| 1 |
3 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: wbddrsdram.v
|
| 4 |
|
|
//
|
| 5 |
24 |
dgisselq |
// Project: A wishbone controlled DDR3 SDRAM memory controller.
|
| 6 |
|
|
// Used in: OpenArty, an entirely open SoC based upon the Arty platform
|
| 7 |
3 |
dgisselq |
//
|
| 8 |
24 |
dgisselq |
// Purpose: To control a DDR3-1333 (9-9-9) memory from a wishbone bus.
|
| 9 |
|
|
// In our particular implementation, there will be two command
|
| 10 |
|
|
// clocks (2.5 ns) per FPGA clock (i_clk) at 5 ns, and 64-bits transferred
|
| 11 |
|
|
// per FPGA clock. However, since the memory is focused around 128-bit
|
| 12 |
|
|
// word transfers, attempts to transfer other than adjacent 64-bit words
|
| 13 |
|
|
// will (of necessity) suffer stalls. Please see the documentation for
|
| 14 |
|
|
// more details of how this controller works.
|
| 15 |
3 |
dgisselq |
//
|
| 16 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 17 |
|
|
// Gisselquist Technology, LLC
|
| 18 |
|
|
//
|
| 19 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 20 |
|
|
//
|
| 21 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
| 22 |
|
|
//
|
| 23 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 24 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 25 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 26 |
|
|
// your option) any later version.
|
| 27 |
|
|
//
|
| 28 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 29 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 30 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 31 |
|
|
// for more details.
|
| 32 |
|
|
//
|
| 33 |
|
|
// You should have received a copy of the GNU General Public License along
|
| 34 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
| 35 |
|
|
// target there if the PDF file isn't present.) If not, see
|
| 36 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
| 37 |
|
|
//
|
| 38 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 39 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 40 |
|
|
//
|
| 41 |
|
|
//
|
| 42 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 43 |
|
|
//
|
| 44 |
|
|
//
|
| 45 |
17 |
dgisselq |
|
| 46 |
|
|
// Possible commands to the DDR3 memory. These consist of settings for the
|
| 47 |
|
|
// bits: o_wb_cs_n, o_wb_ras_n, o_wb_cas_n, and o_wb_we_n, respectively.
|
| 48 |
|
|
`define DDR_MRSET 4'b0000
|
| 49 |
|
|
`define DDR_REFRESH 4'b0001
|
| 50 |
|
|
`define DDR_PRECHARGE 4'b0010
|
| 51 |
|
|
`define DDR_ACTIVATE 4'b0011
|
| 52 |
|
|
`define DDR_WRITE 4'b0100
|
| 53 |
|
|
`define DDR_READ 4'b0101
|
| 54 |
|
|
`define DDR_ZQS 4'b0110
|
| 55 |
|
|
`define DDR_NOOP 4'b0111
|
| 56 |
|
|
//`define DDR_DESELECT 4'b1???
|
| 57 |
|
|
//
|
| 58 |
|
|
// In this controller, 24-bit commands tend to be passed around. These
|
| 59 |
|
|
// 'commands' are bit fields. Here we specify the bits associated with
|
| 60 |
|
|
// the bit fields.
|
| 61 |
|
|
`define DDR_RSTDONE 24 // End the reset sequence?
|
| 62 |
|
|
`define DDR_RSTTIMER 23 // Does this reset command take multiple clocks?
|
| 63 |
|
|
`define DDR_RSTBIT 22 // Value to place on reset_n
|
| 64 |
|
|
`define DDR_CKEBIT 21 // Should this reset command set CKE?
|
| 65 |
|
|
//
|
| 66 |
|
|
// Refresh command bit fields
|
| 67 |
|
|
`define DDR_NEEDREFRESH 23
|
| 68 |
|
|
`define DDR_RFTIMER 22
|
| 69 |
|
|
`define DDR_RFBEGIN 21
|
| 70 |
|
|
//
|
| 71 |
|
|
`define DDR_CMDLEN 21
|
| 72 |
|
|
`define DDR_CSBIT 20
|
| 73 |
|
|
`define DDR_RASBIT 19
|
| 74 |
|
|
`define DDR_CASBIT 18
|
| 75 |
|
|
`define DDR_WEBIT 17
|
| 76 |
|
|
`define DDR_NOPTIMER 16 // Steal this from BA bits
|
| 77 |
|
|
`define DDR_BABITS 3 // BABITS are really from 18:16, they are 3 bits
|
| 78 |
|
|
`define DDR_ADDR_BITS 14
|
| 79 |
|
|
//
|
| 80 |
24 |
dgisselq |
//
|
| 81 |
17 |
dgisselq |
module wbddrsdram(i_clk, i_reset,
|
| 82 |
24 |
dgisselq |
// Wishbone inputs
|
| 83 |
3 |
dgisselq |
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
| 84 |
24 |
dgisselq |
i_wb_sel,
|
| 85 |
|
|
// Wishbone outputs
|
| 86 |
|
|
o_wb_ack, o_wb_stall, o_wb_data,
|
| 87 |
|
|
// Memory command wires
|
| 88 |
|
|
o_ddr_reset_n, o_ddr_cke, o_ddr_bus_oe,
|
| 89 |
|
|
o_ddr_cmd_a, o_ddr_cmd_b,
|
| 90 |
|
|
// And the data wires to go with them ....
|
| 91 |
|
|
o_ddr_data, i_ddr_data);
|
| 92 |
|
|
// These parameters are not really meant for adjusting from the
|
| 93 |
|
|
// top level. These are more internal variables, recorded here
|
| 94 |
|
|
// so that things can be automatically adjusted without much
|
| 95 |
|
|
// problem.
|
| 96 |
|
|
parameter CKRP = 3;
|
| 97 |
|
|
parameter BUSNOW = 4, BUSREG = BUSNOW-1;
|
| 98 |
|
|
// The commands (above) include (in this order):
|
| 99 |
|
|
// o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n, o_ddr_we_n,
|
| 100 |
|
|
// o_ddr_dqs, o_ddr_dm, o_ddr_odt
|
| 101 |
|
|
input i_clk, // *MUST* be at 200 MHz for this to work
|
| 102 |
|
|
i_reset;
|
| 103 |
3 |
dgisselq |
// Wishbone inputs
|
| 104 |
24 |
dgisselq |
input i_wb_cyc, i_wb_stb, i_wb_we;
|
| 105 |
|
|
input [24:0] i_wb_addr; // Identifies a 64-bit word of interest
|
| 106 |
|
|
input [63:0] i_wb_data;
|
| 107 |
|
|
input [7:0] i_wb_sel;
|
| 108 |
|
|
// Wishbone responses/outputs
|
| 109 |
|
|
output reg o_wb_ack, o_wb_stall;
|
| 110 |
|
|
output reg [63:0] o_wb_data;
|
| 111 |
|
|
// DDR memory command wires
|
| 112 |
|
|
output reg o_ddr_reset_n, o_ddr_cke, o_ddr_bus_oe;
|
| 113 |
|
|
// CMDs are:
|
| 114 |
|
|
// 4 bits of CS, RAS, CAS, WE
|
| 115 |
|
|
// 3 bits of bank
|
| 116 |
|
|
// 14 bits of Address
|
| 117 |
|
|
// 1 bit of DQS (strobe active, or not)
|
| 118 |
|
|
// 4 bits of mask (one per byte)
|
| 119 |
|
|
// 1 bit of ODT
|
| 120 |
|
|
// ----
|
| 121 |
|
|
// 27 bits total
|
| 122 |
|
|
output wire [26:0] o_ddr_cmd_a, o_ddr_cmd_b;
|
| 123 |
|
|
output reg [63:0] o_ddr_data;
|
| 124 |
|
|
input [63:0] i_ddr_data;
|
| 125 |
3 |
dgisselq |
|
| 126 |
17 |
dgisselq |
|
| 127 |
24 |
dgisselq |
//////////
|
| 128 |
3 |
dgisselq |
//
|
| 129 |
|
|
//
|
| 130 |
24 |
dgisselq |
// Reset Logic
|
| 131 |
3 |
dgisselq |
//
|
| 132 |
17 |
dgisselq |
//
|
| 133 |
24 |
dgisselq |
//////////
|
| 134 |
|
|
//
|
| 135 |
|
|
//
|
| 136 |
17 |
dgisselq |
// Reset logic should be simple, and is given as follows:
|
| 137 |
|
|
// note that it depends upon a ROM memory, reset_mem, and an address into that
|
| 138 |
|
|
// memory: reset_address. Each memory location provides either a "command" to
|
| 139 |
|
|
// the DDR3 SDRAM, or a timer to wait until the next command. Further, the
|
| 140 |
|
|
// timer commands indicate whether or not the command during the timer is to
|
| 141 |
|
|
// be set to idle, or whether the command is instead left as it was.
|
| 142 |
|
|
reg reset_override, reset_ztimer, maintenance_override;
|
| 143 |
|
|
reg [4:0] reset_address;
|
| 144 |
24 |
dgisselq |
reg [(`DDR_CMDLEN-1):0] reset_cmd, cmd_a, cmd_b, refresh_cmd,
|
| 145 |
17 |
dgisselq |
maintenance_cmd;
|
| 146 |
|
|
reg [24:0] reset_instruction;
|
| 147 |
|
|
reg [16:0] reset_timer;
|
| 148 |
|
|
initial reset_override = 1'b1;
|
| 149 |
|
|
initial reset_address = 5'h0;
|
| 150 |
|
|
always @(posedge i_clk)
|
| 151 |
|
|
if (i_reset)
|
| 152 |
|
|
begin
|
| 153 |
|
|
reset_override <= 1'b1;
|
| 154 |
|
|
reset_cmd <= { `DDR_NOOP, reset_instruction[16:0]};
|
| 155 |
|
|
end else if (reset_ztimer)
|
| 156 |
|
|
begin
|
| 157 |
|
|
if (reset_instruction[`DDR_RSTDONE])
|
| 158 |
|
|
reset_override <= 1'b0;
|
| 159 |
|
|
reset_cmd <= reset_instruction[20:0];
|
| 160 |
|
|
end
|
| 161 |
|
|
|
| 162 |
|
|
initial reset_ztimer = 1'b0; // Is the timer zero?
|
| 163 |
|
|
initial reset_timer = 17'h02;
|
| 164 |
|
|
always @(posedge i_clk)
|
| 165 |
|
|
if (i_reset)
|
| 166 |
|
|
begin
|
| 167 |
|
|
reset_ztimer <= 1'b0;
|
| 168 |
|
|
reset_timer <= 17'd2;
|
| 169 |
|
|
end else if (!reset_ztimer)
|
| 170 |
|
|
begin
|
| 171 |
|
|
reset_ztimer <= (reset_timer == 17'h01);
|
| 172 |
|
|
reset_timer <= reset_timer - 17'h01;
|
| 173 |
|
|
end else if (reset_instruction[`DDR_RSTTIMER])
|
| 174 |
|
|
begin
|
| 175 |
|
|
reset_ztimer <= 1'b0;
|
| 176 |
|
|
reset_timer <= reset_instruction[16:0];
|
| 177 |
|
|
end
|
| 178 |
|
|
|
| 179 |
24 |
dgisselq |
wire [16:0] w_ckXPR, w_ckRFC_first;
|
| 180 |
17 |
dgisselq |
wire [13:0] w_MR0, w_MR1, w_MR2;
|
| 181 |
24 |
dgisselq |
assign w_MR0 = 14'h0420;
|
| 182 |
|
|
assign w_MR1 = 14'h0044;
|
| 183 |
|
|
assign w_MR2 = 14'h0040;
|
| 184 |
|
|
assign w_ckXPR = 17'd68; // Table 68, p186
|
| 185 |
|
|
assign w_ckRFC_first = 17'd30; // i.e. 64 nCK, or ckREFI
|
| 186 |
17 |
dgisselq |
always @(posedge i_clk)
|
| 187 |
24 |
dgisselq |
// DONE, TIMER, RESET, CKE,
|
| 188 |
17 |
dgisselq |
if (i_reset)
|
| 189 |
|
|
reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
|
| 190 |
|
|
else if (reset_ztimer) case(reset_address) // RSTDONE, TIMER, CKE, ??
|
| 191 |
|
|
// 1. Reset asserted (active low) for 200 us. (@200MHz)
|
| 192 |
|
|
5'h0: reset_instruction <= { 4'h4, `DDR_NOOP, 17'd40_000 };
|
| 193 |
|
|
// 2. Reset de-asserted, wait 500 us before asserting CKE
|
| 194 |
|
|
5'h1: reset_instruction <= { 4'h6, `DDR_NOOP, 17'd100_000 };
|
| 195 |
|
|
// 3. Assert CKE, wait minimum of Reset CKE Exit time
|
| 196 |
|
|
5'h2: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckXPR };
|
| 197 |
24 |
dgisselq |
// 4. Set MR2. (4 nCK, no TIMER, but needs a NOOP cycle)
|
| 198 |
|
|
5'h3: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h2, w_MR2 };
|
| 199 |
|
|
5'h4: reset_instruction <= { 4'h3, `DDR_NOOP, 17'h00 };
|
| 200 |
|
|
// 5. Set MR1. (4 nCK, no TIMER, but needs a NOOP cycle)
|
| 201 |
|
|
5'h5: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h1, w_MR1 };
|
| 202 |
|
|
5'h6: reset_instruction <= { 4'h3, `DDR_NOOP, 17'h00 };
|
| 203 |
|
|
// 6. Set MR0
|
| 204 |
|
|
5'h7: reset_instruction <= { 4'h3, `DDR_MRSET, 3'h0, w_MR0 };
|
| 205 |
|
|
// 7. Wait 12 clocks
|
| 206 |
|
|
5'h8: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd10 };
|
| 207 |
|
|
// 8. Issue a ZQCL command to start ZQ calibration, A10 is high
|
| 208 |
|
|
5'h9: reset_instruction <= { 4'h3, `DDR_ZQS, 6'h0, 1'b1, 10'h0};
|
| 209 |
|
|
//11.Wait for both tDLLK and tZQinit completed, both are
|
| 210 |
|
|
// 512 cks. Of course, since every one of these commands takes
|
| 211 |
|
|
// two clocks, we wait for half as many clocks (minus two for
|
| 212 |
|
|
// our timer logic)
|
| 213 |
|
|
5'ha: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd254 };
|
| 214 |
17 |
dgisselq |
// 12. Precharge all command
|
| 215 |
24 |
dgisselq |
5'hb: reset_instruction <= { 4'h3, `DDR_PRECHARGE, 6'h0, 1'b1, 10'h0 };
|
| 216 |
|
|
// 13. Wait for the precharge to complete. A count of one,
|
| 217 |
|
|
// will have us waiting (1+2)*2 or 6 clocks, so we should be
|
| 218 |
|
|
// good here.
|
| 219 |
|
|
5'hc: reset_instruction <= { 4'h7, `DDR_NOOP, 17'd1 };
|
| 220 |
17 |
dgisselq |
// 14. A single Auto Refresh commands
|
| 221 |
24 |
dgisselq |
5'hd: reset_instruction <= { 4'h3, `DDR_REFRESH, 17'h00 };
|
| 222 |
17 |
dgisselq |
// 15. Wait for the auto refresh to complete
|
| 223 |
24 |
dgisselq |
5'he: reset_instruction <= { 4'h7, `DDR_NOOP, w_ckRFC_first };
|
| 224 |
17 |
dgisselq |
default:
|
| 225 |
|
|
reset_instruction <={4'hb, `DDR_NOOP, 17'd00_000 };
|
| 226 |
|
|
endcase
|
| 227 |
|
|
|
| 228 |
|
|
initial reset_address = 5'h0;
|
| 229 |
|
|
always @(posedge i_clk)
|
| 230 |
|
|
if (i_reset)
|
| 231 |
|
|
reset_address <= 5'h1;
|
| 232 |
|
|
else if ((reset_ztimer)&&(reset_override))
|
| 233 |
|
|
reset_address <= reset_address + 5'h1;
|
| 234 |
24 |
dgisselq |
|
| 235 |
|
|
//////////
|
| 236 |
17 |
dgisselq |
//
|
| 237 |
24 |
dgisselq |
//
|
| 238 |
|
|
// Refresh Logic
|
| 239 |
|
|
//
|
| 240 |
|
|
//
|
| 241 |
|
|
//////////
|
| 242 |
|
|
//
|
| 243 |
|
|
//
|
| 244 |
|
|
//
|
| 245 |
|
|
// Okay, let's investigate when we need to do a refresh. Our plan will be to
|
| 246 |
|
|
// do a single refreshes every tREFI seconds. We will not push off refreshes,
|
| 247 |
|
|
// nor pull them in--for simplicity. tREFI = 7.8us, but it is a parameter
|
| 248 |
|
|
// in the number of clocks. In our case, 7.8us / 5ns = 1560 clocks (not nCK!)
|
| 249 |
|
|
//
|
| 250 |
|
|
// Note that 160ns are needed between refresh commands (JEDEC, p172), or
|
| 251 |
|
|
// 32 clocks @200MHz. After this time, no more refreshes will be needed for
|
| 252 |
|
|
// (1560-32) clocks (@ 200 MHz).
|
| 253 |
|
|
//
|
| 254 |
|
|
// This logic is very similar to the refresh logic, both use a memory as a
|
| 255 |
|
|
// script.
|
| 256 |
|
|
//
|
| 257 |
|
|
reg need_refresh;
|
| 258 |
|
|
reg refresh_ztimer;
|
| 259 |
|
|
reg [16:0] refresh_counter;
|
| 260 |
|
|
reg [2:0] refresh_addr;
|
| 261 |
|
|
reg [23:0] refresh_instruction;
|
| 262 |
|
|
always @(posedge i_clk)
|
| 263 |
|
|
if (reset_override)
|
| 264 |
|
|
refresh_addr <= 3'hf;
|
| 265 |
|
|
else if (refresh_ztimer)
|
| 266 |
|
|
refresh_addr <= refresh_addr + 3'h1;
|
| 267 |
|
|
else if (refresh_instruction[`DDR_RFBEGIN])
|
| 268 |
|
|
refresh_addr <= 3'h0;
|
| 269 |
17 |
dgisselq |
|
| 270 |
24 |
dgisselq |
always @(posedge i_clk)
|
| 271 |
|
|
if (reset_override)
|
| 272 |
|
|
begin
|
| 273 |
|
|
refresh_ztimer <= 1'b1;
|
| 274 |
|
|
refresh_counter <= 17'd0;
|
| 275 |
|
|
end else if (!refresh_ztimer)
|
| 276 |
|
|
begin
|
| 277 |
|
|
refresh_ztimer <= (refresh_counter == 17'h1);
|
| 278 |
|
|
refresh_counter <= (refresh_counter - 17'h1);
|
| 279 |
|
|
end else if (refresh_instruction[`DDR_RFTIMER])
|
| 280 |
|
|
begin
|
| 281 |
|
|
refresh_ztimer <= 1'b0;
|
| 282 |
|
|
refresh_counter <= refresh_instruction[16:0];
|
| 283 |
|
|
end
|
| 284 |
17 |
dgisselq |
|
| 285 |
24 |
dgisselq |
wire [16:0] w_ckREFI;
|
| 286 |
|
|
assign w_ckREFI = 17'd1560; // == 6240/4
|
| 287 |
|
|
|
| 288 |
|
|
wire [16:0] w_ckREFI_left, w_ckRFC_nxt, w_wait_for_idle,
|
| 289 |
|
|
w_precharge_to_refresh;
|
| 290 |
|
|
|
| 291 |
|
|
// We need to wait for the bus to become idle from whatever state
|
| 292 |
|
|
// it is in. The difficult time for this measurement is assuming
|
| 293 |
|
|
// a write was just given. In that case, we need to wait for the
|
| 294 |
|
|
// write to complete, and then to wait an additional tWR (write
|
| 295 |
|
|
// recovery time) or 6 nCK clocks from the end of the write. This
|
| 296 |
|
|
// works out to seven idle bus cycles from the time of the write
|
| 297 |
|
|
// command, or a count of 5 (7-2).
|
| 298 |
|
|
assign w_wait_for_idle = 17'd5; //
|
| 299 |
|
|
assign w_precharge_to_refresh = 17'd1; // = 3-2
|
| 300 |
|
|
assign w_ckREFI_left[16:0] = 17'd1560 // The full interval
|
| 301 |
|
|
-17'd32 // Min what we've already waited
|
| 302 |
|
|
-w_wait_for_idle
|
| 303 |
|
|
-w_precharge_to_refresh-17'd12;
|
| 304 |
|
|
assign w_ckRFC_nxt[16:0] = 17'd32-17'd2;
|
| 305 |
|
|
|
| 306 |
|
|
always @(posedge i_clk)
|
| 307 |
|
|
if (refresh_ztimer)
|
| 308 |
|
|
case(refresh_addr)//NEED-REFRESH, HAVE-TIMER, BEGIN(start-over)
|
| 309 |
|
|
// First, a number of clocks needing no refresh
|
| 310 |
|
|
3'h0: refresh_instruction <= { 3'h2, `DDR_NOOP, w_ckREFI_left };
|
| 311 |
|
|
// Then, we take command of the bus and wait for it to be
|
| 312 |
|
|
// guaranteed idle
|
| 313 |
|
|
3'h1: refresh_instruction <= { 3'h6, `DDR_NOOP, w_wait_for_idle };
|
| 314 |
|
|
// Once the bus is idle, all commands complete, and a minimum
|
| 315 |
|
|
// recovery time given, we can issue a precharge all command
|
| 316 |
|
|
3'h2: refresh_instruction <= { 3'h4, `DDR_PRECHARGE, 17'h0400 };
|
| 317 |
|
|
// Now we need to wait tRP = 3 clocks (6 nCK)
|
| 318 |
|
|
3'h3: refresh_instruction <= { 3'h6, `DDR_NOOP, w_precharge_to_refresh };
|
| 319 |
|
|
3'h4: refresh_instruction <= { 3'h4, `DDR_REFRESH, 17'h00 };
|
| 320 |
|
|
3'h5: refresh_instruction <= { 3'h6, `DDR_NOOP, w_ckRFC_nxt };
|
| 321 |
|
|
default:
|
| 322 |
|
|
refresh_instruction <= { 3'h1, `DDR_NOOP, 17'h00 };
|
| 323 |
|
|
endcase
|
| 324 |
|
|
|
| 325 |
|
|
// Note that we don't need to check if (reset_override) here since
|
| 326 |
|
|
// refresh_ztimer will always be true if (reset_override)--in other
|
| 327 |
|
|
// words, it will be true for many, many, clocks--enough for this
|
| 328 |
|
|
// logic to settle out.
|
| 329 |
|
|
always @(posedge i_clk)
|
| 330 |
|
|
if (refresh_ztimer)
|
| 331 |
|
|
refresh_cmd <= refresh_instruction[20:0];
|
| 332 |
|
|
always @(posedge i_clk)
|
| 333 |
|
|
if (refresh_ztimer)
|
| 334 |
|
|
need_refresh <= refresh_instruction[`DDR_NEEDREFRESH];
|
| 335 |
|
|
|
| 336 |
|
|
|
| 337 |
|
|
/*
|
| 338 |
|
|
input i_clk, i_reset;
|
| 339 |
|
|
// Wishbone inputs
|
| 340 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
| 341 |
|
|
input [25:0] i_wb_addr;
|
| 342 |
|
|
input [31:0] i_wb_data;
|
| 343 |
|
|
// Wishbone outputs
|
| 344 |
|
|
output reg o_wb_ack;
|
| 345 |
|
|
output reg o_wb_stall;
|
| 346 |
|
|
output reg [31:0] o_wb_data;
|
| 347 |
|
|
// DDR3 RAM Controller
|
| 348 |
|
|
output reg o_ddr_reset_n, o_ddr_cke;
|
| 349 |
|
|
// Control outputs
|
| 350 |
|
|
output wire o_ddr_cs_n, o_ddr_ras_n, o_ddr_cas_n,o_ddr_we_n;
|
| 351 |
|
|
// DQS outputs:set to 3'b010 when data is active, 3'b100 (i.e. 2'bzz) ow
|
| 352 |
|
|
output wire o_ddr_dqs;
|
| 353 |
|
|
output reg o_ddr_odt;
|
| 354 |
|
|
output wire o_ddr_bus_oe;
|
| 355 |
|
|
// Address outputs
|
| 356 |
|
|
output wire [13:0] o_ddr_addr;
|
| 357 |
|
|
output wire [2:0] o_ddr_ba;
|
| 358 |
|
|
// And the data inputs and outputs
|
| 359 |
|
|
output reg [31:0] o_ddr_data;
|
| 360 |
|
|
input [31:0] i_ddr_data;
|
| 361 |
|
|
*/
|
| 362 |
|
|
|
| 363 |
|
|
|
| 364 |
|
|
reg [1:0] drive_dqs;
|
| 365 |
|
|
// Our chosen timing doesn't require any more resolution than one
|
| 366 |
|
|
// bus clock for ODT. (Of course, this really isn't necessary, since
|
| 367 |
|
|
// we aren't using ODT as per the MRx registers ... but we keep it
|
| 368 |
|
|
// around in case we change our minds later.)
|
| 369 |
|
|
reg ddr_odt;
|
| 370 |
|
|
reg [7:0] ddr_dm;
|
| 371 |
|
|
|
| 372 |
|
|
// The pending transaction
|
| 373 |
|
|
reg [63:0] r_data;
|
| 374 |
|
|
reg r_pending, r_we;
|
| 375 |
|
|
reg [24:0] r_addr;
|
| 376 |
|
|
reg [13:0] r_row;
|
| 377 |
|
|
reg [2:0] r_bank;
|
| 378 |
|
|
reg [9:0] r_col;
|
| 379 |
|
|
reg r_sub;
|
| 380 |
|
|
reg [7:0] r_sel;
|
| 381 |
|
|
|
| 382 |
|
|
// The pending transaction, one further into the pipeline. This is
|
| 383 |
|
|
// the stage where the read/write command is actually given to the
|
| 384 |
|
|
// interface if we haven't stalled.
|
| 385 |
|
|
reg [63:0] s_data;
|
| 386 |
|
|
reg s_pending, s_we; // , s_match;
|
| 387 |
|
|
reg [24:0] s_addr;
|
| 388 |
|
|
reg [13:0] s_row, s_nxt_row;
|
| 389 |
|
|
reg [2:0] s_bank, s_nxt_bank;
|
| 390 |
|
|
reg [9:0] s_col;
|
| 391 |
|
|
reg s_sub;
|
| 392 |
|
|
reg [7:0] s_sel;
|
| 393 |
|
|
|
| 394 |
|
|
// Can the pending transaction be satisfied with the current (ongoing)
|
| 395 |
|
|
// transaction?
|
| 396 |
|
|
reg m_move, m_match, m_pending, m_we;
|
| 397 |
|
|
reg [24:0] m_addr;
|
| 398 |
|
|
reg [13:0] m_row;
|
| 399 |
|
|
reg [2:0] m_bank;
|
| 400 |
|
|
reg [9:0] m_col;
|
| 401 |
|
|
reg [1:0] m_sub;
|
| 402 |
|
|
|
| 403 |
|
|
// Can we preload the next bank?
|
| 404 |
|
|
reg [13:0] r_nxt_row;
|
| 405 |
|
|
reg [2:0] r_nxt_bank;
|
| 406 |
|
|
|
| 407 |
|
|
reg need_close_bank, need_close_this_bank,
|
| 408 |
|
|
last_close_bank, maybe_close_next_bank,
|
| 409 |
|
|
last_maybe_close,
|
| 410 |
|
|
need_open_bank, last_open_bank, maybe_open_next_bank,
|
| 411 |
|
|
last_maybe_open,
|
| 412 |
|
|
valid_bank;
|
| 413 |
|
|
reg [(`DDR_CMDLEN-1):0] close_bank_cmd, activate_bank_cmd,
|
| 414 |
|
|
maybe_close_cmd, maybe_open_cmd, rw_cmd;
|
| 415 |
|
|
reg rw_sub;
|
| 416 |
|
|
reg rw_we;
|
| 417 |
|
|
|
| 418 |
|
|
wire w_this_closing_bank, w_this_opening_bank,
|
| 419 |
|
|
w_this_maybe_close, w_this_maybe_open,
|
| 420 |
|
|
w_this_rw_move;
|
| 421 |
|
|
reg last_closing_bank, last_opening_bank;
|
| 422 |
|
|
wire w_need_close_this_bank, w_need_open_bank,
|
| 423 |
|
|
w_r_valid, w_s_valid, w_s_match;
|
| 424 |
|
|
|
| 425 |
|
|
//////////
|
| 426 |
17 |
dgisselq |
//
|
| 427 |
|
|
//
|
| 428 |
24 |
dgisselq |
// Open Banks
|
| 429 |
|
|
//
|
| 430 |
|
|
//
|
| 431 |
|
|
//////////
|
| 432 |
|
|
//
|
| 433 |
|
|
//
|
| 434 |
|
|
//
|
| 435 |
17 |
dgisselq |
// Let's keep track of any open banks. There are 8 of them to keep track of.
|
| 436 |
|
|
//
|
| 437 |
24 |
dgisselq |
// A precharge requires 3 clocks at 200MHz to complete.
|
| 438 |
|
|
// An activate also requires 3 clocks at 200MHz to complete.
|
| 439 |
|
|
// Precharges are not allowed until the maximum of:
|
| 440 |
|
|
// 2 clocks (200 MHz) after a read command
|
| 441 |
|
|
// 8 clocks after a write command
|
| 442 |
17 |
dgisselq |
//
|
| 443 |
|
|
//
|
| 444 |
|
|
wire w_precharge_all;
|
| 445 |
|
|
reg [CKRP:0] bank_status [0:7];
|
| 446 |
|
|
reg [13:0] bank_address [0:7];
|
| 447 |
|
|
reg [3:0] bank_wr_ck [0:7]; // tWTR
|
| 448 |
|
|
reg bank_wr_ckzro [0:7]; // tWTR
|
| 449 |
|
|
reg [7:0] bank_open;
|
| 450 |
|
|
reg [7:0] bank_closed;
|
| 451 |
|
|
|
| 452 |
|
|
wire [3:0] write_recycle_clocks;
|
| 453 |
24 |
dgisselq |
assign write_recycle_clocks = 4'h8;
|
| 454 |
17 |
dgisselq |
|
| 455 |
|
|
initial bank_open = 0;
|
| 456 |
|
|
initial bank_closed = 8'hff;
|
| 457 |
|
|
always @(posedge i_clk)
|
| 458 |
|
|
begin
|
| 459 |
|
|
bank_status[0] <= { bank_status[0][(CKRP-1):0], bank_status[0][0] };
|
| 460 |
|
|
bank_status[1] <= { bank_status[1][(CKRP-1):0], bank_status[1][0] };
|
| 461 |
|
|
bank_status[2] <= { bank_status[2][(CKRP-1):0], bank_status[2][0] };
|
| 462 |
|
|
bank_status[3] <= { bank_status[3][(CKRP-1):0], bank_status[3][0] };
|
| 463 |
|
|
bank_status[4] <= { bank_status[4][(CKRP-1):0], bank_status[4][0] };
|
| 464 |
|
|
bank_status[5] <= { bank_status[5][(CKRP-1):0], bank_status[5][0] };
|
| 465 |
|
|
bank_status[6] <= { bank_status[6][(CKRP-1):0], bank_status[6][0] };
|
| 466 |
|
|
bank_status[7] <= { bank_status[7][(CKRP-1):0], bank_status[7][0] };
|
| 467 |
|
|
|
| 468 |
|
|
bank_wr_ck[0] <= (|bank_wr_ck[0])?(bank_wr_ck[0]-4'h1):4'h0;
|
| 469 |
|
|
bank_wr_ck[1] <= (|bank_wr_ck[1])?(bank_wr_ck[1]-4'h1):4'h0;
|
| 470 |
|
|
bank_wr_ck[2] <= (|bank_wr_ck[2])?(bank_wr_ck[2]-4'h1):4'h0;
|
| 471 |
|
|
bank_wr_ck[3] <= (|bank_wr_ck[3])?(bank_wr_ck[3]-4'h1):4'h0;
|
| 472 |
|
|
bank_wr_ck[4] <= (|bank_wr_ck[4])?(bank_wr_ck[4]-4'h1):4'h0;
|
| 473 |
|
|
bank_wr_ck[5] <= (|bank_wr_ck[5])?(bank_wr_ck[5]-4'h1):4'h0;
|
| 474 |
|
|
bank_wr_ck[6] <= (|bank_wr_ck[6])?(bank_wr_ck[6]-4'h1):4'h0;
|
| 475 |
|
|
bank_wr_ck[7] <= (|bank_wr_ck[7])?(bank_wr_ck[7]-4'h1):4'h0;
|
| 476 |
|
|
|
| 477 |
|
|
bank_wr_ckzro[0] <= (bank_wr_ck[0][3:1]==3'b00);
|
| 478 |
|
|
bank_wr_ckzro[1] <= (bank_wr_ck[1][3:1]==3'b00);
|
| 479 |
|
|
bank_wr_ckzro[2] <= (bank_wr_ck[2][3:1]==3'b00);
|
| 480 |
|
|
bank_wr_ckzro[3] <= (bank_wr_ck[3][3:1]==3'b00);
|
| 481 |
|
|
bank_wr_ckzro[4] <= (bank_wr_ck[4][3:1]==3'b00);
|
| 482 |
|
|
bank_wr_ckzro[5] <= (bank_wr_ck[5][3:1]==3'b00);
|
| 483 |
|
|
bank_wr_ckzro[6] <= (bank_wr_ck[6][3:1]==3'b00);
|
| 484 |
|
|
bank_wr_ckzro[7] <= (bank_wr_ck[7][3:1]==3'b00);
|
| 485 |
|
|
|
| 486 |
|
|
bank_open[0] <= (bank_status[0][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 487 |
|
|
bank_open[1] <= (bank_status[1][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 488 |
|
|
bank_open[2] <= (bank_status[2][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 489 |
|
|
bank_open[3] <= (bank_status[3][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 490 |
|
|
bank_open[4] <= (bank_status[4][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 491 |
|
|
bank_open[5] <= (bank_status[5][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 492 |
|
|
bank_open[6] <= (bank_status[6][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 493 |
|
|
bank_open[7] <= (bank_status[7][(CKRP-2):0] =={(CKRP-1){1'b1}});
|
| 494 |
|
|
|
| 495 |
|
|
bank_closed[0] <= (bank_status[0][(CKRP-3):0] == 0);
|
| 496 |
|
|
bank_closed[1] <= (bank_status[1][(CKRP-3):0] == 0);
|
| 497 |
|
|
bank_closed[2] <= (bank_status[2][(CKRP-3):0] == 0);
|
| 498 |
|
|
bank_closed[3] <= (bank_status[3][(CKRP-3):0] == 0);
|
| 499 |
|
|
bank_closed[4] <= (bank_status[4][(CKRP-3):0] == 0);
|
| 500 |
|
|
bank_closed[5] <= (bank_status[5][(CKRP-3):0] == 0);
|
| 501 |
|
|
bank_closed[6] <= (bank_status[6][(CKRP-3):0] == 0);
|
| 502 |
|
|
bank_closed[7] <= (bank_status[7][(CKRP-3):0] == 0);
|
| 503 |
|
|
|
| 504 |
|
|
if (w_this_rw_move)
|
| 505 |
|
|
bank_wr_ck[rw_cmd[16:14]] <= (rw_cmd[`DDR_WEBIT])? 4'h0
|
| 506 |
|
|
: write_recycle_clocks;
|
| 507 |
|
|
|
| 508 |
|
|
if (maintenance_override)
|
| 509 |
|
|
begin
|
| 510 |
|
|
bank_status[0][0] <= 1'b0;
|
| 511 |
|
|
bank_status[1][0] <= 1'b0;
|
| 512 |
|
|
bank_status[2][0] <= 1'b0;
|
| 513 |
|
|
bank_status[3][0] <= 1'b0;
|
| 514 |
|
|
bank_status[4][0] <= 1'b0;
|
| 515 |
|
|
bank_status[5][0] <= 1'b0;
|
| 516 |
|
|
bank_status[6][0] <= 1'b0;
|
| 517 |
|
|
bank_status[7][0] <= 1'b0;
|
| 518 |
|
|
bank_open <= 0;
|
| 519 |
|
|
bank_closed <= 8'hff;
|
| 520 |
|
|
end else if (need_close_bank)
|
| 521 |
|
|
begin
|
| 522 |
|
|
bank_status[close_bank_cmd[16:14]]
|
| 523 |
|
|
<= { bank_status[close_bank_cmd[16:14]][(CKRP-1):0], 1'b0 };
|
| 524 |
|
|
bank_open[close_bank_cmd[16:14]] <= 1'b0;
|
| 525 |
|
|
end else if (need_open_bank)
|
| 526 |
|
|
begin
|
| 527 |
|
|
bank_status[activate_bank_cmd[16:14]]
|
| 528 |
|
|
<= { bank_status[activate_bank_cmd[16:14]][(CKRP-1):0], 1'b1 };
|
| 529 |
|
|
bank_closed[activate_bank_cmd[16:14]] <= 1'b0;
|
| 530 |
|
|
end else if (valid_bank)
|
| 531 |
24 |
dgisselq |
; // Read/write command was issued. This neither opens
|
| 532 |
|
|
// nor closes any banks, and hence it needs no logic
|
| 533 |
|
|
// here
|
| 534 |
17 |
dgisselq |
else if (maybe_close_next_bank)
|
| 535 |
|
|
begin
|
| 536 |
|
|
bank_status[maybe_close_cmd[16:14]]
|
| 537 |
|
|
<= { bank_status[maybe_close_cmd[16:14]][(CKRP-1):0], 1'b0 };
|
| 538 |
|
|
bank_open[maybe_close_cmd[16:14]] <= 1'b0;
|
| 539 |
|
|
end else if (maybe_open_next_bank)
|
| 540 |
|
|
begin
|
| 541 |
|
|
bank_status[maybe_open_cmd[16:14]]
|
| 542 |
|
|
<= { bank_status[maybe_open_cmd[16:14]][(CKRP-1):0], 1'b1 };
|
| 543 |
|
|
bank_closed[maybe_open_cmd[16:14]] <= 1'b0;
|
| 544 |
|
|
end
|
| 545 |
|
|
end
|
| 546 |
|
|
|
| 547 |
|
|
always @(posedge i_clk)
|
| 548 |
|
|
if (w_this_opening_bank)
|
| 549 |
|
|
bank_address[activate_bank_cmd[16:14]]
|
| 550 |
|
|
<= activate_bank_cmd[13:0];
|
| 551 |
24 |
dgisselq |
else if (w_this_maybe_open)
|
| 552 |
17 |
dgisselq |
bank_address[maybe_open_cmd[16:14]]
|
| 553 |
|
|
<= maybe_open_cmd[13:0];
|
| 554 |
|
|
|
| 555 |
24 |
dgisselq |
|
| 556 |
|
|
//////////
|
| 557 |
17 |
dgisselq |
//
|
| 558 |
|
|
//
|
| 559 |
24 |
dgisselq |
// Data BUS information
|
| 560 |
17 |
dgisselq |
//
|
| 561 |
|
|
//
|
| 562 |
24 |
dgisselq |
//////////
|
| 563 |
17 |
dgisselq |
//
|
| 564 |
|
|
//
|
| 565 |
24 |
dgisselq |
// Our purpose here is to keep track of when the data bus will be
|
| 566 |
|
|
// active. This is separate from the FIFO which will contain the
|
| 567 |
|
|
// data to be placed on the bus (when so placed), in that this is
|
| 568 |
|
|
// a group of shift registers--every position has a location in time,
|
| 569 |
|
|
// and time always moves forward. The FIFO, on the other hand, only
|
| 570 |
|
|
// moves forward when data moves onto the bus.
|
| 571 |
17 |
dgisselq |
//
|
| 572 |
|
|
//
|
| 573 |
24 |
dgisselq |
|
| 574 |
17 |
dgisselq |
reg [BUSNOW:0] bus_active, bus_read, bus_new, bus_ack;
|
| 575 |
24 |
dgisselq |
reg [BUSNOW:0] bus_subaddr, bus_odt;
|
| 576 |
17 |
dgisselq |
initial bus_active = 0;
|
| 577 |
|
|
initial bus_ack = 0;
|
| 578 |
|
|
always @(posedge i_clk)
|
| 579 |
|
|
begin
|
| 580 |
|
|
bus_active[BUSNOW:0] <= { bus_active[(BUSNOW-1):0], 1'b0 };
|
| 581 |
24 |
dgisselq |
// Drive the d-bus?
|
| 582 |
|
|
bus_read[BUSNOW:0] <= { bus_read[(BUSNOW-1):0], 1'b0 };
|
| 583 |
17 |
dgisselq |
// Is this a new command? i.e., the start of a transaction?
|
| 584 |
|
|
bus_new[BUSNOW:0] <= { bus_new[(BUSNOW-1):0], 1'b0 };
|
| 585 |
24 |
dgisselq |
bus_odt[BUSNOW:0] <= { bus_odt[(BUSNOW-1):0], 1'b0 };
|
| 586 |
17 |
dgisselq |
// Will this position on the bus get a wishbone acknowledgement?
|
| 587 |
|
|
bus_ack[BUSNOW:0] <= { bus_ack[(BUSNOW-1):0], 1'b0 };
|
| 588 |
24 |
dgisselq |
//
|
| 589 |
|
|
bus_subaddr[BUSNOW:0] <= { bus_subaddr[(BUSNOW-1):0], 1'b1 };
|
| 590 |
17 |
dgisselq |
|
| 591 |
|
|
if (w_this_rw_move)
|
| 592 |
|
|
begin
|
| 593 |
24 |
dgisselq |
bus_active[1:0]<= 2'h3; // Data transfers in two clocks
|
| 594 |
|
|
bus_subaddr[1] <= 1'h0;
|
| 595 |
17 |
dgisselq |
bus_new[{ 2'b0, rw_sub }] <= 1'b1;
|
| 596 |
24 |
dgisselq |
bus_ack[1:0] <= 2'h0;
|
| 597 |
17 |
dgisselq |
bus_ack[{ 2'b0, rw_sub }] <= 1'b1;
|
| 598 |
|
|
|
| 599 |
24 |
dgisselq |
bus_read[1:0] <= (rw_we)? 2'h0:2'h3;
|
| 600 |
|
|
bus_odt[3:0]<= (rw_we)? 4'he:4'h0; // Data transfers in 2 clks
|
| 601 |
17 |
dgisselq |
end else if ((s_pending)&&(!pipe_stall))
|
| 602 |
|
|
begin
|
| 603 |
|
|
if (bus_subaddr[1] == s_sub)
|
| 604 |
|
|
bus_ack[2] <= 1'b1;
|
| 605 |
|
|
if (bus_subaddr[0] == s_sub)
|
| 606 |
|
|
bus_ack[1] <= 1'b1;
|
| 607 |
|
|
end
|
| 608 |
|
|
end
|
| 609 |
|
|
|
| 610 |
3 |
dgisselq |
// Need to set o_wb_dqs high one clock prior to any read.
|
| 611 |
17 |
dgisselq |
always @(posedge i_clk)
|
| 612 |
24 |
dgisselq |
begin
|
| 613 |
|
|
drive_dqs[1] <= (bus_active[(BUSREG)])
|
| 614 |
|
|
&&(!bus_read[(BUSREG)]);
|
| 615 |
|
|
drive_dqs[0] <= (bus_active[BUSREG:(BUSREG-1)] != 2'b00)
|
| 616 |
|
|
&&(bus_read[BUSREG:(BUSREG-1)] == 2'b00);
|
| 617 |
|
|
end
|
| 618 |
17 |
dgisselq |
|
| 619 |
|
|
//
|
| 620 |
|
|
//
|
| 621 |
|
|
// Now, let's see, can we issue a read command?
|
| 622 |
|
|
//
|
| 623 |
|
|
//
|
| 624 |
|
|
reg pre_valid;
|
| 625 |
|
|
always @(posedge i_clk)
|
| 626 |
|
|
if ((refresh_ztimer)&&(refresh_instruction[`DDR_NEEDREFRESH]))
|
| 627 |
|
|
pre_valid <= 1'b0;
|
| 628 |
|
|
else if (need_refresh)
|
| 629 |
|
|
pre_valid <= 1'b0;
|
| 630 |
|
|
else
|
| 631 |
|
|
pre_valid <= 1'b1;
|
| 632 |
|
|
|
| 633 |
|
|
assign w_r_valid = (pre_valid)&&(r_pending)
|
| 634 |
|
|
&&(bank_status[r_bank][(CKRP-2)])
|
| 635 |
|
|
&&(bank_address[r_bank]==r_row)
|
| 636 |
|
|
&&((r_we)||(bank_wr_ckzro[r_bank]));
|
| 637 |
|
|
assign w_s_valid = (pre_valid)&&(s_pending)
|
| 638 |
|
|
&&(bank_status[s_bank][(CKRP-2)])
|
| 639 |
|
|
&&(bank_address[s_bank]==s_row)
|
| 640 |
|
|
&&((s_we)||(bank_wr_ckzro[s_bank]));
|
| 641 |
|
|
assign w_s_match = (s_pending)&&(r_pending)&&(r_we == s_we)
|
| 642 |
|
|
&&(r_row == s_row)&&(r_bank == s_bank)
|
| 643 |
|
|
&&(r_col == s_col)
|
| 644 |
24 |
dgisselq |
&&(r_sub)&&(!s_sub);
|
| 645 |
17 |
dgisselq |
|
| 646 |
|
|
reg pipe_stall;
|
| 647 |
|
|
always @(posedge i_clk)
|
| 648 |
|
|
begin
|
| 649 |
|
|
r_pending <= (i_wb_stb)&&(~o_wb_stall)
|
| 650 |
|
|
||(r_pending)&&(pipe_stall);
|
| 651 |
|
|
if (~pipe_stall)
|
| 652 |
|
|
s_pending <= r_pending;
|
| 653 |
|
|
if (~pipe_stall)
|
| 654 |
|
|
begin
|
| 655 |
|
|
pipe_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match));
|
| 656 |
|
|
o_wb_stall <= (r_pending)&&(((!w_r_valid)||(valid_bank))&&(!w_s_match));
|
| 657 |
|
|
end else begin // if (pipe_stall)
|
| 658 |
24 |
dgisselq |
pipe_stall <= (s_pending)&&((!w_s_valid)||(valid_bank));
|
| 659 |
|
|
o_wb_stall <= (s_pending)&&((!w_s_valid)||(valid_bank));
|
| 660 |
17 |
dgisselq |
end
|
| 661 |
|
|
if (need_refresh)
|
| 662 |
|
|
o_wb_stall <= 1'b1;
|
| 663 |
|
|
|
| 664 |
|
|
if (~pipe_stall)
|
| 665 |
|
|
begin
|
| 666 |
|
|
r_we <= i_wb_we;
|
| 667 |
|
|
r_addr <= i_wb_addr;
|
| 668 |
|
|
r_data <= i_wb_data;
|
| 669 |
24 |
dgisselq |
r_row <= i_wb_addr[24:11]; // 14 bits row address
|
| 670 |
|
|
r_bank <= i_wb_addr[10:8];
|
| 671 |
|
|
r_col <= { i_wb_addr[7:1], 3'b000 }; // 10 bits Caddr
|
| 672 |
|
|
r_sub <= i_wb_addr[0]; // Select which 64-bit word
|
| 673 |
|
|
r_sel <= i_wb_sel;
|
| 674 |
17 |
dgisselq |
|
| 675 |
24 |
dgisselq |
// i_wb_addr[0] is the 8-bit byte selector of 16-bits (ignored)
|
| 676 |
|
|
// i_wb_addr[1] is the 16-bit half-word selector of 32-bits (ignored)
|
| 677 |
|
|
// i_wb_addr[2] is the 32-bit word selector of 64-bits (ignored)
|
| 678 |
|
|
// i_wb_addr[3] is the 64-bit long word selector of 128-bits
|
| 679 |
|
|
|
| 680 |
17 |
dgisselq |
// pre-emptive work
|
| 681 |
24 |
dgisselq |
r_nxt_row <= (i_wb_addr[10:8]==3'h7)
|
| 682 |
|
|
? (i_wb_addr[24:11]+14'h1)
|
| 683 |
|
|
: i_wb_addr[24:11];
|
| 684 |
|
|
r_nxt_bank <= i_wb_addr[10:8]+3'h1;
|
| 685 |
17 |
dgisselq |
end
|
| 686 |
|
|
|
| 687 |
|
|
if (~pipe_stall)
|
| 688 |
|
|
begin
|
| 689 |
|
|
// Moving one down the pipeline
|
| 690 |
|
|
s_we <= r_we;
|
| 691 |
|
|
s_addr <= r_addr;
|
| 692 |
|
|
s_data <= r_data;
|
| 693 |
|
|
s_row <= r_row;
|
| 694 |
|
|
s_bank <= r_bank;
|
| 695 |
|
|
s_col <= r_col;
|
| 696 |
|
|
s_sub <= r_sub;
|
| 697 |
24 |
dgisselq |
s_sel <= (r_we)?(~r_sel):8'h00;
|
| 698 |
17 |
dgisselq |
|
| 699 |
|
|
// pre-emptive work
|
| 700 |
|
|
s_nxt_row <= r_nxt_row;
|
| 701 |
|
|
s_nxt_bank <= r_nxt_bank;
|
| 702 |
|
|
end
|
| 703 |
|
|
end
|
| 704 |
|
|
|
| 705 |
|
|
assign w_need_close_this_bank = (r_pending)
|
| 706 |
|
|
&&(bank_open[r_bank])
|
| 707 |
|
|
&&(bank_wr_ckzro[r_bank])
|
| 708 |
|
|
&&(r_row != bank_address[r_bank])
|
| 709 |
|
|
||(pipe_stall)&&(s_pending)&&(bank_open[s_bank])
|
| 710 |
|
|
&&(s_row != bank_address[s_bank]);
|
| 711 |
|
|
assign w_need_open_bank = (r_pending)&&(bank_closed[r_bank])
|
| 712 |
|
|
||(pipe_stall)&&(s_pending)&&(bank_closed[s_bank]);
|
| 713 |
|
|
|
| 714 |
|
|
always @(posedge i_clk)
|
| 715 |
|
|
begin
|
| 716 |
|
|
need_close_bank <= (w_need_close_this_bank)
|
| 717 |
|
|
&&(!need_open_bank)
|
| 718 |
|
|
&&(!need_close_bank)
|
| 719 |
|
|
&&(!w_this_closing_bank);
|
| 720 |
|
|
|
| 721 |
|
|
maybe_close_next_bank <= (s_pending)
|
| 722 |
|
|
&&(bank_open[s_nxt_bank])
|
| 723 |
|
|
&&(bank_wr_ckzro[s_nxt_bank])
|
| 724 |
|
|
&&(s_nxt_row != bank_address[s_nxt_bank])
|
| 725 |
|
|
&&(!w_this_maybe_close)&&(!last_maybe_close);
|
| 726 |
|
|
|
| 727 |
|
|
close_bank_cmd <= { `DDR_PRECHARGE, r_bank, r_row[13:11], 1'b0, r_row[9:0] };
|
| 728 |
|
|
maybe_close_cmd <= { `DDR_PRECHARGE, r_nxt_bank, r_nxt_row[13:11], 1'b0, r_nxt_row[9:0] };
|
| 729 |
|
|
|
| 730 |
|
|
|
| 731 |
|
|
need_open_bank <= (w_need_open_bank)
|
| 732 |
|
|
&&(!w_this_opening_bank);
|
| 733 |
|
|
last_open_bank <= (w_this_opening_bank);
|
| 734 |
|
|
|
| 735 |
|
|
maybe_open_next_bank <= (s_pending)
|
| 736 |
|
|
&&(!need_close_bank)
|
| 737 |
|
|
&&(!need_open_bank)
|
| 738 |
|
|
&&(bank_closed[s_nxt_bank])
|
| 739 |
|
|
&&(!w_this_maybe_open); // &&(!last_maybe_open);
|
| 740 |
|
|
|
| 741 |
|
|
activate_bank_cmd<= { `DDR_ACTIVATE, r_bank, r_row[13:0] };
|
| 742 |
|
|
maybe_open_cmd <= { `DDR_ACTIVATE,r_nxt_bank, r_nxt_row[13:0] };
|
| 743 |
|
|
|
| 744 |
|
|
|
| 745 |
|
|
|
| 746 |
|
|
valid_bank <= ((w_r_valid)||((pipe_stall)&&(w_s_valid)))
|
| 747 |
24 |
dgisselq |
// &&(!last_valid_bank)&&(!r_move)
|
| 748 |
17 |
dgisselq |
&&(!w_this_rw_move);
|
| 749 |
|
|
|
| 750 |
|
|
if ((s_pending)&&(pipe_stall))
|
| 751 |
|
|
rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (s_we)?`DDR_WRITE:`DDR_READ;
|
| 752 |
|
|
else if (r_pending)
|
| 753 |
|
|
rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= (r_we)?`DDR_WRITE:`DDR_READ;
|
| 754 |
|
|
else
|
| 755 |
|
|
rw_cmd[`DDR_CSBIT:`DDR_WEBIT] <= `DDR_NOOP;
|
| 756 |
|
|
if ((s_pending)&&(pipe_stall))
|
| 757 |
|
|
rw_cmd[`DDR_WEBIT-1:0] <= { s_bank, 3'h0, 1'b0, s_col };
|
| 758 |
|
|
else
|
| 759 |
|
|
rw_cmd[`DDR_WEBIT-1:0] <= { r_bank, 3'h0, 1'b0, r_col };
|
| 760 |
|
|
if ((s_pending)&&(pipe_stall))
|
| 761 |
24 |
dgisselq |
rw_sub <= 1'b1 - s_sub;
|
| 762 |
17 |
dgisselq |
else
|
| 763 |
24 |
dgisselq |
rw_sub <= 1'b1 - r_sub;
|
| 764 |
17 |
dgisselq |
if ((s_pending)&&(pipe_stall))
|
| 765 |
|
|
rw_we <= s_we;
|
| 766 |
|
|
else
|
| 767 |
|
|
rw_we <= r_we;
|
| 768 |
|
|
|
| 769 |
|
|
end
|
| 770 |
|
|
|
| 771 |
|
|
//
|
| 772 |
|
|
//
|
| 773 |
|
|
// Okay, let's look at the last assignment in our chain. It should look
|
| 774 |
|
|
// something like:
|
| 775 |
|
|
always @(posedge i_clk)
|
| 776 |
|
|
if (i_reset)
|
| 777 |
|
|
o_ddr_reset_n <= 1'b0;
|
| 778 |
|
|
else if (reset_ztimer)
|
| 779 |
|
|
o_ddr_reset_n <= reset_instruction[`DDR_RSTBIT];
|
| 780 |
|
|
always @(posedge i_clk)
|
| 781 |
|
|
if (i_reset)
|
| 782 |
|
|
o_ddr_cke <= 1'b0;
|
| 783 |
|
|
else if (reset_ztimer)
|
| 784 |
|
|
o_ddr_cke <= reset_instruction[`DDR_CKEBIT];
|
| 785 |
|
|
|
| 786 |
|
|
always @(posedge i_clk)
|
| 787 |
|
|
if (i_reset)
|
| 788 |
|
|
maintenance_override <= 1'b1;
|
| 789 |
|
|
else
|
| 790 |
|
|
maintenance_override <= (reset_override)||(need_refresh);
|
| 791 |
|
|
|
| 792 |
|
|
initial maintenance_cmd = { `DDR_NOOP, 17'h00 };
|
| 793 |
|
|
always @(posedge i_clk)
|
| 794 |
|
|
if (i_reset)
|
| 795 |
|
|
maintenance_cmd <= { `DDR_NOOP, 17'h00 };
|
| 796 |
|
|
else
|
| 797 |
|
|
maintenance_cmd <= (reset_override)?reset_cmd:refresh_cmd;
|
| 798 |
|
|
|
| 799 |
|
|
assign w_this_closing_bank = (!maintenance_override)
|
| 800 |
|
|
&&(need_close_bank);
|
| 801 |
|
|
assign w_this_opening_bank = (!maintenance_override)
|
| 802 |
|
|
&&(!need_close_bank)&&(need_open_bank);
|
| 803 |
|
|
assign w_this_rw_move = (!maintenance_override)
|
| 804 |
|
|
&&(!need_close_bank)&&(!need_open_bank)
|
| 805 |
|
|
&&(valid_bank);
|
| 806 |
|
|
assign w_this_maybe_close = (!maintenance_override)
|
| 807 |
|
|
&&(!need_close_bank)&&(!need_open_bank)
|
| 808 |
|
|
&&(!valid_bank)
|
| 809 |
|
|
&&(maybe_close_next_bank);
|
| 810 |
|
|
assign w_this_maybe_open = (!maintenance_override)
|
| 811 |
|
|
&&(!need_close_bank)&&(!need_open_bank)
|
| 812 |
|
|
&&(!valid_bank)
|
| 813 |
|
|
&&(!maybe_close_next_bank)
|
| 814 |
|
|
&&(maybe_open_next_bank);
|
| 815 |
|
|
always @(posedge i_clk)
|
| 816 |
|
|
begin
|
| 817 |
|
|
last_opening_bank <= 1'b0;
|
| 818 |
|
|
last_closing_bank <= 1'b0;
|
| 819 |
|
|
last_maybe_open <= 1'b0;
|
| 820 |
|
|
last_maybe_close <= 1'b0;
|
| 821 |
24 |
dgisselq |
cmd_a <= { `DDR_NOOP, 17'h00 };
|
| 822 |
|
|
cmd_b <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] };
|
| 823 |
|
|
|
| 824 |
|
|
if (maintenance_override)
|
| 825 |
|
|
begin // Command from either reset or refresh logic
|
| 826 |
|
|
cmd_a <= maintenance_cmd;
|
| 827 |
|
|
// cmd_b <= { `DDR_NOOP, ...
|
| 828 |
|
|
end else if (need_close_bank)
|
| 829 |
17 |
dgisselq |
begin
|
| 830 |
24 |
dgisselq |
cmd_a <= close_bank_cmd;
|
| 831 |
|
|
// cmd_b <= { `DDR_NOOP, ...}
|
| 832 |
17 |
dgisselq |
last_closing_bank <= 1'b1;
|
| 833 |
|
|
end else if (need_open_bank)
|
| 834 |
|
|
begin
|
| 835 |
24 |
dgisselq |
cmd_a <= activate_bank_cmd;
|
| 836 |
|
|
// cmd_b <={`DDR_NOOP, ...}
|
| 837 |
17 |
dgisselq |
last_opening_bank <= 1'b1;
|
| 838 |
|
|
end else if (valid_bank)
|
| 839 |
|
|
begin
|
| 840 |
24 |
dgisselq |
cmd_a <= {(rw_cmd[(`DDR_WEBIT)])?`DDR_READ:`DDR_NOOP,
|
| 841 |
|
|
rw_cmd[(`DDR_WEBIT-1):0] };
|
| 842 |
|
|
cmd_b <= {(rw_cmd[(`DDR_WEBIT)])?`DDR_NOOP:`DDR_WRITE,
|
| 843 |
|
|
rw_cmd[(`DDR_WEBIT-1):0] };
|
| 844 |
17 |
dgisselq |
end else if (maybe_close_next_bank)
|
| 845 |
|
|
begin
|
| 846 |
24 |
dgisselq |
cmd_a <= maybe_close_cmd;
|
| 847 |
|
|
// cmd_b <= {`DDR_NOOP, ... }
|
| 848 |
17 |
dgisselq |
last_maybe_close <= 1'b1;
|
| 849 |
|
|
end else if (maybe_open_next_bank)
|
| 850 |
|
|
begin
|
| 851 |
24 |
dgisselq |
cmd_a <= maybe_open_cmd;
|
| 852 |
|
|
// cmd_b <= {`DDR_NOOP, ... }
|
| 853 |
17 |
dgisselq |
last_maybe_open <= 1'b1;
|
| 854 |
|
|
end else
|
| 855 |
24 |
dgisselq |
cmd_a <= { `DDR_NOOP, rw_cmd[(`DDR_WEBIT-1):0] };
|
| 856 |
17 |
dgisselq |
end
|
| 857 |
|
|
|
| 858 |
|
|
`define LGFIFOLN 4
|
| 859 |
|
|
`define FIFOLEN 16
|
| 860 |
|
|
reg [(`LGFIFOLN-1):0] bus_fifo_head, bus_fifo_tail;
|
| 861 |
24 |
dgisselq |
reg [63:0] bus_fifo_data [0:(`FIFOLEN-1)];
|
| 862 |
|
|
reg [7:0] bus_fifo_sel [0:(`FIFOLEN-1)];
|
| 863 |
|
|
reg bus_fifo_sub [0:(`FIFOLEN-1)];
|
| 864 |
17 |
dgisselq |
reg bus_fifo_new [0:(`FIFOLEN-1)];
|
| 865 |
|
|
reg pre_ack;
|
| 866 |
|
|
|
| 867 |
|
|
// The bus R/W FIFO
|
| 868 |
|
|
wire w_bus_fifo_read_next_transaction;
|
| 869 |
|
|
assign w_bus_fifo_read_next_transaction = (bus_ack[BUSREG]);
|
| 870 |
|
|
always @(posedge i_clk)
|
| 871 |
|
|
begin
|
| 872 |
|
|
pre_ack <= 1'b0;
|
| 873 |
|
|
if (reset_override)
|
| 874 |
|
|
begin
|
| 875 |
|
|
bus_fifo_head <= {(`LGFIFOLN){1'b0}};
|
| 876 |
|
|
bus_fifo_tail <= {(`LGFIFOLN){1'b0}};
|
| 877 |
|
|
end else begin
|
| 878 |
|
|
if ((s_pending)&&(!pipe_stall))
|
| 879 |
|
|
bus_fifo_head <= bus_fifo_head + 1'b1;
|
| 880 |
|
|
|
| 881 |
|
|
if (w_bus_fifo_read_next_transaction)
|
| 882 |
|
|
begin
|
| 883 |
|
|
bus_fifo_tail <= bus_fifo_tail + 1'b1;
|
| 884 |
|
|
pre_ack <= 1'b1;
|
| 885 |
|
|
end
|
| 886 |
|
|
end
|
| 887 |
|
|
bus_fifo_data[bus_fifo_head] <= s_data;
|
| 888 |
|
|
bus_fifo_sub[bus_fifo_head] <= s_sub;
|
| 889 |
|
|
bus_fifo_new[bus_fifo_head] <= w_this_rw_move;
|
| 890 |
24 |
dgisselq |
bus_fifo_sel[bus_fifo_head] <= s_sel;
|
| 891 |
17 |
dgisselq |
end
|
| 892 |
|
|
|
| 893 |
|
|
|
| 894 |
|
|
always @(posedge i_clk)
|
| 895 |
|
|
o_ddr_data <= bus_fifo_data[bus_fifo_tail];
|
| 896 |
24 |
dgisselq |
always @(posedge i_clk)
|
| 897 |
|
|
ddr_dm <= (bus_ack[BUSREG])? bus_fifo_sel[bus_fifo_tail]
|
| 898 |
|
|
: ((!bus_read[BUSREG])? 8'hff: 8'h00);
|
| 899 |
|
|
always @(posedge i_clk)
|
| 900 |
|
|
o_ddr_bus_oe <= (bus_active[BUSREG])&&(!bus_read[BUSREG]);
|
| 901 |
17 |
dgisselq |
|
| 902 |
24 |
dgisselq |
// First, or left, command
|
| 903 |
|
|
assign o_ddr_cmd_a = { cmd_a, drive_dqs[1], ddr_dm[7:4], ddr_odt };
|
| 904 |
|
|
// Second, or right, command of two
|
| 905 |
|
|
assign o_ddr_cmd_b = { cmd_b, drive_dqs[0], ddr_dm[3:0], ddr_odt };
|
| 906 |
17 |
dgisselq |
|
| 907 |
24 |
dgisselq |
assign w_precharge_all = (cmd_a[`DDR_CSBIT:`DDR_WEBIT]==`DDR_PRECHARGE)
|
| 908 |
|
|
&&(cmd_a[10]);
|
| 909 |
|
|
|
| 910 |
17 |
dgisselq |
// ODT must be in high impedence while reset_n=0, then it can be set
|
| 911 |
|
|
// to low or high. As per spec, ODT = 0 during reads
|
| 912 |
|
|
always @(posedge i_clk)
|
| 913 |
24 |
dgisselq |
ddr_odt <= bus_odt[BUSREG];
|
| 914 |
17 |
dgisselq |
|
| 915 |
|
|
always @(posedge i_clk)
|
| 916 |
|
|
o_wb_ack <= pre_ack;
|
| 917 |
|
|
always @(posedge i_clk)
|
| 918 |
|
|
o_wb_data <= i_ddr_data;
|
| 919 |
|
|
|
| 920 |
3 |
dgisselq |
endmodule
|