInstr->a.op2 == 1) nOperands = numOperands2261[op]; // table for format 2.2.6
|
| 442 |
|
|
else if (format == 0x227 && pInstr->a.op2 == 1) nOperands = numOperands2271[op]; // table for format 2.2.7
|
| 443 |
|
|
else nOperands = 0xB; // default value when there is no table
|
| 444 |
|
|
}
|
| 445 |
|
|
else {
|
| 446 |
|
|
// operand tables for multi-format instructions
|
| 447 |
|
|
nOperands = numOperands[fInstr->exeTable][op]; // number of source operands (see bit definitions in format_tables.cpp)
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
ignoreMask = (nOperands & 0x08) != 0; // bit 3: ignore mask
|
| 451 |
|
|
noVectorLength = (nOperands & 0x10) != 0; // bit 4: vector length determined by execution function
|
| 452 |
|
|
doubleStep = (nOperands & 0x20) != 0; // bit 5: take double steps
|
| 453 |
|
|
dontRead = (nOperands & 0x40) != 0; // bit 6: don't read source operand
|
| 454 |
|
|
unchangedRd = (nOperands & 0x80) != 0; // bit 7: RD is unchanged, not destination
|
| 455 |
|
|
nOperands &= 0x7; // bit 0-2: number of operands
|
| 456 |
|
|
|
| 457 |
|
|
// Get operand type
|
| 458 |
|
|
if (fInstr->ot == 0) { // Operand type determined by OT field
|
| 459 |
|
|
operandType = pInstr->a.ot; // Operand type
|
| 460 |
|
|
if (!(pInstr->a.mode & 6) && !(fInstr->vect & 0x11)) {
|
| 461 |
|
|
// Check use of M bit
|
| 462 |
|
|
format |= (operandType & 4) << 5; // Add M bit to format
|
| 463 |
|
|
operandType &= ~4; // Remove M bit from operand type
|
| 464 |
|
|
}
|
| 465 |
|
|
}
|
| 466 |
|
|
else if ((fInstr->ot & 0xF0) == 0x10) { // Operand type fixed. Value in formatList
|
| 467 |
|
|
operandType = fInstr->ot & 7;
|
| 468 |
|
|
}
|
| 469 |
|
|
else if (fInstr->ot == 0x32) { // int32 for even op1, int64 for odd op1
|
| 470 |
|
|
operandType = 2 + (pInstr->a.op1 & 1);
|
| 471 |
|
|
}
|
| 472 |
|
|
else if (fInstr->ot == 0x35) { // Float for even op1, double for odd op1
|
| 473 |
|
|
operandType = 5 + (pInstr->a.op1 & 1);
|
| 474 |
|
|
}
|
| 475 |
|
|
else {
|
| 476 |
|
|
operandType = 0; // Error in formatList. Should not occur
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
// Find instruction length
|
| 480 |
|
|
uint8_t instrLength = lengthList[pInstr->i[0] >> 29]; // Length up to 3 determined by il. Length 4 by upper bit of mode
|
| 481 |
|
|
ip += instrLength * 4; // next ip
|
| 482 |
|
|
|
| 483 |
|
|
// get address of memory operand
|
| 484 |
|
|
if (fInstr->mem) memAddress = getMemoryAddress();
|
| 485 |
|
|
|
| 486 |
|
|
// find operands
|
| 487 |
|
|
if (fInstr->category == 4 && fInstr->jumpSize) {
|
| 488 |
|
|
// jump instruction with self-relative jump address
|
| 489 |
|
|
// check if it uses vector registers
|
| 490 |
|
|
vect = (fInstr->vect & 0x10) && fInstr->tmplate != 0xC && (pInstr->a.ot & 4);
|
| 491 |
|
|
// pointer to address field
|
| 492 |
|
|
const uint8_t * pa = &pInstr->b[0] + fInstr->jumpPos;
|
| 493 |
|
|
// store relative address in addrOperand
|
| 494 |
|
|
switch (fInstr->jumpSize) {
|
| 495 |
|
|
case 1: // sign extend 8-bit offset
|
| 496 |
|
|
addrOperand = *(int8_t*)pa;
|
| 497 |
|
|
break;
|
| 498 |
|
|
case 2: // sign extend 16-bit offset
|
| 499 |
|
|
addrOperand = *(int16_t*)pa;
|
| 500 |
|
|
break;
|
| 501 |
|
|
case 3: // sign extend 24-bit offset
|
| 502 |
|
|
addrOperand = *(int32_t*)pa << 8 >> 8;
|
| 503 |
|
|
break;
|
| 504 |
|
|
case 4: // sign extend 32-bit offset
|
| 505 |
|
|
addrOperand = *(int32_t*)pa;
|
| 506 |
|
|
break;
|
| 507 |
|
|
case 8: // 64-bit offset
|
| 508 |
|
|
addrOperand = *(int64_t*)pa;
|
| 509 |
|
|
break;
|
| 510 |
|
|
default:
|
| 511 |
|
|
addrOperand = 0;
|
| 512 |
|
|
err.submit(ERR_INTERNAL);
|
| 513 |
|
|
}
|
| 514 |
|
|
// pointer to immediate field
|
| 515 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->immPos;
|
| 516 |
|
|
// get immediate operand or last register operand
|
| 517 |
|
|
if (fInstr->opAvail & 1) {
|
| 518 |
|
|
// last operand is immediate. sign extend or convert it into parm[2]
|
| 519 |
|
|
switch (fInstr->immSize) {
|
| 520 |
|
|
case 1:
|
| 521 |
|
|
parm[2].qs = parm[4].qs = *(int8_t*)pi; // sign extend
|
| 522 |
|
|
if (pInstr->a.ot == 5) parm[2].f = parm[4].bs; // convert to float
|
| 523 |
|
|
if (pInstr->a.ot == 6) parm[2].d = parm[4].bs; // convert to double
|
| 524 |
|
|
break;
|
| 525 |
|
|
case 2:
|
| 526 |
|
|
parm[2].qs = parm[4].qs = *(int16_t*)pi; // sign extend
|
| 527 |
|
|
if (pInstr->a.ot == 5) parm[2].f = half2float(*(uint16_t*)pi); // convert from half precision
|
| 528 |
|
|
if (pInstr->a.ot == 6) parm[2].d = half2float(*(uint16_t*)pi); // convert from half precision
|
| 529 |
|
|
break;
|
| 530 |
|
|
case 4:
|
| 531 |
|
|
parm[2].qs = parm[4].qs = *(int32_t*)pi; // sign extend
|
| 532 |
|
|
if (pInstr->a.ot == 6) parm[2].d = *(float*)pi; // convert to double
|
| 533 |
|
|
break;
|
| 534 |
|
|
case 8:
|
| 535 |
|
|
parm[2].qs = parm[4].qs = *(int64_t*)pi; break; // just copy
|
| 536 |
|
|
default:
|
| 537 |
|
|
err.submit(ERR_INTERNAL);
|
| 538 |
|
|
}
|
| 539 |
|
|
operands[5] = 0x20;
|
| 540 |
|
|
// first source operand
|
| 541 |
|
|
if (fInstr->opAvail & 0x20) operands[4] = pInstr->a.rs;
|
| 542 |
|
|
else operands[4] = pInstr->a.rd;
|
| 543 |
|
|
}
|
| 544 |
|
|
else if (fInstr->opAvail & 2) {
|
| 545 |
|
|
// last operand is memory
|
| 546 |
|
|
parm[2].q = readMemoryOperand(memAddress);
|
| 547 |
|
|
operands[5] = 0x40;
|
| 548 |
|
|
// first source operand
|
| 549 |
|
|
if (fInstr->opAvail & 0x20) operands[4] = pInstr->a.rs;
|
| 550 |
|
|
else operands[4] = pInstr->a.rd;
|
| 551 |
|
|
}
|
| 552 |
|
|
else {
|
| 553 |
|
|
// last source operand is a register
|
| 554 |
|
|
operands[4] = pInstr->a.rd;
|
| 555 |
|
|
if ((fInstr->opAvail & 0x30) == 0x30) {
|
| 556 |
|
|
// three registers
|
| 557 |
|
|
operands[4] = pInstr->a.rs;
|
| 558 |
|
|
operands[5] = pInstr->a.rt;
|
| 559 |
|
|
}
|
| 560 |
|
|
else if (fInstr->opAvail & 0x20) operands[5] = pInstr->a.rs;
|
| 561 |
|
|
else operands[5] = pInstr->a.rd;
|
| 562 |
|
|
// read register containing last operand
|
| 563 |
|
|
parm[2].q = readRegister(operands[5]);
|
| 564 |
|
|
}
|
| 565 |
|
|
operands[0] = pInstr->a.rd; // destination
|
| 566 |
|
|
operands[1] = 0xFF; // no mask
|
| 567 |
|
|
// read register containing first source operand
|
| 568 |
|
|
parm[1].q = readRegister(operands[4]);
|
| 569 |
|
|
// return type for debug output. may be changed by execution function
|
| 570 |
|
|
returnType = operandType | 0x1010;
|
| 571 |
|
|
return;
|
| 572 |
|
|
}
|
| 573 |
|
|
|
| 574 |
|
|
// single format, multi-format, and indirect jump instructions:
|
| 575 |
|
|
|
| 576 |
|
|
// Make list of operands from available operands.
|
| 577 |
|
|
// The operands[] array must have 6 elements to avoid overflow here,
|
| 578 |
|
|
// even if some elements are later overwritten and used for other purposes
|
| 579 |
|
|
uint8_t opAvail = fInstr->opAvail; // Bit index of available operands
|
| 580 |
|
|
// opAvail bits: 1 = immediate, 2 = memory,
|
| 581 |
|
|
// 0x10 = RT, 0x20 = RS, 0x40 = RU, 0x80 = RD
|
| 582 |
|
|
int j = 5;
|
| 583 |
|
|
if (opAvail & 0x01) operands[j--] = 0x20; // immediate operand
|
| 584 |
|
|
if (opAvail & 0x02) operands[j--] = 0x40; // memory operand
|
| 585 |
|
|
if (opAvail & 0x10) operands[j--] = pInstr->a.rt; // register RT
|
| 586 |
|
|
if (opAvail & 0x20) operands[j--] = pInstr->a.rs; // register RS
|
| 587 |
|
|
if (opAvail & 0x40) operands[j--] = pInstr->a.ru; // register RU
|
| 588 |
|
|
if (opAvail & 0x80) operands[j--] = pInstr->a.rd; // register RD
|
| 589 |
|
|
operands[0] = pInstr->a.rd; // destination
|
| 590 |
|
|
|
| 591 |
|
|
// find mask register
|
| 592 |
|
|
if (fInstr->tmplate == 0xA || fInstr->tmplate == 0xE) {
|
| 593 |
|
|
operands[1] = pInstr->a.mask;
|
| 594 |
|
|
// find fallback register
|
| 595 |
|
|
uint8_t fb = findFallback(fInstr, pInstr, nOperands);
|
| 596 |
|
|
operands[2] = fb; // fallback register, or 0xFF if zero fallback
|
| 597 |
|
|
}
|
| 598 |
|
|
else {
|
| 599 |
|
|
operands[1] = operands[2] = 0xFF; // no mask, no fallback
|
| 600 |
|
|
}
|
| 601 |
|
|
|
| 602 |
|
|
// determine if vector registers are used
|
| 603 |
|
|
vect = (fInstr->vect & 1) || ((fInstr->vect & 0x10) && (pInstr->a.ot & 4));
|
| 604 |
|
|
|
| 605 |
|
|
// return type for debug output. may be changed by execution function
|
| 606 |
|
|
returnType = operandType | 0x10 | vect << 8;
|
| 607 |
|
|
|
| 608 |
|
|
// get value of last operand if not a vector
|
| 609 |
|
|
if (opAvail & 0x01) {
|
| 610 |
|
|
// pointer to immediate field
|
| 611 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->immPos;
|
| 612 |
|
|
// get value, sign extended
|
| 613 |
|
|
switch (fInstr->immSize) {
|
| 614 |
|
|
case 1:
|
| 615 |
|
|
parm[2].qs = *(int8_t*)pi;
|
| 616 |
|
|
break;
|
| 617 |
|
|
case 2:
|
| 618 |
|
|
parm[2].qs = *(int16_t*)pi;
|
| 619 |
|
|
break;
|
| 620 |
|
|
case 4:
|
| 621 |
|
|
parm[2].qs = *(int32_t*)pi;
|
| 622 |
|
|
break;
|
| 623 |
|
|
case 8:
|
| 624 |
|
|
parm[2].qs = *(uint64_t*)pi;
|
| 625 |
|
|
break;
|
| 626 |
|
|
case 14: // 4 bits
|
| 627 |
|
|
parm[2].q = *(uint8_t*)pi & 0xF;
|
| 628 |
|
|
break;
|
| 629 |
|
|
default:
|
| 630 |
|
|
err.submit(ERR_INTERNAL);
|
| 631 |
|
|
}
|
| 632 |
|
|
// extend, shift, or convert
|
| 633 |
|
|
parm[4].q = parm[2].q; // preserve original value
|
| 634 |
|
|
switch (operandType) {
|
| 635 |
|
|
case 5: // float
|
| 636 |
|
|
if (fInstr->immSize == 1) { // convert integer
|
| 637 |
|
|
parm[2].f = (float)(int8_t)parm[2].b;
|
| 638 |
|
|
}
|
| 639 |
|
|
else if (fInstr->immSize == 2) { // convert half precision
|
| 640 |
|
|
parm[2].f = half2float(parm[2].i);
|
| 641 |
|
|
}
|
| 642 |
|
|
break;
|
| 643 |
|
|
case 6: // double precision
|
| 644 |
|
|
if (fInstr->immSize == 1) { // convert integer
|
| 645 |
|
|
parm[2].d = (double)(int8_t)parm[2].b;
|
| 646 |
|
|
}
|
| 647 |
|
|
else if (fInstr->immSize == 2) { // convert half precision
|
| 648 |
|
|
parm[2].d = half2float(parm[2].i);
|
| 649 |
|
|
}
|
| 650 |
|
|
else if (fInstr->immSize == 4) { // convert single precision
|
| 651 |
|
|
parm[2].d = parm[2].f;
|
| 652 |
|
|
}
|
| 653 |
|
|
break;
|
| 654 |
|
|
case 7: // quadruple precision
|
| 655 |
|
|
// to do
|
| 656 |
|
|
break;
|
| 657 |
|
|
default: // all integer types. shift value if needed
|
| 658 |
|
|
if (fInstr->imm2 & 4) parm[2].q <<= pInstr->a.im3;
|
| 659 |
|
|
else if (fInstr->imm2 & 8) parm[2].q <<= pInstr->a.im2;
|
| 660 |
|
|
}
|
| 661 |
|
|
if (opAvail & 2) {
|
| 662 |
|
|
// both memory and immediate operand
|
| 663 |
|
|
if ((!vect || (fInstr->vect & 4)) && !dontRead) {
|
| 664 |
|
|
// scalar or broadcast memory operand
|
| 665 |
|
|
parm[1].q = readMemoryOperand(memAddress);
|
| 666 |
|
|
}
|
| 667 |
|
|
if (nOperands > 2) parm[0].q = readRegister(operands[3] & 0x1F);
|
| 668 |
|
|
return;
|
| 669 |
|
|
}
|
| 670 |
|
|
}
|
| 671 |
|
|
else if ((!vect || (fInstr->vect & 4)) && (opAvail & 0x02) && !dontRead) {
|
| 672 |
|
|
// scalar or broadcast memory operand and no immediate operand
|
| 673 |
|
|
parm[2].q = readMemoryOperand(memAddress);
|
| 674 |
|
|
}
|
| 675 |
|
|
else if (!vect) {
|
| 676 |
|
|
// general purpose register
|
| 677 |
|
|
parm[2].q = readRegister(operands[5] & 0x1F);
|
| 678 |
|
|
}
|
| 679 |
|
|
// get values of remaining operands
|
| 680 |
|
|
if (nOperands > 1) parm[1].q = readRegister(operands[4] & 0x1F);
|
| 681 |
|
|
if (nOperands > 2) parm[0].q = readRegister(operands[3] & 0x1F);
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
|
| 685 |
|
|
// execute current instruction
|
| 686 |
|
|
void CThread::execute() {
|
| 687 |
|
|
uint64_t result = 0; // destination value
|
| 688 |
|
|
PFunc functionPointer = 0; // pointer to execution function
|
| 689 |
|
|
running = 1;
|
| 690 |
|
|
|
| 691 |
|
|
// find function pionter
|
| 692 |
|
|
if (fInstr->exeTable == 0) {
|
| 693 |
|
|
interrupt(INT_UNKNOWN_INST); return;
|
| 694 |
|
|
}
|
| 695 |
|
|
if (fInstr->tmplate == 0xE && pInstr->a.op2 != 0 && !(fInstr->imm2 & 0x100)) {
|
| 696 |
|
|
// single format instruction with E template
|
| 697 |
|
|
uint8_t index; // index into EDispatchTable
|
| 698 |
|
|
// bit 0-2 = mode2
|
| 699 |
|
|
// bit 3 = mode bit 1
|
| 700 |
|
|
// bit 4 = il bit 0
|
| 701 |
|
|
// bit 5-6 = op2 - 1
|
| 702 |
|
|
index = pInstr->a.mode2 | (pInstr->a.mode << 2 & 8) | (pInstr->a.il << 4 & 0x10) | (pInstr->a.op2 - 1) << 5;
|
| 703 |
|
|
functionPointer = EDispatchTable[index];
|
| 704 |
|
|
}
|
| 705 |
|
|
else { // all other instructions. fInstr->exeTable indicates which function table to look into
|
| 706 |
|
|
functionPointer = metaFunctionTable[fInstr->exeTable][op];
|
| 707 |
|
|
}
|
| 708 |
|
|
if (!functionPointer || !fInstr->exeTable) {
|
| 709 |
|
|
interrupt(INT_UNKNOWN_INST);
|
| 710 |
|
|
return;
|
| 711 |
|
|
}
|
| 712 |
|
|
if (vect) { // vector instruction
|
| 713 |
|
|
// length of each element
|
| 714 |
|
|
uint32_t elementSize = dataSizeTable[operandType];
|
| 715 |
|
|
// get vector length
|
| 716 |
|
|
// vector length of result = length of first source operand register
|
| 717 |
|
|
switch (nOperands) {
|
| 718 |
|
|
case 0: // no source operands. vector length will be set by instruction
|
| 719 |
|
|
vectorLengthR = 8; break;
|
| 720 |
|
|
case 1: // one source operand
|
| 721 |
|
|
if (operands[5] & 0x20) { // source operand is immediate.
|
| 722 |
|
|
vectorLengthR = dataSizeTable[operandType]; // vector length may be modified by instruction
|
| 723 |
|
|
}
|
| 724 |
|
|
else if (operands[5] & 0x40) { // source operand is memory
|
| 725 |
|
|
vectorLengthR = vectorLengthM;
|
| 726 |
|
|
}
|
| 727 |
|
|
else { // source operand is register
|
| 728 |
|
|
vectorLengthR = vectorLength[operands[5]];
|
| 729 |
|
|
}
|
| 730 |
|
|
break;
|
| 731 |
|
|
case 2: // two source operands
|
| 732 |
|
|
if (operands[4] & 0x40) { // first source operand is memory
|
| 733 |
|
|
vectorLengthR = vectorLengthM;
|
| 734 |
|
|
}
|
| 735 |
|
|
else { // first source operand is register
|
| 736 |
|
|
vectorLengthR = vectorLength[operands[4]];
|
| 737 |
|
|
}
|
| 738 |
|
|
break;
|
| 739 |
|
|
case 3: default: // three source operands. first source operand must be register
|
| 740 |
|
|
vectorLengthR = vectorLength[operands[3]];
|
| 741 |
|
|
break;
|
| 742 |
|
|
}
|
| 743 |
|
|
if (noVectorLength // vector length determined by execution function
|
| 744 |
|
|
|| fInstr->category == 4) { // call compare/jump function even if vector is empty
|
| 745 |
|
|
vectorLengthR = elementSize; // make sure it is called at least once
|
| 746 |
|
|
}
|
| 747 |
|
|
// set vector length of destination
|
| 748 |
|
|
if (!noVectorLength && !unchangedRd) {
|
| 749 |
|
|
vectorLength[operands[0]] = vectorLengthR;
|
| 750 |
|
|
}
|
| 751 |
|
|
|
| 752 |
|
|
// loop through vector
|
| 753 |
|
|
vect = 1;
|
| 754 |
|
|
for (vectorOffset = 0; vectorOffset < vectorLengthR; vectorOffset += elementSize) {
|
| 755 |
|
|
if (vect & 4) break; // stop loop
|
| 756 |
|
|
|
| 757 |
|
|
// read nOperands operands
|
| 758 |
|
|
for (int iOp = 3 - nOperands; iOp <= 2; iOp++) {
|
| 759 |
|
|
if (operands[iOp+3] & 0x20) { // immediate
|
| 760 |
|
|
// has already been read into parm[2]
|
| 761 |
|
|
}
|
| 762 |
|
|
else if (operands[iOp+3] & 0x40) { // memory
|
| 763 |
|
|
if (fInstr->vect & 4) { // broadcast memory operand
|
| 764 |
|
|
if (vectorOffset + elementSize > vectorLengthM) {
|
| 765 |
|
|
parm[iOp].q = 0; // beyond broadcast length
|
| 766 |
|
|
}
|
| 767 |
|
|
else { // read broadcast memory operand
|
| 768 |
|
|
parm[iOp].q = readMemoryOperand(memAddress);
|
| 769 |
|
|
}
|
| 770 |
|
|
}
|
| 771 |
|
|
else { // memory vector
|
| 772 |
|
|
if (!dontRead) {
|
| 773 |
|
|
if (vectorOffset + elementSize > vectorLengthM) {
|
| 774 |
|
|
parm[iOp].q = 0; // beyond memory operand length
|
| 775 |
|
|
}
|
| 776 |
|
|
else { // read memory vector
|
| 777 |
|
|
parm[iOp].q = readMemoryOperand(memAddress + vectorOffset);
|
| 778 |
|
|
}
|
| 779 |
|
|
}
|
| 780 |
|
|
}
|
| 781 |
|
|
}
|
| 782 |
|
|
else { // vector register
|
| 783 |
|
|
parm[iOp].q = readVectorElement(operands[iOp+3], vectorOffset);
|
| 784 |
|
|
}
|
| 785 |
|
|
}
|
| 786 |
|
|
|
| 787 |
|
|
// get mask
|
| 788 |
|
|
if ((operands[1] & 7) != 7) {
|
| 789 |
|
|
parm[3].q = readVectorElement(operands[1], vectorOffset);
|
| 790 |
|
|
}
|
| 791 |
|
|
else {
|
| 792 |
|
|
parm[3].q = numContr;
|
| 793 |
|
|
}
|
| 794 |
|
|
// skip instruction if mask = 0, except for certain instructions
|
| 795 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) {
|
| 796 |
|
|
// result is masked off. find fallback
|
| 797 |
|
|
if (operands[2] == 0xFF) result = 0; // fallback = 0
|
| 798 |
|
|
else result = readVectorElement(operands[2], vectorOffset); // fallback register
|
| 799 |
|
|
if (doubleStep) {
|
| 800 |
|
|
if (operands[2] == 0xFF) result = 0;
|
| 801 |
|
|
else result = readVectorElement(operands[2], vectorOffset + elementSize);
|
| 802 |
|
|
}
|
| 803 |
|
|
}
|
| 804 |
|
|
else {
|
| 805 |
|
|
// normal operation. execute instruction
|
| 806 |
|
|
result = (*functionPointer)(this);
|
| 807 |
|
|
}
|
| 808 |
|
|
// store in destination register
|
| 809 |
|
|
if ((running & 1) && !(returnType & 0x20)) {
|
| 810 |
|
|
vectorLength[operands[0]] = vectorLengthR;
|
| 811 |
|
|
// get mask for operand size (operandType may have been changed by function)
|
| 812 |
|
|
//uint64_t opmask = dataSizeMask[operandType];
|
| 813 |
|
|
// write result to vector
|
| 814 |
|
|
writeVectorElement(operands[0], result, vectorOffset);
|
| 815 |
|
|
if (dataSizeTable[operandType] >= 16) { // 128 bits
|
| 816 |
|
|
writeVectorElement(operands[0], parm[5].q, vectorOffset + (elementSize>>1)); // high part of double size result
|
| 817 |
|
|
}
|
| 818 |
|
|
if (doubleStep) { // double step
|
| 819 |
|
|
writeVectorElement(operands[0], parm[5].q, vectorOffset + elementSize); // high part of double size result
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
vect ^= 3; // toggle between 1 for even elements, 2 for odd
|
| 823 |
|
|
if (doubleStep) vectorOffset += elementSize; // skip next element if instruction takes two elements at a time
|
| 824 |
|
|
}
|
| 825 |
|
|
listResult(result); // debug output
|
| 826 |
|
|
}
|
| 827 |
|
|
else {
|
| 828 |
|
|
// general purpose registers
|
| 829 |
|
|
// get mask
|
| 830 |
|
|
if ((operands[1] & 7) != 7) {
|
| 831 |
|
|
parm[3].q = readRegister(operands[1]);
|
| 832 |
|
|
}
|
| 833 |
|
|
else {
|
| 834 |
|
|
parm[3].q = numContr;
|
| 835 |
|
|
}
|
| 836 |
|
|
// skip instruction if mask = 0, except for certain instructions
|
| 837 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) {
|
| 838 |
|
|
// result is masked off. find fallback
|
| 839 |
|
|
if (operands[2] == 0xFF) result = 0;
|
| 840 |
|
|
else result = readRegister(operands[2]);
|
| 841 |
|
|
}
|
| 842 |
|
|
else {
|
| 843 |
|
|
// normal operation.
|
| 844 |
|
|
// execute instruction
|
| 845 |
|
|
result = (*functionPointer)(this);
|
| 846 |
|
|
}
|
| 847 |
|
|
// get mask for operand size (operandType may have been changed by function)
|
| 848 |
|
|
// store in destination register, zero extended from operand size
|
| 849 |
|
|
if (running & 1) registers[operands[0]] = result & dataSizeMask[operandType];
|
| 850 |
|
|
listResult(result); // debug output
|
| 851 |
|
|
}
|
| 852 |
|
|
performanceCounters(); // update performance counters
|
| 853 |
|
|
}
|
| 854 |
|
|
|
| 855 |
|
|
// update performance counters
|
| 856 |
|
|
void CThread::performanceCounters() {
|
| 857 |
|
|
perfCounters[perf_cpu_clock_cycles]++; // clock cycles
|
| 858 |
|
|
perfCounters[perf_instructions]++; // instructions
|
| 859 |
|
|
if ((fInstr->format2 & 0xF00) == 0x200) perfCounters[perf_2size_instructions]++; // double size instructions
|
| 860 |
|
|
if ((fInstr->format2 & 0xF00) == 0x300) perfCounters[perf_3size_instructions]++; // triple size instructions
|
| 861 |
|
|
if (vect) {
|
| 862 |
|
|
perfCounters[perf_vector_instructions]++; // vector instructions
|
| 863 |
|
|
}
|
| 864 |
|
|
else {
|
| 865 |
|
|
perfCounters[perf_gp_instructions]++; // g.p. instructions
|
| 866 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) perfCounters[perf_gp_instructions_mask0]++; // g.p. instructions masked off
|
| 867 |
|
|
}
|
| 868 |
|
|
if (fInstr->category == 4) { // jump instructions
|
| 869 |
|
|
perfCounters[perf_control_transfer_instructions]++; // all jumps, calls, returns
|
| 870 |
|
|
if (fInstr->tmplate == 0xD) { // direct jump/call
|
| 871 |
|
|
perfCounters[perf_direct_jumps]++; // g.p. instructions
|
| 872 |
|
|
}
|
| 873 |
|
|
else if (fInstr->exeTable == 2) {
|
| 874 |
|
|
if (op == 62 && fInstr->format2 >> 4 == 0x16) {
|
| 875 |
|
|
perfCounters[perf_direct_jumps]++; // simple return
|
| 876 |
|
|
}
|
| 877 |
|
|
else if (op >= 56) perfCounters[perf_indirect_jumps]++; // indirect jumps and calls
|
| 878 |
|
|
else perfCounters[perf_cond_jumps]++; // conditional jumps
|
| 879 |
|
|
}
|
| 880 |
|
|
}
|
| 881 |
|
|
}
|
| 882 |
|
|
|
| 883 |
|
|
// read vector element
|
| 884 |
|
|
uint64_t CThread::readVectorElement(uint32_t v, uint32_t vectorOffset) {
|
| 885 |
|
|
uint32_t size; // element size
|
| 886 |
|
|
uint64_t returnval = 0;
|
| 887 |
|
|
if (operandType == 8) size = 2;
|
| 888 |
|
|
else size = dataSizeTableMax8[operandType];
|
| 889 |
|
|
v &= 0x1F; // protect against array overflow
|
| 890 |
|
|
//if (vectorOffset < vectorLength[v]) {
|
| 891 |
|
|
if (vectorOffset + size <= vectorLength[v]) {
|
| 892 |
|
|
switch (size) { // zero-extend from element size
|
| 893 |
|
|
case 1:
|
| 894 |
|
|
returnval = *(uint8_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
| 895 |
|
|
break;
|
| 896 |
|
|
case 2:
|
| 897 |
|
|
returnval = *(uint16_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
| 898 |
|
|
break;
|
| 899 |
|
|
case 4:
|
| 900 |
|
|
returnval = *(uint32_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
| 901 |
|
|
break;
|
| 902 |
|
|
case 8:
|
| 903 |
|
|
returnval = *(uint64_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
| 904 |
|
|
break;
|
| 905 |
|
|
}
|
| 906 |
|
|
uint32_t sizemax = vectorLength[v] - vectorOffset;
|
| 907 |
|
|
if (size > sizemax) { // reading beyond end of vector. cut off element to max size
|
| 908 |
|
|
returnval &= (uint64_t(1) << sizemax*8) - 1;
|
| 909 |
|
|
}
|
| 910 |
|
|
}
|
| 911 |
|
|
return returnval;
|
| 912 |
|
|
}
|
| 913 |
|
|
|
| 914 |
|
|
// write vector element
|
| 915 |
|
|
void CThread::writeVectorElement(uint32_t v, uint64_t value, uint32_t vectorOffset) {
|
| 916 |
|
|
uint32_t size = dataSizeTableMax8[operandType];
|
| 917 |
|
|
v &= 0x1F; // protect against array overflow
|
| 918 |
|
|
if (vectorOffset + size <= vectorLength[v]) {
|
| 919 |
|
|
switch (size) { // zero-extend from element size
|
| 920 |
|
|
case 1:
|
| 921 |
|
|
*(uint8_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint8_t)value;
|
| 922 |
|
|
break;
|
| 923 |
|
|
case 2:
|
| 924 |
|
|
*(uint16_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint16_t)value;
|
| 925 |
|
|
break;
|
| 926 |
|
|
case 4:
|
| 927 |
|
|
*(uint32_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint32_t)value;
|
| 928 |
|
|
break;
|
| 929 |
|
|
case 8:
|
| 930 |
|
|
*(uint64_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = value;
|
| 931 |
|
|
break;
|
| 932 |
|
|
}
|
| 933 |
|
|
}
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
// get address of a memory operand
|
| 937 |
|
|
uint64_t CThread::getMemoryAddress() {
|
| 938 |
|
|
// find base register
|
| 939 |
|
|
if ((fInstr->mem & 3) == 0) err.submit(ERR_INTERNAL);
|
| 940 |
|
|
//uint8_t basereg = (fInstr->mem & 1) ? pInstr->a.rt : pInstr->a.rs;
|
| 941 |
|
|
uint8_t basereg = pInstr->a.rs;
|
| 942 |
|
|
readonly = false;
|
| 943 |
|
|
memory_error = false;
|
| 944 |
|
|
// base register value
|
| 945 |
|
|
uint64_t baseval = registers[basereg];
|
| 946 |
|
|
if (fInstr->addrSize > 1 && !(fInstr->mem & 0x20)) {
|
| 947 |
|
|
// special registers
|
| 948 |
|
|
switch (basereg) {
|
| 949 |
|
|
case 28: // threadp
|
| 950 |
|
|
baseval = threadp; break;
|
| 951 |
|
|
case 29: // datap
|
| 952 |
|
|
baseval = datap; break;
|
| 953 |
|
|
case 30: // ip
|
| 954 |
|
|
baseval = ip; readonly = true;
|
| 955 |
|
|
break;
|
| 956 |
|
|
}
|
| 957 |
|
|
}
|
| 958 |
|
|
// pointer to memory field
|
| 959 |
|
|
const uint8_t * pa = &pInstr->b[0] + fInstr->addrPos;
|
| 960 |
|
|
|
| 961 |
|
|
// find index register
|
| 962 |
|
|
uint64_t indexval = 0;
|
| 963 |
|
|
if ((fInstr->mem & 4) && (pInstr->a.rt != 0x1F)) {
|
| 964 |
|
|
// rt is index register
|
| 965 |
|
|
indexval = registers[pInstr->a.rt & 0x1F];
|
| 966 |
|
|
// check limit
|
| 967 |
|
|
if (fInstr->mem & 0x20) {
|
| 968 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->addrPos; // pointer to immediate field
|
| 969 |
|
|
uint64_t limit = *(uint64_t*)pi;
|
| 970 |
|
|
limit &= (uint64_t(1) << (fInstr->addrSize * 8)) - 1;
|
| 971 |
|
|
if (indexval > limit) {
|
| 972 |
|
|
interrupt(INT_ARRAY_BOUNDS);
|
| 973 |
|
|
memory_error = true;
|
| 974 |
|
|
//return 0;
|
| 975 |
|
|
}
|
| 976 |
|
|
}
|
| 977 |
|
|
}
|
| 978 |
|
|
// get offset, sign-extended
|
| 979 |
|
|
int64_t offset = 0;
|
| 980 |
|
|
if (fInstr->mem & 0x10) {
|
| 981 |
|
|
switch (fInstr->addrSize) {
|
| 982 |
|
|
case 0:
|
| 983 |
|
|
break;
|
| 984 |
|
|
case 1:
|
| 985 |
|
|
offset = *(int8_t*)pa;
|
| 986 |
|
|
break;
|
| 987 |
|
|
case 2:
|
| 988 |
|
|
offset = *(int16_t*)pa;
|
| 989 |
|
|
break;
|
| 990 |
|
|
case 4:
|
| 991 |
|
|
offset = *(int32_t*)pa;
|
| 992 |
|
|
break;
|
| 993 |
|
|
case 8:
|
| 994 |
|
|
offset = *(int64_t*)pa;
|
| 995 |
|
|
break;
|
| 996 |
|
|
default:
|
| 997 |
|
|
err.submit(ERR_INTERNAL);
|
| 998 |
|
|
}
|
| 999 |
|
|
}
|
| 1000 |
|
|
// scale
|
| 1001 |
|
|
switch (fInstr->scale) {
|
| 1002 |
|
|
case 1: // offset is scaled
|
| 1003 |
|
|
offset <<= dataSizeTableLog[operandType];
|
| 1004 |
|
|
break;
|
| 1005 |
|
|
case 2: // index is scaled by OS
|
| 1006 |
|
|
indexval <<= dataSizeTableLog[operandType];
|
| 1007 |
|
|
break;
|
| 1008 |
|
|
case 4: // 4 = scale factor is -1
|
| 1009 |
|
|
indexval = uint64_t(-(int64_t)indexval);
|
| 1010 |
|
|
break;
|
| 1011 |
|
|
}
|
| 1012 |
|
|
// get length
|
| 1013 |
|
|
if ((fInstr->vect & 6) && pInstr->a.rt < 0x1F) { // vector length or broadcast length is in RT
|
| 1014 |
|
|
if (registers[pInstr->a.rt] > MaxVectorLength) vectorLengthM = MaxVectorLength;
|
| 1015 |
|
|
else vectorLengthM = (uint32_t)registers[pInstr->a.rt];
|
| 1016 |
|
|
}
|
| 1017 |
|
|
else { // scalar
|
| 1018 |
|
|
vectorLengthM = dataSizeTable[operandType & 7];
|
| 1019 |
|
|
}
|
| 1020 |
|
|
// offset and index may be negative, but the result must be positive
|
| 1021 |
|
|
return baseval + indexval + (uint64_t)offset;
|
| 1022 |
|
|
}
|
| 1023 |
|
|
|
| 1024 |
|
|
// read a memory operand
|
| 1025 |
|
|
uint64_t CThread::readMemoryOperand(uint64_t address) {
|
| 1026 |
|
|
// get most likely memory map index
|
| 1027 |
|
|
uint32_t * indexp = readonly ? &mapIndex2 : &mapIndex3;
|
| 1028 |
|
|
uint32_t index = * indexp;
|
| 1029 |
|
|
|
| 1030 |
|
|
// find memory map entry
|
| 1031 |
|
|
while (address < memoryMap[index].startAddress) {
|
| 1032 |
|
|
if (index > 0) index--;
|
| 1033 |
|
|
else {
|
| 1034 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
| 1035 |
|
|
}
|
| 1036 |
|
|
}
|
| 1037 |
|
|
while (address >= memoryMap[index + 1].startAddress) {
|
| 1038 |
|
|
if (index + 2 < memoryMap.numEntries()) index++;
|
| 1039 |
|
|
else {
|
| 1040 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
| 1041 |
|
|
}
|
| 1042 |
|
|
}
|
| 1043 |
|
|
// check read permission
|
| 1044 |
|
|
if (!(memoryMap[index].access_addend & SHF_READ)) {
|
| 1045 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
| 1046 |
|
|
}
|
| 1047 |
|
|
|
| 1048 |
|
|
// check if map boundary crossed
|
| 1049 |
|
|
if (address + dataSizeTable[operandType] > memoryMap[index+1].startAddress
|
| 1050 |
|
|
&& !(memoryMap[index+1].access_addend & SHF_READ)) {
|
| 1051 |
|
|
interrupt(INT_ACCESS_READ);
|
| 1052 |
|
|
}
|
| 1053 |
|
|
|
| 1054 |
|
|
// check alignment
|
| 1055 |
|
|
|
| 1056 |
|
|
|
| 1057 |
|
|
// return zero if any kind of error
|
| 1058 |
|
|
if (memory_error) return 0;
|
| 1059 |
|
|
|
| 1060 |
|
|
// save index for next time
|
| 1061 |
|
|
*indexp = index;
|
| 1062 |
|
|
|
| 1063 |
|
|
// get value, zero extended
|
| 1064 |
|
|
const int8_t * p = memory + address; // pointer to data
|
| 1065 |
|
|
switch (dataSizeTableMax8[operandType]) {
|
| 1066 |
|
|
case 0:
|
| 1067 |
|
|
break;
|
| 1068 |
|
|
case 1:
|
| 1069 |
|
|
return *(uint8_t*)p;
|
| 1070 |
|
|
case 2:
|
| 1071 |
|
|
if (address & 1) interrupt(INT_MISALIGNED_MEM);
|
| 1072 |
|
|
return *(uint16_t*)p;
|
| 1073 |
|
|
case 4:
|
| 1074 |
|
|
if (address & 3) interrupt(INT_MISALIGNED_MEM);
|
| 1075 |
|
|
return *(uint32_t*)p;
|
| 1076 |
|
|
case 8:
|
| 1077 |
|
|
if (address & 7) interrupt(INT_MISALIGNED_MEM);
|
| 1078 |
|
|
return *(uint64_t*)p;
|
| 1079 |
|
|
}
|
| 1080 |
|
|
return 0;
|
| 1081 |
|
|
}
|
| 1082 |
|
|
|
| 1083 |
|
|
// write a memory operand
|
| 1084 |
|
|
void CThread::writeMemoryOperand(uint64_t val, uint64_t address) {
|
| 1085 |
|
|
// most likely memory map index is saved in mapIndex3
|
| 1086 |
|
|
// find memory map entry
|
| 1087 |
|
|
while (address < memoryMap[mapIndex3].startAddress) {
|
| 1088 |
|
|
if (mapIndex3 > 0) mapIndex3--;
|
| 1089 |
|
|
else {
|
| 1090 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
| 1091 |
|
|
}
|
| 1092 |
|
|
}
|
| 1093 |
|
|
while (address >= memoryMap[mapIndex3+1].startAddress) {
|
| 1094 |
|
|
if (mapIndex3 + 2 < memoryMap.numEntries()) mapIndex3++;
|
| 1095 |
|
|
else {
|
| 1096 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
| 1097 |
|
|
}
|
| 1098 |
|
|
}
|
| 1099 |
|
|
// check write permission
|
| 1100 |
|
|
if (!(memoryMap[mapIndex3].access_addend & SHF_WRITE)) {
|
| 1101 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
|
| 1104 |
|
|
// check if map boundary crossed
|
| 1105 |
|
|
if (address + dataSizeTable[operandType] > memoryMap[mapIndex3+1].startAddress
|
| 1106 |
|
|
&& !(memoryMap[mapIndex3+1].access_addend & SHF_WRITE)) {
|
| 1107 |
|
|
interrupt(INT_ACCESS_WRITE);
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
// write value
|
| 1111 |
|
|
// get value, zero extended
|
| 1112 |
|
|
int8_t * p = memory + address; // pointer to data
|
| 1113 |
|
|
switch (dataSizeTableMax8[operandType]) {
|
| 1114 |
|
|
case 0:
|
| 1115 |
|
|
break;
|
| 1116 |
|
|
case 1:
|
| 1117 |
|
|
*(uint8_t*)p = (uint8_t)val;
|
| 1118 |
|
|
break;
|
| 1119 |
|
|
case 2:
|
| 1120 |
|
|
if (address & 1) interrupt(INT_MISALIGNED_MEM);
|
| 1121 |
|
|
*(uint16_t*)p = (uint16_t)val;
|
| 1122 |
|
|
break;
|
| 1123 |
|
|
case 4:
|
| 1124 |
|
|
if (address & 3) interrupt(INT_MISALIGNED_MEM);
|
| 1125 |
|
|
*(uint32_t*)p = (uint32_t)val;
|
| 1126 |
|
|
break;
|
| 1127 |
|
|
case 8:
|
| 1128 |
|
|
if (address & 7) interrupt(INT_MISALIGNED_MEM);
|
| 1129 |
|
|
*(uint64_t*)p = val;
|
| 1130 |
|
|
break;
|
| 1131 |
|
|
}
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
// start writing debug list
|
| 1135 |
|
|
void CThread::listStart() {
|
| 1136 |
|
|
if (!listFileName) return; // nothing if no list file
|
| 1137 |
|
|
listOut.put("Debug listing of ");
|
| 1138 |
|
|
listOut.put(cmd.getFilename(cmd.inputFile));
|
| 1139 |
|
|
listOut.newLine();
|
| 1140 |
|
|
// Date and time. (Will fail after year 2038 on computers that use 32-bit time_t)
|
| 1141 |
|
|
time_t time1 = time(0);
|
| 1142 |
|
|
char * timestring = ctime(&time1);
|
| 1143 |
|
|
if (timestring) {
|
| 1144 |
|
|
for (char *c = timestring; *c; c++) { // Remove terminating '\n' in timestring
|
| 1145 |
|
|
if (*c < ' ') *c = 0;
|
| 1146 |
|
|
}
|
| 1147 |
|
|
listOut.put(timestring);
|
| 1148 |
|
|
listOut.newLine(); listOut.newLine();
|
| 1149 |
|
|
}
|
| 1150 |
|
|
}
|
| 1151 |
|
|
|
| 1152 |
|
|
static uint32_t listIndex = 0; // index into lineList
|
| 1153 |
|
|
// write current instruction to debug list
|
| 1154 |
|
|
void CThread::listInstruction(uint64_t address) {
|
| 1155 |
|
|
if (listFileName == 0 || cmd.maxLines == 0) return; // stop listing
|
| 1156 |
|
|
SLineRef rec = {address, 1, 0};
|
| 1157 |
|
|
const char * text = 0;
|
| 1158 |
|
|
if (listIndex + 1 < emulator->lineList.numEntries() && emulator->lineList[listIndex+1] == rec) {
|
| 1159 |
|
|
// just the next record. no need to search
|
| 1160 |
|
|
listIndex = listIndex+1;
|
| 1161 |
|
|
}
|
| 1162 |
|
|
else { // we may have jumped. Find address in list
|
| 1163 |
|
|
listIndex = (uint32_t)emulator->lineList.findFirst(rec);
|
| 1164 |
|
|
}
|
| 1165 |
|
|
if (listIndex < emulator->lineList.numEntries()) {
|
| 1166 |
|
|
text = emulator->disassemOut.getString(emulator->lineList[listIndex].textPos); // get line from disassembly
|
| 1167 |
|
|
listOut.put(text);
|
| 1168 |
|
|
}
|
| 1169 |
|
|
else { // corresponding disassembly not found
|
| 1170 |
|
|
listOut.putHex((uint32_t)address, 2);
|
| 1171 |
|
|
listOut.tabulate(emulator->disassembler.asmTab0);
|
| 1172 |
|
|
listOut.put("???");
|
| 1173 |
|
|
}
|
| 1174 |
|
|
listOut.newLine();
|
| 1175 |
|
|
}
|
| 1176 |
|
|
|
| 1177 |
|
|
// write result of current instruction to debug list
|
| 1178 |
|
|
void CThread::listResult(uint64_t result) {
|
| 1179 |
|
|
if (++listLines >= cmd.maxLines) cmd.maxLines = 0; // stop listing
|
| 1180 |
|
|
if (listFileName == 0 || returnType == 0 || cmd.maxLines == 0) return; // nothing if no list file or no return value
|
| 1181 |
|
|
listOut.tabulate(emulator->disassembler.asmTab0);
|
| 1182 |
|
|
if (!(returnType & 0x100)) { // general purpose register
|
| 1183 |
|
|
if (returnType & 0x20) { // memory destination
|
| 1184 |
|
|
result = readMemoryOperand(getMemoryAddress());
|
| 1185 |
|
|
}
|
| 1186 |
|
|
if (returnType & 0x30) { // register or memory
|
| 1187 |
|
|
switch (returnType & 0xF) {
|
| 1188 |
|
|
case 0: // int8
|
| 1189 |
|
|
listOut.putHex((uint8_t)result); break;
|
| 1190 |
|
|
case 1: // int16
|
| 1191 |
|
|
listOut.putHex((uint16_t)result); break;
|
| 1192 |
|
|
case 2: case 5: // int32
|
| 1193 |
|
|
listOut.putHex((uint32_t)result); break;
|
| 1194 |
|
|
case 3: case 6: // int64
|
| 1195 |
|
|
listOut.putHex(result); break;
|
| 1196 |
|
|
case 4: // int128
|
| 1197 |
|
|
listOut.putHex(parm[5].q, 2); listOut.putHex(result, 2); break;
|
| 1198 |
|
|
default:
|
| 1199 |
|
|
listOut.put("?");
|
| 1200 |
|
|
}
|
| 1201 |
|
|
}
|
| 1202 |
|
|
}
|
| 1203 |
|
|
else if (returnType & 0x30) { // vector
|
| 1204 |
|
|
uint8_t destinationReg = operands[0] & 0x1F;
|
| 1205 |
|
|
//uint32_t vectorLengthR = vectorLength[destinationReg];
|
| 1206 |
|
|
if (!(returnType & 0x20)) vectorLengthR = vectorLength[destinationReg];
|
| 1207 |
|
|
uint8_t type = returnType & 0xF;
|
| 1208 |
|
|
operandType = type;
|
| 1209 |
|
|
uint32_t elementSize = dataSizeTable[type & 7];
|
| 1210 |
|
|
if (type == 8) elementSize = 2; // half precision
|
| 1211 |
|
|
if (elementSize > 8) elementSize = 8; // int128 and float128 listed as two int64
|
| 1212 |
|
|
union { // union to convert types
|
| 1213 |
|
|
uint64_t q;
|
| 1214 |
|
|
double d;
|
| 1215 |
|
|
float f;
|
| 1216 |
|
|
} u;
|
| 1217 |
|
|
if (vectorLengthR == 0) listOut.put("Empty");
|
| 1218 |
|
|
//if (returnType & 0x40) vectorLengthR += elementSize; // one extra element (save_cp instruction)
|
| 1219 |
|
|
for (uint32_t vectorOffset = 0; vectorOffset < vectorLengthR; vectorOffset += elementSize) {
|
| 1220 |
|
|
if (returnType & 0x20) { // memory destination
|
| 1221 |
|
|
result = readMemoryOperand(getMemoryAddress() + vectorOffset);
|
| 1222 |
|
|
}
|
| 1223 |
|
|
else {
|
| 1224 |
|
|
result = readVectorElement(destinationReg, vectorOffset);
|
| 1225 |
|
|
}
|
| 1226 |
|
|
switch (returnType & 0xF) {
|
| 1227 |
|
|
case 0: // int8
|
| 1228 |
|
|
listOut.putHex((uint8_t)result); break;
|
| 1229 |
|
|
case 1: // int16
|
| 1230 |
|
|
listOut.putHex((uint16_t)result); break;
|
| 1231 |
|
|
case 2: // int32
|
| 1232 |
|
|
listOut.putHex((uint32_t)result); break;
|
| 1233 |
|
|
case 3: case 4: case 7: // int64
|
| 1234 |
|
|
listOut.putHex(result); break;
|
| 1235 |
|
|
case 5: // float
|
| 1236 |
|
|
u.q = result;
|
| 1237 |
|
|
listOut.putFloat(u.f); break;
|
| 1238 |
|
|
case 6: // double
|
| 1239 |
|
|
u.q = result;
|
| 1240 |
|
|
listOut.putFloat(u.d); break;
|
| 1241 |
|
|
case 8: // float16
|
| 1242 |
|
|
listOut.putFloat16((uint16_t)result); break;
|
| 1243 |
|
|
default:
|
| 1244 |
|
|
listOut.put("???");
|
| 1245 |
|
|
}
|
| 1246 |
|
|
listOut.put(' ');
|
| 1247 |
|
|
}
|
| 1248 |
|
|
}
|
| 1249 |
|
|
if (returnType & 0x3000) {
|
| 1250 |
|
|
// conditional jump instruction
|
| 1251 |
|
|
if (returnType & 0x30) listOut.put(", "); // space after value
|
| 1252 |
|
|
listOut.put((returnType & 0x2000) ? "jump" : "no jump"); // tell if jump or not
|
| 1253 |
|
|
}
|
| 1254 |
|
|
listOut.newLine();
|
| 1255 |
|
|
}
|
| 1256 |
|
|
|
| 1257 |
|
|
// make a NAN with exception code and address in payload
|
| 1258 |
|
|
uint64_t CThread::makeNan(uint32_t code, uint32_t operandTyp) {
|
| 1259 |
|
|
uint64_t retval = 0;
|
| 1260 |
|
|
uint8_t instrLength = lengthList[pInstr->a.il]; // instruction length
|
| 1261 |
|
|
uint64_t iaddress = ((ip - ip0) >> 2) - instrLength; // instruction address
|
| 1262 |
|
|
iaddress = ~iaddress; // invert bits
|
| 1263 |
|
|
switch (operandTyp) {
|
| 1264 |
|
|
case 1: // half precision
|
| 1265 |
|
|
retval = (uint8_t)code | 0x7E00 | (iaddress & 1) << 8;
|
| 1266 |
|
|
break;
|
| 1267 |
|
|
case 5: // single precision
|
| 1268 |
|
|
retval = (uint8_t)code | 0x7FC00000 | uint32_t(iaddress & ((1 << 14) - 1)) << 8;
|
| 1269 |
|
|
break;
|
| 1270 |
|
|
case 6: // double precision
|
| 1271 |
|
|
retval = (uint8_t)code | 0x7FF8000000000000 | (iaddress & (((uint64_t)1 << 43) - 1)) << 8;
|
| 1272 |
|
|
break;
|
| 1273 |
|
|
}
|
| 1274 |
|
|
return retval;
|
| 1275 |
|
|
}
|