| 1 |
684 |
jeremybenn |
/* Loop Vectorization
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
|
| 5 |
|
|
Ira Rosen <irar@il.ibm.com>
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "ggc.h"
|
| 28 |
|
|
#include "tree.h"
|
| 29 |
|
|
#include "basic-block.h"
|
| 30 |
|
|
#include "tree-pretty-print.h"
|
| 31 |
|
|
#include "gimple-pretty-print.h"
|
| 32 |
|
|
#include "tree-flow.h"
|
| 33 |
|
|
#include "tree-dump.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "cfglayout.h"
|
| 36 |
|
|
#include "expr.h"
|
| 37 |
|
|
#include "recog.h"
|
| 38 |
|
|
#include "optabs.h"
|
| 39 |
|
|
#include "params.h"
|
| 40 |
|
|
#include "diagnostic-core.h"
|
| 41 |
|
|
#include "tree-chrec.h"
|
| 42 |
|
|
#include "tree-scalar-evolution.h"
|
| 43 |
|
|
#include "tree-vectorizer.h"
|
| 44 |
|
|
#include "target.h"
|
| 45 |
|
|
|
| 46 |
|
|
/* Loop Vectorization Pass.
|
| 47 |
|
|
|
| 48 |
|
|
This pass tries to vectorize loops.
|
| 49 |
|
|
|
| 50 |
|
|
For example, the vectorizer transforms the following simple loop:
|
| 51 |
|
|
|
| 52 |
|
|
short a[N]; short b[N]; short c[N]; int i;
|
| 53 |
|
|
|
| 54 |
|
|
for (i=0; i<N; i++){
|
| 55 |
|
|
a[i] = b[i] + c[i];
|
| 56 |
|
|
}
|
| 57 |
|
|
|
| 58 |
|
|
as if it was manually vectorized by rewriting the source code into:
|
| 59 |
|
|
|
| 60 |
|
|
typedef int __attribute__((mode(V8HI))) v8hi;
|
| 61 |
|
|
short a[N]; short b[N]; short c[N]; int i;
|
| 62 |
|
|
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
|
| 63 |
|
|
v8hi va, vb, vc;
|
| 64 |
|
|
|
| 65 |
|
|
for (i=0; i<N/8; i++){
|
| 66 |
|
|
vb = pb[i];
|
| 67 |
|
|
vc = pc[i];
|
| 68 |
|
|
va = vb + vc;
|
| 69 |
|
|
pa[i] = va;
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
The main entry to this pass is vectorize_loops(), in which
|
| 73 |
|
|
the vectorizer applies a set of analyses on a given set of loops,
|
| 74 |
|
|
followed by the actual vectorization transformation for the loops that
|
| 75 |
|
|
had successfully passed the analysis phase.
|
| 76 |
|
|
Throughout this pass we make a distinction between two types of
|
| 77 |
|
|
data: scalars (which are represented by SSA_NAMES), and memory references
|
| 78 |
|
|
("data-refs"). These two types of data require different handling both
|
| 79 |
|
|
during analysis and transformation. The types of data-refs that the
|
| 80 |
|
|
vectorizer currently supports are ARRAY_REFS which base is an array DECL
|
| 81 |
|
|
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
|
| 82 |
|
|
accesses are required to have a simple (consecutive) access pattern.
|
| 83 |
|
|
|
| 84 |
|
|
Analysis phase:
|
| 85 |
|
|
===============
|
| 86 |
|
|
The driver for the analysis phase is vect_analyze_loop().
|
| 87 |
|
|
It applies a set of analyses, some of which rely on the scalar evolution
|
| 88 |
|
|
analyzer (scev) developed by Sebastian Pop.
|
| 89 |
|
|
|
| 90 |
|
|
During the analysis phase the vectorizer records some information
|
| 91 |
|
|
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
|
| 92 |
|
|
loop, as well as general information about the loop as a whole, which is
|
| 93 |
|
|
recorded in a "loop_vec_info" struct attached to each loop.
|
| 94 |
|
|
|
| 95 |
|
|
Transformation phase:
|
| 96 |
|
|
=====================
|
| 97 |
|
|
The loop transformation phase scans all the stmts in the loop, and
|
| 98 |
|
|
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
|
| 99 |
|
|
the loop that needs to be vectorized. It inserts the vector code sequence
|
| 100 |
|
|
just before the scalar stmt S, and records a pointer to the vector code
|
| 101 |
|
|
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
|
| 102 |
|
|
attached to S). This pointer will be used for the vectorization of following
|
| 103 |
|
|
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
|
| 104 |
|
|
otherwise, we rely on dead code elimination for removing it.
|
| 105 |
|
|
|
| 106 |
|
|
For example, say stmt S1 was vectorized into stmt VS1:
|
| 107 |
|
|
|
| 108 |
|
|
VS1: vb = px[i];
|
| 109 |
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
| 110 |
|
|
S2: a = b;
|
| 111 |
|
|
|
| 112 |
|
|
To vectorize stmt S2, the vectorizer first finds the stmt that defines
|
| 113 |
|
|
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
|
| 114 |
|
|
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
|
| 115 |
|
|
resulting sequence would be:
|
| 116 |
|
|
|
| 117 |
|
|
VS1: vb = px[i];
|
| 118 |
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
| 119 |
|
|
VS2: va = vb;
|
| 120 |
|
|
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
|
| 121 |
|
|
|
| 122 |
|
|
Operands that are not SSA_NAMEs, are data-refs that appear in
|
| 123 |
|
|
load/store operations (like 'x[i]' in S1), and are handled differently.
|
| 124 |
|
|
|
| 125 |
|
|
Target modeling:
|
| 126 |
|
|
=================
|
| 127 |
|
|
Currently the only target specific information that is used is the
|
| 128 |
|
|
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
|
| 129 |
|
|
Targets that can support different sizes of vectors, for now will need
|
| 130 |
|
|
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
|
| 131 |
|
|
flexibility will be added in the future.
|
| 132 |
|
|
|
| 133 |
|
|
Since we only vectorize operations which vector form can be
|
| 134 |
|
|
expressed using existing tree codes, to verify that an operation is
|
| 135 |
|
|
supported, the vectorizer checks the relevant optab at the relevant
|
| 136 |
|
|
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
|
| 137 |
|
|
the value found is CODE_FOR_nothing, then there's no target support, and
|
| 138 |
|
|
we can't vectorize the stmt.
|
| 139 |
|
|
|
| 140 |
|
|
For additional information on this project see:
|
| 141 |
|
|
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
|
| 142 |
|
|
*/
|
| 143 |
|
|
|
| 144 |
|
|
/* Function vect_determine_vectorization_factor
|
| 145 |
|
|
|
| 146 |
|
|
Determine the vectorization factor (VF). VF is the number of data elements
|
| 147 |
|
|
that are operated upon in parallel in a single iteration of the vectorized
|
| 148 |
|
|
loop. For example, when vectorizing a loop that operates on 4byte elements,
|
| 149 |
|
|
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
|
| 150 |
|
|
elements can fit in a single vector register.
|
| 151 |
|
|
|
| 152 |
|
|
We currently support vectorization of loops in which all types operated upon
|
| 153 |
|
|
are of the same size. Therefore this function currently sets VF according to
|
| 154 |
|
|
the size of the types operated upon, and fails if there are multiple sizes
|
| 155 |
|
|
in the loop.
|
| 156 |
|
|
|
| 157 |
|
|
VF is also the factor by which the loop iterations are strip-mined, e.g.:
|
| 158 |
|
|
original loop:
|
| 159 |
|
|
for (i=0; i<N; i++){
|
| 160 |
|
|
a[i] = b[i] + c[i];
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
vectorized loop:
|
| 164 |
|
|
for (i=0; i<N; i+=VF){
|
| 165 |
|
|
a[i:VF] = b[i:VF] + c[i:VF];
|
| 166 |
|
|
}
|
| 167 |
|
|
*/
|
| 168 |
|
|
|
| 169 |
|
|
static bool
|
| 170 |
|
|
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
|
| 171 |
|
|
{
|
| 172 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 173 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 174 |
|
|
int nbbs = loop->num_nodes;
|
| 175 |
|
|
gimple_stmt_iterator si;
|
| 176 |
|
|
unsigned int vectorization_factor = 0;
|
| 177 |
|
|
tree scalar_type;
|
| 178 |
|
|
gimple phi;
|
| 179 |
|
|
tree vectype;
|
| 180 |
|
|
unsigned int nunits;
|
| 181 |
|
|
stmt_vec_info stmt_info;
|
| 182 |
|
|
int i;
|
| 183 |
|
|
HOST_WIDE_INT dummy;
|
| 184 |
|
|
gimple stmt, pattern_stmt = NULL;
|
| 185 |
|
|
gimple_seq pattern_def_seq = NULL;
|
| 186 |
|
|
gimple_stmt_iterator pattern_def_si = gsi_start (NULL);
|
| 187 |
|
|
bool analyze_pattern_stmt = false;
|
| 188 |
|
|
|
| 189 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 190 |
|
|
fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
|
| 191 |
|
|
|
| 192 |
|
|
for (i = 0; i < nbbs; i++)
|
| 193 |
|
|
{
|
| 194 |
|
|
basic_block bb = bbs[i];
|
| 195 |
|
|
|
| 196 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 197 |
|
|
{
|
| 198 |
|
|
phi = gsi_stmt (si);
|
| 199 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
| 200 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 201 |
|
|
{
|
| 202 |
|
|
fprintf (vect_dump, "==> examining phi: ");
|
| 203 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 204 |
|
|
}
|
| 205 |
|
|
|
| 206 |
|
|
gcc_assert (stmt_info);
|
| 207 |
|
|
|
| 208 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
| 209 |
|
|
{
|
| 210 |
|
|
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
|
| 211 |
|
|
scalar_type = TREE_TYPE (PHI_RESULT (phi));
|
| 212 |
|
|
|
| 213 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 214 |
|
|
{
|
| 215 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
| 216 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 217 |
|
|
}
|
| 218 |
|
|
|
| 219 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
| 220 |
|
|
if (!vectype)
|
| 221 |
|
|
{
|
| 222 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 223 |
|
|
{
|
| 224 |
|
|
fprintf (vect_dump,
|
| 225 |
|
|
"not vectorized: unsupported data-type ");
|
| 226 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 227 |
|
|
}
|
| 228 |
|
|
return false;
|
| 229 |
|
|
}
|
| 230 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
| 231 |
|
|
|
| 232 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 233 |
|
|
{
|
| 234 |
|
|
fprintf (vect_dump, "vectype: ");
|
| 235 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
| 236 |
|
|
}
|
| 237 |
|
|
|
| 238 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 239 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 240 |
|
|
fprintf (vect_dump, "nunits = %d", nunits);
|
| 241 |
|
|
|
| 242 |
|
|
if (!vectorization_factor
|
| 243 |
|
|
|| (nunits > vectorization_factor))
|
| 244 |
|
|
vectorization_factor = nunits;
|
| 245 |
|
|
}
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
|
| 249 |
|
|
{
|
| 250 |
|
|
tree vf_vectype;
|
| 251 |
|
|
|
| 252 |
|
|
if (analyze_pattern_stmt)
|
| 253 |
|
|
stmt = pattern_stmt;
|
| 254 |
|
|
else
|
| 255 |
|
|
stmt = gsi_stmt (si);
|
| 256 |
|
|
|
| 257 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 258 |
|
|
|
| 259 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 260 |
|
|
{
|
| 261 |
|
|
fprintf (vect_dump, "==> examining statement: ");
|
| 262 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 263 |
|
|
}
|
| 264 |
|
|
|
| 265 |
|
|
gcc_assert (stmt_info);
|
| 266 |
|
|
|
| 267 |
|
|
/* Skip stmts which do not need to be vectorized. */
|
| 268 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 269 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 270 |
|
|
{
|
| 271 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 272 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
| 273 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 274 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 275 |
|
|
{
|
| 276 |
|
|
stmt = pattern_stmt;
|
| 277 |
|
|
stmt_info = vinfo_for_stmt (pattern_stmt);
|
| 278 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 279 |
|
|
{
|
| 280 |
|
|
fprintf (vect_dump, "==> examining pattern statement: ");
|
| 281 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 282 |
|
|
}
|
| 283 |
|
|
}
|
| 284 |
|
|
else
|
| 285 |
|
|
{
|
| 286 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 287 |
|
|
fprintf (vect_dump, "skip.");
|
| 288 |
|
|
gsi_next (&si);
|
| 289 |
|
|
continue;
|
| 290 |
|
|
}
|
| 291 |
|
|
}
|
| 292 |
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 293 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
| 294 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 295 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 296 |
|
|
analyze_pattern_stmt = true;
|
| 297 |
|
|
|
| 298 |
|
|
/* If a pattern statement has def stmts, analyze them too. */
|
| 299 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
| 300 |
|
|
{
|
| 301 |
|
|
if (pattern_def_seq == NULL)
|
| 302 |
|
|
{
|
| 303 |
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
| 304 |
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
| 305 |
|
|
}
|
| 306 |
|
|
else if (!gsi_end_p (pattern_def_si))
|
| 307 |
|
|
gsi_next (&pattern_def_si);
|
| 308 |
|
|
if (pattern_def_seq != NULL)
|
| 309 |
|
|
{
|
| 310 |
|
|
gimple pattern_def_stmt = NULL;
|
| 311 |
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
| 312 |
|
|
|
| 313 |
|
|
while (!gsi_end_p (pattern_def_si))
|
| 314 |
|
|
{
|
| 315 |
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
| 316 |
|
|
pattern_def_stmt_info
|
| 317 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
| 318 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
| 319 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
| 320 |
|
|
break;
|
| 321 |
|
|
gsi_next (&pattern_def_si);
|
| 322 |
|
|
}
|
| 323 |
|
|
|
| 324 |
|
|
if (!gsi_end_p (pattern_def_si))
|
| 325 |
|
|
{
|
| 326 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 327 |
|
|
{
|
| 328 |
|
|
fprintf (vect_dump,
|
| 329 |
|
|
"==> examining pattern def stmt: ");
|
| 330 |
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
|
| 331 |
|
|
TDF_SLIM);
|
| 332 |
|
|
}
|
| 333 |
|
|
|
| 334 |
|
|
stmt = pattern_def_stmt;
|
| 335 |
|
|
stmt_info = pattern_def_stmt_info;
|
| 336 |
|
|
}
|
| 337 |
|
|
else
|
| 338 |
|
|
{
|
| 339 |
|
|
pattern_def_si = gsi_start (NULL);
|
| 340 |
|
|
analyze_pattern_stmt = false;
|
| 341 |
|
|
}
|
| 342 |
|
|
}
|
| 343 |
|
|
else
|
| 344 |
|
|
analyze_pattern_stmt = false;
|
| 345 |
|
|
}
|
| 346 |
|
|
|
| 347 |
|
|
if (gimple_get_lhs (stmt) == NULL_TREE)
|
| 348 |
|
|
{
|
| 349 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 350 |
|
|
{
|
| 351 |
|
|
fprintf (vect_dump, "not vectorized: irregular stmt.");
|
| 352 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 353 |
|
|
}
|
| 354 |
|
|
return false;
|
| 355 |
|
|
}
|
| 356 |
|
|
|
| 357 |
|
|
if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
|
| 358 |
|
|
{
|
| 359 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 360 |
|
|
{
|
| 361 |
|
|
fprintf (vect_dump, "not vectorized: vector stmt in loop:");
|
| 362 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 363 |
|
|
}
|
| 364 |
|
|
return false;
|
| 365 |
|
|
}
|
| 366 |
|
|
|
| 367 |
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
| 368 |
|
|
{
|
| 369 |
|
|
/* The only case when a vectype had been already set is for stmts
|
| 370 |
|
|
that contain a dataref, or for "pattern-stmts" (stmts
|
| 371 |
|
|
generated by the vectorizer to represent/replace a certain
|
| 372 |
|
|
idiom). */
|
| 373 |
|
|
gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
|
| 374 |
|
|
|| is_pattern_stmt_p (stmt_info)
|
| 375 |
|
|
|| !gsi_end_p (pattern_def_si));
|
| 376 |
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 377 |
|
|
}
|
| 378 |
|
|
else
|
| 379 |
|
|
{
|
| 380 |
|
|
gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
|
| 381 |
|
|
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
|
| 382 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 383 |
|
|
{
|
| 384 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
| 385 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 386 |
|
|
}
|
| 387 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
| 388 |
|
|
if (!vectype)
|
| 389 |
|
|
{
|
| 390 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 391 |
|
|
{
|
| 392 |
|
|
fprintf (vect_dump,
|
| 393 |
|
|
"not vectorized: unsupported data-type ");
|
| 394 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 395 |
|
|
}
|
| 396 |
|
|
return false;
|
| 397 |
|
|
}
|
| 398 |
|
|
|
| 399 |
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
| 400 |
|
|
}
|
| 401 |
|
|
|
| 402 |
|
|
/* The vectorization factor is according to the smallest
|
| 403 |
|
|
scalar type (or the largest vector size, but we only
|
| 404 |
|
|
support one vector size per loop). */
|
| 405 |
|
|
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
|
| 406 |
|
|
&dummy);
|
| 407 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 408 |
|
|
{
|
| 409 |
|
|
fprintf (vect_dump, "get vectype for scalar type: ");
|
| 410 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 411 |
|
|
}
|
| 412 |
|
|
vf_vectype = get_vectype_for_scalar_type (scalar_type);
|
| 413 |
|
|
if (!vf_vectype)
|
| 414 |
|
|
{
|
| 415 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 416 |
|
|
{
|
| 417 |
|
|
fprintf (vect_dump,
|
| 418 |
|
|
"not vectorized: unsupported data-type ");
|
| 419 |
|
|
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
|
| 420 |
|
|
}
|
| 421 |
|
|
return false;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
if ((GET_MODE_SIZE (TYPE_MODE (vectype))
|
| 425 |
|
|
!= GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
|
| 426 |
|
|
{
|
| 427 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 428 |
|
|
{
|
| 429 |
|
|
fprintf (vect_dump,
|
| 430 |
|
|
"not vectorized: different sized vector "
|
| 431 |
|
|
"types in statement, ");
|
| 432 |
|
|
print_generic_expr (vect_dump, vectype, TDF_SLIM);
|
| 433 |
|
|
fprintf (vect_dump, " and ");
|
| 434 |
|
|
print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
|
| 435 |
|
|
}
|
| 436 |
|
|
return false;
|
| 437 |
|
|
}
|
| 438 |
|
|
|
| 439 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 440 |
|
|
{
|
| 441 |
|
|
fprintf (vect_dump, "vectype: ");
|
| 442 |
|
|
print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
|
| 443 |
|
|
}
|
| 444 |
|
|
|
| 445 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
|
| 446 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 447 |
|
|
fprintf (vect_dump, "nunits = %d", nunits);
|
| 448 |
|
|
|
| 449 |
|
|
if (!vectorization_factor
|
| 450 |
|
|
|| (nunits > vectorization_factor))
|
| 451 |
|
|
vectorization_factor = nunits;
|
| 452 |
|
|
|
| 453 |
|
|
if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
|
| 454 |
|
|
{
|
| 455 |
|
|
pattern_def_seq = NULL;
|
| 456 |
|
|
gsi_next (&si);
|
| 457 |
|
|
}
|
| 458 |
|
|
}
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
/* TODO: Analyze cost. Decide if worth while to vectorize. */
|
| 462 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 463 |
|
|
fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
|
| 464 |
|
|
if (vectorization_factor <= 1)
|
| 465 |
|
|
{
|
| 466 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 467 |
|
|
fprintf (vect_dump, "not vectorized: unsupported data-type");
|
| 468 |
|
|
return false;
|
| 469 |
|
|
}
|
| 470 |
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
| 471 |
|
|
|
| 472 |
|
|
return true;
|
| 473 |
|
|
}
|
| 474 |
|
|
|
| 475 |
|
|
|
| 476 |
|
|
/* Function vect_is_simple_iv_evolution.
|
| 477 |
|
|
|
| 478 |
|
|
FORNOW: A simple evolution of an induction variables in the loop is
|
| 479 |
|
|
considered a polynomial evolution with constant step. */
|
| 480 |
|
|
|
| 481 |
|
|
static bool
|
| 482 |
|
|
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
|
| 483 |
|
|
tree * step)
|
| 484 |
|
|
{
|
| 485 |
|
|
tree init_expr;
|
| 486 |
|
|
tree step_expr;
|
| 487 |
|
|
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
|
| 488 |
|
|
|
| 489 |
|
|
/* When there is no evolution in this loop, the evolution function
|
| 490 |
|
|
is not "simple". */
|
| 491 |
|
|
if (evolution_part == NULL_TREE)
|
| 492 |
|
|
return false;
|
| 493 |
|
|
|
| 494 |
|
|
/* When the evolution is a polynomial of degree >= 2
|
| 495 |
|
|
the evolution function is not "simple". */
|
| 496 |
|
|
if (tree_is_chrec (evolution_part))
|
| 497 |
|
|
return false;
|
| 498 |
|
|
|
| 499 |
|
|
step_expr = evolution_part;
|
| 500 |
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
|
| 501 |
|
|
|
| 502 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 503 |
|
|
{
|
| 504 |
|
|
fprintf (vect_dump, "step: ");
|
| 505 |
|
|
print_generic_expr (vect_dump, step_expr, TDF_SLIM);
|
| 506 |
|
|
fprintf (vect_dump, ", init: ");
|
| 507 |
|
|
print_generic_expr (vect_dump, init_expr, TDF_SLIM);
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
*init = init_expr;
|
| 511 |
|
|
*step = step_expr;
|
| 512 |
|
|
|
| 513 |
|
|
if (TREE_CODE (step_expr) != INTEGER_CST)
|
| 514 |
|
|
{
|
| 515 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 516 |
|
|
fprintf (vect_dump, "step unknown.");
|
| 517 |
|
|
return false;
|
| 518 |
|
|
}
|
| 519 |
|
|
|
| 520 |
|
|
return true;
|
| 521 |
|
|
}
|
| 522 |
|
|
|
| 523 |
|
|
/* Function vect_analyze_scalar_cycles_1.
|
| 524 |
|
|
|
| 525 |
|
|
Examine the cross iteration def-use cycles of scalar variables
|
| 526 |
|
|
in LOOP. LOOP_VINFO represents the loop that is now being
|
| 527 |
|
|
considered for vectorization (can be LOOP, or an outer-loop
|
| 528 |
|
|
enclosing LOOP). */
|
| 529 |
|
|
|
| 530 |
|
|
static void
|
| 531 |
|
|
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
|
| 532 |
|
|
{
|
| 533 |
|
|
basic_block bb = loop->header;
|
| 534 |
|
|
tree dumy;
|
| 535 |
|
|
VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
|
| 536 |
|
|
gimple_stmt_iterator gsi;
|
| 537 |
|
|
bool double_reduc;
|
| 538 |
|
|
|
| 539 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 540 |
|
|
fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
|
| 541 |
|
|
|
| 542 |
|
|
/* First - identify all inductions. Reduction detection assumes that all the
|
| 543 |
|
|
inductions have been identified, therefore, this order must not be
|
| 544 |
|
|
changed. */
|
| 545 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 546 |
|
|
{
|
| 547 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 548 |
|
|
tree access_fn = NULL;
|
| 549 |
|
|
tree def = PHI_RESULT (phi);
|
| 550 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
| 551 |
|
|
|
| 552 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 553 |
|
|
{
|
| 554 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
| 555 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
| 559 |
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
| 560 |
|
|
if (!is_gimple_reg (SSA_NAME_VAR (def)))
|
| 561 |
|
|
continue;
|
| 562 |
|
|
|
| 563 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
|
| 564 |
|
|
|
| 565 |
|
|
/* Analyze the evolution function. */
|
| 566 |
|
|
access_fn = analyze_scalar_evolution (loop, def);
|
| 567 |
|
|
if (access_fn)
|
| 568 |
|
|
STRIP_NOPS (access_fn);
|
| 569 |
|
|
if (access_fn && vect_print_dump_info (REPORT_DETAILS))
|
| 570 |
|
|
{
|
| 571 |
|
|
fprintf (vect_dump, "Access function of PHI: ");
|
| 572 |
|
|
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
|
| 573 |
|
|
}
|
| 574 |
|
|
|
| 575 |
|
|
if (!access_fn
|
| 576 |
|
|
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
|
| 577 |
|
|
{
|
| 578 |
|
|
VEC_safe_push (gimple, heap, worklist, phi);
|
| 579 |
|
|
continue;
|
| 580 |
|
|
}
|
| 581 |
|
|
|
| 582 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 583 |
|
|
fprintf (vect_dump, "Detected induction.");
|
| 584 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
|
| 588 |
|
|
/* Second - identify all reductions and nested cycles. */
|
| 589 |
|
|
while (VEC_length (gimple, worklist) > 0)
|
| 590 |
|
|
{
|
| 591 |
|
|
gimple phi = VEC_pop (gimple, worklist);
|
| 592 |
|
|
tree def = PHI_RESULT (phi);
|
| 593 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
|
| 594 |
|
|
gimple reduc_stmt;
|
| 595 |
|
|
bool nested_cycle;
|
| 596 |
|
|
|
| 597 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 598 |
|
|
{
|
| 599 |
|
|
fprintf (vect_dump, "Analyze phi: ");
|
| 600 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 601 |
|
|
}
|
| 602 |
|
|
|
| 603 |
|
|
gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
|
| 604 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
|
| 605 |
|
|
|
| 606 |
|
|
nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
|
| 607 |
|
|
reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
|
| 608 |
|
|
&double_reduc);
|
| 609 |
|
|
if (reduc_stmt)
|
| 610 |
|
|
{
|
| 611 |
|
|
if (double_reduc)
|
| 612 |
|
|
{
|
| 613 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 614 |
|
|
fprintf (vect_dump, "Detected double reduction.");
|
| 615 |
|
|
|
| 616 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
|
| 617 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
| 618 |
|
|
vect_double_reduction_def;
|
| 619 |
|
|
}
|
| 620 |
|
|
else
|
| 621 |
|
|
{
|
| 622 |
|
|
if (nested_cycle)
|
| 623 |
|
|
{
|
| 624 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 625 |
|
|
fprintf (vect_dump, "Detected vectorizable nested cycle.");
|
| 626 |
|
|
|
| 627 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
|
| 628 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
| 629 |
|
|
vect_nested_cycle;
|
| 630 |
|
|
}
|
| 631 |
|
|
else
|
| 632 |
|
|
{
|
| 633 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 634 |
|
|
fprintf (vect_dump, "Detected reduction.");
|
| 635 |
|
|
|
| 636 |
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
|
| 637 |
|
|
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
|
| 638 |
|
|
vect_reduction_def;
|
| 639 |
|
|
/* Store the reduction cycles for possible vectorization in
|
| 640 |
|
|
loop-aware SLP. */
|
| 641 |
|
|
VEC_safe_push (gimple, heap,
|
| 642 |
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo),
|
| 643 |
|
|
reduc_stmt);
|
| 644 |
|
|
}
|
| 645 |
|
|
}
|
| 646 |
|
|
}
|
| 647 |
|
|
else
|
| 648 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 649 |
|
|
fprintf (vect_dump, "Unknown def-use cycle pattern.");
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
VEC_free (gimple, heap, worklist);
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
|
| 656 |
|
|
/* Function vect_analyze_scalar_cycles.
|
| 657 |
|
|
|
| 658 |
|
|
Examine the cross iteration def-use cycles of scalar variables, by
|
| 659 |
|
|
analyzing the loop-header PHIs of scalar variables. Classify each
|
| 660 |
|
|
cycle as one of the following: invariant, induction, reduction, unknown.
|
| 661 |
|
|
We do that for the loop represented by LOOP_VINFO, and also to its
|
| 662 |
|
|
inner-loop, if exists.
|
| 663 |
|
|
Examples for scalar cycles:
|
| 664 |
|
|
|
| 665 |
|
|
Example1: reduction:
|
| 666 |
|
|
|
| 667 |
|
|
loop1:
|
| 668 |
|
|
for (i=0; i<N; i++)
|
| 669 |
|
|
sum += a[i];
|
| 670 |
|
|
|
| 671 |
|
|
Example2: induction:
|
| 672 |
|
|
|
| 673 |
|
|
loop2:
|
| 674 |
|
|
for (i=0; i<N; i++)
|
| 675 |
|
|
a[i] = i; */
|
| 676 |
|
|
|
| 677 |
|
|
static void
|
| 678 |
|
|
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
|
| 679 |
|
|
{
|
| 680 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 681 |
|
|
|
| 682 |
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
|
| 683 |
|
|
|
| 684 |
|
|
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
|
| 685 |
|
|
Reductions in such inner-loop therefore have different properties than
|
| 686 |
|
|
the reductions in the nest that gets vectorized:
|
| 687 |
|
|
1. When vectorized, they are executed in the same order as in the original
|
| 688 |
|
|
scalar loop, so we can't change the order of computation when
|
| 689 |
|
|
vectorizing them.
|
| 690 |
|
|
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
|
| 691 |
|
|
current checks are too strict. */
|
| 692 |
|
|
|
| 693 |
|
|
if (loop->inner)
|
| 694 |
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
|
| 695 |
|
|
}
|
| 696 |
|
|
|
| 697 |
|
|
/* Function vect_get_loop_niters.
|
| 698 |
|
|
|
| 699 |
|
|
Determine how many iterations the loop is executed.
|
| 700 |
|
|
If an expression that represents the number of iterations
|
| 701 |
|
|
can be constructed, place it in NUMBER_OF_ITERATIONS.
|
| 702 |
|
|
Return the loop exit condition. */
|
| 703 |
|
|
|
| 704 |
|
|
static gimple
|
| 705 |
|
|
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
|
| 706 |
|
|
{
|
| 707 |
|
|
tree niters;
|
| 708 |
|
|
|
| 709 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 710 |
|
|
fprintf (vect_dump, "=== get_loop_niters ===");
|
| 711 |
|
|
|
| 712 |
|
|
niters = number_of_exit_cond_executions (loop);
|
| 713 |
|
|
|
| 714 |
|
|
if (niters != NULL_TREE
|
| 715 |
|
|
&& niters != chrec_dont_know)
|
| 716 |
|
|
{
|
| 717 |
|
|
*number_of_iterations = niters;
|
| 718 |
|
|
|
| 719 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 720 |
|
|
{
|
| 721 |
|
|
fprintf (vect_dump, "==> get_loop_niters:" );
|
| 722 |
|
|
print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
|
| 723 |
|
|
}
|
| 724 |
|
|
}
|
| 725 |
|
|
|
| 726 |
|
|
return get_loop_exit_condition (loop);
|
| 727 |
|
|
}
|
| 728 |
|
|
|
| 729 |
|
|
|
| 730 |
|
|
/* Function bb_in_loop_p
|
| 731 |
|
|
|
| 732 |
|
|
Used as predicate for dfs order traversal of the loop bbs. */
|
| 733 |
|
|
|
| 734 |
|
|
static bool
|
| 735 |
|
|
bb_in_loop_p (const_basic_block bb, const void *data)
|
| 736 |
|
|
{
|
| 737 |
|
|
const struct loop *const loop = (const struct loop *)data;
|
| 738 |
|
|
if (flow_bb_inside_loop_p (loop, bb))
|
| 739 |
|
|
return true;
|
| 740 |
|
|
return false;
|
| 741 |
|
|
}
|
| 742 |
|
|
|
| 743 |
|
|
|
| 744 |
|
|
/* Function new_loop_vec_info.
|
| 745 |
|
|
|
| 746 |
|
|
Create and initialize a new loop_vec_info struct for LOOP, as well as
|
| 747 |
|
|
stmt_vec_info structs for all the stmts in LOOP. */
|
| 748 |
|
|
|
| 749 |
|
|
static loop_vec_info
|
| 750 |
|
|
new_loop_vec_info (struct loop *loop)
|
| 751 |
|
|
{
|
| 752 |
|
|
loop_vec_info res;
|
| 753 |
|
|
basic_block *bbs;
|
| 754 |
|
|
gimple_stmt_iterator si;
|
| 755 |
|
|
unsigned int i, nbbs;
|
| 756 |
|
|
|
| 757 |
|
|
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
|
| 758 |
|
|
LOOP_VINFO_LOOP (res) = loop;
|
| 759 |
|
|
|
| 760 |
|
|
bbs = get_loop_body (loop);
|
| 761 |
|
|
|
| 762 |
|
|
/* Create/Update stmt_info for all stmts in the loop. */
|
| 763 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 764 |
|
|
{
|
| 765 |
|
|
basic_block bb = bbs[i];
|
| 766 |
|
|
|
| 767 |
|
|
/* BBs in a nested inner-loop will have been already processed (because
|
| 768 |
|
|
we will have called vect_analyze_loop_form for any nested inner-loop).
|
| 769 |
|
|
Therefore, for stmts in an inner-loop we just want to update the
|
| 770 |
|
|
STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
|
| 771 |
|
|
loop_info of the outer-loop we are currently considering to vectorize
|
| 772 |
|
|
(instead of the loop_info of the inner-loop).
|
| 773 |
|
|
For stmts in other BBs we need to create a stmt_info from scratch. */
|
| 774 |
|
|
if (bb->loop_father != loop)
|
| 775 |
|
|
{
|
| 776 |
|
|
/* Inner-loop bb. */
|
| 777 |
|
|
gcc_assert (loop->inner && bb->loop_father == loop->inner);
|
| 778 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 779 |
|
|
{
|
| 780 |
|
|
gimple phi = gsi_stmt (si);
|
| 781 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
| 782 |
|
|
loop_vec_info inner_loop_vinfo =
|
| 783 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 784 |
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
| 785 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
| 786 |
|
|
}
|
| 787 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 788 |
|
|
{
|
| 789 |
|
|
gimple stmt = gsi_stmt (si);
|
| 790 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 791 |
|
|
loop_vec_info inner_loop_vinfo =
|
| 792 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 793 |
|
|
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
|
| 794 |
|
|
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
|
| 795 |
|
|
}
|
| 796 |
|
|
}
|
| 797 |
|
|
else
|
| 798 |
|
|
{
|
| 799 |
|
|
/* bb in current nest. */
|
| 800 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 801 |
|
|
{
|
| 802 |
|
|
gimple phi = gsi_stmt (si);
|
| 803 |
|
|
gimple_set_uid (phi, 0);
|
| 804 |
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
|
| 805 |
|
|
}
|
| 806 |
|
|
|
| 807 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 808 |
|
|
{
|
| 809 |
|
|
gimple stmt = gsi_stmt (si);
|
| 810 |
|
|
gimple_set_uid (stmt, 0);
|
| 811 |
|
|
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
|
| 812 |
|
|
}
|
| 813 |
|
|
}
|
| 814 |
|
|
}
|
| 815 |
|
|
|
| 816 |
|
|
/* CHECKME: We want to visit all BBs before their successors (except for
|
| 817 |
|
|
latch blocks, for which this assertion wouldn't hold). In the simple
|
| 818 |
|
|
case of the loop forms we allow, a dfs order of the BBs would the same
|
| 819 |
|
|
as reversed postorder traversal, so we are safe. */
|
| 820 |
|
|
|
| 821 |
|
|
free (bbs);
|
| 822 |
|
|
bbs = XCNEWVEC (basic_block, loop->num_nodes);
|
| 823 |
|
|
nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
|
| 824 |
|
|
bbs, loop->num_nodes, loop);
|
| 825 |
|
|
gcc_assert (nbbs == loop->num_nodes);
|
| 826 |
|
|
|
| 827 |
|
|
LOOP_VINFO_BBS (res) = bbs;
|
| 828 |
|
|
LOOP_VINFO_NITERS (res) = NULL;
|
| 829 |
|
|
LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
|
| 830 |
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
|
| 831 |
|
|
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
|
| 832 |
|
|
LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
|
| 833 |
|
|
LOOP_VINFO_VECT_FACTOR (res) = 0;
|
| 834 |
|
|
LOOP_VINFO_LOOP_NEST (res) = VEC_alloc (loop_p, heap, 3);
|
| 835 |
|
|
LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
|
| 836 |
|
|
LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
|
| 837 |
|
|
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
|
| 838 |
|
|
LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
|
| 839 |
|
|
VEC_alloc (gimple, heap,
|
| 840 |
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
|
| 841 |
|
|
LOOP_VINFO_MAY_ALIAS_DDRS (res) =
|
| 842 |
|
|
VEC_alloc (ddr_p, heap,
|
| 843 |
|
|
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
|
| 844 |
|
|
LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
|
| 845 |
|
|
LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
|
| 846 |
|
|
LOOP_VINFO_REDUCTION_CHAINS (res) = VEC_alloc (gimple, heap, 10);
|
| 847 |
|
|
LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
|
| 848 |
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
|
| 849 |
|
|
LOOP_VINFO_PEELING_HTAB (res) = NULL;
|
| 850 |
|
|
LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
|
| 851 |
|
|
|
| 852 |
|
|
return res;
|
| 853 |
|
|
}
|
| 854 |
|
|
|
| 855 |
|
|
|
| 856 |
|
|
/* Function destroy_loop_vec_info.
|
| 857 |
|
|
|
| 858 |
|
|
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
|
| 859 |
|
|
stmts in the loop. */
|
| 860 |
|
|
|
| 861 |
|
|
void
|
| 862 |
|
|
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
|
| 863 |
|
|
{
|
| 864 |
|
|
struct loop *loop;
|
| 865 |
|
|
basic_block *bbs;
|
| 866 |
|
|
int nbbs;
|
| 867 |
|
|
gimple_stmt_iterator si;
|
| 868 |
|
|
int j;
|
| 869 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
| 870 |
|
|
slp_instance instance;
|
| 871 |
|
|
|
| 872 |
|
|
if (!loop_vinfo)
|
| 873 |
|
|
return;
|
| 874 |
|
|
|
| 875 |
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 876 |
|
|
|
| 877 |
|
|
bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 878 |
|
|
nbbs = loop->num_nodes;
|
| 879 |
|
|
|
| 880 |
|
|
if (!clean_stmts)
|
| 881 |
|
|
{
|
| 882 |
|
|
free (LOOP_VINFO_BBS (loop_vinfo));
|
| 883 |
|
|
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
|
| 884 |
|
|
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
|
| 885 |
|
|
VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
|
| 886 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
| 887 |
|
|
VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
| 888 |
|
|
|
| 889 |
|
|
free (loop_vinfo);
|
| 890 |
|
|
loop->aux = NULL;
|
| 891 |
|
|
return;
|
| 892 |
|
|
}
|
| 893 |
|
|
|
| 894 |
|
|
for (j = 0; j < nbbs; j++)
|
| 895 |
|
|
{
|
| 896 |
|
|
basic_block bb = bbs[j];
|
| 897 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 898 |
|
|
free_stmt_vec_info (gsi_stmt (si));
|
| 899 |
|
|
|
| 900 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
|
| 901 |
|
|
{
|
| 902 |
|
|
gimple stmt = gsi_stmt (si);
|
| 903 |
|
|
/* Free stmt_vec_info. */
|
| 904 |
|
|
free_stmt_vec_info (stmt);
|
| 905 |
|
|
gsi_next (&si);
|
| 906 |
|
|
}
|
| 907 |
|
|
}
|
| 908 |
|
|
|
| 909 |
|
|
free (LOOP_VINFO_BBS (loop_vinfo));
|
| 910 |
|
|
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
|
| 911 |
|
|
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
|
| 912 |
|
|
VEC_free (loop_p, heap, LOOP_VINFO_LOOP_NEST (loop_vinfo));
|
| 913 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
| 914 |
|
|
VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
| 915 |
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
| 916 |
|
|
FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
|
| 917 |
|
|
vect_free_slp_instance (instance);
|
| 918 |
|
|
|
| 919 |
|
|
VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
|
| 920 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
|
| 921 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
|
| 922 |
|
|
VEC_free (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo));
|
| 923 |
|
|
|
| 924 |
|
|
if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
|
| 925 |
|
|
htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
|
| 926 |
|
|
|
| 927 |
|
|
free (loop_vinfo);
|
| 928 |
|
|
loop->aux = NULL;
|
| 929 |
|
|
}
|
| 930 |
|
|
|
| 931 |
|
|
|
| 932 |
|
|
/* Function vect_analyze_loop_1.
|
| 933 |
|
|
|
| 934 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
| 935 |
|
|
for it. The different analyses will record information in the
|
| 936 |
|
|
loop_vec_info struct. This is a subset of the analyses applied in
|
| 937 |
|
|
vect_analyze_loop, to be applied on an inner-loop nested in the loop
|
| 938 |
|
|
that is now considered for (outer-loop) vectorization. */
|
| 939 |
|
|
|
| 940 |
|
|
static loop_vec_info
|
| 941 |
|
|
vect_analyze_loop_1 (struct loop *loop)
|
| 942 |
|
|
{
|
| 943 |
|
|
loop_vec_info loop_vinfo;
|
| 944 |
|
|
|
| 945 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 946 |
|
|
fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
|
| 947 |
|
|
|
| 948 |
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
|
| 949 |
|
|
|
| 950 |
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
| 951 |
|
|
if (!loop_vinfo)
|
| 952 |
|
|
{
|
| 953 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 954 |
|
|
fprintf (vect_dump, "bad inner-loop form.");
|
| 955 |
|
|
return NULL;
|
| 956 |
|
|
}
|
| 957 |
|
|
|
| 958 |
|
|
return loop_vinfo;
|
| 959 |
|
|
}
|
| 960 |
|
|
|
| 961 |
|
|
|
| 962 |
|
|
/* Function vect_analyze_loop_form.
|
| 963 |
|
|
|
| 964 |
|
|
Verify that certain CFG restrictions hold, including:
|
| 965 |
|
|
- the loop has a pre-header
|
| 966 |
|
|
- the loop has a single entry and exit
|
| 967 |
|
|
- the loop exit condition is simple enough, and the number of iterations
|
| 968 |
|
|
can be analyzed (a countable loop). */
|
| 969 |
|
|
|
| 970 |
|
|
loop_vec_info
|
| 971 |
|
|
vect_analyze_loop_form (struct loop *loop)
|
| 972 |
|
|
{
|
| 973 |
|
|
loop_vec_info loop_vinfo;
|
| 974 |
|
|
gimple loop_cond;
|
| 975 |
|
|
tree number_of_iterations = NULL;
|
| 976 |
|
|
loop_vec_info inner_loop_vinfo = NULL;
|
| 977 |
|
|
|
| 978 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 979 |
|
|
fprintf (vect_dump, "=== vect_analyze_loop_form ===");
|
| 980 |
|
|
|
| 981 |
|
|
/* Different restrictions apply when we are considering an inner-most loop,
|
| 982 |
|
|
vs. an outer (nested) loop.
|
| 983 |
|
|
(FORNOW. May want to relax some of these restrictions in the future). */
|
| 984 |
|
|
|
| 985 |
|
|
if (!loop->inner)
|
| 986 |
|
|
{
|
| 987 |
|
|
/* Inner-most loop. We currently require that the number of BBs is
|
| 988 |
|
|
exactly 2 (the header and latch). Vectorizable inner-most loops
|
| 989 |
|
|
look like this:
|
| 990 |
|
|
|
| 991 |
|
|
(pre-header)
|
| 992 |
|
|
|
|
| 993 |
|
|
header <--------+
|
| 994 |
|
|
| | |
|
| 995 |
|
|
| +--> latch --+
|
| 996 |
|
|
|
|
| 997 |
|
|
(exit-bb) */
|
| 998 |
|
|
|
| 999 |
|
|
if (loop->num_nodes != 2)
|
| 1000 |
|
|
{
|
| 1001 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1002 |
|
|
fprintf (vect_dump, "not vectorized: control flow in loop.");
|
| 1003 |
|
|
return NULL;
|
| 1004 |
|
|
}
|
| 1005 |
|
|
|
| 1006 |
|
|
if (empty_block_p (loop->header))
|
| 1007 |
|
|
{
|
| 1008 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1009 |
|
|
fprintf (vect_dump, "not vectorized: empty loop.");
|
| 1010 |
|
|
return NULL;
|
| 1011 |
|
|
}
|
| 1012 |
|
|
}
|
| 1013 |
|
|
else
|
| 1014 |
|
|
{
|
| 1015 |
|
|
struct loop *innerloop = loop->inner;
|
| 1016 |
|
|
edge entryedge;
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Nested loop. We currently require that the loop is doubly-nested,
|
| 1019 |
|
|
contains a single inner loop, and the number of BBs is exactly 5.
|
| 1020 |
|
|
Vectorizable outer-loops look like this:
|
| 1021 |
|
|
|
| 1022 |
|
|
(pre-header)
|
| 1023 |
|
|
|
|
| 1024 |
|
|
header <---+
|
| 1025 |
|
|
| |
|
| 1026 |
|
|
inner-loop |
|
| 1027 |
|
|
| |
|
| 1028 |
|
|
tail ------+
|
| 1029 |
|
|
|
|
| 1030 |
|
|
(exit-bb)
|
| 1031 |
|
|
|
| 1032 |
|
|
The inner-loop has the properties expected of inner-most loops
|
| 1033 |
|
|
as described above. */
|
| 1034 |
|
|
|
| 1035 |
|
|
if ((loop->inner)->inner || (loop->inner)->next)
|
| 1036 |
|
|
{
|
| 1037 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1038 |
|
|
fprintf (vect_dump, "not vectorized: multiple nested loops.");
|
| 1039 |
|
|
return NULL;
|
| 1040 |
|
|
}
|
| 1041 |
|
|
|
| 1042 |
|
|
/* Analyze the inner-loop. */
|
| 1043 |
|
|
inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
|
| 1044 |
|
|
if (!inner_loop_vinfo)
|
| 1045 |
|
|
{
|
| 1046 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1047 |
|
|
fprintf (vect_dump, "not vectorized: Bad inner loop.");
|
| 1048 |
|
|
return NULL;
|
| 1049 |
|
|
}
|
| 1050 |
|
|
|
| 1051 |
|
|
if (!expr_invariant_in_loop_p (loop,
|
| 1052 |
|
|
LOOP_VINFO_NITERS (inner_loop_vinfo)))
|
| 1053 |
|
|
{
|
| 1054 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1055 |
|
|
fprintf (vect_dump,
|
| 1056 |
|
|
"not vectorized: inner-loop count not invariant.");
|
| 1057 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1058 |
|
|
return NULL;
|
| 1059 |
|
|
}
|
| 1060 |
|
|
|
| 1061 |
|
|
if (loop->num_nodes != 5)
|
| 1062 |
|
|
{
|
| 1063 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1064 |
|
|
fprintf (vect_dump, "not vectorized: control flow in loop.");
|
| 1065 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1066 |
|
|
return NULL;
|
| 1067 |
|
|
}
|
| 1068 |
|
|
|
| 1069 |
|
|
gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
|
| 1070 |
|
|
entryedge = EDGE_PRED (innerloop->header, 0);
|
| 1071 |
|
|
if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
|
| 1072 |
|
|
entryedge = EDGE_PRED (innerloop->header, 1);
|
| 1073 |
|
|
|
| 1074 |
|
|
if (entryedge->src != loop->header
|
| 1075 |
|
|
|| !single_exit (innerloop)
|
| 1076 |
|
|
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
|
| 1077 |
|
|
{
|
| 1078 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1079 |
|
|
fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
|
| 1080 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1081 |
|
|
return NULL;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
|
| 1084 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1085 |
|
|
fprintf (vect_dump, "Considering outer-loop vectorization.");
|
| 1086 |
|
|
}
|
| 1087 |
|
|
|
| 1088 |
|
|
if (!single_exit (loop)
|
| 1089 |
|
|
|| EDGE_COUNT (loop->header->preds) != 2)
|
| 1090 |
|
|
{
|
| 1091 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1092 |
|
|
{
|
| 1093 |
|
|
if (!single_exit (loop))
|
| 1094 |
|
|
fprintf (vect_dump, "not vectorized: multiple exits.");
|
| 1095 |
|
|
else if (EDGE_COUNT (loop->header->preds) != 2)
|
| 1096 |
|
|
fprintf (vect_dump, "not vectorized: too many incoming edges.");
|
| 1097 |
|
|
}
|
| 1098 |
|
|
if (inner_loop_vinfo)
|
| 1099 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1100 |
|
|
return NULL;
|
| 1101 |
|
|
}
|
| 1102 |
|
|
|
| 1103 |
|
|
/* We assume that the loop exit condition is at the end of the loop. i.e,
|
| 1104 |
|
|
that the loop is represented as a do-while (with a proper if-guard
|
| 1105 |
|
|
before the loop if needed), where the loop header contains all the
|
| 1106 |
|
|
executable statements, and the latch is empty. */
|
| 1107 |
|
|
if (!empty_block_p (loop->latch)
|
| 1108 |
|
|
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
|
| 1109 |
|
|
{
|
| 1110 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1111 |
|
|
fprintf (vect_dump, "not vectorized: unexpected loop form.");
|
| 1112 |
|
|
if (inner_loop_vinfo)
|
| 1113 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1114 |
|
|
return NULL;
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
/* Make sure there exists a single-predecessor exit bb: */
|
| 1118 |
|
|
if (!single_pred_p (single_exit (loop)->dest))
|
| 1119 |
|
|
{
|
| 1120 |
|
|
edge e = single_exit (loop);
|
| 1121 |
|
|
if (!(e->flags & EDGE_ABNORMAL))
|
| 1122 |
|
|
{
|
| 1123 |
|
|
split_loop_exit_edge (e);
|
| 1124 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1125 |
|
|
fprintf (vect_dump, "split exit edge.");
|
| 1126 |
|
|
}
|
| 1127 |
|
|
else
|
| 1128 |
|
|
{
|
| 1129 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1130 |
|
|
fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
|
| 1131 |
|
|
if (inner_loop_vinfo)
|
| 1132 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1133 |
|
|
return NULL;
|
| 1134 |
|
|
}
|
| 1135 |
|
|
}
|
| 1136 |
|
|
|
| 1137 |
|
|
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
|
| 1138 |
|
|
if (!loop_cond)
|
| 1139 |
|
|
{
|
| 1140 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1141 |
|
|
fprintf (vect_dump, "not vectorized: complicated exit condition.");
|
| 1142 |
|
|
if (inner_loop_vinfo)
|
| 1143 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1144 |
|
|
return NULL;
|
| 1145 |
|
|
}
|
| 1146 |
|
|
|
| 1147 |
|
|
if (!number_of_iterations)
|
| 1148 |
|
|
{
|
| 1149 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1150 |
|
|
fprintf (vect_dump,
|
| 1151 |
|
|
"not vectorized: number of iterations cannot be computed.");
|
| 1152 |
|
|
if (inner_loop_vinfo)
|
| 1153 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1154 |
|
|
return NULL;
|
| 1155 |
|
|
}
|
| 1156 |
|
|
|
| 1157 |
|
|
if (chrec_contains_undetermined (number_of_iterations))
|
| 1158 |
|
|
{
|
| 1159 |
|
|
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
|
| 1160 |
|
|
fprintf (vect_dump, "Infinite number of iterations.");
|
| 1161 |
|
|
if (inner_loop_vinfo)
|
| 1162 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, true);
|
| 1163 |
|
|
return NULL;
|
| 1164 |
|
|
}
|
| 1165 |
|
|
|
| 1166 |
|
|
if (!NITERS_KNOWN_P (number_of_iterations))
|
| 1167 |
|
|
{
|
| 1168 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1169 |
|
|
{
|
| 1170 |
|
|
fprintf (vect_dump, "Symbolic number of iterations is ");
|
| 1171 |
|
|
print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
|
| 1172 |
|
|
}
|
| 1173 |
|
|
}
|
| 1174 |
|
|
else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
|
| 1175 |
|
|
{
|
| 1176 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1177 |
|
|
fprintf (vect_dump, "not vectorized: number of iterations = 0.");
|
| 1178 |
|
|
if (inner_loop_vinfo)
|
| 1179 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, false);
|
| 1180 |
|
|
return NULL;
|
| 1181 |
|
|
}
|
| 1182 |
|
|
|
| 1183 |
|
|
loop_vinfo = new_loop_vec_info (loop);
|
| 1184 |
|
|
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
|
| 1185 |
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
|
| 1186 |
|
|
|
| 1187 |
|
|
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
|
| 1188 |
|
|
|
| 1189 |
|
|
/* CHECKME: May want to keep it around it in the future. */
|
| 1190 |
|
|
if (inner_loop_vinfo)
|
| 1191 |
|
|
destroy_loop_vec_info (inner_loop_vinfo, false);
|
| 1192 |
|
|
|
| 1193 |
|
|
gcc_assert (!loop->aux);
|
| 1194 |
|
|
loop->aux = loop_vinfo;
|
| 1195 |
|
|
return loop_vinfo;
|
| 1196 |
|
|
}
|
| 1197 |
|
|
|
| 1198 |
|
|
|
| 1199 |
|
|
/* Get cost by calling cost target builtin. */
|
| 1200 |
|
|
|
| 1201 |
|
|
static inline int
|
| 1202 |
|
|
vect_get_cost (enum vect_cost_for_stmt type_of_cost)
|
| 1203 |
|
|
{
|
| 1204 |
|
|
tree dummy_type = NULL;
|
| 1205 |
|
|
int dummy = 0;
|
| 1206 |
|
|
|
| 1207 |
|
|
return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
|
| 1208 |
|
|
dummy_type, dummy);
|
| 1209 |
|
|
}
|
| 1210 |
|
|
|
| 1211 |
|
|
|
| 1212 |
|
|
/* Function vect_analyze_loop_operations.
|
| 1213 |
|
|
|
| 1214 |
|
|
Scan the loop stmts and make sure they are all vectorizable. */
|
| 1215 |
|
|
|
| 1216 |
|
|
static bool
|
| 1217 |
|
|
vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
|
| 1218 |
|
|
{
|
| 1219 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 1220 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 1221 |
|
|
int nbbs = loop->num_nodes;
|
| 1222 |
|
|
gimple_stmt_iterator si;
|
| 1223 |
|
|
unsigned int vectorization_factor = 0;
|
| 1224 |
|
|
int i;
|
| 1225 |
|
|
gimple phi;
|
| 1226 |
|
|
stmt_vec_info stmt_info;
|
| 1227 |
|
|
bool need_to_vectorize = false;
|
| 1228 |
|
|
int min_profitable_iters;
|
| 1229 |
|
|
int min_scalar_loop_bound;
|
| 1230 |
|
|
unsigned int th;
|
| 1231 |
|
|
bool only_slp_in_loop = true, ok;
|
| 1232 |
|
|
|
| 1233 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1234 |
|
|
fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
|
| 1235 |
|
|
|
| 1236 |
|
|
gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
|
| 1237 |
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 1238 |
|
|
if (slp)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
|
| 1241 |
|
|
vectorization factor of the loop is the unrolling factor required by
|
| 1242 |
|
|
the SLP instances. If that unrolling factor is 1, we say, that we
|
| 1243 |
|
|
perform pure SLP on loop - cross iteration parallelism is not
|
| 1244 |
|
|
exploited. */
|
| 1245 |
|
|
for (i = 0; i < nbbs; i++)
|
| 1246 |
|
|
{
|
| 1247 |
|
|
basic_block bb = bbs[i];
|
| 1248 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 1249 |
|
|
{
|
| 1250 |
|
|
gimple stmt = gsi_stmt (si);
|
| 1251 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 1252 |
|
|
gcc_assert (stmt_info);
|
| 1253 |
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
| 1254 |
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
| 1255 |
|
|
&& !PURE_SLP_STMT (stmt_info))
|
| 1256 |
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
| 1257 |
|
|
only_slp_in_loop = false;
|
| 1258 |
|
|
}
|
| 1259 |
|
|
}
|
| 1260 |
|
|
|
| 1261 |
|
|
if (only_slp_in_loop)
|
| 1262 |
|
|
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
|
| 1263 |
|
|
else
|
| 1264 |
|
|
vectorization_factor = least_common_multiple (vectorization_factor,
|
| 1265 |
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
|
| 1266 |
|
|
|
| 1267 |
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
| 1268 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1269 |
|
|
fprintf (vect_dump, "Updating vectorization factor to %d ",
|
| 1270 |
|
|
vectorization_factor);
|
| 1271 |
|
|
}
|
| 1272 |
|
|
|
| 1273 |
|
|
for (i = 0; i < nbbs; i++)
|
| 1274 |
|
|
{
|
| 1275 |
|
|
basic_block bb = bbs[i];
|
| 1276 |
|
|
|
| 1277 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 1278 |
|
|
{
|
| 1279 |
|
|
phi = gsi_stmt (si);
|
| 1280 |
|
|
ok = true;
|
| 1281 |
|
|
|
| 1282 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
| 1283 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1284 |
|
|
{
|
| 1285 |
|
|
fprintf (vect_dump, "examining phi: ");
|
| 1286 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
/* Inner-loop loop-closed exit phi in outer-loop vectorization
|
| 1290 |
|
|
(i.e., a phi in the tail of the outer-loop). */
|
| 1291 |
|
|
if (! is_loop_header_bb_p (bb))
|
| 1292 |
|
|
{
|
| 1293 |
|
|
/* FORNOW: we currently don't support the case that these phis
|
| 1294 |
|
|
are not used in the outerloop (unless it is double reduction,
|
| 1295 |
|
|
i.e., this phi is vect_reduction_def), cause this case
|
| 1296 |
|
|
requires to actually do something here. */
|
| 1297 |
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 1298 |
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
| 1299 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info)
|
| 1300 |
|
|
!= vect_double_reduction_def)
|
| 1301 |
|
|
{
|
| 1302 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1303 |
|
|
fprintf (vect_dump,
|
| 1304 |
|
|
"Unsupported loop-closed phi in outer-loop.");
|
| 1305 |
|
|
return false;
|
| 1306 |
|
|
}
|
| 1307 |
|
|
|
| 1308 |
|
|
/* If PHI is used in the outer loop, we check that its operand
|
| 1309 |
|
|
is defined in the inner loop. */
|
| 1310 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
| 1311 |
|
|
{
|
| 1312 |
|
|
tree phi_op;
|
| 1313 |
|
|
gimple op_def_stmt;
|
| 1314 |
|
|
|
| 1315 |
|
|
if (gimple_phi_num_args (phi) != 1)
|
| 1316 |
|
|
return false;
|
| 1317 |
|
|
|
| 1318 |
|
|
phi_op = PHI_ARG_DEF (phi, 0);
|
| 1319 |
|
|
if (TREE_CODE (phi_op) != SSA_NAME)
|
| 1320 |
|
|
return false;
|
| 1321 |
|
|
|
| 1322 |
|
|
op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
|
| 1323 |
|
|
if (!op_def_stmt || !vinfo_for_stmt (op_def_stmt))
|
| 1324 |
|
|
return false;
|
| 1325 |
|
|
|
| 1326 |
|
|
if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
| 1327 |
|
|
!= vect_used_in_outer
|
| 1328 |
|
|
&& STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
|
| 1329 |
|
|
!= vect_used_in_outer_by_reduction)
|
| 1330 |
|
|
return false;
|
| 1331 |
|
|
}
|
| 1332 |
|
|
|
| 1333 |
|
|
continue;
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
gcc_assert (stmt_info);
|
| 1337 |
|
|
|
| 1338 |
|
|
if (STMT_VINFO_LIVE_P (stmt_info))
|
| 1339 |
|
|
{
|
| 1340 |
|
|
/* FORNOW: not yet supported. */
|
| 1341 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1342 |
|
|
fprintf (vect_dump, "not vectorized: value used after loop.");
|
| 1343 |
|
|
return false;
|
| 1344 |
|
|
}
|
| 1345 |
|
|
|
| 1346 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|
| 1347 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
| 1348 |
|
|
{
|
| 1349 |
|
|
/* A scalar-dependence cycle that we don't support. */
|
| 1350 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1351 |
|
|
fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
|
| 1352 |
|
|
return false;
|
| 1353 |
|
|
}
|
| 1354 |
|
|
|
| 1355 |
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
| 1356 |
|
|
{
|
| 1357 |
|
|
need_to_vectorize = true;
|
| 1358 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
| 1359 |
|
|
ok = vectorizable_induction (phi, NULL, NULL);
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
if (!ok)
|
| 1363 |
|
|
{
|
| 1364 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1365 |
|
|
{
|
| 1366 |
|
|
fprintf (vect_dump,
|
| 1367 |
|
|
"not vectorized: relevant phi not supported: ");
|
| 1368 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 1369 |
|
|
}
|
| 1370 |
|
|
return false;
|
| 1371 |
|
|
}
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 1375 |
|
|
{
|
| 1376 |
|
|
gimple stmt = gsi_stmt (si);
|
| 1377 |
|
|
if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
|
| 1378 |
|
|
return false;
|
| 1379 |
|
|
}
|
| 1380 |
|
|
} /* bbs */
|
| 1381 |
|
|
|
| 1382 |
|
|
/* All operations in the loop are either irrelevant (deal with loop
|
| 1383 |
|
|
control, or dead), or only used outside the loop and can be moved
|
| 1384 |
|
|
out of the loop (e.g. invariants, inductions). The loop can be
|
| 1385 |
|
|
optimized away by scalar optimizations. We're better off not
|
| 1386 |
|
|
touching this loop. */
|
| 1387 |
|
|
if (!need_to_vectorize)
|
| 1388 |
|
|
{
|
| 1389 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1390 |
|
|
fprintf (vect_dump,
|
| 1391 |
|
|
"All the computation can be taken out of the loop.");
|
| 1392 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1393 |
|
|
fprintf (vect_dump,
|
| 1394 |
|
|
"not vectorized: redundant loop. no profit to vectorize.");
|
| 1395 |
|
|
return false;
|
| 1396 |
|
|
}
|
| 1397 |
|
|
|
| 1398 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 1399 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
| 1400 |
|
|
fprintf (vect_dump,
|
| 1401 |
|
|
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
|
| 1402 |
|
|
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
|
| 1403 |
|
|
|
| 1404 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 1405 |
|
|
&& (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
|
| 1406 |
|
|
{
|
| 1407 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1408 |
|
|
fprintf (vect_dump, "not vectorized: iteration count too small.");
|
| 1409 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1410 |
|
|
fprintf (vect_dump,"not vectorized: iteration count smaller than "
|
| 1411 |
|
|
"vectorization factor.");
|
| 1412 |
|
|
return false;
|
| 1413 |
|
|
}
|
| 1414 |
|
|
|
| 1415 |
|
|
/* Analyze cost. Decide if worth while to vectorize. */
|
| 1416 |
|
|
|
| 1417 |
|
|
/* Once VF is set, SLP costs should be updated since the number of created
|
| 1418 |
|
|
vector stmts depends on VF. */
|
| 1419 |
|
|
vect_update_slp_costs_according_to_vf (loop_vinfo);
|
| 1420 |
|
|
|
| 1421 |
|
|
min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
|
| 1422 |
|
|
LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
|
| 1423 |
|
|
|
| 1424 |
|
|
if (min_profitable_iters < 0)
|
| 1425 |
|
|
{
|
| 1426 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1427 |
|
|
fprintf (vect_dump, "not vectorized: vectorization not profitable.");
|
| 1428 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1429 |
|
|
fprintf (vect_dump, "not vectorized: vector version will never be "
|
| 1430 |
|
|
"profitable.");
|
| 1431 |
|
|
return false;
|
| 1432 |
|
|
}
|
| 1433 |
|
|
|
| 1434 |
|
|
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
|
| 1435 |
|
|
* vectorization_factor) - 1);
|
| 1436 |
|
|
|
| 1437 |
|
|
/* Use the cost model only if it is more conservative than user specified
|
| 1438 |
|
|
threshold. */
|
| 1439 |
|
|
|
| 1440 |
|
|
th = (unsigned) min_scalar_loop_bound;
|
| 1441 |
|
|
if (min_profitable_iters
|
| 1442 |
|
|
&& (!min_scalar_loop_bound
|
| 1443 |
|
|
|| min_profitable_iters > min_scalar_loop_bound))
|
| 1444 |
|
|
th = (unsigned) min_profitable_iters;
|
| 1445 |
|
|
|
| 1446 |
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 1447 |
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
|
| 1448 |
|
|
{
|
| 1449 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1450 |
|
|
fprintf (vect_dump, "not vectorized: vectorization not "
|
| 1451 |
|
|
"profitable.");
|
| 1452 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1453 |
|
|
fprintf (vect_dump, "not vectorized: iteration count smaller than "
|
| 1454 |
|
|
"user specified loop bound parameter or minimum "
|
| 1455 |
|
|
"profitable iterations (whichever is more conservative).");
|
| 1456 |
|
|
return false;
|
| 1457 |
|
|
}
|
| 1458 |
|
|
|
| 1459 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 1460 |
|
|
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
|
| 1461 |
|
|
|| LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
| 1462 |
|
|
{
|
| 1463 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1464 |
|
|
fprintf (vect_dump, "epilog loop required.");
|
| 1465 |
|
|
if (!vect_can_advance_ivs_p (loop_vinfo))
|
| 1466 |
|
|
{
|
| 1467 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1468 |
|
|
fprintf (vect_dump,
|
| 1469 |
|
|
"not vectorized: can't create epilog loop 1.");
|
| 1470 |
|
|
return false;
|
| 1471 |
|
|
}
|
| 1472 |
|
|
if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
|
| 1473 |
|
|
{
|
| 1474 |
|
|
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
|
| 1475 |
|
|
fprintf (vect_dump,
|
| 1476 |
|
|
"not vectorized: can't create epilog loop 2.");
|
| 1477 |
|
|
return false;
|
| 1478 |
|
|
}
|
| 1479 |
|
|
}
|
| 1480 |
|
|
|
| 1481 |
|
|
return true;
|
| 1482 |
|
|
}
|
| 1483 |
|
|
|
| 1484 |
|
|
|
| 1485 |
|
|
/* Function vect_analyze_loop_2.
|
| 1486 |
|
|
|
| 1487 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
| 1488 |
|
|
for it. The different analyses will record information in the
|
| 1489 |
|
|
loop_vec_info struct. */
|
| 1490 |
|
|
static bool
|
| 1491 |
|
|
vect_analyze_loop_2 (loop_vec_info loop_vinfo)
|
| 1492 |
|
|
{
|
| 1493 |
|
|
bool ok, slp = false;
|
| 1494 |
|
|
int max_vf = MAX_VECTORIZATION_FACTOR;
|
| 1495 |
|
|
int min_vf = 2;
|
| 1496 |
|
|
|
| 1497 |
|
|
/* Find all data references in the loop (which correspond to vdefs/vuses)
|
| 1498 |
|
|
and analyze their evolution in the loop. Also adjust the minimal
|
| 1499 |
|
|
vectorization factor according to the loads and stores.
|
| 1500 |
|
|
|
| 1501 |
|
|
FORNOW: Handle only simple, array references, which
|
| 1502 |
|
|
alignment can be forced, and aligned pointer-references. */
|
| 1503 |
|
|
|
| 1504 |
|
|
ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
|
| 1505 |
|
|
if (!ok)
|
| 1506 |
|
|
{
|
| 1507 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1508 |
|
|
fprintf (vect_dump, "bad data references.");
|
| 1509 |
|
|
return false;
|
| 1510 |
|
|
}
|
| 1511 |
|
|
|
| 1512 |
|
|
/* Classify all cross-iteration scalar data-flow cycles.
|
| 1513 |
|
|
Cross-iteration cycles caused by virtual phis are analyzed separately. */
|
| 1514 |
|
|
|
| 1515 |
|
|
vect_analyze_scalar_cycles (loop_vinfo);
|
| 1516 |
|
|
|
| 1517 |
|
|
vect_pattern_recog (loop_vinfo);
|
| 1518 |
|
|
|
| 1519 |
|
|
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
|
| 1520 |
|
|
|
| 1521 |
|
|
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
|
| 1522 |
|
|
if (!ok)
|
| 1523 |
|
|
{
|
| 1524 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1525 |
|
|
fprintf (vect_dump, "unexpected pattern.");
|
| 1526 |
|
|
return false;
|
| 1527 |
|
|
}
|
| 1528 |
|
|
|
| 1529 |
|
|
/* Analyze data dependences between the data-refs in the loop
|
| 1530 |
|
|
and adjust the maximum vectorization factor according to
|
| 1531 |
|
|
the dependences.
|
| 1532 |
|
|
FORNOW: fail at the first data dependence that we encounter. */
|
| 1533 |
|
|
|
| 1534 |
|
|
ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
|
| 1535 |
|
|
if (!ok
|
| 1536 |
|
|
|| max_vf < min_vf)
|
| 1537 |
|
|
{
|
| 1538 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1539 |
|
|
fprintf (vect_dump, "bad data dependence.");
|
| 1540 |
|
|
return false;
|
| 1541 |
|
|
}
|
| 1542 |
|
|
|
| 1543 |
|
|
ok = vect_determine_vectorization_factor (loop_vinfo);
|
| 1544 |
|
|
if (!ok)
|
| 1545 |
|
|
{
|
| 1546 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1547 |
|
|
fprintf (vect_dump, "can't determine vectorization factor.");
|
| 1548 |
|
|
return false;
|
| 1549 |
|
|
}
|
| 1550 |
|
|
if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
|
| 1551 |
|
|
{
|
| 1552 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1553 |
|
|
fprintf (vect_dump, "bad data dependence.");
|
| 1554 |
|
|
return false;
|
| 1555 |
|
|
}
|
| 1556 |
|
|
|
| 1557 |
|
|
/* Analyze the alignment of the data-refs in the loop.
|
| 1558 |
|
|
Fail if a data reference is found that cannot be vectorized. */
|
| 1559 |
|
|
|
| 1560 |
|
|
ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
|
| 1561 |
|
|
if (!ok)
|
| 1562 |
|
|
{
|
| 1563 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1564 |
|
|
fprintf (vect_dump, "bad data alignment.");
|
| 1565 |
|
|
return false;
|
| 1566 |
|
|
}
|
| 1567 |
|
|
|
| 1568 |
|
|
/* Analyze the access patterns of the data-refs in the loop (consecutive,
|
| 1569 |
|
|
complex, etc.). FORNOW: Only handle consecutive access pattern. */
|
| 1570 |
|
|
|
| 1571 |
|
|
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
|
| 1572 |
|
|
if (!ok)
|
| 1573 |
|
|
{
|
| 1574 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1575 |
|
|
fprintf (vect_dump, "bad data access.");
|
| 1576 |
|
|
return false;
|
| 1577 |
|
|
}
|
| 1578 |
|
|
|
| 1579 |
|
|
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
|
| 1580 |
|
|
It is important to call pruning after vect_analyze_data_ref_accesses,
|
| 1581 |
|
|
since we use grouping information gathered by interleaving analysis. */
|
| 1582 |
|
|
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
|
| 1583 |
|
|
if (!ok)
|
| 1584 |
|
|
{
|
| 1585 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1586 |
|
|
fprintf (vect_dump, "too long list of versioning for alias "
|
| 1587 |
|
|
"run-time tests.");
|
| 1588 |
|
|
return false;
|
| 1589 |
|
|
}
|
| 1590 |
|
|
|
| 1591 |
|
|
/* This pass will decide on using loop versioning and/or loop peeling in
|
| 1592 |
|
|
order to enhance the alignment of data references in the loop. */
|
| 1593 |
|
|
|
| 1594 |
|
|
ok = vect_enhance_data_refs_alignment (loop_vinfo);
|
| 1595 |
|
|
if (!ok)
|
| 1596 |
|
|
{
|
| 1597 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1598 |
|
|
fprintf (vect_dump, "bad data alignment.");
|
| 1599 |
|
|
return false;
|
| 1600 |
|
|
}
|
| 1601 |
|
|
|
| 1602 |
|
|
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
|
| 1603 |
|
|
ok = vect_analyze_slp (loop_vinfo, NULL);
|
| 1604 |
|
|
if (ok)
|
| 1605 |
|
|
{
|
| 1606 |
|
|
/* Decide which possible SLP instances to SLP. */
|
| 1607 |
|
|
slp = vect_make_slp_decision (loop_vinfo);
|
| 1608 |
|
|
|
| 1609 |
|
|
/* Find stmts that need to be both vectorized and SLPed. */
|
| 1610 |
|
|
vect_detect_hybrid_slp (loop_vinfo);
|
| 1611 |
|
|
}
|
| 1612 |
|
|
else
|
| 1613 |
|
|
return false;
|
| 1614 |
|
|
|
| 1615 |
|
|
/* Scan all the operations in the loop and make sure they are
|
| 1616 |
|
|
vectorizable. */
|
| 1617 |
|
|
|
| 1618 |
|
|
ok = vect_analyze_loop_operations (loop_vinfo, slp);
|
| 1619 |
|
|
if (!ok)
|
| 1620 |
|
|
{
|
| 1621 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1622 |
|
|
fprintf (vect_dump, "bad operation or unsupported loop bound.");
|
| 1623 |
|
|
return false;
|
| 1624 |
|
|
}
|
| 1625 |
|
|
|
| 1626 |
|
|
return true;
|
| 1627 |
|
|
}
|
| 1628 |
|
|
|
| 1629 |
|
|
/* Function vect_analyze_loop.
|
| 1630 |
|
|
|
| 1631 |
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
| 1632 |
|
|
for it. The different analyses will record information in the
|
| 1633 |
|
|
loop_vec_info struct. */
|
| 1634 |
|
|
loop_vec_info
|
| 1635 |
|
|
vect_analyze_loop (struct loop *loop)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
loop_vec_info loop_vinfo;
|
| 1638 |
|
|
unsigned int vector_sizes;
|
| 1639 |
|
|
|
| 1640 |
|
|
/* Autodetect first vector size we try. */
|
| 1641 |
|
|
current_vector_size = 0;
|
| 1642 |
|
|
vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
|
| 1643 |
|
|
|
| 1644 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1645 |
|
|
fprintf (vect_dump, "===== analyze_loop_nest =====");
|
| 1646 |
|
|
|
| 1647 |
|
|
if (loop_outer (loop)
|
| 1648 |
|
|
&& loop_vec_info_for_loop (loop_outer (loop))
|
| 1649 |
|
|
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
|
| 1650 |
|
|
{
|
| 1651 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1652 |
|
|
fprintf (vect_dump, "outer-loop already vectorized.");
|
| 1653 |
|
|
return NULL;
|
| 1654 |
|
|
}
|
| 1655 |
|
|
|
| 1656 |
|
|
while (1)
|
| 1657 |
|
|
{
|
| 1658 |
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
|
| 1659 |
|
|
loop_vinfo = vect_analyze_loop_form (loop);
|
| 1660 |
|
|
if (!loop_vinfo)
|
| 1661 |
|
|
{
|
| 1662 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1663 |
|
|
fprintf (vect_dump, "bad loop form.");
|
| 1664 |
|
|
return NULL;
|
| 1665 |
|
|
}
|
| 1666 |
|
|
|
| 1667 |
|
|
if (vect_analyze_loop_2 (loop_vinfo))
|
| 1668 |
|
|
{
|
| 1669 |
|
|
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
|
| 1670 |
|
|
|
| 1671 |
|
|
return loop_vinfo;
|
| 1672 |
|
|
}
|
| 1673 |
|
|
|
| 1674 |
|
|
destroy_loop_vec_info (loop_vinfo, true);
|
| 1675 |
|
|
|
| 1676 |
|
|
vector_sizes &= ~current_vector_size;
|
| 1677 |
|
|
if (vector_sizes == 0
|
| 1678 |
|
|
|| current_vector_size == 0)
|
| 1679 |
|
|
return NULL;
|
| 1680 |
|
|
|
| 1681 |
|
|
/* Try the next biggest vector size. */
|
| 1682 |
|
|
current_vector_size = 1 << floor_log2 (vector_sizes);
|
| 1683 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1684 |
|
|
fprintf (vect_dump, "***** Re-trying analysis with "
|
| 1685 |
|
|
"vector size %d\n", current_vector_size);
|
| 1686 |
|
|
}
|
| 1687 |
|
|
}
|
| 1688 |
|
|
|
| 1689 |
|
|
|
| 1690 |
|
|
/* Function reduction_code_for_scalar_code
|
| 1691 |
|
|
|
| 1692 |
|
|
Input:
|
| 1693 |
|
|
CODE - tree_code of a reduction operations.
|
| 1694 |
|
|
|
| 1695 |
|
|
Output:
|
| 1696 |
|
|
REDUC_CODE - the corresponding tree-code to be used to reduce the
|
| 1697 |
|
|
vector of partial results into a single scalar result (which
|
| 1698 |
|
|
will also reside in a vector) or ERROR_MARK if the operation is
|
| 1699 |
|
|
a supported reduction operation, but does not have such tree-code.
|
| 1700 |
|
|
|
| 1701 |
|
|
Return FALSE if CODE currently cannot be vectorized as reduction. */
|
| 1702 |
|
|
|
| 1703 |
|
|
static bool
|
| 1704 |
|
|
reduction_code_for_scalar_code (enum tree_code code,
|
| 1705 |
|
|
enum tree_code *reduc_code)
|
| 1706 |
|
|
{
|
| 1707 |
|
|
switch (code)
|
| 1708 |
|
|
{
|
| 1709 |
|
|
case MAX_EXPR:
|
| 1710 |
|
|
*reduc_code = REDUC_MAX_EXPR;
|
| 1711 |
|
|
return true;
|
| 1712 |
|
|
|
| 1713 |
|
|
case MIN_EXPR:
|
| 1714 |
|
|
*reduc_code = REDUC_MIN_EXPR;
|
| 1715 |
|
|
return true;
|
| 1716 |
|
|
|
| 1717 |
|
|
case PLUS_EXPR:
|
| 1718 |
|
|
*reduc_code = REDUC_PLUS_EXPR;
|
| 1719 |
|
|
return true;
|
| 1720 |
|
|
|
| 1721 |
|
|
case MULT_EXPR:
|
| 1722 |
|
|
case MINUS_EXPR:
|
| 1723 |
|
|
case BIT_IOR_EXPR:
|
| 1724 |
|
|
case BIT_XOR_EXPR:
|
| 1725 |
|
|
case BIT_AND_EXPR:
|
| 1726 |
|
|
*reduc_code = ERROR_MARK;
|
| 1727 |
|
|
return true;
|
| 1728 |
|
|
|
| 1729 |
|
|
default:
|
| 1730 |
|
|
return false;
|
| 1731 |
|
|
}
|
| 1732 |
|
|
}
|
| 1733 |
|
|
|
| 1734 |
|
|
|
| 1735 |
|
|
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
|
| 1736 |
|
|
STMT is printed with a message MSG. */
|
| 1737 |
|
|
|
| 1738 |
|
|
static void
|
| 1739 |
|
|
report_vect_op (gimple stmt, const char *msg)
|
| 1740 |
|
|
{
|
| 1741 |
|
|
fprintf (vect_dump, "%s", msg);
|
| 1742 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 1743 |
|
|
}
|
| 1744 |
|
|
|
| 1745 |
|
|
|
| 1746 |
|
|
/* Detect SLP reduction of the form:
|
| 1747 |
|
|
|
| 1748 |
|
|
#a1 = phi <a5, a0>
|
| 1749 |
|
|
a2 = operation (a1)
|
| 1750 |
|
|
a3 = operation (a2)
|
| 1751 |
|
|
a4 = operation (a3)
|
| 1752 |
|
|
a5 = operation (a4)
|
| 1753 |
|
|
|
| 1754 |
|
|
#a = phi <a5>
|
| 1755 |
|
|
|
| 1756 |
|
|
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
|
| 1757 |
|
|
FIRST_STMT is the first reduction stmt in the chain
|
| 1758 |
|
|
(a2 = operation (a1)).
|
| 1759 |
|
|
|
| 1760 |
|
|
Return TRUE if a reduction chain was detected. */
|
| 1761 |
|
|
|
| 1762 |
|
|
static bool
|
| 1763 |
|
|
vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
|
| 1764 |
|
|
{
|
| 1765 |
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
| 1766 |
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
| 1767 |
|
|
enum tree_code code;
|
| 1768 |
|
|
gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
|
| 1769 |
|
|
stmt_vec_info use_stmt_info, current_stmt_info;
|
| 1770 |
|
|
tree lhs;
|
| 1771 |
|
|
imm_use_iterator imm_iter;
|
| 1772 |
|
|
use_operand_p use_p;
|
| 1773 |
|
|
int nloop_uses, size = 0, n_out_of_loop_uses;
|
| 1774 |
|
|
bool found = false;
|
| 1775 |
|
|
|
| 1776 |
|
|
if (loop != vect_loop)
|
| 1777 |
|
|
return false;
|
| 1778 |
|
|
|
| 1779 |
|
|
lhs = PHI_RESULT (phi);
|
| 1780 |
|
|
code = gimple_assign_rhs_code (first_stmt);
|
| 1781 |
|
|
while (1)
|
| 1782 |
|
|
{
|
| 1783 |
|
|
nloop_uses = 0;
|
| 1784 |
|
|
n_out_of_loop_uses = 0;
|
| 1785 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
| 1786 |
|
|
{
|
| 1787 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
| 1788 |
|
|
if (is_gimple_debug (use_stmt))
|
| 1789 |
|
|
continue;
|
| 1790 |
|
|
|
| 1791 |
|
|
use_stmt = USE_STMT (use_p);
|
| 1792 |
|
|
|
| 1793 |
|
|
/* Check if we got back to the reduction phi. */
|
| 1794 |
|
|
if (use_stmt == phi)
|
| 1795 |
|
|
{
|
| 1796 |
|
|
loop_use_stmt = use_stmt;
|
| 1797 |
|
|
found = true;
|
| 1798 |
|
|
break;
|
| 1799 |
|
|
}
|
| 1800 |
|
|
|
| 1801 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
| 1802 |
|
|
{
|
| 1803 |
|
|
if (vinfo_for_stmt (use_stmt)
|
| 1804 |
|
|
&& !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
|
| 1805 |
|
|
{
|
| 1806 |
|
|
loop_use_stmt = use_stmt;
|
| 1807 |
|
|
nloop_uses++;
|
| 1808 |
|
|
}
|
| 1809 |
|
|
}
|
| 1810 |
|
|
else
|
| 1811 |
|
|
n_out_of_loop_uses++;
|
| 1812 |
|
|
|
| 1813 |
|
|
/* There are can be either a single use in the loop or two uses in
|
| 1814 |
|
|
phi nodes. */
|
| 1815 |
|
|
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
|
| 1816 |
|
|
return false;
|
| 1817 |
|
|
}
|
| 1818 |
|
|
|
| 1819 |
|
|
if (found)
|
| 1820 |
|
|
break;
|
| 1821 |
|
|
|
| 1822 |
|
|
/* We reached a statement with no loop uses. */
|
| 1823 |
|
|
if (nloop_uses == 0)
|
| 1824 |
|
|
return false;
|
| 1825 |
|
|
|
| 1826 |
|
|
/* This is a loop exit phi, and we haven't reached the reduction phi. */
|
| 1827 |
|
|
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
|
| 1828 |
|
|
return false;
|
| 1829 |
|
|
|
| 1830 |
|
|
if (!is_gimple_assign (loop_use_stmt)
|
| 1831 |
|
|
|| code != gimple_assign_rhs_code (loop_use_stmt)
|
| 1832 |
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
|
| 1833 |
|
|
return false;
|
| 1834 |
|
|
|
| 1835 |
|
|
/* Insert USE_STMT into reduction chain. */
|
| 1836 |
|
|
use_stmt_info = vinfo_for_stmt (loop_use_stmt);
|
| 1837 |
|
|
if (current_stmt)
|
| 1838 |
|
|
{
|
| 1839 |
|
|
current_stmt_info = vinfo_for_stmt (current_stmt);
|
| 1840 |
|
|
GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
|
| 1841 |
|
|
GROUP_FIRST_ELEMENT (use_stmt_info)
|
| 1842 |
|
|
= GROUP_FIRST_ELEMENT (current_stmt_info);
|
| 1843 |
|
|
}
|
| 1844 |
|
|
else
|
| 1845 |
|
|
GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
|
| 1846 |
|
|
|
| 1847 |
|
|
lhs = gimple_assign_lhs (loop_use_stmt);
|
| 1848 |
|
|
current_stmt = loop_use_stmt;
|
| 1849 |
|
|
size++;
|
| 1850 |
|
|
}
|
| 1851 |
|
|
|
| 1852 |
|
|
if (!found || loop_use_stmt != phi || size < 2)
|
| 1853 |
|
|
return false;
|
| 1854 |
|
|
|
| 1855 |
|
|
/* Swap the operands, if needed, to make the reduction operand be the second
|
| 1856 |
|
|
operand. */
|
| 1857 |
|
|
lhs = PHI_RESULT (phi);
|
| 1858 |
|
|
next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
| 1859 |
|
|
while (next_stmt)
|
| 1860 |
|
|
{
|
| 1861 |
|
|
if (gimple_assign_rhs2 (next_stmt) == lhs)
|
| 1862 |
|
|
{
|
| 1863 |
|
|
tree op = gimple_assign_rhs1 (next_stmt);
|
| 1864 |
|
|
gimple def_stmt = NULL;
|
| 1865 |
|
|
|
| 1866 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
| 1867 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
| 1868 |
|
|
|
| 1869 |
|
|
/* Check that the other def is either defined in the loop
|
| 1870 |
|
|
("vect_internal_def"), or it's an induction (defined by a
|
| 1871 |
|
|
loop-header phi-node). */
|
| 1872 |
|
|
if (def_stmt
|
| 1873 |
|
|
&& gimple_bb (def_stmt)
|
| 1874 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
| 1875 |
|
|
&& (is_gimple_assign (def_stmt)
|
| 1876 |
|
|
|| is_gimple_call (def_stmt)
|
| 1877 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
| 1878 |
|
|
== vect_induction_def
|
| 1879 |
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
| 1880 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
| 1881 |
|
|
== vect_internal_def
|
| 1882 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
| 1883 |
|
|
{
|
| 1884 |
|
|
lhs = gimple_assign_lhs (next_stmt);
|
| 1885 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 1886 |
|
|
continue;
|
| 1887 |
|
|
}
|
| 1888 |
|
|
|
| 1889 |
|
|
return false;
|
| 1890 |
|
|
}
|
| 1891 |
|
|
else
|
| 1892 |
|
|
{
|
| 1893 |
|
|
tree op = gimple_assign_rhs2 (next_stmt);
|
| 1894 |
|
|
gimple def_stmt = NULL;
|
| 1895 |
|
|
|
| 1896 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
| 1897 |
|
|
def_stmt = SSA_NAME_DEF_STMT (op);
|
| 1898 |
|
|
|
| 1899 |
|
|
/* Check that the other def is either defined in the loop
|
| 1900 |
|
|
("vect_internal_def"), or it's an induction (defined by a
|
| 1901 |
|
|
loop-header phi-node). */
|
| 1902 |
|
|
if (def_stmt
|
| 1903 |
|
|
&& gimple_bb (def_stmt)
|
| 1904 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
| 1905 |
|
|
&& (is_gimple_assign (def_stmt)
|
| 1906 |
|
|
|| is_gimple_call (def_stmt)
|
| 1907 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
| 1908 |
|
|
== vect_induction_def
|
| 1909 |
|
|
|| (gimple_code (def_stmt) == GIMPLE_PHI
|
| 1910 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
| 1911 |
|
|
== vect_internal_def
|
| 1912 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
|
| 1913 |
|
|
{
|
| 1914 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 1915 |
|
|
{
|
| 1916 |
|
|
fprintf (vect_dump, "swapping oprnds: ");
|
| 1917 |
|
|
print_gimple_stmt (vect_dump, next_stmt, 0, TDF_SLIM);
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
swap_tree_operands (next_stmt,
|
| 1921 |
|
|
gimple_assign_rhs1_ptr (next_stmt),
|
| 1922 |
|
|
gimple_assign_rhs2_ptr (next_stmt));
|
| 1923 |
|
|
mark_symbols_for_renaming (next_stmt);
|
| 1924 |
|
|
}
|
| 1925 |
|
|
else
|
| 1926 |
|
|
return false;
|
| 1927 |
|
|
}
|
| 1928 |
|
|
|
| 1929 |
|
|
lhs = gimple_assign_lhs (next_stmt);
|
| 1930 |
|
|
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
|
| 1931 |
|
|
}
|
| 1932 |
|
|
|
| 1933 |
|
|
/* Save the chain for further analysis in SLP detection. */
|
| 1934 |
|
|
first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
|
| 1935 |
|
|
VEC_safe_push (gimple, heap, LOOP_VINFO_REDUCTION_CHAINS (loop_info), first);
|
| 1936 |
|
|
GROUP_SIZE (vinfo_for_stmt (first)) = size;
|
| 1937 |
|
|
|
| 1938 |
|
|
return true;
|
| 1939 |
|
|
}
|
| 1940 |
|
|
|
| 1941 |
|
|
|
| 1942 |
|
|
/* Function vect_is_simple_reduction_1
|
| 1943 |
|
|
|
| 1944 |
|
|
(1) Detect a cross-iteration def-use cycle that represents a simple
|
| 1945 |
|
|
reduction computation. We look for the following pattern:
|
| 1946 |
|
|
|
| 1947 |
|
|
loop_header:
|
| 1948 |
|
|
a1 = phi < a0, a2 >
|
| 1949 |
|
|
a3 = ...
|
| 1950 |
|
|
a2 = operation (a3, a1)
|
| 1951 |
|
|
|
| 1952 |
|
|
such that:
|
| 1953 |
|
|
1. operation is commutative and associative and it is safe to
|
| 1954 |
|
|
change the order of the computation (if CHECK_REDUCTION is true)
|
| 1955 |
|
|
2. no uses for a2 in the loop (a2 is used out of the loop)
|
| 1956 |
|
|
3. no uses of a1 in the loop besides the reduction operation
|
| 1957 |
|
|
4. no uses of a1 outside the loop.
|
| 1958 |
|
|
|
| 1959 |
|
|
Conditions 1,4 are tested here.
|
| 1960 |
|
|
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
|
| 1961 |
|
|
|
| 1962 |
|
|
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
|
| 1963 |
|
|
nested cycles, if CHECK_REDUCTION is false.
|
| 1964 |
|
|
|
| 1965 |
|
|
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
|
| 1966 |
|
|
reductions:
|
| 1967 |
|
|
|
| 1968 |
|
|
a1 = phi < a0, a2 >
|
| 1969 |
|
|
inner loop (def of a3)
|
| 1970 |
|
|
a2 = phi < a3 >
|
| 1971 |
|
|
|
| 1972 |
|
|
If MODIFY is true it tries also to rework the code in-place to enable
|
| 1973 |
|
|
detection of more reduction patterns. For the time being we rewrite
|
| 1974 |
|
|
"res -= RHS" into "rhs += -RHS" when it seems worthwhile.
|
| 1975 |
|
|
*/
|
| 1976 |
|
|
|
| 1977 |
|
|
static gimple
|
| 1978 |
|
|
vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
|
| 1979 |
|
|
bool check_reduction, bool *double_reduc,
|
| 1980 |
|
|
bool modify)
|
| 1981 |
|
|
{
|
| 1982 |
|
|
struct loop *loop = (gimple_bb (phi))->loop_father;
|
| 1983 |
|
|
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
|
| 1984 |
|
|
edge latch_e = loop_latch_edge (loop);
|
| 1985 |
|
|
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
| 1986 |
|
|
gimple def_stmt, def1 = NULL, def2 = NULL;
|
| 1987 |
|
|
enum tree_code orig_code, code;
|
| 1988 |
|
|
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
|
| 1989 |
|
|
tree type;
|
| 1990 |
|
|
int nloop_uses;
|
| 1991 |
|
|
tree name;
|
| 1992 |
|
|
imm_use_iterator imm_iter;
|
| 1993 |
|
|
use_operand_p use_p;
|
| 1994 |
|
|
bool phi_def;
|
| 1995 |
|
|
|
| 1996 |
|
|
*double_reduc = false;
|
| 1997 |
|
|
|
| 1998 |
|
|
/* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
|
| 1999 |
|
|
otherwise, we assume outer loop vectorization. */
|
| 2000 |
|
|
gcc_assert ((check_reduction && loop == vect_loop)
|
| 2001 |
|
|
|| (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
|
| 2002 |
|
|
|
| 2003 |
|
|
name = PHI_RESULT (phi);
|
| 2004 |
|
|
nloop_uses = 0;
|
| 2005 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
| 2006 |
|
|
{
|
| 2007 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
| 2008 |
|
|
if (is_gimple_debug (use_stmt))
|
| 2009 |
|
|
continue;
|
| 2010 |
|
|
|
| 2011 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
| 2012 |
|
|
{
|
| 2013 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2014 |
|
|
fprintf (vect_dump, "intermediate value used outside loop.");
|
| 2015 |
|
|
|
| 2016 |
|
|
return NULL;
|
| 2017 |
|
|
}
|
| 2018 |
|
|
|
| 2019 |
|
|
if (vinfo_for_stmt (use_stmt)
|
| 2020 |
|
|
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
|
| 2021 |
|
|
nloop_uses++;
|
| 2022 |
|
|
if (nloop_uses > 1)
|
| 2023 |
|
|
{
|
| 2024 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2025 |
|
|
fprintf (vect_dump, "reduction used in loop.");
|
| 2026 |
|
|
return NULL;
|
| 2027 |
|
|
}
|
| 2028 |
|
|
}
|
| 2029 |
|
|
|
| 2030 |
|
|
if (TREE_CODE (loop_arg) != SSA_NAME)
|
| 2031 |
|
|
{
|
| 2032 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2033 |
|
|
{
|
| 2034 |
|
|
fprintf (vect_dump, "reduction: not ssa_name: ");
|
| 2035 |
|
|
print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
|
| 2036 |
|
|
}
|
| 2037 |
|
|
return NULL;
|
| 2038 |
|
|
}
|
| 2039 |
|
|
|
| 2040 |
|
|
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
|
| 2041 |
|
|
if (!def_stmt)
|
| 2042 |
|
|
{
|
| 2043 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2044 |
|
|
fprintf (vect_dump, "reduction: no def_stmt.");
|
| 2045 |
|
|
return NULL;
|
| 2046 |
|
|
}
|
| 2047 |
|
|
|
| 2048 |
|
|
if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
|
| 2049 |
|
|
{
|
| 2050 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2051 |
|
|
print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
|
| 2052 |
|
|
return NULL;
|
| 2053 |
|
|
}
|
| 2054 |
|
|
|
| 2055 |
|
|
if (is_gimple_assign (def_stmt))
|
| 2056 |
|
|
{
|
| 2057 |
|
|
name = gimple_assign_lhs (def_stmt);
|
| 2058 |
|
|
phi_def = false;
|
| 2059 |
|
|
}
|
| 2060 |
|
|
else
|
| 2061 |
|
|
{
|
| 2062 |
|
|
name = PHI_RESULT (def_stmt);
|
| 2063 |
|
|
phi_def = true;
|
| 2064 |
|
|
}
|
| 2065 |
|
|
|
| 2066 |
|
|
nloop_uses = 0;
|
| 2067 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
gimple use_stmt = USE_STMT (use_p);
|
| 2070 |
|
|
if (is_gimple_debug (use_stmt))
|
| 2071 |
|
|
continue;
|
| 2072 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
|
| 2073 |
|
|
&& vinfo_for_stmt (use_stmt)
|
| 2074 |
|
|
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
|
| 2075 |
|
|
nloop_uses++;
|
| 2076 |
|
|
if (nloop_uses > 1)
|
| 2077 |
|
|
{
|
| 2078 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2079 |
|
|
fprintf (vect_dump, "reduction used in loop.");
|
| 2080 |
|
|
return NULL;
|
| 2081 |
|
|
}
|
| 2082 |
|
|
}
|
| 2083 |
|
|
|
| 2084 |
|
|
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
|
| 2085 |
|
|
defined in the inner loop. */
|
| 2086 |
|
|
if (phi_def)
|
| 2087 |
|
|
{
|
| 2088 |
|
|
op1 = PHI_ARG_DEF (def_stmt, 0);
|
| 2089 |
|
|
|
| 2090 |
|
|
if (gimple_phi_num_args (def_stmt) != 1
|
| 2091 |
|
|
|| TREE_CODE (op1) != SSA_NAME)
|
| 2092 |
|
|
{
|
| 2093 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2094 |
|
|
fprintf (vect_dump, "unsupported phi node definition.");
|
| 2095 |
|
|
|
| 2096 |
|
|
return NULL;
|
| 2097 |
|
|
}
|
| 2098 |
|
|
|
| 2099 |
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
| 2100 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
| 2101 |
|
|
&& loop->inner
|
| 2102 |
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
|
| 2103 |
|
|
&& is_gimple_assign (def1))
|
| 2104 |
|
|
{
|
| 2105 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2106 |
|
|
report_vect_op (def_stmt, "detected double reduction: ");
|
| 2107 |
|
|
|
| 2108 |
|
|
*double_reduc = true;
|
| 2109 |
|
|
return def_stmt;
|
| 2110 |
|
|
}
|
| 2111 |
|
|
|
| 2112 |
|
|
return NULL;
|
| 2113 |
|
|
}
|
| 2114 |
|
|
|
| 2115 |
|
|
code = orig_code = gimple_assign_rhs_code (def_stmt);
|
| 2116 |
|
|
|
| 2117 |
|
|
/* We can handle "res -= x[i]", which is non-associative by
|
| 2118 |
|
|
simply rewriting this into "res += -x[i]". Avoid changing
|
| 2119 |
|
|
gimple instruction for the first simple tests and only do this
|
| 2120 |
|
|
if we're allowed to change code at all. */
|
| 2121 |
|
|
if (code == MINUS_EXPR
|
| 2122 |
|
|
&& modify
|
| 2123 |
|
|
&& (op1 = gimple_assign_rhs1 (def_stmt))
|
| 2124 |
|
|
&& TREE_CODE (op1) == SSA_NAME
|
| 2125 |
|
|
&& SSA_NAME_DEF_STMT (op1) == phi)
|
| 2126 |
|
|
code = PLUS_EXPR;
|
| 2127 |
|
|
|
| 2128 |
|
|
if (check_reduction
|
| 2129 |
|
|
&& (!commutative_tree_code (code) || !associative_tree_code (code)))
|
| 2130 |
|
|
{
|
| 2131 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2132 |
|
|
report_vect_op (def_stmt, "reduction: not commutative/associative: ");
|
| 2133 |
|
|
return NULL;
|
| 2134 |
|
|
}
|
| 2135 |
|
|
|
| 2136 |
|
|
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
|
| 2137 |
|
|
{
|
| 2138 |
|
|
if (code != COND_EXPR)
|
| 2139 |
|
|
{
|
| 2140 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2141 |
|
|
report_vect_op (def_stmt, "reduction: not binary operation: ");
|
| 2142 |
|
|
|
| 2143 |
|
|
return NULL;
|
| 2144 |
|
|
}
|
| 2145 |
|
|
|
| 2146 |
|
|
op3 = gimple_assign_rhs1 (def_stmt);
|
| 2147 |
|
|
if (COMPARISON_CLASS_P (op3))
|
| 2148 |
|
|
{
|
| 2149 |
|
|
op4 = TREE_OPERAND (op3, 1);
|
| 2150 |
|
|
op3 = TREE_OPERAND (op3, 0);
|
| 2151 |
|
|
}
|
| 2152 |
|
|
|
| 2153 |
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
| 2154 |
|
|
op2 = gimple_assign_rhs3 (def_stmt);
|
| 2155 |
|
|
|
| 2156 |
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
| 2157 |
|
|
{
|
| 2158 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2159 |
|
|
report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
|
| 2160 |
|
|
|
| 2161 |
|
|
return NULL;
|
| 2162 |
|
|
}
|
| 2163 |
|
|
}
|
| 2164 |
|
|
else
|
| 2165 |
|
|
{
|
| 2166 |
|
|
op1 = gimple_assign_rhs1 (def_stmt);
|
| 2167 |
|
|
op2 = gimple_assign_rhs2 (def_stmt);
|
| 2168 |
|
|
|
| 2169 |
|
|
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
|
| 2170 |
|
|
{
|
| 2171 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2172 |
|
|
report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
|
| 2173 |
|
|
|
| 2174 |
|
|
return NULL;
|
| 2175 |
|
|
}
|
| 2176 |
|
|
}
|
| 2177 |
|
|
|
| 2178 |
|
|
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
|
| 2179 |
|
|
if ((TREE_CODE (op1) == SSA_NAME
|
| 2180 |
|
|
&& !types_compatible_p (type,TREE_TYPE (op1)))
|
| 2181 |
|
|
|| (TREE_CODE (op2) == SSA_NAME
|
| 2182 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op2)))
|
| 2183 |
|
|
|| (op3 && TREE_CODE (op3) == SSA_NAME
|
| 2184 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op3)))
|
| 2185 |
|
|
|| (op4 && TREE_CODE (op4) == SSA_NAME
|
| 2186 |
|
|
&& !types_compatible_p (type, TREE_TYPE (op4))))
|
| 2187 |
|
|
{
|
| 2188 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2189 |
|
|
{
|
| 2190 |
|
|
fprintf (vect_dump, "reduction: multiple types: operation type: ");
|
| 2191 |
|
|
print_generic_expr (vect_dump, type, TDF_SLIM);
|
| 2192 |
|
|
fprintf (vect_dump, ", operands types: ");
|
| 2193 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
|
| 2194 |
|
|
fprintf (vect_dump, ",");
|
| 2195 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
|
| 2196 |
|
|
if (op3)
|
| 2197 |
|
|
{
|
| 2198 |
|
|
fprintf (vect_dump, ",");
|
| 2199 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
|
| 2200 |
|
|
}
|
| 2201 |
|
|
|
| 2202 |
|
|
if (op4)
|
| 2203 |
|
|
{
|
| 2204 |
|
|
fprintf (vect_dump, ",");
|
| 2205 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
|
| 2206 |
|
|
}
|
| 2207 |
|
|
}
|
| 2208 |
|
|
|
| 2209 |
|
|
return NULL;
|
| 2210 |
|
|
}
|
| 2211 |
|
|
|
| 2212 |
|
|
/* Check that it's ok to change the order of the computation.
|
| 2213 |
|
|
Generally, when vectorizing a reduction we change the order of the
|
| 2214 |
|
|
computation. This may change the behavior of the program in some
|
| 2215 |
|
|
cases, so we need to check that this is ok. One exception is when
|
| 2216 |
|
|
vectorizing an outer-loop: the inner-loop is executed sequentially,
|
| 2217 |
|
|
and therefore vectorizing reductions in the inner-loop during
|
| 2218 |
|
|
outer-loop vectorization is safe. */
|
| 2219 |
|
|
|
| 2220 |
|
|
/* CHECKME: check for !flag_finite_math_only too? */
|
| 2221 |
|
|
if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
|
| 2222 |
|
|
&& check_reduction)
|
| 2223 |
|
|
{
|
| 2224 |
|
|
/* Changing the order of operations changes the semantics. */
|
| 2225 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2226 |
|
|
report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
|
| 2227 |
|
|
return NULL;
|
| 2228 |
|
|
}
|
| 2229 |
|
|
else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
|
| 2230 |
|
|
&& check_reduction)
|
| 2231 |
|
|
{
|
| 2232 |
|
|
/* Changing the order of operations changes the semantics. */
|
| 2233 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2234 |
|
|
report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
|
| 2235 |
|
|
return NULL;
|
| 2236 |
|
|
}
|
| 2237 |
|
|
else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
|
| 2238 |
|
|
{
|
| 2239 |
|
|
/* Changing the order of operations changes the semantics. */
|
| 2240 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2241 |
|
|
report_vect_op (def_stmt,
|
| 2242 |
|
|
"reduction: unsafe fixed-point math optimization: ");
|
| 2243 |
|
|
return NULL;
|
| 2244 |
|
|
}
|
| 2245 |
|
|
|
| 2246 |
|
|
/* If we detected "res -= x[i]" earlier, rewrite it into
|
| 2247 |
|
|
"res += -x[i]" now. If this turns out to be useless reassoc
|
| 2248 |
|
|
will clean it up again. */
|
| 2249 |
|
|
if (orig_code == MINUS_EXPR)
|
| 2250 |
|
|
{
|
| 2251 |
|
|
tree rhs = gimple_assign_rhs2 (def_stmt);
|
| 2252 |
|
|
tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
|
| 2253 |
|
|
gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
|
| 2254 |
|
|
rhs, NULL);
|
| 2255 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
|
| 2256 |
|
|
set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
|
| 2257 |
|
|
loop_info, NULL));
|
| 2258 |
|
|
gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
|
| 2259 |
|
|
gimple_assign_set_rhs2 (def_stmt, negrhs);
|
| 2260 |
|
|
gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
|
| 2261 |
|
|
update_stmt (def_stmt);
|
| 2262 |
|
|
}
|
| 2263 |
|
|
|
| 2264 |
|
|
/* Reduction is safe. We're dealing with one of the following:
|
| 2265 |
|
|
1) integer arithmetic and no trapv
|
| 2266 |
|
|
2) floating point arithmetic, and special flags permit this optimization
|
| 2267 |
|
|
3) nested cycle (i.e., outer loop vectorization). */
|
| 2268 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 2269 |
|
|
def1 = SSA_NAME_DEF_STMT (op1);
|
| 2270 |
|
|
|
| 2271 |
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
| 2272 |
|
|
def2 = SSA_NAME_DEF_STMT (op2);
|
| 2273 |
|
|
|
| 2274 |
|
|
if (code != COND_EXPR
|
| 2275 |
|
|
&& ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
|
| 2276 |
|
|
{
|
| 2277 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2278 |
|
|
report_vect_op (def_stmt, "reduction: no defs for operands: ");
|
| 2279 |
|
|
return NULL;
|
| 2280 |
|
|
}
|
| 2281 |
|
|
|
| 2282 |
|
|
/* Check that one def is the reduction def, defined by PHI,
|
| 2283 |
|
|
the other def is either defined in the loop ("vect_internal_def"),
|
| 2284 |
|
|
or it's an induction (defined by a loop-header phi-node). */
|
| 2285 |
|
|
|
| 2286 |
|
|
if (def2 && def2 == phi
|
| 2287 |
|
|
&& (code == COND_EXPR
|
| 2288 |
|
|
|| !def1 || gimple_nop_p (def1)
|
| 2289 |
|
|
|| (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
|
| 2290 |
|
|
&& (is_gimple_assign (def1)
|
| 2291 |
|
|
|| is_gimple_call (def1)
|
| 2292 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
| 2293 |
|
|
== vect_induction_def
|
| 2294 |
|
|
|| (gimple_code (def1) == GIMPLE_PHI
|
| 2295 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
|
| 2296 |
|
|
== vect_internal_def
|
| 2297 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def1)))))))
|
| 2298 |
|
|
{
|
| 2299 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2300 |
|
|
report_vect_op (def_stmt, "detected reduction: ");
|
| 2301 |
|
|
return def_stmt;
|
| 2302 |
|
|
}
|
| 2303 |
|
|
|
| 2304 |
|
|
if (def1 && def1 == phi
|
| 2305 |
|
|
&& (code == COND_EXPR
|
| 2306 |
|
|
|| !def2 || gimple_nop_p (def2)
|
| 2307 |
|
|
|| (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
|
| 2308 |
|
|
&& (is_gimple_assign (def2)
|
| 2309 |
|
|
|| is_gimple_call (def2)
|
| 2310 |
|
|
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
| 2311 |
|
|
== vect_induction_def
|
| 2312 |
|
|
|| (gimple_code (def2) == GIMPLE_PHI
|
| 2313 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
|
| 2314 |
|
|
== vect_internal_def
|
| 2315 |
|
|
&& !is_loop_header_bb_p (gimple_bb (def2)))))))
|
| 2316 |
|
|
{
|
| 2317 |
|
|
if (check_reduction)
|
| 2318 |
|
|
{
|
| 2319 |
|
|
/* Swap operands (just for simplicity - so that the rest of the code
|
| 2320 |
|
|
can assume that the reduction variable is always the last (second)
|
| 2321 |
|
|
argument). */
|
| 2322 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2323 |
|
|
report_vect_op (def_stmt,
|
| 2324 |
|
|
"detected reduction: need to swap operands: ");
|
| 2325 |
|
|
|
| 2326 |
|
|
swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
|
| 2327 |
|
|
gimple_assign_rhs2_ptr (def_stmt));
|
| 2328 |
|
|
}
|
| 2329 |
|
|
else
|
| 2330 |
|
|
{
|
| 2331 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2332 |
|
|
report_vect_op (def_stmt, "detected reduction: ");
|
| 2333 |
|
|
}
|
| 2334 |
|
|
|
| 2335 |
|
|
return def_stmt;
|
| 2336 |
|
|
}
|
| 2337 |
|
|
|
| 2338 |
|
|
/* Try to find SLP reduction chain. */
|
| 2339 |
|
|
if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
|
| 2340 |
|
|
{
|
| 2341 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2342 |
|
|
report_vect_op (def_stmt, "reduction: detected reduction chain: ");
|
| 2343 |
|
|
|
| 2344 |
|
|
return def_stmt;
|
| 2345 |
|
|
}
|
| 2346 |
|
|
|
| 2347 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 2348 |
|
|
report_vect_op (def_stmt, "reduction: unknown pattern: ");
|
| 2349 |
|
|
|
| 2350 |
|
|
return NULL;
|
| 2351 |
|
|
}
|
| 2352 |
|
|
|
| 2353 |
|
|
/* Wrapper around vect_is_simple_reduction_1, that won't modify code
|
| 2354 |
|
|
in-place. Arguments as there. */
|
| 2355 |
|
|
|
| 2356 |
|
|
static gimple
|
| 2357 |
|
|
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
|
| 2358 |
|
|
bool check_reduction, bool *double_reduc)
|
| 2359 |
|
|
{
|
| 2360 |
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
| 2361 |
|
|
double_reduc, false);
|
| 2362 |
|
|
}
|
| 2363 |
|
|
|
| 2364 |
|
|
/* Wrapper around vect_is_simple_reduction_1, which will modify code
|
| 2365 |
|
|
in-place if it enables detection of more reductions. Arguments
|
| 2366 |
|
|
as there. */
|
| 2367 |
|
|
|
| 2368 |
|
|
gimple
|
| 2369 |
|
|
vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
|
| 2370 |
|
|
bool check_reduction, bool *double_reduc)
|
| 2371 |
|
|
{
|
| 2372 |
|
|
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
|
| 2373 |
|
|
double_reduc, true);
|
| 2374 |
|
|
}
|
| 2375 |
|
|
|
| 2376 |
|
|
/* Calculate the cost of one scalar iteration of the loop. */
|
| 2377 |
|
|
int
|
| 2378 |
|
|
vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
|
| 2379 |
|
|
{
|
| 2380 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2381 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 2382 |
|
|
int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
|
| 2383 |
|
|
int innerloop_iters, i, stmt_cost;
|
| 2384 |
|
|
|
| 2385 |
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
| 2386 |
|
|
iteration for now.
|
| 2387 |
|
|
|
| 2388 |
|
|
TODO: Add outer loop support.
|
| 2389 |
|
|
|
| 2390 |
|
|
TODO: Consider assigning different costs to different scalar
|
| 2391 |
|
|
statements. */
|
| 2392 |
|
|
|
| 2393 |
|
|
/* FORNOW. */
|
| 2394 |
|
|
innerloop_iters = 1;
|
| 2395 |
|
|
if (loop->inner)
|
| 2396 |
|
|
innerloop_iters = 50; /* FIXME */
|
| 2397 |
|
|
|
| 2398 |
|
|
for (i = 0; i < nbbs; i++)
|
| 2399 |
|
|
{
|
| 2400 |
|
|
gimple_stmt_iterator si;
|
| 2401 |
|
|
basic_block bb = bbs[i];
|
| 2402 |
|
|
|
| 2403 |
|
|
if (bb->loop_father == loop->inner)
|
| 2404 |
|
|
factor = innerloop_iters;
|
| 2405 |
|
|
else
|
| 2406 |
|
|
factor = 1;
|
| 2407 |
|
|
|
| 2408 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 2409 |
|
|
{
|
| 2410 |
|
|
gimple stmt = gsi_stmt (si);
|
| 2411 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2412 |
|
|
|
| 2413 |
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
| 2414 |
|
|
continue;
|
| 2415 |
|
|
|
| 2416 |
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
| 2417 |
|
|
if (stmt_info
|
| 2418 |
|
|
&& !STMT_VINFO_RELEVANT_P (stmt_info)
|
| 2419 |
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
| 2420 |
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
| 2421 |
|
|
&& !STMT_VINFO_IN_PATTERN_P (stmt_info))
|
| 2422 |
|
|
continue;
|
| 2423 |
|
|
|
| 2424 |
|
|
if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
|
| 2425 |
|
|
{
|
| 2426 |
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
|
| 2427 |
|
|
stmt_cost = vect_get_cost (scalar_load);
|
| 2428 |
|
|
else
|
| 2429 |
|
|
stmt_cost = vect_get_cost (scalar_store);
|
| 2430 |
|
|
}
|
| 2431 |
|
|
else
|
| 2432 |
|
|
stmt_cost = vect_get_cost (scalar_stmt);
|
| 2433 |
|
|
|
| 2434 |
|
|
scalar_single_iter_cost += stmt_cost * factor;
|
| 2435 |
|
|
}
|
| 2436 |
|
|
}
|
| 2437 |
|
|
return scalar_single_iter_cost;
|
| 2438 |
|
|
}
|
| 2439 |
|
|
|
| 2440 |
|
|
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
|
| 2441 |
|
|
int
|
| 2442 |
|
|
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
|
| 2443 |
|
|
int *peel_iters_epilogue,
|
| 2444 |
|
|
int scalar_single_iter_cost)
|
| 2445 |
|
|
{
|
| 2446 |
|
|
int peel_guard_costs = 0;
|
| 2447 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 2448 |
|
|
|
| 2449 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
| 2450 |
|
|
{
|
| 2451 |
|
|
*peel_iters_epilogue = vf/2;
|
| 2452 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2453 |
|
|
fprintf (vect_dump, "cost model: "
|
| 2454 |
|
|
"epilogue peel iters set to vf/2 because "
|
| 2455 |
|
|
"loop iterations are unknown .");
|
| 2456 |
|
|
|
| 2457 |
|
|
/* If peeled iterations are known but number of scalar loop
|
| 2458 |
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
| 2459 |
|
|
peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
|
| 2460 |
|
|
}
|
| 2461 |
|
|
else
|
| 2462 |
|
|
{
|
| 2463 |
|
|
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
| 2464 |
|
|
peel_iters_prologue = niters < peel_iters_prologue ?
|
| 2465 |
|
|
niters : peel_iters_prologue;
|
| 2466 |
|
|
*peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
|
| 2467 |
|
|
/* If we need to peel for gaps, but no peeling is required, we have to
|
| 2468 |
|
|
peel VF iterations. */
|
| 2469 |
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
|
| 2470 |
|
|
*peel_iters_epilogue = vf;
|
| 2471 |
|
|
}
|
| 2472 |
|
|
|
| 2473 |
|
|
return (peel_iters_prologue * scalar_single_iter_cost)
|
| 2474 |
|
|
+ (*peel_iters_epilogue * scalar_single_iter_cost)
|
| 2475 |
|
|
+ peel_guard_costs;
|
| 2476 |
|
|
}
|
| 2477 |
|
|
|
| 2478 |
|
|
/* Function vect_estimate_min_profitable_iters
|
| 2479 |
|
|
|
| 2480 |
|
|
Return the number of iterations required for the vector version of the
|
| 2481 |
|
|
loop to be profitable relative to the cost of the scalar version of the
|
| 2482 |
|
|
loop.
|
| 2483 |
|
|
|
| 2484 |
|
|
TODO: Take profile info into account before making vectorization
|
| 2485 |
|
|
decisions, if available. */
|
| 2486 |
|
|
|
| 2487 |
|
|
int
|
| 2488 |
|
|
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
|
| 2489 |
|
|
{
|
| 2490 |
|
|
int i;
|
| 2491 |
|
|
int min_profitable_iters;
|
| 2492 |
|
|
int peel_iters_prologue;
|
| 2493 |
|
|
int peel_iters_epilogue;
|
| 2494 |
|
|
int vec_inside_cost = 0;
|
| 2495 |
|
|
int vec_outside_cost = 0;
|
| 2496 |
|
|
int scalar_single_iter_cost = 0;
|
| 2497 |
|
|
int scalar_outside_cost = 0;
|
| 2498 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 2499 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2500 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 2501 |
|
|
int nbbs = loop->num_nodes;
|
| 2502 |
|
|
int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
| 2503 |
|
|
int peel_guard_costs = 0;
|
| 2504 |
|
|
int innerloop_iters = 0, factor;
|
| 2505 |
|
|
VEC (slp_instance, heap) *slp_instances;
|
| 2506 |
|
|
slp_instance instance;
|
| 2507 |
|
|
|
| 2508 |
|
|
/* Cost model disabled. */
|
| 2509 |
|
|
if (!flag_vect_cost_model)
|
| 2510 |
|
|
{
|
| 2511 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2512 |
|
|
fprintf (vect_dump, "cost model disabled.");
|
| 2513 |
|
|
return 0;
|
| 2514 |
|
|
}
|
| 2515 |
|
|
|
| 2516 |
|
|
/* Requires loop versioning tests to handle misalignment. */
|
| 2517 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
| 2518 |
|
|
{
|
| 2519 |
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
| 2520 |
|
|
vec_outside_cost +=
|
| 2521 |
|
|
VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
|
| 2522 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2523 |
|
|
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
|
| 2524 |
|
|
"versioning to treat misalignment.\n");
|
| 2525 |
|
|
}
|
| 2526 |
|
|
|
| 2527 |
|
|
/* Requires loop versioning with alias checks. */
|
| 2528 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 2529 |
|
|
{
|
| 2530 |
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
| 2531 |
|
|
vec_outside_cost +=
|
| 2532 |
|
|
VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
|
| 2533 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2534 |
|
|
fprintf (vect_dump, "cost model: Adding cost of checks for loop "
|
| 2535 |
|
|
"versioning aliasing.\n");
|
| 2536 |
|
|
}
|
| 2537 |
|
|
|
| 2538 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
| 2539 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 2540 |
|
|
vec_outside_cost += vect_get_cost (cond_branch_taken);
|
| 2541 |
|
|
|
| 2542 |
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
| 2543 |
|
|
iteration for now.
|
| 2544 |
|
|
|
| 2545 |
|
|
TODO: Add outer loop support.
|
| 2546 |
|
|
|
| 2547 |
|
|
TODO: Consider assigning different costs to different scalar
|
| 2548 |
|
|
statements. */
|
| 2549 |
|
|
|
| 2550 |
|
|
/* FORNOW. */
|
| 2551 |
|
|
if (loop->inner)
|
| 2552 |
|
|
innerloop_iters = 50; /* FIXME */
|
| 2553 |
|
|
|
| 2554 |
|
|
for (i = 0; i < nbbs; i++)
|
| 2555 |
|
|
{
|
| 2556 |
|
|
gimple_stmt_iterator si;
|
| 2557 |
|
|
basic_block bb = bbs[i];
|
| 2558 |
|
|
|
| 2559 |
|
|
if (bb->loop_father == loop->inner)
|
| 2560 |
|
|
factor = innerloop_iters;
|
| 2561 |
|
|
else
|
| 2562 |
|
|
factor = 1;
|
| 2563 |
|
|
|
| 2564 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 2565 |
|
|
{
|
| 2566 |
|
|
gimple stmt = gsi_stmt (si);
|
| 2567 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 2568 |
|
|
|
| 2569 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
| 2570 |
|
|
{
|
| 2571 |
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 2572 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 2573 |
|
|
}
|
| 2574 |
|
|
|
| 2575 |
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
| 2576 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 2577 |
|
|
&& (!STMT_VINFO_LIVE_P (stmt_info)
|
| 2578 |
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info))))
|
| 2579 |
|
|
continue;
|
| 2580 |
|
|
|
| 2581 |
|
|
vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
|
| 2582 |
|
|
/* FIXME: for stmts in the inner-loop in outer-loop vectorization,
|
| 2583 |
|
|
some of the "outside" costs are generated inside the outer-loop. */
|
| 2584 |
|
|
vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
|
| 2585 |
|
|
if (is_pattern_stmt_p (stmt_info)
|
| 2586 |
|
|
&& STMT_VINFO_PATTERN_DEF_SEQ (stmt_info))
|
| 2587 |
|
|
{
|
| 2588 |
|
|
gimple_stmt_iterator gsi;
|
| 2589 |
|
|
|
| 2590 |
|
|
for (gsi = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
|
| 2591 |
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
| 2592 |
|
|
{
|
| 2593 |
|
|
gimple pattern_def_stmt = gsi_stmt (gsi);
|
| 2594 |
|
|
stmt_vec_info pattern_def_stmt_info
|
| 2595 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
| 2596 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
| 2597 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
| 2598 |
|
|
{
|
| 2599 |
|
|
vec_inside_cost
|
| 2600 |
|
|
+= STMT_VINFO_INSIDE_OF_LOOP_COST
|
| 2601 |
|
|
(pattern_def_stmt_info) * factor;
|
| 2602 |
|
|
vec_outside_cost
|
| 2603 |
|
|
+= STMT_VINFO_OUTSIDE_OF_LOOP_COST
|
| 2604 |
|
|
(pattern_def_stmt_info);
|
| 2605 |
|
|
}
|
| 2606 |
|
|
}
|
| 2607 |
|
|
}
|
| 2608 |
|
|
}
|
| 2609 |
|
|
}
|
| 2610 |
|
|
|
| 2611 |
|
|
scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
|
| 2612 |
|
|
|
| 2613 |
|
|
/* Add additional cost for the peeled instructions in prologue and epilogue
|
| 2614 |
|
|
loop.
|
| 2615 |
|
|
|
| 2616 |
|
|
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
|
| 2617 |
|
|
at compile-time - we assume it's vf/2 (the worst would be vf-1).
|
| 2618 |
|
|
|
| 2619 |
|
|
TODO: Build an expression that represents peel_iters for prologue and
|
| 2620 |
|
|
epilogue to be used in a run-time test. */
|
| 2621 |
|
|
|
| 2622 |
|
|
if (npeel < 0)
|
| 2623 |
|
|
{
|
| 2624 |
|
|
peel_iters_prologue = vf/2;
|
| 2625 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2626 |
|
|
fprintf (vect_dump, "cost model: "
|
| 2627 |
|
|
"prologue peel iters set to vf/2.");
|
| 2628 |
|
|
|
| 2629 |
|
|
/* If peeling for alignment is unknown, loop bound of main loop becomes
|
| 2630 |
|
|
unknown. */
|
| 2631 |
|
|
peel_iters_epilogue = vf/2;
|
| 2632 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2633 |
|
|
fprintf (vect_dump, "cost model: "
|
| 2634 |
|
|
"epilogue peel iters set to vf/2 because "
|
| 2635 |
|
|
"peeling for alignment is unknown .");
|
| 2636 |
|
|
|
| 2637 |
|
|
/* If peeled iterations are unknown, count a taken branch and a not taken
|
| 2638 |
|
|
branch per peeled loop. Even if scalar loop iterations are known,
|
| 2639 |
|
|
vector iterations are not known since peeled prologue iterations are
|
| 2640 |
|
|
not known. Hence guards remain the same. */
|
| 2641 |
|
|
peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
|
| 2642 |
|
|
+ vect_get_cost (cond_branch_not_taken));
|
| 2643 |
|
|
vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
|
| 2644 |
|
|
+ (peel_iters_epilogue * scalar_single_iter_cost)
|
| 2645 |
|
|
+ peel_guard_costs;
|
| 2646 |
|
|
}
|
| 2647 |
|
|
else
|
| 2648 |
|
|
{
|
| 2649 |
|
|
peel_iters_prologue = npeel;
|
| 2650 |
|
|
vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
|
| 2651 |
|
|
peel_iters_prologue, &peel_iters_epilogue,
|
| 2652 |
|
|
scalar_single_iter_cost);
|
| 2653 |
|
|
}
|
| 2654 |
|
|
|
| 2655 |
|
|
/* FORNOW: The scalar outside cost is incremented in one of the
|
| 2656 |
|
|
following ways:
|
| 2657 |
|
|
|
| 2658 |
|
|
1. The vectorizer checks for alignment and aliasing and generates
|
| 2659 |
|
|
a condition that allows dynamic vectorization. A cost model
|
| 2660 |
|
|
check is ANDED with the versioning condition. Hence scalar code
|
| 2661 |
|
|
path now has the added cost of the versioning check.
|
| 2662 |
|
|
|
| 2663 |
|
|
if (cost > th & versioning_check)
|
| 2664 |
|
|
jmp to vector code
|
| 2665 |
|
|
|
| 2666 |
|
|
Hence run-time scalar is incremented by not-taken branch cost.
|
| 2667 |
|
|
|
| 2668 |
|
|
2. The vectorizer then checks if a prologue is required. If the
|
| 2669 |
|
|
cost model check was not done before during versioning, it has to
|
| 2670 |
|
|
be done before the prologue check.
|
| 2671 |
|
|
|
| 2672 |
|
|
if (cost <= th)
|
| 2673 |
|
|
prologue = scalar_iters
|
| 2674 |
|
|
if (prologue == 0)
|
| 2675 |
|
|
jmp to vector code
|
| 2676 |
|
|
else
|
| 2677 |
|
|
execute prologue
|
| 2678 |
|
|
if (prologue == num_iters)
|
| 2679 |
|
|
go to exit
|
| 2680 |
|
|
|
| 2681 |
|
|
Hence the run-time scalar cost is incremented by a taken branch,
|
| 2682 |
|
|
plus a not-taken branch, plus a taken branch cost.
|
| 2683 |
|
|
|
| 2684 |
|
|
3. The vectorizer then checks if an epilogue is required. If the
|
| 2685 |
|
|
cost model check was not done before during prologue check, it
|
| 2686 |
|
|
has to be done with the epilogue check.
|
| 2687 |
|
|
|
| 2688 |
|
|
if (prologue == 0)
|
| 2689 |
|
|
jmp to vector code
|
| 2690 |
|
|
else
|
| 2691 |
|
|
execute prologue
|
| 2692 |
|
|
if (prologue == num_iters)
|
| 2693 |
|
|
go to exit
|
| 2694 |
|
|
vector code:
|
| 2695 |
|
|
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
|
| 2696 |
|
|
jmp to epilogue
|
| 2697 |
|
|
|
| 2698 |
|
|
Hence the run-time scalar cost should be incremented by 2 taken
|
| 2699 |
|
|
branches.
|
| 2700 |
|
|
|
| 2701 |
|
|
TODO: The back end may reorder the BBS's differently and reverse
|
| 2702 |
|
|
conditions/branch directions. Change the estimates below to
|
| 2703 |
|
|
something more reasonable. */
|
| 2704 |
|
|
|
| 2705 |
|
|
/* If the number of iterations is known and we do not do versioning, we can
|
| 2706 |
|
|
decide whether to vectorize at compile time. Hence the scalar version
|
| 2707 |
|
|
do not carry cost model guard costs. */
|
| 2708 |
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 2709 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
| 2710 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 2711 |
|
|
{
|
| 2712 |
|
|
/* Cost model check occurs at versioning. */
|
| 2713 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
| 2714 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 2715 |
|
|
scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
|
| 2716 |
|
|
else
|
| 2717 |
|
|
{
|
| 2718 |
|
|
/* Cost model check occurs at prologue generation. */
|
| 2719 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
| 2720 |
|
|
scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
|
| 2721 |
|
|
+ vect_get_cost (cond_branch_not_taken);
|
| 2722 |
|
|
/* Cost model check occurs at epilogue generation. */
|
| 2723 |
|
|
else
|
| 2724 |
|
|
scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
|
| 2725 |
|
|
}
|
| 2726 |
|
|
}
|
| 2727 |
|
|
|
| 2728 |
|
|
/* Add SLP costs. */
|
| 2729 |
|
|
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
|
| 2730 |
|
|
FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
|
| 2731 |
|
|
{
|
| 2732 |
|
|
vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
|
| 2733 |
|
|
vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
|
| 2734 |
|
|
}
|
| 2735 |
|
|
|
| 2736 |
|
|
/* Calculate number of iterations required to make the vector version
|
| 2737 |
|
|
profitable, relative to the loop bodies only. The following condition
|
| 2738 |
|
|
must hold true:
|
| 2739 |
|
|
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
|
| 2740 |
|
|
where
|
| 2741 |
|
|
SIC = scalar iteration cost, VIC = vector iteration cost,
|
| 2742 |
|
|
VOC = vector outside cost, VF = vectorization factor,
|
| 2743 |
|
|
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
|
| 2744 |
|
|
SOC = scalar outside cost for run time cost model check. */
|
| 2745 |
|
|
|
| 2746 |
|
|
if ((scalar_single_iter_cost * vf) > vec_inside_cost)
|
| 2747 |
|
|
{
|
| 2748 |
|
|
if (vec_outside_cost <= 0)
|
| 2749 |
|
|
min_profitable_iters = 1;
|
| 2750 |
|
|
else
|
| 2751 |
|
|
{
|
| 2752 |
|
|
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
|
| 2753 |
|
|
- vec_inside_cost * peel_iters_prologue
|
| 2754 |
|
|
- vec_inside_cost * peel_iters_epilogue)
|
| 2755 |
|
|
/ ((scalar_single_iter_cost * vf)
|
| 2756 |
|
|
- vec_inside_cost);
|
| 2757 |
|
|
|
| 2758 |
|
|
if ((scalar_single_iter_cost * vf * min_profitable_iters)
|
| 2759 |
|
|
<= ((vec_inside_cost * min_profitable_iters)
|
| 2760 |
|
|
+ ((vec_outside_cost - scalar_outside_cost) * vf)))
|
| 2761 |
|
|
min_profitable_iters++;
|
| 2762 |
|
|
}
|
| 2763 |
|
|
}
|
| 2764 |
|
|
/* vector version will never be profitable. */
|
| 2765 |
|
|
else
|
| 2766 |
|
|
{
|
| 2767 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2768 |
|
|
fprintf (vect_dump, "cost model: the vector iteration cost = %d "
|
| 2769 |
|
|
"divided by the scalar iteration cost = %d "
|
| 2770 |
|
|
"is greater or equal to the vectorization factor = %d.",
|
| 2771 |
|
|
vec_inside_cost, scalar_single_iter_cost, vf);
|
| 2772 |
|
|
return -1;
|
| 2773 |
|
|
}
|
| 2774 |
|
|
|
| 2775 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2776 |
|
|
{
|
| 2777 |
|
|
fprintf (vect_dump, "Cost model analysis: \n");
|
| 2778 |
|
|
fprintf (vect_dump, " Vector inside of loop cost: %d\n",
|
| 2779 |
|
|
vec_inside_cost);
|
| 2780 |
|
|
fprintf (vect_dump, " Vector outside of loop cost: %d\n",
|
| 2781 |
|
|
vec_outside_cost);
|
| 2782 |
|
|
fprintf (vect_dump, " Scalar iteration cost: %d\n",
|
| 2783 |
|
|
scalar_single_iter_cost);
|
| 2784 |
|
|
fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
|
| 2785 |
|
|
fprintf (vect_dump, " prologue iterations: %d\n",
|
| 2786 |
|
|
peel_iters_prologue);
|
| 2787 |
|
|
fprintf (vect_dump, " epilogue iterations: %d\n",
|
| 2788 |
|
|
peel_iters_epilogue);
|
| 2789 |
|
|
fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
|
| 2790 |
|
|
min_profitable_iters);
|
| 2791 |
|
|
}
|
| 2792 |
|
|
|
| 2793 |
|
|
min_profitable_iters =
|
| 2794 |
|
|
min_profitable_iters < vf ? vf : min_profitable_iters;
|
| 2795 |
|
|
|
| 2796 |
|
|
/* Because the condition we create is:
|
| 2797 |
|
|
if (niters <= min_profitable_iters)
|
| 2798 |
|
|
then skip the vectorized loop. */
|
| 2799 |
|
|
min_profitable_iters--;
|
| 2800 |
|
|
|
| 2801 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2802 |
|
|
fprintf (vect_dump, " Profitability threshold = %d\n",
|
| 2803 |
|
|
min_profitable_iters);
|
| 2804 |
|
|
|
| 2805 |
|
|
return min_profitable_iters;
|
| 2806 |
|
|
}
|
| 2807 |
|
|
|
| 2808 |
|
|
|
| 2809 |
|
|
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
|
| 2810 |
|
|
functions. Design better to avoid maintenance issues. */
|
| 2811 |
|
|
|
| 2812 |
|
|
/* Function vect_model_reduction_cost.
|
| 2813 |
|
|
|
| 2814 |
|
|
Models cost for a reduction operation, including the vector ops
|
| 2815 |
|
|
generated within the strip-mine loop, the initial definition before
|
| 2816 |
|
|
the loop, and the epilogue code that must be generated. */
|
| 2817 |
|
|
|
| 2818 |
|
|
static bool
|
| 2819 |
|
|
vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
|
| 2820 |
|
|
int ncopies)
|
| 2821 |
|
|
{
|
| 2822 |
|
|
int outer_cost = 0;
|
| 2823 |
|
|
enum tree_code code;
|
| 2824 |
|
|
optab optab;
|
| 2825 |
|
|
tree vectype;
|
| 2826 |
|
|
gimple stmt, orig_stmt;
|
| 2827 |
|
|
tree reduction_op;
|
| 2828 |
|
|
enum machine_mode mode;
|
| 2829 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 2830 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2831 |
|
|
|
| 2832 |
|
|
|
| 2833 |
|
|
/* Cost of reduction op inside loop. */
|
| 2834 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
|
| 2835 |
|
|
+= ncopies * vect_get_cost (vector_stmt);
|
| 2836 |
|
|
|
| 2837 |
|
|
stmt = STMT_VINFO_STMT (stmt_info);
|
| 2838 |
|
|
|
| 2839 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
| 2840 |
|
|
{
|
| 2841 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 2842 |
|
|
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
|
| 2843 |
|
|
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
|
| 2844 |
|
|
break;
|
| 2845 |
|
|
case GIMPLE_UNARY_RHS:
|
| 2846 |
|
|
reduction_op = gimple_assign_rhs1 (stmt);
|
| 2847 |
|
|
break;
|
| 2848 |
|
|
case GIMPLE_BINARY_RHS:
|
| 2849 |
|
|
reduction_op = gimple_assign_rhs2 (stmt);
|
| 2850 |
|
|
break;
|
| 2851 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 2852 |
|
|
reduction_op = gimple_assign_rhs3 (stmt);
|
| 2853 |
|
|
break;
|
| 2854 |
|
|
default:
|
| 2855 |
|
|
gcc_unreachable ();
|
| 2856 |
|
|
}
|
| 2857 |
|
|
|
| 2858 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
| 2859 |
|
|
if (!vectype)
|
| 2860 |
|
|
{
|
| 2861 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2862 |
|
|
{
|
| 2863 |
|
|
fprintf (vect_dump, "unsupported data-type ");
|
| 2864 |
|
|
print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
|
| 2865 |
|
|
}
|
| 2866 |
|
|
return false;
|
| 2867 |
|
|
}
|
| 2868 |
|
|
|
| 2869 |
|
|
mode = TYPE_MODE (vectype);
|
| 2870 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 2871 |
|
|
|
| 2872 |
|
|
if (!orig_stmt)
|
| 2873 |
|
|
orig_stmt = STMT_VINFO_STMT (stmt_info);
|
| 2874 |
|
|
|
| 2875 |
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
| 2876 |
|
|
|
| 2877 |
|
|
/* Add in cost for initial definition. */
|
| 2878 |
|
|
outer_cost += vect_get_cost (scalar_to_vec);
|
| 2879 |
|
|
|
| 2880 |
|
|
/* Determine cost of epilogue code.
|
| 2881 |
|
|
|
| 2882 |
|
|
We have a reduction operator that will reduce the vector in one statement.
|
| 2883 |
|
|
Also requires scalar extract. */
|
| 2884 |
|
|
|
| 2885 |
|
|
if (!nested_in_vect_loop_p (loop, orig_stmt))
|
| 2886 |
|
|
{
|
| 2887 |
|
|
if (reduc_code != ERROR_MARK)
|
| 2888 |
|
|
outer_cost += vect_get_cost (vector_stmt)
|
| 2889 |
|
|
+ vect_get_cost (vec_to_scalar);
|
| 2890 |
|
|
else
|
| 2891 |
|
|
{
|
| 2892 |
|
|
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
| 2893 |
|
|
tree bitsize =
|
| 2894 |
|
|
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
|
| 2895 |
|
|
int element_bitsize = tree_low_cst (bitsize, 1);
|
| 2896 |
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
| 2897 |
|
|
|
| 2898 |
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
| 2899 |
|
|
|
| 2900 |
|
|
/* We have a whole vector shift available. */
|
| 2901 |
|
|
if (VECTOR_MODE_P (mode)
|
| 2902 |
|
|
&& optab_handler (optab, mode) != CODE_FOR_nothing
|
| 2903 |
|
|
&& optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
| 2904 |
|
|
/* Final reduction via vector shifts and the reduction operator. Also
|
| 2905 |
|
|
requires scalar extract. */
|
| 2906 |
|
|
outer_cost += ((exact_log2(nelements) * 2)
|
| 2907 |
|
|
* vect_get_cost (vector_stmt)
|
| 2908 |
|
|
+ vect_get_cost (vec_to_scalar));
|
| 2909 |
|
|
else
|
| 2910 |
|
|
/* Use extracts and reduction op for final reduction. For N elements,
|
| 2911 |
|
|
we have N extracts and N-1 reduction ops. */
|
| 2912 |
|
|
outer_cost += ((nelements + nelements - 1)
|
| 2913 |
|
|
* vect_get_cost (vector_stmt));
|
| 2914 |
|
|
}
|
| 2915 |
|
|
}
|
| 2916 |
|
|
|
| 2917 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
|
| 2918 |
|
|
|
| 2919 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2920 |
|
|
fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
|
| 2921 |
|
|
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
|
| 2922 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
|
| 2923 |
|
|
|
| 2924 |
|
|
return true;
|
| 2925 |
|
|
}
|
| 2926 |
|
|
|
| 2927 |
|
|
|
| 2928 |
|
|
/* Function vect_model_induction_cost.
|
| 2929 |
|
|
|
| 2930 |
|
|
Models cost for induction operations. */
|
| 2931 |
|
|
|
| 2932 |
|
|
static void
|
| 2933 |
|
|
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
|
| 2934 |
|
|
{
|
| 2935 |
|
|
/* loop cost for vec_loop. */
|
| 2936 |
|
|
STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
|
| 2937 |
|
|
= ncopies * vect_get_cost (vector_stmt);
|
| 2938 |
|
|
/* prologue cost for vec_init and vec_step. */
|
| 2939 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
|
| 2940 |
|
|
= 2 * vect_get_cost (scalar_to_vec);
|
| 2941 |
|
|
|
| 2942 |
|
|
if (vect_print_dump_info (REPORT_COST))
|
| 2943 |
|
|
fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
|
| 2944 |
|
|
"outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
|
| 2945 |
|
|
STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
|
| 2946 |
|
|
}
|
| 2947 |
|
|
|
| 2948 |
|
|
|
| 2949 |
|
|
/* Function get_initial_def_for_induction
|
| 2950 |
|
|
|
| 2951 |
|
|
Input:
|
| 2952 |
|
|
STMT - a stmt that performs an induction operation in the loop.
|
| 2953 |
|
|
IV_PHI - the initial value of the induction variable
|
| 2954 |
|
|
|
| 2955 |
|
|
Output:
|
| 2956 |
|
|
Return a vector variable, initialized with the first VF values of
|
| 2957 |
|
|
the induction variable. E.g., for an iv with IV_PHI='X' and
|
| 2958 |
|
|
evolution S, for a vector of 4 units, we want to return:
|
| 2959 |
|
|
[X, X + S, X + 2*S, X + 3*S]. */
|
| 2960 |
|
|
|
| 2961 |
|
|
static tree
|
| 2962 |
|
|
get_initial_def_for_induction (gimple iv_phi)
|
| 2963 |
|
|
{
|
| 2964 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
|
| 2965 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
| 2966 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 2967 |
|
|
tree scalar_type;
|
| 2968 |
|
|
tree vectype;
|
| 2969 |
|
|
int nunits;
|
| 2970 |
|
|
edge pe = loop_preheader_edge (loop);
|
| 2971 |
|
|
struct loop *iv_loop;
|
| 2972 |
|
|
basic_block new_bb;
|
| 2973 |
|
|
tree vec, vec_init, vec_step, t;
|
| 2974 |
|
|
tree access_fn;
|
| 2975 |
|
|
tree new_var;
|
| 2976 |
|
|
tree new_name;
|
| 2977 |
|
|
gimple init_stmt, induction_phi, new_stmt;
|
| 2978 |
|
|
tree induc_def, vec_def, vec_dest;
|
| 2979 |
|
|
tree init_expr, step_expr;
|
| 2980 |
|
|
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 2981 |
|
|
int i;
|
| 2982 |
|
|
bool ok;
|
| 2983 |
|
|
int ncopies;
|
| 2984 |
|
|
tree expr;
|
| 2985 |
|
|
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
|
| 2986 |
|
|
bool nested_in_vect_loop = false;
|
| 2987 |
|
|
gimple_seq stmts = NULL;
|
| 2988 |
|
|
imm_use_iterator imm_iter;
|
| 2989 |
|
|
use_operand_p use_p;
|
| 2990 |
|
|
gimple exit_phi;
|
| 2991 |
|
|
edge latch_e;
|
| 2992 |
|
|
tree loop_arg;
|
| 2993 |
|
|
gimple_stmt_iterator si;
|
| 2994 |
|
|
basic_block bb = gimple_bb (iv_phi);
|
| 2995 |
|
|
tree stepvectype;
|
| 2996 |
|
|
tree resvectype;
|
| 2997 |
|
|
|
| 2998 |
|
|
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
|
| 2999 |
|
|
if (nested_in_vect_loop_p (loop, iv_phi))
|
| 3000 |
|
|
{
|
| 3001 |
|
|
nested_in_vect_loop = true;
|
| 3002 |
|
|
iv_loop = loop->inner;
|
| 3003 |
|
|
}
|
| 3004 |
|
|
else
|
| 3005 |
|
|
iv_loop = loop;
|
| 3006 |
|
|
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
|
| 3007 |
|
|
|
| 3008 |
|
|
latch_e = loop_latch_edge (iv_loop);
|
| 3009 |
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
|
| 3010 |
|
|
|
| 3011 |
|
|
access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
|
| 3012 |
|
|
gcc_assert (access_fn);
|
| 3013 |
|
|
STRIP_NOPS (access_fn);
|
| 3014 |
|
|
ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
|
| 3015 |
|
|
&init_expr, &step_expr);
|
| 3016 |
|
|
gcc_assert (ok);
|
| 3017 |
|
|
pe = loop_preheader_edge (iv_loop);
|
| 3018 |
|
|
|
| 3019 |
|
|
scalar_type = TREE_TYPE (init_expr);
|
| 3020 |
|
|
vectype = get_vectype_for_scalar_type (scalar_type);
|
| 3021 |
|
|
resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
|
| 3022 |
|
|
gcc_assert (vectype);
|
| 3023 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3024 |
|
|
ncopies = vf / nunits;
|
| 3025 |
|
|
|
| 3026 |
|
|
gcc_assert (phi_info);
|
| 3027 |
|
|
gcc_assert (ncopies >= 1);
|
| 3028 |
|
|
|
| 3029 |
|
|
/* Find the first insertion point in the BB. */
|
| 3030 |
|
|
si = gsi_after_labels (bb);
|
| 3031 |
|
|
|
| 3032 |
|
|
/* Create the vector that holds the initial_value of the induction. */
|
| 3033 |
|
|
if (nested_in_vect_loop)
|
| 3034 |
|
|
{
|
| 3035 |
|
|
/* iv_loop is nested in the loop to be vectorized. init_expr had already
|
| 3036 |
|
|
been created during vectorization of previous stmts. We obtain it
|
| 3037 |
|
|
from the STMT_VINFO_VEC_STMT of the defining stmt. */
|
| 3038 |
|
|
tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
|
| 3039 |
|
|
loop_preheader_edge (iv_loop));
|
| 3040 |
|
|
vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
|
| 3041 |
|
|
}
|
| 3042 |
|
|
else
|
| 3043 |
|
|
{
|
| 3044 |
|
|
/* iv_loop is the loop to be vectorized. Create:
|
| 3045 |
|
|
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
|
| 3046 |
|
|
new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
|
| 3047 |
|
|
add_referenced_var (new_var);
|
| 3048 |
|
|
|
| 3049 |
|
|
new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
|
| 3050 |
|
|
if (stmts)
|
| 3051 |
|
|
{
|
| 3052 |
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
| 3053 |
|
|
gcc_assert (!new_bb);
|
| 3054 |
|
|
}
|
| 3055 |
|
|
|
| 3056 |
|
|
t = NULL_TREE;
|
| 3057 |
|
|
t = tree_cons (NULL_TREE, new_name, t);
|
| 3058 |
|
|
for (i = 1; i < nunits; i++)
|
| 3059 |
|
|
{
|
| 3060 |
|
|
/* Create: new_name_i = new_name + step_expr */
|
| 3061 |
|
|
enum tree_code code = POINTER_TYPE_P (scalar_type)
|
| 3062 |
|
|
? POINTER_PLUS_EXPR : PLUS_EXPR;
|
| 3063 |
|
|
init_stmt = gimple_build_assign_with_ops (code, new_var,
|
| 3064 |
|
|
new_name, step_expr);
|
| 3065 |
|
|
new_name = make_ssa_name (new_var, init_stmt);
|
| 3066 |
|
|
gimple_assign_set_lhs (init_stmt, new_name);
|
| 3067 |
|
|
|
| 3068 |
|
|
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
|
| 3069 |
|
|
gcc_assert (!new_bb);
|
| 3070 |
|
|
|
| 3071 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3072 |
|
|
{
|
| 3073 |
|
|
fprintf (vect_dump, "created new init_stmt: ");
|
| 3074 |
|
|
print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
|
| 3075 |
|
|
}
|
| 3076 |
|
|
t = tree_cons (NULL_TREE, new_name, t);
|
| 3077 |
|
|
}
|
| 3078 |
|
|
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
|
| 3079 |
|
|
vec = build_constructor_from_list (vectype, nreverse (t));
|
| 3080 |
|
|
vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
|
| 3081 |
|
|
}
|
| 3082 |
|
|
|
| 3083 |
|
|
|
| 3084 |
|
|
/* Create the vector that holds the step of the induction. */
|
| 3085 |
|
|
if (nested_in_vect_loop)
|
| 3086 |
|
|
/* iv_loop is nested in the loop to be vectorized. Generate:
|
| 3087 |
|
|
vec_step = [S, S, S, S] */
|
| 3088 |
|
|
new_name = step_expr;
|
| 3089 |
|
|
else
|
| 3090 |
|
|
{
|
| 3091 |
|
|
/* iv_loop is the loop to be vectorized. Generate:
|
| 3092 |
|
|
vec_step = [VF*S, VF*S, VF*S, VF*S] */
|
| 3093 |
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
| 3094 |
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
| 3095 |
|
|
expr, step_expr);
|
| 3096 |
|
|
}
|
| 3097 |
|
|
|
| 3098 |
|
|
t = unshare_expr (new_name);
|
| 3099 |
|
|
gcc_assert (CONSTANT_CLASS_P (new_name));
|
| 3100 |
|
|
stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
|
| 3101 |
|
|
gcc_assert (stepvectype);
|
| 3102 |
|
|
vec = build_vector_from_val (stepvectype, t);
|
| 3103 |
|
|
vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
|
| 3104 |
|
|
|
| 3105 |
|
|
|
| 3106 |
|
|
/* Create the following def-use cycle:
|
| 3107 |
|
|
loop prolog:
|
| 3108 |
|
|
vec_init = ...
|
| 3109 |
|
|
vec_step = ...
|
| 3110 |
|
|
loop:
|
| 3111 |
|
|
vec_iv = PHI <vec_init, vec_loop>
|
| 3112 |
|
|
...
|
| 3113 |
|
|
STMT
|
| 3114 |
|
|
...
|
| 3115 |
|
|
vec_loop = vec_iv + vec_step; */
|
| 3116 |
|
|
|
| 3117 |
|
|
/* Create the induction-phi that defines the induction-operand. */
|
| 3118 |
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
| 3119 |
|
|
add_referenced_var (vec_dest);
|
| 3120 |
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
| 3121 |
|
|
set_vinfo_for_stmt (induction_phi,
|
| 3122 |
|
|
new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
|
| 3123 |
|
|
induc_def = PHI_RESULT (induction_phi);
|
| 3124 |
|
|
|
| 3125 |
|
|
/* Create the iv update inside the loop */
|
| 3126 |
|
|
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
|
| 3127 |
|
|
induc_def, vec_step);
|
| 3128 |
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
| 3129 |
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
| 3130 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
| 3131 |
|
|
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
|
| 3132 |
|
|
NULL));
|
| 3133 |
|
|
|
| 3134 |
|
|
/* Set the arguments of the phi node: */
|
| 3135 |
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
| 3136 |
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
| 3137 |
|
|
UNKNOWN_LOCATION);
|
| 3138 |
|
|
|
| 3139 |
|
|
|
| 3140 |
|
|
/* In case that vectorization factor (VF) is bigger than the number
|
| 3141 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
| 3142 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
| 3143 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
| 3144 |
|
|
in vectorizable_operation. */
|
| 3145 |
|
|
|
| 3146 |
|
|
if (ncopies > 1)
|
| 3147 |
|
|
{
|
| 3148 |
|
|
stmt_vec_info prev_stmt_vinfo;
|
| 3149 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
| 3150 |
|
|
gcc_assert (!nested_in_vect_loop);
|
| 3151 |
|
|
|
| 3152 |
|
|
/* Create the vector that holds the step of the induction. */
|
| 3153 |
|
|
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
|
| 3154 |
|
|
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
|
| 3155 |
|
|
expr, step_expr);
|
| 3156 |
|
|
t = unshare_expr (new_name);
|
| 3157 |
|
|
gcc_assert (CONSTANT_CLASS_P (new_name));
|
| 3158 |
|
|
vec = build_vector_from_val (stepvectype, t);
|
| 3159 |
|
|
vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
|
| 3160 |
|
|
|
| 3161 |
|
|
vec_def = induc_def;
|
| 3162 |
|
|
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
|
| 3163 |
|
|
for (i = 1; i < ncopies; i++)
|
| 3164 |
|
|
{
|
| 3165 |
|
|
/* vec_i = vec_prev + vec_step */
|
| 3166 |
|
|
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
|
| 3167 |
|
|
vec_def, vec_step);
|
| 3168 |
|
|
vec_def = make_ssa_name (vec_dest, new_stmt);
|
| 3169 |
|
|
gimple_assign_set_lhs (new_stmt, vec_def);
|
| 3170 |
|
|
|
| 3171 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
| 3172 |
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
| 3173 |
|
|
{
|
| 3174 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 3175 |
|
|
(VIEW_CONVERT_EXPR,
|
| 3176 |
|
|
vect_get_new_vect_var (resvectype, vect_simple_var,
|
| 3177 |
|
|
"vec_iv_"),
|
| 3178 |
|
|
build1 (VIEW_CONVERT_EXPR, resvectype,
|
| 3179 |
|
|
gimple_assign_lhs (new_stmt)), NULL_TREE);
|
| 3180 |
|
|
gimple_assign_set_lhs (new_stmt,
|
| 3181 |
|
|
make_ssa_name
|
| 3182 |
|
|
(gimple_assign_lhs (new_stmt), new_stmt));
|
| 3183 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
| 3184 |
|
|
}
|
| 3185 |
|
|
set_vinfo_for_stmt (new_stmt,
|
| 3186 |
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
| 3187 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
|
| 3188 |
|
|
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
|
| 3189 |
|
|
}
|
| 3190 |
|
|
}
|
| 3191 |
|
|
|
| 3192 |
|
|
if (nested_in_vect_loop)
|
| 3193 |
|
|
{
|
| 3194 |
|
|
/* Find the loop-closed exit-phi of the induction, and record
|
| 3195 |
|
|
the final vector of induction results: */
|
| 3196 |
|
|
exit_phi = NULL;
|
| 3197 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
| 3198 |
|
|
{
|
| 3199 |
|
|
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
|
| 3200 |
|
|
{
|
| 3201 |
|
|
exit_phi = USE_STMT (use_p);
|
| 3202 |
|
|
break;
|
| 3203 |
|
|
}
|
| 3204 |
|
|
}
|
| 3205 |
|
|
if (exit_phi)
|
| 3206 |
|
|
{
|
| 3207 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
|
| 3208 |
|
|
/* FORNOW. Currently not supporting the case that an inner-loop induction
|
| 3209 |
|
|
is not used in the outer-loop (i.e. only outside the outer-loop). */
|
| 3210 |
|
|
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
|
| 3211 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
|
| 3212 |
|
|
|
| 3213 |
|
|
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
|
| 3214 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3215 |
|
|
{
|
| 3216 |
|
|
fprintf (vect_dump, "vector of inductions after inner-loop:");
|
| 3217 |
|
|
print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
|
| 3218 |
|
|
}
|
| 3219 |
|
|
}
|
| 3220 |
|
|
}
|
| 3221 |
|
|
|
| 3222 |
|
|
|
| 3223 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3224 |
|
|
{
|
| 3225 |
|
|
fprintf (vect_dump, "transform induction: created def-use cycle: ");
|
| 3226 |
|
|
print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
|
| 3227 |
|
|
fprintf (vect_dump, "\n");
|
| 3228 |
|
|
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
|
| 3229 |
|
|
}
|
| 3230 |
|
|
|
| 3231 |
|
|
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
|
| 3232 |
|
|
if (!useless_type_conversion_p (resvectype, vectype))
|
| 3233 |
|
|
{
|
| 3234 |
|
|
new_stmt = gimple_build_assign_with_ops
|
| 3235 |
|
|
(VIEW_CONVERT_EXPR,
|
| 3236 |
|
|
vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
|
| 3237 |
|
|
build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
|
| 3238 |
|
|
induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
|
| 3239 |
|
|
gimple_assign_set_lhs (new_stmt, induc_def);
|
| 3240 |
|
|
si = gsi_start_bb (bb);
|
| 3241 |
|
|
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
|
| 3242 |
|
|
set_vinfo_for_stmt (new_stmt,
|
| 3243 |
|
|
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
|
| 3244 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
|
| 3245 |
|
|
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
|
| 3246 |
|
|
}
|
| 3247 |
|
|
|
| 3248 |
|
|
return induc_def;
|
| 3249 |
|
|
}
|
| 3250 |
|
|
|
| 3251 |
|
|
|
| 3252 |
|
|
/* Function get_initial_def_for_reduction
|
| 3253 |
|
|
|
| 3254 |
|
|
Input:
|
| 3255 |
|
|
STMT - a stmt that performs a reduction operation in the loop.
|
| 3256 |
|
|
INIT_VAL - the initial value of the reduction variable
|
| 3257 |
|
|
|
| 3258 |
|
|
Output:
|
| 3259 |
|
|
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
|
| 3260 |
|
|
of the reduction (used for adjusting the epilog - see below).
|
| 3261 |
|
|
Return a vector variable, initialized according to the operation that STMT
|
| 3262 |
|
|
performs. This vector will be used as the initial value of the
|
| 3263 |
|
|
vector of partial results.
|
| 3264 |
|
|
|
| 3265 |
|
|
Option1 (adjust in epilog): Initialize the vector as follows:
|
| 3266 |
|
|
add/bit or/xor: [0,0,...,0,0]
|
| 3267 |
|
|
mult/bit and: [1,1,...,1,1]
|
| 3268 |
|
|
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
|
| 3269 |
|
|
and when necessary (e.g. add/mult case) let the caller know
|
| 3270 |
|
|
that it needs to adjust the result by init_val.
|
| 3271 |
|
|
|
| 3272 |
|
|
Option2: Initialize the vector as follows:
|
| 3273 |
|
|
add/bit or/xor: [init_val,0,0,...,0]
|
| 3274 |
|
|
mult/bit and: [init_val,1,1,...,1]
|
| 3275 |
|
|
min/max/cond_expr: [init_val,init_val,...,init_val]
|
| 3276 |
|
|
and no adjustments are needed.
|
| 3277 |
|
|
|
| 3278 |
|
|
For example, for the following code:
|
| 3279 |
|
|
|
| 3280 |
|
|
s = init_val;
|
| 3281 |
|
|
for (i=0;i<n;i++)
|
| 3282 |
|
|
s = s + a[i];
|
| 3283 |
|
|
|
| 3284 |
|
|
STMT is 's = s + a[i]', and the reduction variable is 's'.
|
| 3285 |
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
| 3286 |
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
| 3287 |
|
|
the result at the end by 'init_val'.
|
| 3288 |
|
|
|
| 3289 |
|
|
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
|
| 3290 |
|
|
initialization vector is simpler (same element in all entries), if
|
| 3291 |
|
|
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
|
| 3292 |
|
|
|
| 3293 |
|
|
A cost model should help decide between these two schemes. */
|
| 3294 |
|
|
|
| 3295 |
|
|
tree
|
| 3296 |
|
|
get_initial_def_for_reduction (gimple stmt, tree init_val,
|
| 3297 |
|
|
tree *adjustment_def)
|
| 3298 |
|
|
{
|
| 3299 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
|
| 3300 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
| 3301 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 3302 |
|
|
tree scalar_type = TREE_TYPE (init_val);
|
| 3303 |
|
|
tree vectype = get_vectype_for_scalar_type (scalar_type);
|
| 3304 |
|
|
int nunits;
|
| 3305 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 3306 |
|
|
tree def_for_init;
|
| 3307 |
|
|
tree init_def;
|
| 3308 |
|
|
tree t = NULL_TREE;
|
| 3309 |
|
|
int i;
|
| 3310 |
|
|
bool nested_in_vect_loop = false;
|
| 3311 |
|
|
tree init_value;
|
| 3312 |
|
|
REAL_VALUE_TYPE real_init_val = dconst0;
|
| 3313 |
|
|
int int_init_val = 0;
|
| 3314 |
|
|
gimple def_stmt = NULL;
|
| 3315 |
|
|
|
| 3316 |
|
|
gcc_assert (vectype);
|
| 3317 |
|
|
nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 3318 |
|
|
|
| 3319 |
|
|
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|
| 3320 |
|
|
|| SCALAR_FLOAT_TYPE_P (scalar_type));
|
| 3321 |
|
|
|
| 3322 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
| 3323 |
|
|
nested_in_vect_loop = true;
|
| 3324 |
|
|
else
|
| 3325 |
|
|
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
|
| 3326 |
|
|
|
| 3327 |
|
|
/* In case of double reduction we only create a vector variable to be put
|
| 3328 |
|
|
in the reduction phi node. The actual statement creation is done in
|
| 3329 |
|
|
vect_create_epilog_for_reduction. */
|
| 3330 |
|
|
if (adjustment_def && nested_in_vect_loop
|
| 3331 |
|
|
&& TREE_CODE (init_val) == SSA_NAME
|
| 3332 |
|
|
&& (def_stmt = SSA_NAME_DEF_STMT (init_val))
|
| 3333 |
|
|
&& gimple_code (def_stmt) == GIMPLE_PHI
|
| 3334 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
| 3335 |
|
|
&& vinfo_for_stmt (def_stmt)
|
| 3336 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
|
| 3337 |
|
|
== vect_double_reduction_def)
|
| 3338 |
|
|
{
|
| 3339 |
|
|
*adjustment_def = NULL;
|
| 3340 |
|
|
return vect_create_destination_var (init_val, vectype);
|
| 3341 |
|
|
}
|
| 3342 |
|
|
|
| 3343 |
|
|
if (TREE_CONSTANT (init_val))
|
| 3344 |
|
|
{
|
| 3345 |
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
| 3346 |
|
|
init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
|
| 3347 |
|
|
else
|
| 3348 |
|
|
init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
|
| 3349 |
|
|
}
|
| 3350 |
|
|
else
|
| 3351 |
|
|
init_value = init_val;
|
| 3352 |
|
|
|
| 3353 |
|
|
switch (code)
|
| 3354 |
|
|
{
|
| 3355 |
|
|
case WIDEN_SUM_EXPR:
|
| 3356 |
|
|
case DOT_PROD_EXPR:
|
| 3357 |
|
|
case PLUS_EXPR:
|
| 3358 |
|
|
case MINUS_EXPR:
|
| 3359 |
|
|
case BIT_IOR_EXPR:
|
| 3360 |
|
|
case BIT_XOR_EXPR:
|
| 3361 |
|
|
case MULT_EXPR:
|
| 3362 |
|
|
case BIT_AND_EXPR:
|
| 3363 |
|
|
/* ADJUSMENT_DEF is NULL when called from
|
| 3364 |
|
|
vect_create_epilog_for_reduction to vectorize double reduction. */
|
| 3365 |
|
|
if (adjustment_def)
|
| 3366 |
|
|
{
|
| 3367 |
|
|
if (nested_in_vect_loop)
|
| 3368 |
|
|
*adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
|
| 3369 |
|
|
NULL);
|
| 3370 |
|
|
else
|
| 3371 |
|
|
*adjustment_def = init_val;
|
| 3372 |
|
|
}
|
| 3373 |
|
|
|
| 3374 |
|
|
if (code == MULT_EXPR)
|
| 3375 |
|
|
{
|
| 3376 |
|
|
real_init_val = dconst1;
|
| 3377 |
|
|
int_init_val = 1;
|
| 3378 |
|
|
}
|
| 3379 |
|
|
|
| 3380 |
|
|
if (code == BIT_AND_EXPR)
|
| 3381 |
|
|
int_init_val = -1;
|
| 3382 |
|
|
|
| 3383 |
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
| 3384 |
|
|
def_for_init = build_real (scalar_type, real_init_val);
|
| 3385 |
|
|
else
|
| 3386 |
|
|
def_for_init = build_int_cst (scalar_type, int_init_val);
|
| 3387 |
|
|
|
| 3388 |
|
|
/* Create a vector of '0' or '1' except the first element. */
|
| 3389 |
|
|
for (i = nunits - 2; i >= 0; --i)
|
| 3390 |
|
|
t = tree_cons (NULL_TREE, def_for_init, t);
|
| 3391 |
|
|
|
| 3392 |
|
|
/* Option1: the first element is '0' or '1' as well. */
|
| 3393 |
|
|
if (adjustment_def)
|
| 3394 |
|
|
{
|
| 3395 |
|
|
t = tree_cons (NULL_TREE, def_for_init, t);
|
| 3396 |
|
|
init_def = build_vector (vectype, t);
|
| 3397 |
|
|
break;
|
| 3398 |
|
|
}
|
| 3399 |
|
|
|
| 3400 |
|
|
/* Option2: the first element is INIT_VAL. */
|
| 3401 |
|
|
t = tree_cons (NULL_TREE, init_value, t);
|
| 3402 |
|
|
if (TREE_CONSTANT (init_val))
|
| 3403 |
|
|
init_def = build_vector (vectype, t);
|
| 3404 |
|
|
else
|
| 3405 |
|
|
init_def = build_constructor_from_list (vectype, t);
|
| 3406 |
|
|
|
| 3407 |
|
|
break;
|
| 3408 |
|
|
|
| 3409 |
|
|
case MIN_EXPR:
|
| 3410 |
|
|
case MAX_EXPR:
|
| 3411 |
|
|
case COND_EXPR:
|
| 3412 |
|
|
if (adjustment_def)
|
| 3413 |
|
|
{
|
| 3414 |
|
|
*adjustment_def = NULL_TREE;
|
| 3415 |
|
|
init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
|
| 3416 |
|
|
break;
|
| 3417 |
|
|
}
|
| 3418 |
|
|
|
| 3419 |
|
|
init_def = build_vector_from_val (vectype, init_value);
|
| 3420 |
|
|
break;
|
| 3421 |
|
|
|
| 3422 |
|
|
default:
|
| 3423 |
|
|
gcc_unreachable ();
|
| 3424 |
|
|
}
|
| 3425 |
|
|
|
| 3426 |
|
|
return init_def;
|
| 3427 |
|
|
}
|
| 3428 |
|
|
|
| 3429 |
|
|
|
| 3430 |
|
|
/* Function vect_create_epilog_for_reduction
|
| 3431 |
|
|
|
| 3432 |
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
| 3433 |
|
|
computation.
|
| 3434 |
|
|
|
| 3435 |
|
|
VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
|
| 3436 |
|
|
reduction statements.
|
| 3437 |
|
|
STMT is the scalar reduction stmt that is being vectorized.
|
| 3438 |
|
|
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
|
| 3439 |
|
|
number of elements that we can fit in a vectype (nunits). In this case
|
| 3440 |
|
|
we have to generate more than one vector stmt - i.e - we need to "unroll"
|
| 3441 |
|
|
the vector stmt by a factor VF/nunits. For more details see documentation
|
| 3442 |
|
|
in vectorizable_operation.
|
| 3443 |
|
|
REDUC_CODE is the tree-code for the epilog reduction.
|
| 3444 |
|
|
REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
|
| 3445 |
|
|
computation.
|
| 3446 |
|
|
REDUC_INDEX is the index of the operand in the right hand side of the
|
| 3447 |
|
|
statement that is defined by REDUCTION_PHI.
|
| 3448 |
|
|
DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
|
| 3449 |
|
|
SLP_NODE is an SLP node containing a group of reduction statements. The
|
| 3450 |
|
|
first one in this group is STMT.
|
| 3451 |
|
|
|
| 3452 |
|
|
This function:
|
| 3453 |
|
|
1. Creates the reduction def-use cycles: sets the arguments for
|
| 3454 |
|
|
REDUCTION_PHIS:
|
| 3455 |
|
|
The loop-entry argument is the vectorized initial-value of the reduction.
|
| 3456 |
|
|
The loop-latch argument is taken from VECT_DEFS - the vector of partial
|
| 3457 |
|
|
sums.
|
| 3458 |
|
|
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
|
| 3459 |
|
|
by applying the operation specified by REDUC_CODE if available, or by
|
| 3460 |
|
|
other means (whole-vector shifts or a scalar loop).
|
| 3461 |
|
|
The function also creates a new phi node at the loop exit to preserve
|
| 3462 |
|
|
loop-closed form, as illustrated below.
|
| 3463 |
|
|
|
| 3464 |
|
|
The flow at the entry to this function:
|
| 3465 |
|
|
|
| 3466 |
|
|
loop:
|
| 3467 |
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
| 3468 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
| 3469 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
| 3470 |
|
|
loop_exit:
|
| 3471 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
| 3472 |
|
|
use <s_out0>
|
| 3473 |
|
|
use <s_out0>
|
| 3474 |
|
|
|
| 3475 |
|
|
The above is transformed by this function into:
|
| 3476 |
|
|
|
| 3477 |
|
|
loop:
|
| 3478 |
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
| 3479 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
| 3480 |
|
|
s_loop = scalar_stmt # (scalar) STMT
|
| 3481 |
|
|
loop_exit:
|
| 3482 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
| 3483 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
| 3484 |
|
|
v_out2 = reduce <v_out1>
|
| 3485 |
|
|
s_out3 = extract_field <v_out2, 0>
|
| 3486 |
|
|
s_out4 = adjust_result <s_out3>
|
| 3487 |
|
|
use <s_out4>
|
| 3488 |
|
|
use <s_out4>
|
| 3489 |
|
|
*/
|
| 3490 |
|
|
|
| 3491 |
|
|
static void
|
| 3492 |
|
|
vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
|
| 3493 |
|
|
int ncopies, enum tree_code reduc_code,
|
| 3494 |
|
|
VEC (gimple, heap) *reduction_phis,
|
| 3495 |
|
|
int reduc_index, bool double_reduc,
|
| 3496 |
|
|
slp_tree slp_node)
|
| 3497 |
|
|
{
|
| 3498 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 3499 |
|
|
stmt_vec_info prev_phi_info;
|
| 3500 |
|
|
tree vectype;
|
| 3501 |
|
|
enum machine_mode mode;
|
| 3502 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 3503 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
|
| 3504 |
|
|
basic_block exit_bb;
|
| 3505 |
|
|
tree scalar_dest;
|
| 3506 |
|
|
tree scalar_type;
|
| 3507 |
|
|
gimple new_phi = NULL, phi;
|
| 3508 |
|
|
gimple_stmt_iterator exit_gsi;
|
| 3509 |
|
|
tree vec_dest;
|
| 3510 |
|
|
tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
|
| 3511 |
|
|
gimple epilog_stmt = NULL;
|
| 3512 |
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
| 3513 |
|
|
gimple exit_phi;
|
| 3514 |
|
|
tree bitsize, bitpos;
|
| 3515 |
|
|
tree adjustment_def = NULL;
|
| 3516 |
|
|
tree vec_initial_def = NULL;
|
| 3517 |
|
|
tree reduction_op, expr, def;
|
| 3518 |
|
|
tree orig_name, scalar_result;
|
| 3519 |
|
|
imm_use_iterator imm_iter, phi_imm_iter;
|
| 3520 |
|
|
use_operand_p use_p, phi_use_p;
|
| 3521 |
|
|
bool extract_scalar_result = false;
|
| 3522 |
|
|
gimple use_stmt, orig_stmt, reduction_phi = NULL;
|
| 3523 |
|
|
bool nested_in_vect_loop = false;
|
| 3524 |
|
|
VEC (gimple, heap) *new_phis = NULL;
|
| 3525 |
|
|
VEC (gimple, heap) *inner_phis = NULL;
|
| 3526 |
|
|
enum vect_def_type dt = vect_unknown_def_type;
|
| 3527 |
|
|
int j, i;
|
| 3528 |
|
|
VEC (tree, heap) *scalar_results = NULL;
|
| 3529 |
|
|
unsigned int group_size = 1, k, ratio;
|
| 3530 |
|
|
VEC (tree, heap) *vec_initial_defs = NULL;
|
| 3531 |
|
|
VEC (gimple, heap) *phis;
|
| 3532 |
|
|
bool slp_reduc = false;
|
| 3533 |
|
|
tree new_phi_result;
|
| 3534 |
|
|
gimple inner_phi = NULL;
|
| 3535 |
|
|
|
| 3536 |
|
|
if (slp_node)
|
| 3537 |
|
|
group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
|
| 3538 |
|
|
|
| 3539 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
| 3540 |
|
|
{
|
| 3541 |
|
|
outer_loop = loop;
|
| 3542 |
|
|
loop = loop->inner;
|
| 3543 |
|
|
nested_in_vect_loop = true;
|
| 3544 |
|
|
gcc_assert (!slp_node);
|
| 3545 |
|
|
}
|
| 3546 |
|
|
|
| 3547 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
| 3548 |
|
|
{
|
| 3549 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 3550 |
|
|
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
|
| 3551 |
|
|
== ternary_op);
|
| 3552 |
|
|
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
|
| 3553 |
|
|
break;
|
| 3554 |
|
|
case GIMPLE_UNARY_RHS:
|
| 3555 |
|
|
reduction_op = gimple_assign_rhs1 (stmt);
|
| 3556 |
|
|
break;
|
| 3557 |
|
|
case GIMPLE_BINARY_RHS:
|
| 3558 |
|
|
reduction_op = reduc_index ?
|
| 3559 |
|
|
gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
|
| 3560 |
|
|
break;
|
| 3561 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 3562 |
|
|
reduction_op = gimple_op (stmt, reduc_index + 1);
|
| 3563 |
|
|
break;
|
| 3564 |
|
|
default:
|
| 3565 |
|
|
gcc_unreachable ();
|
| 3566 |
|
|
}
|
| 3567 |
|
|
|
| 3568 |
|
|
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
|
| 3569 |
|
|
gcc_assert (vectype);
|
| 3570 |
|
|
mode = TYPE_MODE (vectype);
|
| 3571 |
|
|
|
| 3572 |
|
|
/* 1. Create the reduction def-use cycle:
|
| 3573 |
|
|
Set the arguments of REDUCTION_PHIS, i.e., transform
|
| 3574 |
|
|
|
| 3575 |
|
|
loop:
|
| 3576 |
|
|
vec_def = phi <null, null> # REDUCTION_PHI
|
| 3577 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
| 3578 |
|
|
...
|
| 3579 |
|
|
|
| 3580 |
|
|
into:
|
| 3581 |
|
|
|
| 3582 |
|
|
loop:
|
| 3583 |
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
| 3584 |
|
|
VECT_DEF = vector_stmt # vectorized form of STMT
|
| 3585 |
|
|
...
|
| 3586 |
|
|
|
| 3587 |
|
|
(in case of SLP, do it for all the phis). */
|
| 3588 |
|
|
|
| 3589 |
|
|
/* Get the loop-entry arguments. */
|
| 3590 |
|
|
if (slp_node)
|
| 3591 |
|
|
vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
|
| 3592 |
|
|
NULL, slp_node, reduc_index);
|
| 3593 |
|
|
else
|
| 3594 |
|
|
{
|
| 3595 |
|
|
vec_initial_defs = VEC_alloc (tree, heap, 1);
|
| 3596 |
|
|
/* For the case of reduction, vect_get_vec_def_for_operand returns
|
| 3597 |
|
|
the scalar def before the loop, that defines the initial value
|
| 3598 |
|
|
of the reduction variable. */
|
| 3599 |
|
|
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
|
| 3600 |
|
|
&adjustment_def);
|
| 3601 |
|
|
VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
|
| 3602 |
|
|
}
|
| 3603 |
|
|
|
| 3604 |
|
|
/* Set phi nodes arguments. */
|
| 3605 |
|
|
FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
|
| 3606 |
|
|
{
|
| 3607 |
|
|
tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
|
| 3608 |
|
|
tree def = VEC_index (tree, vect_defs, i);
|
| 3609 |
|
|
for (j = 0; j < ncopies; j++)
|
| 3610 |
|
|
{
|
| 3611 |
|
|
/* Set the loop-entry arg of the reduction-phi. */
|
| 3612 |
|
|
add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
|
| 3613 |
|
|
UNKNOWN_LOCATION);
|
| 3614 |
|
|
|
| 3615 |
|
|
/* Set the loop-latch arg for the reduction-phi. */
|
| 3616 |
|
|
if (j > 0)
|
| 3617 |
|
|
def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
|
| 3618 |
|
|
|
| 3619 |
|
|
add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
|
| 3620 |
|
|
|
| 3621 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3622 |
|
|
{
|
| 3623 |
|
|
fprintf (vect_dump, "transform reduction: created def-use"
|
| 3624 |
|
|
" cycle: ");
|
| 3625 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 3626 |
|
|
fprintf (vect_dump, "\n");
|
| 3627 |
|
|
print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
|
| 3628 |
|
|
TDF_SLIM);
|
| 3629 |
|
|
}
|
| 3630 |
|
|
|
| 3631 |
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
| 3632 |
|
|
}
|
| 3633 |
|
|
}
|
| 3634 |
|
|
|
| 3635 |
|
|
VEC_free (tree, heap, vec_initial_defs);
|
| 3636 |
|
|
|
| 3637 |
|
|
/* 2. Create epilog code.
|
| 3638 |
|
|
The reduction epilog code operates across the elements of the vector
|
| 3639 |
|
|
of partial results computed by the vectorized loop.
|
| 3640 |
|
|
The reduction epilog code consists of:
|
| 3641 |
|
|
|
| 3642 |
|
|
step 1: compute the scalar result in a vector (v_out2)
|
| 3643 |
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
| 3644 |
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
| 3645 |
|
|
|
| 3646 |
|
|
Step 1 can be accomplished using one the following three schemes:
|
| 3647 |
|
|
(scheme 1) using reduc_code, if available.
|
| 3648 |
|
|
(scheme 2) using whole-vector shifts, if available.
|
| 3649 |
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
| 3650 |
|
|
combined.
|
| 3651 |
|
|
|
| 3652 |
|
|
The overall epilog code looks like this:
|
| 3653 |
|
|
|
| 3654 |
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
| 3655 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
| 3656 |
|
|
v_out2 = reduce <v_out1> # step 1
|
| 3657 |
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
| 3658 |
|
|
s_out4 = adjust_result <s_out3> # step 3
|
| 3659 |
|
|
|
| 3660 |
|
|
(step 3 is optional, and steps 1 and 2 may be combined).
|
| 3661 |
|
|
Lastly, the uses of s_out0 are replaced by s_out4. */
|
| 3662 |
|
|
|
| 3663 |
|
|
|
| 3664 |
|
|
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
|
| 3665 |
|
|
v_out1 = phi <VECT_DEF>
|
| 3666 |
|
|
Store them in NEW_PHIS. */
|
| 3667 |
|
|
|
| 3668 |
|
|
exit_bb = single_exit (loop)->dest;
|
| 3669 |
|
|
prev_phi_info = NULL;
|
| 3670 |
|
|
new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
|
| 3671 |
|
|
FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
|
| 3672 |
|
|
{
|
| 3673 |
|
|
for (j = 0; j < ncopies; j++)
|
| 3674 |
|
|
{
|
| 3675 |
|
|
phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
|
| 3676 |
|
|
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
|
| 3677 |
|
|
if (j == 0)
|
| 3678 |
|
|
VEC_quick_push (gimple, new_phis, phi);
|
| 3679 |
|
|
else
|
| 3680 |
|
|
{
|
| 3681 |
|
|
def = vect_get_vec_def_for_stmt_copy (dt, def);
|
| 3682 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
|
| 3683 |
|
|
}
|
| 3684 |
|
|
|
| 3685 |
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
|
| 3686 |
|
|
prev_phi_info = vinfo_for_stmt (phi);
|
| 3687 |
|
|
}
|
| 3688 |
|
|
}
|
| 3689 |
|
|
|
| 3690 |
|
|
/* The epilogue is created for the outer-loop, i.e., for the loop being
|
| 3691 |
|
|
vectorized. Create exit phis for the outer loop. */
|
| 3692 |
|
|
if (double_reduc)
|
| 3693 |
|
|
{
|
| 3694 |
|
|
loop = outer_loop;
|
| 3695 |
|
|
exit_bb = single_exit (loop)->dest;
|
| 3696 |
|
|
inner_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
|
| 3697 |
|
|
FOR_EACH_VEC_ELT (gimple, new_phis, i, phi)
|
| 3698 |
|
|
{
|
| 3699 |
|
|
gimple outer_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
|
| 3700 |
|
|
exit_bb);
|
| 3701 |
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
| 3702 |
|
|
PHI_RESULT (phi));
|
| 3703 |
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
| 3704 |
|
|
loop_vinfo, NULL));
|
| 3705 |
|
|
VEC_quick_push (gimple, inner_phis, phi);
|
| 3706 |
|
|
VEC_replace (gimple, new_phis, i, outer_phi);
|
| 3707 |
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
| 3708 |
|
|
while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
|
| 3709 |
|
|
{
|
| 3710 |
|
|
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
|
| 3711 |
|
|
outer_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
|
| 3712 |
|
|
exit_bb);
|
| 3713 |
|
|
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
|
| 3714 |
|
|
PHI_RESULT (phi));
|
| 3715 |
|
|
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
|
| 3716 |
|
|
loop_vinfo, NULL));
|
| 3717 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
|
| 3718 |
|
|
prev_phi_info = vinfo_for_stmt (outer_phi);
|
| 3719 |
|
|
}
|
| 3720 |
|
|
}
|
| 3721 |
|
|
}
|
| 3722 |
|
|
|
| 3723 |
|
|
exit_gsi = gsi_after_labels (exit_bb);
|
| 3724 |
|
|
|
| 3725 |
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
| 3726 |
|
|
(i.e. when reduc_code is not available) and in the final adjustment
|
| 3727 |
|
|
code (if needed). Also get the original scalar reduction variable as
|
| 3728 |
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
| 3729 |
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
| 3730 |
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
| 3731 |
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
| 3732 |
|
|
are taken from STMT. */
|
| 3733 |
|
|
|
| 3734 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 3735 |
|
|
if (!orig_stmt)
|
| 3736 |
|
|
{
|
| 3737 |
|
|
/* Regular reduction */
|
| 3738 |
|
|
orig_stmt = stmt;
|
| 3739 |
|
|
}
|
| 3740 |
|
|
else
|
| 3741 |
|
|
{
|
| 3742 |
|
|
/* Reduction pattern */
|
| 3743 |
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
|
| 3744 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
|
| 3745 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
|
| 3746 |
|
|
}
|
| 3747 |
|
|
|
| 3748 |
|
|
code = gimple_assign_rhs_code (orig_stmt);
|
| 3749 |
|
|
/* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
|
| 3750 |
|
|
partial results are added and not subtracted. */
|
| 3751 |
|
|
if (code == MINUS_EXPR)
|
| 3752 |
|
|
code = PLUS_EXPR;
|
| 3753 |
|
|
|
| 3754 |
|
|
scalar_dest = gimple_assign_lhs (orig_stmt);
|
| 3755 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
| 3756 |
|
|
scalar_results = VEC_alloc (tree, heap, group_size);
|
| 3757 |
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
| 3758 |
|
|
bitsize = TYPE_SIZE (scalar_type);
|
| 3759 |
|
|
|
| 3760 |
|
|
/* In case this is a reduction in an inner-loop while vectorizing an outer
|
| 3761 |
|
|
loop - we don't need to extract a single scalar result at the end of the
|
| 3762 |
|
|
inner-loop (unless it is double reduction, i.e., the use of reduction is
|
| 3763 |
|
|
outside the outer-loop). The final vector of partial results will be used
|
| 3764 |
|
|
in the vectorized outer-loop, or reduced to a scalar result at the end of
|
| 3765 |
|
|
the outer-loop. */
|
| 3766 |
|
|
if (nested_in_vect_loop && !double_reduc)
|
| 3767 |
|
|
goto vect_finalize_reduction;
|
| 3768 |
|
|
|
| 3769 |
|
|
/* SLP reduction without reduction chain, e.g.,
|
| 3770 |
|
|
# a1 = phi <a2, a0>
|
| 3771 |
|
|
# b1 = phi <b2, b0>
|
| 3772 |
|
|
a2 = operation (a1)
|
| 3773 |
|
|
b2 = operation (b1) */
|
| 3774 |
|
|
slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
|
| 3775 |
|
|
|
| 3776 |
|
|
/* In case of reduction chain, e.g.,
|
| 3777 |
|
|
# a1 = phi <a3, a0>
|
| 3778 |
|
|
a2 = operation (a1)
|
| 3779 |
|
|
a3 = operation (a2),
|
| 3780 |
|
|
|
| 3781 |
|
|
we may end up with more than one vector result. Here we reduce them to
|
| 3782 |
|
|
one vector. */
|
| 3783 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
| 3784 |
|
|
{
|
| 3785 |
|
|
tree first_vect = PHI_RESULT (VEC_index (gimple, new_phis, 0));
|
| 3786 |
|
|
tree tmp;
|
| 3787 |
|
|
gimple new_vec_stmt = NULL;
|
| 3788 |
|
|
|
| 3789 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 3790 |
|
|
for (k = 1; k < VEC_length (gimple, new_phis); k++)
|
| 3791 |
|
|
{
|
| 3792 |
|
|
gimple next_phi = VEC_index (gimple, new_phis, k);
|
| 3793 |
|
|
tree second_vect = PHI_RESULT (next_phi);
|
| 3794 |
|
|
|
| 3795 |
|
|
tmp = build2 (code, vectype, first_vect, second_vect);
|
| 3796 |
|
|
new_vec_stmt = gimple_build_assign (vec_dest, tmp);
|
| 3797 |
|
|
first_vect = make_ssa_name (vec_dest, new_vec_stmt);
|
| 3798 |
|
|
gimple_assign_set_lhs (new_vec_stmt, first_vect);
|
| 3799 |
|
|
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
|
| 3800 |
|
|
}
|
| 3801 |
|
|
|
| 3802 |
|
|
new_phi_result = first_vect;
|
| 3803 |
|
|
if (new_vec_stmt)
|
| 3804 |
|
|
{
|
| 3805 |
|
|
VEC_truncate (gimple, new_phis, 0);
|
| 3806 |
|
|
VEC_safe_push (gimple, heap, new_phis, new_vec_stmt);
|
| 3807 |
|
|
}
|
| 3808 |
|
|
}
|
| 3809 |
|
|
else
|
| 3810 |
|
|
new_phi_result = PHI_RESULT (VEC_index (gimple, new_phis, 0));
|
| 3811 |
|
|
|
| 3812 |
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
| 3813 |
|
|
above. In SLP we simply need to extract all the elements from the
|
| 3814 |
|
|
vector (without reducing them), so we use scalar shifts. */
|
| 3815 |
|
|
if (reduc_code != ERROR_MARK && !slp_reduc)
|
| 3816 |
|
|
{
|
| 3817 |
|
|
tree tmp;
|
| 3818 |
|
|
|
| 3819 |
|
|
/*** Case 1: Create:
|
| 3820 |
|
|
v_out2 = reduc_expr <v_out1> */
|
| 3821 |
|
|
|
| 3822 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3823 |
|
|
fprintf (vect_dump, "Reduce using direct vector reduction.");
|
| 3824 |
|
|
|
| 3825 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 3826 |
|
|
tmp = build1 (reduc_code, vectype, new_phi_result);
|
| 3827 |
|
|
epilog_stmt = gimple_build_assign (vec_dest, tmp);
|
| 3828 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
| 3829 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 3830 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3831 |
|
|
|
| 3832 |
|
|
extract_scalar_result = true;
|
| 3833 |
|
|
}
|
| 3834 |
|
|
else
|
| 3835 |
|
|
{
|
| 3836 |
|
|
enum tree_code shift_code = ERROR_MARK;
|
| 3837 |
|
|
bool have_whole_vector_shift = true;
|
| 3838 |
|
|
int bit_offset;
|
| 3839 |
|
|
int element_bitsize = tree_low_cst (bitsize, 1);
|
| 3840 |
|
|
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
| 3841 |
|
|
tree vec_temp;
|
| 3842 |
|
|
|
| 3843 |
|
|
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
| 3844 |
|
|
shift_code = VEC_RSHIFT_EXPR;
|
| 3845 |
|
|
else
|
| 3846 |
|
|
have_whole_vector_shift = false;
|
| 3847 |
|
|
|
| 3848 |
|
|
/* Regardless of whether we have a whole vector shift, if we're
|
| 3849 |
|
|
emulating the operation via tree-vect-generic, we don't want
|
| 3850 |
|
|
to use it. Only the first round of the reduction is likely
|
| 3851 |
|
|
to still be profitable via emulation. */
|
| 3852 |
|
|
/* ??? It might be better to emit a reduction tree code here, so that
|
| 3853 |
|
|
tree-vect-generic can expand the first round via bit tricks. */
|
| 3854 |
|
|
if (!VECTOR_MODE_P (mode))
|
| 3855 |
|
|
have_whole_vector_shift = false;
|
| 3856 |
|
|
else
|
| 3857 |
|
|
{
|
| 3858 |
|
|
optab optab = optab_for_tree_code (code, vectype, optab_default);
|
| 3859 |
|
|
if (optab_handler (optab, mode) == CODE_FOR_nothing)
|
| 3860 |
|
|
have_whole_vector_shift = false;
|
| 3861 |
|
|
}
|
| 3862 |
|
|
|
| 3863 |
|
|
if (have_whole_vector_shift && !slp_reduc)
|
| 3864 |
|
|
{
|
| 3865 |
|
|
/*** Case 2: Create:
|
| 3866 |
|
|
for (offset = VS/2; offset >= element_size; offset/=2)
|
| 3867 |
|
|
{
|
| 3868 |
|
|
Create: va' = vec_shift <va, offset>
|
| 3869 |
|
|
Create: va = vop <va, va'>
|
| 3870 |
|
|
} */
|
| 3871 |
|
|
|
| 3872 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3873 |
|
|
fprintf (vect_dump, "Reduce using vector shifts");
|
| 3874 |
|
|
|
| 3875 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 3876 |
|
|
new_temp = new_phi_result;
|
| 3877 |
|
|
for (bit_offset = vec_size_in_bits/2;
|
| 3878 |
|
|
bit_offset >= element_bitsize;
|
| 3879 |
|
|
bit_offset /= 2)
|
| 3880 |
|
|
{
|
| 3881 |
|
|
tree bitpos = size_int (bit_offset);
|
| 3882 |
|
|
|
| 3883 |
|
|
epilog_stmt = gimple_build_assign_with_ops (shift_code,
|
| 3884 |
|
|
vec_dest, new_temp, bitpos);
|
| 3885 |
|
|
new_name = make_ssa_name (vec_dest, epilog_stmt);
|
| 3886 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
| 3887 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3888 |
|
|
|
| 3889 |
|
|
epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
|
| 3890 |
|
|
new_name, new_temp);
|
| 3891 |
|
|
new_temp = make_ssa_name (vec_dest, epilog_stmt);
|
| 3892 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 3893 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3894 |
|
|
}
|
| 3895 |
|
|
|
| 3896 |
|
|
extract_scalar_result = true;
|
| 3897 |
|
|
}
|
| 3898 |
|
|
else
|
| 3899 |
|
|
{
|
| 3900 |
|
|
tree rhs;
|
| 3901 |
|
|
|
| 3902 |
|
|
/*** Case 3: Create:
|
| 3903 |
|
|
s = extract_field <v_out2, 0>
|
| 3904 |
|
|
for (offset = element_size;
|
| 3905 |
|
|
offset < vector_size;
|
| 3906 |
|
|
offset += element_size;)
|
| 3907 |
|
|
{
|
| 3908 |
|
|
Create: s' = extract_field <v_out2, offset>
|
| 3909 |
|
|
Create: s = op <s, s'> // For non SLP cases
|
| 3910 |
|
|
} */
|
| 3911 |
|
|
|
| 3912 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 3913 |
|
|
fprintf (vect_dump, "Reduce using scalar code. ");
|
| 3914 |
|
|
|
| 3915 |
|
|
vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
|
| 3916 |
|
|
FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
|
| 3917 |
|
|
{
|
| 3918 |
|
|
if (gimple_code (new_phi) == GIMPLE_PHI)
|
| 3919 |
|
|
vec_temp = PHI_RESULT (new_phi);
|
| 3920 |
|
|
else
|
| 3921 |
|
|
vec_temp = gimple_assign_lhs (new_phi);
|
| 3922 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
|
| 3923 |
|
|
bitsize_zero_node);
|
| 3924 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
| 3925 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
| 3926 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 3927 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3928 |
|
|
|
| 3929 |
|
|
/* In SLP we don't need to apply reduction operation, so we just
|
| 3930 |
|
|
collect s' values in SCALAR_RESULTS. */
|
| 3931 |
|
|
if (slp_reduc)
|
| 3932 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
| 3933 |
|
|
|
| 3934 |
|
|
for (bit_offset = element_bitsize;
|
| 3935 |
|
|
bit_offset < vec_size_in_bits;
|
| 3936 |
|
|
bit_offset += element_bitsize)
|
| 3937 |
|
|
{
|
| 3938 |
|
|
tree bitpos = bitsize_int (bit_offset);
|
| 3939 |
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
|
| 3940 |
|
|
bitsize, bitpos);
|
| 3941 |
|
|
|
| 3942 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
| 3943 |
|
|
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
|
| 3944 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_name);
|
| 3945 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3946 |
|
|
|
| 3947 |
|
|
if (slp_reduc)
|
| 3948 |
|
|
{
|
| 3949 |
|
|
/* In SLP we don't need to apply reduction operation, so
|
| 3950 |
|
|
we just collect s' values in SCALAR_RESULTS. */
|
| 3951 |
|
|
new_temp = new_name;
|
| 3952 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_name);
|
| 3953 |
|
|
}
|
| 3954 |
|
|
else
|
| 3955 |
|
|
{
|
| 3956 |
|
|
epilog_stmt = gimple_build_assign_with_ops (code,
|
| 3957 |
|
|
new_scalar_dest, new_name, new_temp);
|
| 3958 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
| 3959 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 3960 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 3961 |
|
|
}
|
| 3962 |
|
|
}
|
| 3963 |
|
|
}
|
| 3964 |
|
|
|
| 3965 |
|
|
/* The only case where we need to reduce scalar results in SLP, is
|
| 3966 |
|
|
unrolling. If the size of SCALAR_RESULTS is greater than
|
| 3967 |
|
|
GROUP_SIZE, we reduce them combining elements modulo
|
| 3968 |
|
|
GROUP_SIZE. */
|
| 3969 |
|
|
if (slp_reduc)
|
| 3970 |
|
|
{
|
| 3971 |
|
|
tree res, first_res, new_res;
|
| 3972 |
|
|
gimple new_stmt;
|
| 3973 |
|
|
|
| 3974 |
|
|
/* Reduce multiple scalar results in case of SLP unrolling. */
|
| 3975 |
|
|
for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
|
| 3976 |
|
|
j++)
|
| 3977 |
|
|
{
|
| 3978 |
|
|
first_res = VEC_index (tree, scalar_results, j % group_size);
|
| 3979 |
|
|
new_stmt = gimple_build_assign_with_ops (code,
|
| 3980 |
|
|
new_scalar_dest, first_res, res);
|
| 3981 |
|
|
new_res = make_ssa_name (new_scalar_dest, new_stmt);
|
| 3982 |
|
|
gimple_assign_set_lhs (new_stmt, new_res);
|
| 3983 |
|
|
gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
|
| 3984 |
|
|
VEC_replace (tree, scalar_results, j % group_size, new_res);
|
| 3985 |
|
|
}
|
| 3986 |
|
|
}
|
| 3987 |
|
|
else
|
| 3988 |
|
|
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
|
| 3989 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
| 3990 |
|
|
|
| 3991 |
|
|
extract_scalar_result = false;
|
| 3992 |
|
|
}
|
| 3993 |
|
|
}
|
| 3994 |
|
|
|
| 3995 |
|
|
/* 2.4 Extract the final scalar result. Create:
|
| 3996 |
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
| 3997 |
|
|
|
| 3998 |
|
|
if (extract_scalar_result)
|
| 3999 |
|
|
{
|
| 4000 |
|
|
tree rhs;
|
| 4001 |
|
|
|
| 4002 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4003 |
|
|
fprintf (vect_dump, "extract scalar result");
|
| 4004 |
|
|
|
| 4005 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 4006 |
|
|
bitpos = size_binop (MULT_EXPR,
|
| 4007 |
|
|
bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
|
| 4008 |
|
|
TYPE_SIZE (scalar_type));
|
| 4009 |
|
|
else
|
| 4010 |
|
|
bitpos = bitsize_zero_node;
|
| 4011 |
|
|
|
| 4012 |
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
|
| 4013 |
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
| 4014 |
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
| 4015 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 4016 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 4017 |
|
|
VEC_safe_push (tree, heap, scalar_results, new_temp);
|
| 4018 |
|
|
}
|
| 4019 |
|
|
|
| 4020 |
|
|
vect_finalize_reduction:
|
| 4021 |
|
|
|
| 4022 |
|
|
if (double_reduc)
|
| 4023 |
|
|
loop = loop->inner;
|
| 4024 |
|
|
|
| 4025 |
|
|
/* 2.5 Adjust the final result by the initial value of the reduction
|
| 4026 |
|
|
variable. (When such adjustment is not needed, then
|
| 4027 |
|
|
'adjustment_def' is zero). For example, if code is PLUS we create:
|
| 4028 |
|
|
new_temp = loop_exit_def + adjustment_def */
|
| 4029 |
|
|
|
| 4030 |
|
|
if (adjustment_def)
|
| 4031 |
|
|
{
|
| 4032 |
|
|
gcc_assert (!slp_reduc);
|
| 4033 |
|
|
if (nested_in_vect_loop)
|
| 4034 |
|
|
{
|
| 4035 |
|
|
new_phi = VEC_index (gimple, new_phis, 0);
|
| 4036 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
|
| 4037 |
|
|
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
|
| 4038 |
|
|
new_dest = vect_create_destination_var (scalar_dest, vectype);
|
| 4039 |
|
|
}
|
| 4040 |
|
|
else
|
| 4041 |
|
|
{
|
| 4042 |
|
|
new_temp = VEC_index (tree, scalar_results, 0);
|
| 4043 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
|
| 4044 |
|
|
expr = build2 (code, scalar_type, new_temp, adjustment_def);
|
| 4045 |
|
|
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
|
| 4046 |
|
|
}
|
| 4047 |
|
|
|
| 4048 |
|
|
epilog_stmt = gimple_build_assign (new_dest, expr);
|
| 4049 |
|
|
new_temp = make_ssa_name (new_dest, epilog_stmt);
|
| 4050 |
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
| 4051 |
|
|
SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
|
| 4052 |
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
| 4053 |
|
|
if (nested_in_vect_loop)
|
| 4054 |
|
|
{
|
| 4055 |
|
|
set_vinfo_for_stmt (epilog_stmt,
|
| 4056 |
|
|
new_stmt_vec_info (epilog_stmt, loop_vinfo,
|
| 4057 |
|
|
NULL));
|
| 4058 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
|
| 4059 |
|
|
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
|
| 4060 |
|
|
|
| 4061 |
|
|
if (!double_reduc)
|
| 4062 |
|
|
VEC_quick_push (tree, scalar_results, new_temp);
|
| 4063 |
|
|
else
|
| 4064 |
|
|
VEC_replace (tree, scalar_results, 0, new_temp);
|
| 4065 |
|
|
}
|
| 4066 |
|
|
else
|
| 4067 |
|
|
VEC_replace (tree, scalar_results, 0, new_temp);
|
| 4068 |
|
|
|
| 4069 |
|
|
VEC_replace (gimple, new_phis, 0, epilog_stmt);
|
| 4070 |
|
|
}
|
| 4071 |
|
|
|
| 4072 |
|
|
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
|
| 4073 |
|
|
phis with new adjusted scalar results, i.e., replace use <s_out0>
|
| 4074 |
|
|
with use <s_out4>.
|
| 4075 |
|
|
|
| 4076 |
|
|
Transform:
|
| 4077 |
|
|
loop_exit:
|
| 4078 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
| 4079 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
| 4080 |
|
|
v_out2 = reduce <v_out1>
|
| 4081 |
|
|
s_out3 = extract_field <v_out2, 0>
|
| 4082 |
|
|
s_out4 = adjust_result <s_out3>
|
| 4083 |
|
|
use <s_out0>
|
| 4084 |
|
|
use <s_out0>
|
| 4085 |
|
|
|
| 4086 |
|
|
into:
|
| 4087 |
|
|
|
| 4088 |
|
|
loop_exit:
|
| 4089 |
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
| 4090 |
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
| 4091 |
|
|
v_out2 = reduce <v_out1>
|
| 4092 |
|
|
s_out3 = extract_field <v_out2, 0>
|
| 4093 |
|
|
s_out4 = adjust_result <s_out3>
|
| 4094 |
|
|
use <s_out4>
|
| 4095 |
|
|
use <s_out4> */
|
| 4096 |
|
|
|
| 4097 |
|
|
|
| 4098 |
|
|
/* In SLP reduction chain we reduce vector results into one vector if
|
| 4099 |
|
|
necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
|
| 4100 |
|
|
the last stmt in the reduction chain, since we are looking for the loop
|
| 4101 |
|
|
exit phi node. */
|
| 4102 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
| 4103 |
|
|
{
|
| 4104 |
|
|
scalar_dest = gimple_assign_lhs (VEC_index (gimple,
|
| 4105 |
|
|
SLP_TREE_SCALAR_STMTS (slp_node),
|
| 4106 |
|
|
group_size - 1));
|
| 4107 |
|
|
group_size = 1;
|
| 4108 |
|
|
}
|
| 4109 |
|
|
|
| 4110 |
|
|
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
|
| 4111 |
|
|
case that GROUP_SIZE is greater than vectorization factor). Therefore, we
|
| 4112 |
|
|
need to match SCALAR_RESULTS with corresponding statements. The first
|
| 4113 |
|
|
(GROUP_SIZE / number of new vector stmts) scalar results correspond to
|
| 4114 |
|
|
the first vector stmt, etc.
|
| 4115 |
|
|
(RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
|
| 4116 |
|
|
if (group_size > VEC_length (gimple, new_phis))
|
| 4117 |
|
|
{
|
| 4118 |
|
|
ratio = group_size / VEC_length (gimple, new_phis);
|
| 4119 |
|
|
gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
|
| 4120 |
|
|
}
|
| 4121 |
|
|
else
|
| 4122 |
|
|
ratio = 1;
|
| 4123 |
|
|
|
| 4124 |
|
|
for (k = 0; k < group_size; k++)
|
| 4125 |
|
|
{
|
| 4126 |
|
|
if (k % ratio == 0)
|
| 4127 |
|
|
{
|
| 4128 |
|
|
epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
|
| 4129 |
|
|
reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
|
| 4130 |
|
|
if (double_reduc)
|
| 4131 |
|
|
inner_phi = VEC_index (gimple, inner_phis, k / ratio);
|
| 4132 |
|
|
}
|
| 4133 |
|
|
|
| 4134 |
|
|
if (slp_reduc)
|
| 4135 |
|
|
{
|
| 4136 |
|
|
gimple current_stmt = VEC_index (gimple,
|
| 4137 |
|
|
SLP_TREE_SCALAR_STMTS (slp_node), k);
|
| 4138 |
|
|
|
| 4139 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
|
| 4140 |
|
|
/* SLP statements can't participate in patterns. */
|
| 4141 |
|
|
gcc_assert (!orig_stmt);
|
| 4142 |
|
|
scalar_dest = gimple_assign_lhs (current_stmt);
|
| 4143 |
|
|
}
|
| 4144 |
|
|
|
| 4145 |
|
|
phis = VEC_alloc (gimple, heap, 3);
|
| 4146 |
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
| 4147 |
|
|
result. (The reduction result is expected to have two immediate uses -
|
| 4148 |
|
|
one at the latch block, and one at the loop exit). */
|
| 4149 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
| 4150 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
| 4151 |
|
|
VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
|
| 4152 |
|
|
|
| 4153 |
|
|
/* We expect to have found an exit_phi because of loop-closed-ssa
|
| 4154 |
|
|
form. */
|
| 4155 |
|
|
gcc_assert (!VEC_empty (gimple, phis));
|
| 4156 |
|
|
|
| 4157 |
|
|
FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
|
| 4158 |
|
|
{
|
| 4159 |
|
|
if (outer_loop)
|
| 4160 |
|
|
{
|
| 4161 |
|
|
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
|
| 4162 |
|
|
gimple vect_phi;
|
| 4163 |
|
|
|
| 4164 |
|
|
/* FORNOW. Currently not supporting the case that an inner-loop
|
| 4165 |
|
|
reduction is not used in the outer-loop (but only outside the
|
| 4166 |
|
|
outer-loop), unless it is double reduction. */
|
| 4167 |
|
|
gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
| 4168 |
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo))
|
| 4169 |
|
|
|| double_reduc);
|
| 4170 |
|
|
|
| 4171 |
|
|
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
|
| 4172 |
|
|
if (!double_reduc
|
| 4173 |
|
|
|| STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
|
| 4174 |
|
|
!= vect_double_reduction_def)
|
| 4175 |
|
|
continue;
|
| 4176 |
|
|
|
| 4177 |
|
|
/* Handle double reduction:
|
| 4178 |
|
|
|
| 4179 |
|
|
stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
|
| 4180 |
|
|
stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
|
| 4181 |
|
|
stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
|
| 4182 |
|
|
stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
|
| 4183 |
|
|
|
| 4184 |
|
|
At that point the regular reduction (stmt2 and stmt3) is
|
| 4185 |
|
|
already vectorized, as well as the exit phi node, stmt4.
|
| 4186 |
|
|
Here we vectorize the phi node of double reduction, stmt1, and
|
| 4187 |
|
|
update all relevant statements. */
|
| 4188 |
|
|
|
| 4189 |
|
|
/* Go through all the uses of s2 to find double reduction phi
|
| 4190 |
|
|
node, i.e., stmt1 above. */
|
| 4191 |
|
|
orig_name = PHI_RESULT (exit_phi);
|
| 4192 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
| 4193 |
|
|
{
|
| 4194 |
|
|
stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
|
| 4195 |
|
|
stmt_vec_info new_phi_vinfo;
|
| 4196 |
|
|
tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
|
| 4197 |
|
|
basic_block bb = gimple_bb (use_stmt);
|
| 4198 |
|
|
gimple use;
|
| 4199 |
|
|
|
| 4200 |
|
|
/* Check that USE_STMT is really double reduction phi
|
| 4201 |
|
|
node. */
|
| 4202 |
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
| 4203 |
|
|
|| gimple_phi_num_args (use_stmt) != 2
|
| 4204 |
|
|
|| !use_stmt_vinfo
|
| 4205 |
|
|
|| STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
|
| 4206 |
|
|
!= vect_double_reduction_def
|
| 4207 |
|
|
|| bb->loop_father != outer_loop)
|
| 4208 |
|
|
continue;
|
| 4209 |
|
|
|
| 4210 |
|
|
/* Create vector phi node for double reduction:
|
| 4211 |
|
|
vs1 = phi <vs0, vs2>
|
| 4212 |
|
|
vs1 was created previously in this function by a call to
|
| 4213 |
|
|
vect_get_vec_def_for_operand and is stored in
|
| 4214 |
|
|
vec_initial_def;
|
| 4215 |
|
|
vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
|
| 4216 |
|
|
vs0 is created here. */
|
| 4217 |
|
|
|
| 4218 |
|
|
/* Create vector phi node. */
|
| 4219 |
|
|
vect_phi = create_phi_node (vec_initial_def, bb);
|
| 4220 |
|
|
new_phi_vinfo = new_stmt_vec_info (vect_phi,
|
| 4221 |
|
|
loop_vec_info_for_loop (outer_loop), NULL);
|
| 4222 |
|
|
set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
|
| 4223 |
|
|
|
| 4224 |
|
|
/* Create vs0 - initial def of the double reduction phi. */
|
| 4225 |
|
|
preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
|
| 4226 |
|
|
loop_preheader_edge (outer_loop));
|
| 4227 |
|
|
init_def = get_initial_def_for_reduction (stmt,
|
| 4228 |
|
|
preheader_arg, NULL);
|
| 4229 |
|
|
vect_phi_init = vect_init_vector (use_stmt, init_def,
|
| 4230 |
|
|
vectype, NULL);
|
| 4231 |
|
|
|
| 4232 |
|
|
/* Update phi node arguments with vs0 and vs2. */
|
| 4233 |
|
|
add_phi_arg (vect_phi, vect_phi_init,
|
| 4234 |
|
|
loop_preheader_edge (outer_loop),
|
| 4235 |
|
|
UNKNOWN_LOCATION);
|
| 4236 |
|
|
add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
|
| 4237 |
|
|
loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
|
| 4238 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4239 |
|
|
{
|
| 4240 |
|
|
fprintf (vect_dump, "created double reduction phi "
|
| 4241 |
|
|
"node: ");
|
| 4242 |
|
|
print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
|
| 4243 |
|
|
}
|
| 4244 |
|
|
|
| 4245 |
|
|
vect_phi_res = PHI_RESULT (vect_phi);
|
| 4246 |
|
|
|
| 4247 |
|
|
/* Replace the use, i.e., set the correct vs1 in the regular
|
| 4248 |
|
|
reduction phi node. FORNOW, NCOPIES is always 1, so the
|
| 4249 |
|
|
loop is redundant. */
|
| 4250 |
|
|
use = reduction_phi;
|
| 4251 |
|
|
for (j = 0; j < ncopies; j++)
|
| 4252 |
|
|
{
|
| 4253 |
|
|
edge pr_edge = loop_preheader_edge (loop);
|
| 4254 |
|
|
SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
|
| 4255 |
|
|
use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
|
| 4256 |
|
|
}
|
| 4257 |
|
|
}
|
| 4258 |
|
|
}
|
| 4259 |
|
|
}
|
| 4260 |
|
|
|
| 4261 |
|
|
VEC_free (gimple, heap, phis);
|
| 4262 |
|
|
if (nested_in_vect_loop)
|
| 4263 |
|
|
{
|
| 4264 |
|
|
if (double_reduc)
|
| 4265 |
|
|
loop = outer_loop;
|
| 4266 |
|
|
else
|
| 4267 |
|
|
continue;
|
| 4268 |
|
|
}
|
| 4269 |
|
|
|
| 4270 |
|
|
phis = VEC_alloc (gimple, heap, 3);
|
| 4271 |
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
| 4272 |
|
|
result. (The reduction result is expected to have two immediate uses,
|
| 4273 |
|
|
one at the latch block, and one at the loop exit). For double
|
| 4274 |
|
|
reductions we are looking for exit phis of the outer loop. */
|
| 4275 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
| 4276 |
|
|
{
|
| 4277 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
| 4278 |
|
|
VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
|
| 4279 |
|
|
else
|
| 4280 |
|
|
{
|
| 4281 |
|
|
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
| 4282 |
|
|
{
|
| 4283 |
|
|
tree phi_res = PHI_RESULT (USE_STMT (use_p));
|
| 4284 |
|
|
|
| 4285 |
|
|
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
|
| 4286 |
|
|
{
|
| 4287 |
|
|
if (!flow_bb_inside_loop_p (loop,
|
| 4288 |
|
|
gimple_bb (USE_STMT (phi_use_p))))
|
| 4289 |
|
|
VEC_safe_push (gimple, heap, phis,
|
| 4290 |
|
|
USE_STMT (phi_use_p));
|
| 4291 |
|
|
}
|
| 4292 |
|
|
}
|
| 4293 |
|
|
}
|
| 4294 |
|
|
}
|
| 4295 |
|
|
|
| 4296 |
|
|
FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
|
| 4297 |
|
|
{
|
| 4298 |
|
|
/* Replace the uses: */
|
| 4299 |
|
|
orig_name = PHI_RESULT (exit_phi);
|
| 4300 |
|
|
scalar_result = VEC_index (tree, scalar_results, k);
|
| 4301 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
| 4302 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
| 4303 |
|
|
SET_USE (use_p, scalar_result);
|
| 4304 |
|
|
}
|
| 4305 |
|
|
|
| 4306 |
|
|
VEC_free (gimple, heap, phis);
|
| 4307 |
|
|
}
|
| 4308 |
|
|
|
| 4309 |
|
|
VEC_free (tree, heap, scalar_results);
|
| 4310 |
|
|
VEC_free (gimple, heap, new_phis);
|
| 4311 |
|
|
}
|
| 4312 |
|
|
|
| 4313 |
|
|
|
| 4314 |
|
|
/* Function vectorizable_reduction.
|
| 4315 |
|
|
|
| 4316 |
|
|
Check if STMT performs a reduction operation that can be vectorized.
|
| 4317 |
|
|
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
|
| 4318 |
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
| 4319 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise.
|
| 4320 |
|
|
|
| 4321 |
|
|
This function also handles reduction idioms (patterns) that have been
|
| 4322 |
|
|
recognized in advance during vect_pattern_recog. In this case, STMT may be
|
| 4323 |
|
|
of this form:
|
| 4324 |
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
| 4325 |
|
|
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
| 4326 |
|
|
sequence that had been detected and replaced by the pattern-stmt (STMT).
|
| 4327 |
|
|
|
| 4328 |
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
| 4329 |
|
|
different than the type of the other arguments of STMT.
|
| 4330 |
|
|
In such cases, the vectype that is used when transforming STMT into a vector
|
| 4331 |
|
|
stmt is different than the vectype that is used to determine the
|
| 4332 |
|
|
vectorization factor, because it consists of a different number of elements
|
| 4333 |
|
|
than the actual number of elements that are being operated upon in parallel.
|
| 4334 |
|
|
|
| 4335 |
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
| 4336 |
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
| 4337 |
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
| 4338 |
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
| 4339 |
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
| 4340 |
|
|
|
| 4341 |
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
| 4342 |
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
| 4343 |
|
|
that the right vectorization factor would be derived. This vectype
|
| 4344 |
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
| 4345 |
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
| 4346 |
|
|
stmt is obtained from the type of the result X:
|
| 4347 |
|
|
get_vectype_for_scalar_type (TREE_TYPE (X))
|
| 4348 |
|
|
|
| 4349 |
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
| 4350 |
|
|
general), the following equation:
|
| 4351 |
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
|
| 4352 |
|
|
does *NOT* necessarily hold for reduction patterns. */
|
| 4353 |
|
|
|
| 4354 |
|
|
bool
|
| 4355 |
|
|
vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
|
| 4356 |
|
|
gimple *vec_stmt, slp_tree slp_node)
|
| 4357 |
|
|
{
|
| 4358 |
|
|
tree vec_dest;
|
| 4359 |
|
|
tree scalar_dest;
|
| 4360 |
|
|
tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
|
| 4361 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 4362 |
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
| 4363 |
|
|
tree vectype_in = NULL_TREE;
|
| 4364 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 4365 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 4366 |
|
|
enum tree_code code, orig_code, epilog_reduc_code;
|
| 4367 |
|
|
enum machine_mode vec_mode;
|
| 4368 |
|
|
int op_type;
|
| 4369 |
|
|
optab optab, reduc_optab;
|
| 4370 |
|
|
tree new_temp = NULL_TREE;
|
| 4371 |
|
|
tree def;
|
| 4372 |
|
|
gimple def_stmt;
|
| 4373 |
|
|
enum vect_def_type dt;
|
| 4374 |
|
|
gimple new_phi = NULL;
|
| 4375 |
|
|
tree scalar_type;
|
| 4376 |
|
|
bool is_simple_use;
|
| 4377 |
|
|
gimple orig_stmt;
|
| 4378 |
|
|
stmt_vec_info orig_stmt_info;
|
| 4379 |
|
|
tree expr = NULL_TREE;
|
| 4380 |
|
|
int i;
|
| 4381 |
|
|
int ncopies;
|
| 4382 |
|
|
int epilog_copies;
|
| 4383 |
|
|
stmt_vec_info prev_stmt_info, prev_phi_info;
|
| 4384 |
|
|
bool single_defuse_cycle = false;
|
| 4385 |
|
|
tree reduc_def = NULL_TREE;
|
| 4386 |
|
|
gimple new_stmt = NULL;
|
| 4387 |
|
|
int j;
|
| 4388 |
|
|
tree ops[3];
|
| 4389 |
|
|
bool nested_cycle = false, found_nested_cycle_def = false;
|
| 4390 |
|
|
gimple reduc_def_stmt = NULL;
|
| 4391 |
|
|
/* The default is that the reduction variable is the last in statement. */
|
| 4392 |
|
|
int reduc_index = 2;
|
| 4393 |
|
|
bool double_reduc = false, dummy;
|
| 4394 |
|
|
basic_block def_bb;
|
| 4395 |
|
|
struct loop * def_stmt_loop, *outer_loop = NULL;
|
| 4396 |
|
|
tree def_arg;
|
| 4397 |
|
|
gimple def_arg_stmt;
|
| 4398 |
|
|
VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
|
| 4399 |
|
|
VEC (gimple, heap) *phis = NULL;
|
| 4400 |
|
|
int vec_num;
|
| 4401 |
|
|
tree def0, def1, tem, op0, op1 = NULL_TREE;
|
| 4402 |
|
|
|
| 4403 |
|
|
/* In case of reduction chain we switch to the first stmt in the chain, but
|
| 4404 |
|
|
we don't update STMT_INFO, since only the last stmt is marked as reduction
|
| 4405 |
|
|
and has reduction properties. */
|
| 4406 |
|
|
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
|
| 4407 |
|
|
stmt = GROUP_FIRST_ELEMENT (stmt_info);
|
| 4408 |
|
|
|
| 4409 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
| 4410 |
|
|
{
|
| 4411 |
|
|
outer_loop = loop;
|
| 4412 |
|
|
loop = loop->inner;
|
| 4413 |
|
|
nested_cycle = true;
|
| 4414 |
|
|
}
|
| 4415 |
|
|
|
| 4416 |
|
|
/* 1. Is vectorizable reduction? */
|
| 4417 |
|
|
/* Not supportable if the reduction variable is used in the loop, unless
|
| 4418 |
|
|
it's a reduction chain. */
|
| 4419 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
|
| 4420 |
|
|
&& !GROUP_FIRST_ELEMENT (stmt_info))
|
| 4421 |
|
|
return false;
|
| 4422 |
|
|
|
| 4423 |
|
|
/* Reductions that are not used even in an enclosing outer-loop,
|
| 4424 |
|
|
are expected to be "live" (used out of the loop). */
|
| 4425 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
|
| 4426 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 4427 |
|
|
return false;
|
| 4428 |
|
|
|
| 4429 |
|
|
/* Make sure it was already recognized as a reduction computation. */
|
| 4430 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
|
| 4431 |
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
|
| 4432 |
|
|
return false;
|
| 4433 |
|
|
|
| 4434 |
|
|
/* 2. Has this been recognized as a reduction pattern?
|
| 4435 |
|
|
|
| 4436 |
|
|
Check if STMT represents a pattern that has been recognized
|
| 4437 |
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
| 4438 |
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
| 4439 |
|
|
the original sequence that constitutes the pattern. */
|
| 4440 |
|
|
|
| 4441 |
|
|
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
|
| 4442 |
|
|
if (orig_stmt)
|
| 4443 |
|
|
{
|
| 4444 |
|
|
orig_stmt_info = vinfo_for_stmt (orig_stmt);
|
| 4445 |
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
|
| 4446 |
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
| 4447 |
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
| 4448 |
|
|
}
|
| 4449 |
|
|
|
| 4450 |
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
| 4451 |
|
|
inside the loop body. The last operand is the reduction variable,
|
| 4452 |
|
|
which is defined by the loop-header-phi. */
|
| 4453 |
|
|
|
| 4454 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
| 4455 |
|
|
|
| 4456 |
|
|
/* Flatten RHS. */
|
| 4457 |
|
|
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
|
| 4458 |
|
|
{
|
| 4459 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 4460 |
|
|
op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
|
| 4461 |
|
|
if (op_type == ternary_op)
|
| 4462 |
|
|
{
|
| 4463 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 4464 |
|
|
ops[0] = TREE_OPERAND (rhs, 0);
|
| 4465 |
|
|
ops[1] = TREE_OPERAND (rhs, 1);
|
| 4466 |
|
|
ops[2] = TREE_OPERAND (rhs, 2);
|
| 4467 |
|
|
code = TREE_CODE (rhs);
|
| 4468 |
|
|
}
|
| 4469 |
|
|
else
|
| 4470 |
|
|
return false;
|
| 4471 |
|
|
break;
|
| 4472 |
|
|
|
| 4473 |
|
|
case GIMPLE_BINARY_RHS:
|
| 4474 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 4475 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
| 4476 |
|
|
gcc_assert (op_type == binary_op);
|
| 4477 |
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
| 4478 |
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
| 4479 |
|
|
break;
|
| 4480 |
|
|
|
| 4481 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 4482 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 4483 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
| 4484 |
|
|
gcc_assert (op_type == ternary_op);
|
| 4485 |
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
| 4486 |
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
| 4487 |
|
|
ops[2] = gimple_assign_rhs3 (stmt);
|
| 4488 |
|
|
break;
|
| 4489 |
|
|
|
| 4490 |
|
|
case GIMPLE_UNARY_RHS:
|
| 4491 |
|
|
return false;
|
| 4492 |
|
|
|
| 4493 |
|
|
default:
|
| 4494 |
|
|
gcc_unreachable ();
|
| 4495 |
|
|
}
|
| 4496 |
|
|
|
| 4497 |
|
|
if (code == COND_EXPR && slp_node)
|
| 4498 |
|
|
return false;
|
| 4499 |
|
|
|
| 4500 |
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
| 4501 |
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
| 4502 |
|
|
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
|
| 4503 |
|
|
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
|
| 4504 |
|
|
return false;
|
| 4505 |
|
|
|
| 4506 |
|
|
/* Do not try to vectorize bit-precision reductions. */
|
| 4507 |
|
|
if ((TYPE_PRECISION (scalar_type)
|
| 4508 |
|
|
!= GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
|
| 4509 |
|
|
return false;
|
| 4510 |
|
|
|
| 4511 |
|
|
/* All uses but the last are expected to be defined in the loop.
|
| 4512 |
|
|
The last use is the reduction variable. In case of nested cycle this
|
| 4513 |
|
|
assumption is not true: we use reduc_index to record the index of the
|
| 4514 |
|
|
reduction variable. */
|
| 4515 |
|
|
for (i = 0; i < op_type-1; i++)
|
| 4516 |
|
|
{
|
| 4517 |
|
|
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
|
| 4518 |
|
|
if (i == 0 && code == COND_EXPR)
|
| 4519 |
|
|
continue;
|
| 4520 |
|
|
|
| 4521 |
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
| 4522 |
|
|
&def_stmt, &def, &dt, &tem);
|
| 4523 |
|
|
if (!vectype_in)
|
| 4524 |
|
|
vectype_in = tem;
|
| 4525 |
|
|
gcc_assert (is_simple_use);
|
| 4526 |
|
|
|
| 4527 |
|
|
if (dt != vect_internal_def
|
| 4528 |
|
|
&& dt != vect_external_def
|
| 4529 |
|
|
&& dt != vect_constant_def
|
| 4530 |
|
|
&& dt != vect_induction_def
|
| 4531 |
|
|
&& !(dt == vect_nested_cycle && nested_cycle))
|
| 4532 |
|
|
return false;
|
| 4533 |
|
|
|
| 4534 |
|
|
if (dt == vect_nested_cycle)
|
| 4535 |
|
|
{
|
| 4536 |
|
|
found_nested_cycle_def = true;
|
| 4537 |
|
|
reduc_def_stmt = def_stmt;
|
| 4538 |
|
|
reduc_index = i;
|
| 4539 |
|
|
}
|
| 4540 |
|
|
}
|
| 4541 |
|
|
|
| 4542 |
|
|
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
|
| 4543 |
|
|
&def_stmt, &def, &dt, &tem);
|
| 4544 |
|
|
if (!vectype_in)
|
| 4545 |
|
|
vectype_in = tem;
|
| 4546 |
|
|
gcc_assert (is_simple_use);
|
| 4547 |
|
|
gcc_assert (dt == vect_reduction_def
|
| 4548 |
|
|
|| dt == vect_nested_cycle
|
| 4549 |
|
|
|| ((dt == vect_internal_def || dt == vect_external_def
|
| 4550 |
|
|
|| dt == vect_constant_def || dt == vect_induction_def)
|
| 4551 |
|
|
&& nested_cycle && found_nested_cycle_def));
|
| 4552 |
|
|
if (!found_nested_cycle_def)
|
| 4553 |
|
|
reduc_def_stmt = def_stmt;
|
| 4554 |
|
|
|
| 4555 |
|
|
gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
|
| 4556 |
|
|
if (orig_stmt)
|
| 4557 |
|
|
gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
|
| 4558 |
|
|
reduc_def_stmt,
|
| 4559 |
|
|
!nested_cycle,
|
| 4560 |
|
|
&dummy));
|
| 4561 |
|
|
else
|
| 4562 |
|
|
{
|
| 4563 |
|
|
gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
|
| 4564 |
|
|
!nested_cycle, &dummy);
|
| 4565 |
|
|
/* We changed STMT to be the first stmt in reduction chain, hence we
|
| 4566 |
|
|
check that in this case the first element in the chain is STMT. */
|
| 4567 |
|
|
gcc_assert (stmt == tmp
|
| 4568 |
|
|
|| GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
|
| 4569 |
|
|
}
|
| 4570 |
|
|
|
| 4571 |
|
|
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
|
| 4572 |
|
|
return false;
|
| 4573 |
|
|
|
| 4574 |
|
|
if (slp_node || PURE_SLP_STMT (stmt_info))
|
| 4575 |
|
|
ncopies = 1;
|
| 4576 |
|
|
else
|
| 4577 |
|
|
ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
| 4578 |
|
|
/ TYPE_VECTOR_SUBPARTS (vectype_in));
|
| 4579 |
|
|
|
| 4580 |
|
|
gcc_assert (ncopies >= 1);
|
| 4581 |
|
|
|
| 4582 |
|
|
vec_mode = TYPE_MODE (vectype_in);
|
| 4583 |
|
|
|
| 4584 |
|
|
if (code == COND_EXPR)
|
| 4585 |
|
|
{
|
| 4586 |
|
|
if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
|
| 4587 |
|
|
{
|
| 4588 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4589 |
|
|
fprintf (vect_dump, "unsupported condition in reduction");
|
| 4590 |
|
|
|
| 4591 |
|
|
return false;
|
| 4592 |
|
|
}
|
| 4593 |
|
|
}
|
| 4594 |
|
|
else
|
| 4595 |
|
|
{
|
| 4596 |
|
|
/* 4. Supportable by target? */
|
| 4597 |
|
|
|
| 4598 |
|
|
/* 4.1. check support for the operation in the loop */
|
| 4599 |
|
|
optab = optab_for_tree_code (code, vectype_in, optab_default);
|
| 4600 |
|
|
if (!optab)
|
| 4601 |
|
|
{
|
| 4602 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4603 |
|
|
fprintf (vect_dump, "no optab.");
|
| 4604 |
|
|
|
| 4605 |
|
|
return false;
|
| 4606 |
|
|
}
|
| 4607 |
|
|
|
| 4608 |
|
|
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
| 4609 |
|
|
{
|
| 4610 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4611 |
|
|
fprintf (vect_dump, "op not supported by target.");
|
| 4612 |
|
|
|
| 4613 |
|
|
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|
| 4614 |
|
|
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
| 4615 |
|
|
< vect_min_worthwhile_factor (code))
|
| 4616 |
|
|
return false;
|
| 4617 |
|
|
|
| 4618 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4619 |
|
|
fprintf (vect_dump, "proceeding using word mode.");
|
| 4620 |
|
|
}
|
| 4621 |
|
|
|
| 4622 |
|
|
/* Worthwhile without SIMD support? */
|
| 4623 |
|
|
if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
|
| 4624 |
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
| 4625 |
|
|
< vect_min_worthwhile_factor (code))
|
| 4626 |
|
|
{
|
| 4627 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4628 |
|
|
fprintf (vect_dump, "not worthwhile without SIMD support.");
|
| 4629 |
|
|
|
| 4630 |
|
|
return false;
|
| 4631 |
|
|
}
|
| 4632 |
|
|
}
|
| 4633 |
|
|
|
| 4634 |
|
|
/* 4.2. Check support for the epilog operation.
|
| 4635 |
|
|
|
| 4636 |
|
|
If STMT represents a reduction pattern, then the type of the
|
| 4637 |
|
|
reduction variable may be different than the type of the rest
|
| 4638 |
|
|
of the arguments. For example, consider the case of accumulation
|
| 4639 |
|
|
of shorts into an int accumulator; The original code:
|
| 4640 |
|
|
S1: int_a = (int) short_a;
|
| 4641 |
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
| 4642 |
|
|
|
| 4643 |
|
|
was replaced with:
|
| 4644 |
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
| 4645 |
|
|
|
| 4646 |
|
|
This means that:
|
| 4647 |
|
|
1. The tree-code that is used to create the vector operation in the
|
| 4648 |
|
|
epilog code (that reduces the partial results) is not the
|
| 4649 |
|
|
tree-code of STMT, but is rather the tree-code of the original
|
| 4650 |
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
| 4651 |
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
| 4652 |
|
|
epilog.
|
| 4653 |
|
|
2. The type (mode) we use to check available target support
|
| 4654 |
|
|
for the vector operation to be created in the *epilog*, is
|
| 4655 |
|
|
determined by the type of the reduction variable (in the example
|
| 4656 |
|
|
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
|
| 4657 |
|
|
However the type (mode) we use to check available target support
|
| 4658 |
|
|
for the vector operation to be created *inside the loop*, is
|
| 4659 |
|
|
determined by the type of the other arguments to STMT (in the
|
| 4660 |
|
|
example we'd check this: optab_handler (widen_sum_optab,
|
| 4661 |
|
|
vect_short_mode)).
|
| 4662 |
|
|
|
| 4663 |
|
|
This is contrary to "regular" reductions, in which the types of all
|
| 4664 |
|
|
the arguments are the same as the type of the reduction variable.
|
| 4665 |
|
|
For "regular" reductions we can therefore use the same vector type
|
| 4666 |
|
|
(and also the same tree-code) when generating the epilog code and
|
| 4667 |
|
|
when generating the code inside the loop. */
|
| 4668 |
|
|
|
| 4669 |
|
|
if (orig_stmt)
|
| 4670 |
|
|
{
|
| 4671 |
|
|
/* This is a reduction pattern: get the vectype from the type of the
|
| 4672 |
|
|
reduction variable, and get the tree-code from orig_stmt. */
|
| 4673 |
|
|
orig_code = gimple_assign_rhs_code (orig_stmt);
|
| 4674 |
|
|
gcc_assert (vectype_out);
|
| 4675 |
|
|
vec_mode = TYPE_MODE (vectype_out);
|
| 4676 |
|
|
}
|
| 4677 |
|
|
else
|
| 4678 |
|
|
{
|
| 4679 |
|
|
/* Regular reduction: use the same vectype and tree-code as used for
|
| 4680 |
|
|
the vector code inside the loop can be used for the epilog code. */
|
| 4681 |
|
|
orig_code = code;
|
| 4682 |
|
|
}
|
| 4683 |
|
|
|
| 4684 |
|
|
if (nested_cycle)
|
| 4685 |
|
|
{
|
| 4686 |
|
|
def_bb = gimple_bb (reduc_def_stmt);
|
| 4687 |
|
|
def_stmt_loop = def_bb->loop_father;
|
| 4688 |
|
|
def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
| 4689 |
|
|
loop_preheader_edge (def_stmt_loop));
|
| 4690 |
|
|
if (TREE_CODE (def_arg) == SSA_NAME
|
| 4691 |
|
|
&& (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
|
| 4692 |
|
|
&& gimple_code (def_arg_stmt) == GIMPLE_PHI
|
| 4693 |
|
|
&& flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
|
| 4694 |
|
|
&& vinfo_for_stmt (def_arg_stmt)
|
| 4695 |
|
|
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
|
| 4696 |
|
|
== vect_double_reduction_def)
|
| 4697 |
|
|
double_reduc = true;
|
| 4698 |
|
|
}
|
| 4699 |
|
|
|
| 4700 |
|
|
epilog_reduc_code = ERROR_MARK;
|
| 4701 |
|
|
if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
|
| 4702 |
|
|
{
|
| 4703 |
|
|
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
|
| 4704 |
|
|
optab_default);
|
| 4705 |
|
|
if (!reduc_optab)
|
| 4706 |
|
|
{
|
| 4707 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4708 |
|
|
fprintf (vect_dump, "no optab for reduction.");
|
| 4709 |
|
|
|
| 4710 |
|
|
epilog_reduc_code = ERROR_MARK;
|
| 4711 |
|
|
}
|
| 4712 |
|
|
|
| 4713 |
|
|
if (reduc_optab
|
| 4714 |
|
|
&& optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
|
| 4715 |
|
|
{
|
| 4716 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4717 |
|
|
fprintf (vect_dump, "reduc op not supported by target.");
|
| 4718 |
|
|
|
| 4719 |
|
|
epilog_reduc_code = ERROR_MARK;
|
| 4720 |
|
|
}
|
| 4721 |
|
|
}
|
| 4722 |
|
|
else
|
| 4723 |
|
|
{
|
| 4724 |
|
|
if (!nested_cycle || double_reduc)
|
| 4725 |
|
|
{
|
| 4726 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4727 |
|
|
fprintf (vect_dump, "no reduc code for scalar code.");
|
| 4728 |
|
|
|
| 4729 |
|
|
return false;
|
| 4730 |
|
|
}
|
| 4731 |
|
|
}
|
| 4732 |
|
|
|
| 4733 |
|
|
if (double_reduc && ncopies > 1)
|
| 4734 |
|
|
{
|
| 4735 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4736 |
|
|
fprintf (vect_dump, "multiple types in double reduction");
|
| 4737 |
|
|
|
| 4738 |
|
|
return false;
|
| 4739 |
|
|
}
|
| 4740 |
|
|
|
| 4741 |
|
|
/* In case of widenning multiplication by a constant, we update the type
|
| 4742 |
|
|
of the constant to be the type of the other operand. We check that the
|
| 4743 |
|
|
constant fits the type in the pattern recognition pass. */
|
| 4744 |
|
|
if (code == DOT_PROD_EXPR
|
| 4745 |
|
|
&& !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
|
| 4746 |
|
|
{
|
| 4747 |
|
|
if (TREE_CODE (ops[0]) == INTEGER_CST)
|
| 4748 |
|
|
ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
|
| 4749 |
|
|
else if (TREE_CODE (ops[1]) == INTEGER_CST)
|
| 4750 |
|
|
ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
|
| 4751 |
|
|
else
|
| 4752 |
|
|
{
|
| 4753 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4754 |
|
|
fprintf (vect_dump, "invalid types in dot-prod");
|
| 4755 |
|
|
|
| 4756 |
|
|
return false;
|
| 4757 |
|
|
}
|
| 4758 |
|
|
}
|
| 4759 |
|
|
|
| 4760 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 4761 |
|
|
{
|
| 4762 |
|
|
if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
|
| 4763 |
|
|
return false;
|
| 4764 |
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
| 4765 |
|
|
return true;
|
| 4766 |
|
|
}
|
| 4767 |
|
|
|
| 4768 |
|
|
/** Transform. **/
|
| 4769 |
|
|
|
| 4770 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 4771 |
|
|
fprintf (vect_dump, "transform reduction.");
|
| 4772 |
|
|
|
| 4773 |
|
|
/* FORNOW: Multiple types are not supported for condition. */
|
| 4774 |
|
|
if (code == COND_EXPR)
|
| 4775 |
|
|
gcc_assert (ncopies == 1);
|
| 4776 |
|
|
|
| 4777 |
|
|
/* Create the destination vector */
|
| 4778 |
|
|
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
| 4779 |
|
|
|
| 4780 |
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
| 4781 |
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
| 4782 |
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
| 4783 |
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
| 4784 |
|
|
in vectorizable_operation. */
|
| 4785 |
|
|
|
| 4786 |
|
|
/* If the reduction is used in an outer loop we need to generate
|
| 4787 |
|
|
VF intermediate results, like so (e.g. for ncopies=2):
|
| 4788 |
|
|
r0 = phi (init, r0)
|
| 4789 |
|
|
r1 = phi (init, r1)
|
| 4790 |
|
|
r0 = x0 + r0;
|
| 4791 |
|
|
r1 = x1 + r1;
|
| 4792 |
|
|
(i.e. we generate VF results in 2 registers).
|
| 4793 |
|
|
In this case we have a separate def-use cycle for each copy, and therefore
|
| 4794 |
|
|
for each copy we get the vector def for the reduction variable from the
|
| 4795 |
|
|
respective phi node created for this copy.
|
| 4796 |
|
|
|
| 4797 |
|
|
Otherwise (the reduction is unused in the loop nest), we can combine
|
| 4798 |
|
|
together intermediate results, like so (e.g. for ncopies=2):
|
| 4799 |
|
|
r = phi (init, r)
|
| 4800 |
|
|
r = x0 + r;
|
| 4801 |
|
|
r = x1 + r;
|
| 4802 |
|
|
(i.e. we generate VF/2 results in a single register).
|
| 4803 |
|
|
In this case for each copy we get the vector def for the reduction variable
|
| 4804 |
|
|
from the vectorized reduction operation generated in the previous iteration.
|
| 4805 |
|
|
*/
|
| 4806 |
|
|
|
| 4807 |
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
|
| 4808 |
|
|
{
|
| 4809 |
|
|
single_defuse_cycle = true;
|
| 4810 |
|
|
epilog_copies = 1;
|
| 4811 |
|
|
}
|
| 4812 |
|
|
else
|
| 4813 |
|
|
epilog_copies = ncopies;
|
| 4814 |
|
|
|
| 4815 |
|
|
prev_stmt_info = NULL;
|
| 4816 |
|
|
prev_phi_info = NULL;
|
| 4817 |
|
|
if (slp_node)
|
| 4818 |
|
|
{
|
| 4819 |
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
| 4820 |
|
|
gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
|
| 4821 |
|
|
== TYPE_VECTOR_SUBPARTS (vectype_in));
|
| 4822 |
|
|
}
|
| 4823 |
|
|
else
|
| 4824 |
|
|
{
|
| 4825 |
|
|
vec_num = 1;
|
| 4826 |
|
|
vec_oprnds0 = VEC_alloc (tree, heap, 1);
|
| 4827 |
|
|
if (op_type == ternary_op)
|
| 4828 |
|
|
vec_oprnds1 = VEC_alloc (tree, heap, 1);
|
| 4829 |
|
|
}
|
| 4830 |
|
|
|
| 4831 |
|
|
phis = VEC_alloc (gimple, heap, vec_num);
|
| 4832 |
|
|
vect_defs = VEC_alloc (tree, heap, vec_num);
|
| 4833 |
|
|
if (!slp_node)
|
| 4834 |
|
|
VEC_quick_push (tree, vect_defs, NULL_TREE);
|
| 4835 |
|
|
|
| 4836 |
|
|
for (j = 0; j < ncopies; j++)
|
| 4837 |
|
|
{
|
| 4838 |
|
|
if (j == 0 || !single_defuse_cycle)
|
| 4839 |
|
|
{
|
| 4840 |
|
|
for (i = 0; i < vec_num; i++)
|
| 4841 |
|
|
{
|
| 4842 |
|
|
/* Create the reduction-phi that defines the reduction
|
| 4843 |
|
|
operand. */
|
| 4844 |
|
|
new_phi = create_phi_node (vec_dest, loop->header);
|
| 4845 |
|
|
set_vinfo_for_stmt (new_phi,
|
| 4846 |
|
|
new_stmt_vec_info (new_phi, loop_vinfo,
|
| 4847 |
|
|
NULL));
|
| 4848 |
|
|
if (j == 0 || slp_node)
|
| 4849 |
|
|
VEC_quick_push (gimple, phis, new_phi);
|
| 4850 |
|
|
}
|
| 4851 |
|
|
}
|
| 4852 |
|
|
|
| 4853 |
|
|
if (code == COND_EXPR)
|
| 4854 |
|
|
{
|
| 4855 |
|
|
gcc_assert (!slp_node);
|
| 4856 |
|
|
vectorizable_condition (stmt, gsi, vec_stmt,
|
| 4857 |
|
|
PHI_RESULT (VEC_index (gimple, phis, 0)),
|
| 4858 |
|
|
reduc_index, NULL);
|
| 4859 |
|
|
/* Multiple types are not supported for condition. */
|
| 4860 |
|
|
break;
|
| 4861 |
|
|
}
|
| 4862 |
|
|
|
| 4863 |
|
|
/* Handle uses. */
|
| 4864 |
|
|
if (j == 0)
|
| 4865 |
|
|
{
|
| 4866 |
|
|
op0 = ops[!reduc_index];
|
| 4867 |
|
|
if (op_type == ternary_op)
|
| 4868 |
|
|
{
|
| 4869 |
|
|
if (reduc_index == 0)
|
| 4870 |
|
|
op1 = ops[2];
|
| 4871 |
|
|
else
|
| 4872 |
|
|
op1 = ops[1];
|
| 4873 |
|
|
}
|
| 4874 |
|
|
|
| 4875 |
|
|
if (slp_node)
|
| 4876 |
|
|
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
|
| 4877 |
|
|
slp_node, -1);
|
| 4878 |
|
|
else
|
| 4879 |
|
|
{
|
| 4880 |
|
|
loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
|
| 4881 |
|
|
stmt, NULL);
|
| 4882 |
|
|
VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
|
| 4883 |
|
|
if (op_type == ternary_op)
|
| 4884 |
|
|
{
|
| 4885 |
|
|
loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
|
| 4886 |
|
|
NULL);
|
| 4887 |
|
|
VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
|
| 4888 |
|
|
}
|
| 4889 |
|
|
}
|
| 4890 |
|
|
}
|
| 4891 |
|
|
else
|
| 4892 |
|
|
{
|
| 4893 |
|
|
if (!slp_node)
|
| 4894 |
|
|
{
|
| 4895 |
|
|
enum vect_def_type dt;
|
| 4896 |
|
|
gimple dummy_stmt;
|
| 4897 |
|
|
tree dummy;
|
| 4898 |
|
|
|
| 4899 |
|
|
vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
|
| 4900 |
|
|
&dummy_stmt, &dummy, &dt);
|
| 4901 |
|
|
loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
|
| 4902 |
|
|
loop_vec_def0);
|
| 4903 |
|
|
VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
|
| 4904 |
|
|
if (op_type == ternary_op)
|
| 4905 |
|
|
{
|
| 4906 |
|
|
vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
|
| 4907 |
|
|
&dummy, &dt);
|
| 4908 |
|
|
loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
|
| 4909 |
|
|
loop_vec_def1);
|
| 4910 |
|
|
VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
|
| 4911 |
|
|
}
|
| 4912 |
|
|
}
|
| 4913 |
|
|
|
| 4914 |
|
|
if (single_defuse_cycle)
|
| 4915 |
|
|
reduc_def = gimple_assign_lhs (new_stmt);
|
| 4916 |
|
|
|
| 4917 |
|
|
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
|
| 4918 |
|
|
}
|
| 4919 |
|
|
|
| 4920 |
|
|
FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
|
| 4921 |
|
|
{
|
| 4922 |
|
|
if (slp_node)
|
| 4923 |
|
|
reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
|
| 4924 |
|
|
else
|
| 4925 |
|
|
{
|
| 4926 |
|
|
if (!single_defuse_cycle || j == 0)
|
| 4927 |
|
|
reduc_def = PHI_RESULT (new_phi);
|
| 4928 |
|
|
}
|
| 4929 |
|
|
|
| 4930 |
|
|
def1 = ((op_type == ternary_op)
|
| 4931 |
|
|
? VEC_index (tree, vec_oprnds1, i) : NULL);
|
| 4932 |
|
|
if (op_type == binary_op)
|
| 4933 |
|
|
{
|
| 4934 |
|
|
if (reduc_index == 0)
|
| 4935 |
|
|
expr = build2 (code, vectype_out, reduc_def, def0);
|
| 4936 |
|
|
else
|
| 4937 |
|
|
expr = build2 (code, vectype_out, def0, reduc_def);
|
| 4938 |
|
|
}
|
| 4939 |
|
|
else
|
| 4940 |
|
|
{
|
| 4941 |
|
|
if (reduc_index == 0)
|
| 4942 |
|
|
expr = build3 (code, vectype_out, reduc_def, def0, def1);
|
| 4943 |
|
|
else
|
| 4944 |
|
|
{
|
| 4945 |
|
|
if (reduc_index == 1)
|
| 4946 |
|
|
expr = build3 (code, vectype_out, def0, reduc_def, def1);
|
| 4947 |
|
|
else
|
| 4948 |
|
|
expr = build3 (code, vectype_out, def0, def1, reduc_def);
|
| 4949 |
|
|
}
|
| 4950 |
|
|
}
|
| 4951 |
|
|
|
| 4952 |
|
|
new_stmt = gimple_build_assign (vec_dest, expr);
|
| 4953 |
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
| 4954 |
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
| 4955 |
|
|
vect_finish_stmt_generation (stmt, new_stmt, gsi);
|
| 4956 |
|
|
|
| 4957 |
|
|
if (slp_node)
|
| 4958 |
|
|
{
|
| 4959 |
|
|
VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
|
| 4960 |
|
|
VEC_quick_push (tree, vect_defs, new_temp);
|
| 4961 |
|
|
}
|
| 4962 |
|
|
else
|
| 4963 |
|
|
VEC_replace (tree, vect_defs, 0, new_temp);
|
| 4964 |
|
|
}
|
| 4965 |
|
|
|
| 4966 |
|
|
if (slp_node)
|
| 4967 |
|
|
continue;
|
| 4968 |
|
|
|
| 4969 |
|
|
if (j == 0)
|
| 4970 |
|
|
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
|
| 4971 |
|
|
else
|
| 4972 |
|
|
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
|
| 4973 |
|
|
|
| 4974 |
|
|
prev_stmt_info = vinfo_for_stmt (new_stmt);
|
| 4975 |
|
|
prev_phi_info = vinfo_for_stmt (new_phi);
|
| 4976 |
|
|
}
|
| 4977 |
|
|
|
| 4978 |
|
|
/* Finalize the reduction-phi (set its arguments) and create the
|
| 4979 |
|
|
epilog reduction code. */
|
| 4980 |
|
|
if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
|
| 4981 |
|
|
{
|
| 4982 |
|
|
new_temp = gimple_assign_lhs (*vec_stmt);
|
| 4983 |
|
|
VEC_replace (tree, vect_defs, 0, new_temp);
|
| 4984 |
|
|
}
|
| 4985 |
|
|
|
| 4986 |
|
|
vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
|
| 4987 |
|
|
epilog_reduc_code, phis, reduc_index,
|
| 4988 |
|
|
double_reduc, slp_node);
|
| 4989 |
|
|
|
| 4990 |
|
|
VEC_free (gimple, heap, phis);
|
| 4991 |
|
|
VEC_free (tree, heap, vec_oprnds0);
|
| 4992 |
|
|
if (vec_oprnds1)
|
| 4993 |
|
|
VEC_free (tree, heap, vec_oprnds1);
|
| 4994 |
|
|
|
| 4995 |
|
|
return true;
|
| 4996 |
|
|
}
|
| 4997 |
|
|
|
| 4998 |
|
|
/* Function vect_min_worthwhile_factor.
|
| 4999 |
|
|
|
| 5000 |
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
| 5001 |
|
|
return the minimum vectorization factor that makes it worthwhile
|
| 5002 |
|
|
to use generic vectors. */
|
| 5003 |
|
|
int
|
| 5004 |
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
| 5005 |
|
|
{
|
| 5006 |
|
|
switch (code)
|
| 5007 |
|
|
{
|
| 5008 |
|
|
case PLUS_EXPR:
|
| 5009 |
|
|
case MINUS_EXPR:
|
| 5010 |
|
|
case NEGATE_EXPR:
|
| 5011 |
|
|
return 4;
|
| 5012 |
|
|
|
| 5013 |
|
|
case BIT_AND_EXPR:
|
| 5014 |
|
|
case BIT_IOR_EXPR:
|
| 5015 |
|
|
case BIT_XOR_EXPR:
|
| 5016 |
|
|
case BIT_NOT_EXPR:
|
| 5017 |
|
|
return 2;
|
| 5018 |
|
|
|
| 5019 |
|
|
default:
|
| 5020 |
|
|
return INT_MAX;
|
| 5021 |
|
|
}
|
| 5022 |
|
|
}
|
| 5023 |
|
|
|
| 5024 |
|
|
|
| 5025 |
|
|
/* Function vectorizable_induction
|
| 5026 |
|
|
|
| 5027 |
|
|
Check if PHI performs an induction computation that can be vectorized.
|
| 5028 |
|
|
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
|
| 5029 |
|
|
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
|
| 5030 |
|
|
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
|
| 5031 |
|
|
|
| 5032 |
|
|
bool
|
| 5033 |
|
|
vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
| 5034 |
|
|
gimple *vec_stmt)
|
| 5035 |
|
|
{
|
| 5036 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
|
| 5037 |
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
| 5038 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 5039 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 5040 |
|
|
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
| 5041 |
|
|
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
|
| 5042 |
|
|
tree vec_def;
|
| 5043 |
|
|
|
| 5044 |
|
|
gcc_assert (ncopies >= 1);
|
| 5045 |
|
|
/* FORNOW. This restriction should be relaxed. */
|
| 5046 |
|
|
if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
|
| 5047 |
|
|
{
|
| 5048 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5049 |
|
|
fprintf (vect_dump, "multiple types in nested loop.");
|
| 5050 |
|
|
return false;
|
| 5051 |
|
|
}
|
| 5052 |
|
|
|
| 5053 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
| 5054 |
|
|
return false;
|
| 5055 |
|
|
|
| 5056 |
|
|
/* FORNOW: SLP not supported. */
|
| 5057 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
| 5058 |
|
|
return false;
|
| 5059 |
|
|
|
| 5060 |
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
|
| 5061 |
|
|
|
| 5062 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
| 5063 |
|
|
return false;
|
| 5064 |
|
|
|
| 5065 |
|
|
if (!vec_stmt) /* transformation not required. */
|
| 5066 |
|
|
{
|
| 5067 |
|
|
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
|
| 5068 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5069 |
|
|
fprintf (vect_dump, "=== vectorizable_induction ===");
|
| 5070 |
|
|
vect_model_induction_cost (stmt_info, ncopies);
|
| 5071 |
|
|
return true;
|
| 5072 |
|
|
}
|
| 5073 |
|
|
|
| 5074 |
|
|
/** Transform. **/
|
| 5075 |
|
|
|
| 5076 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5077 |
|
|
fprintf (vect_dump, "transform induction phi.");
|
| 5078 |
|
|
|
| 5079 |
|
|
vec_def = get_initial_def_for_induction (phi);
|
| 5080 |
|
|
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
|
| 5081 |
|
|
return true;
|
| 5082 |
|
|
}
|
| 5083 |
|
|
|
| 5084 |
|
|
/* Function vectorizable_live_operation.
|
| 5085 |
|
|
|
| 5086 |
|
|
STMT computes a value that is used outside the loop. Check if
|
| 5087 |
|
|
it can be supported. */
|
| 5088 |
|
|
|
| 5089 |
|
|
bool
|
| 5090 |
|
|
vectorizable_live_operation (gimple stmt,
|
| 5091 |
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
| 5092 |
|
|
gimple *vec_stmt ATTRIBUTE_UNUSED)
|
| 5093 |
|
|
{
|
| 5094 |
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
| 5095 |
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
| 5096 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 5097 |
|
|
int i;
|
| 5098 |
|
|
int op_type;
|
| 5099 |
|
|
tree op;
|
| 5100 |
|
|
tree def;
|
| 5101 |
|
|
gimple def_stmt;
|
| 5102 |
|
|
enum vect_def_type dt;
|
| 5103 |
|
|
enum tree_code code;
|
| 5104 |
|
|
enum gimple_rhs_class rhs_class;
|
| 5105 |
|
|
|
| 5106 |
|
|
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
|
| 5107 |
|
|
|
| 5108 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
|
| 5109 |
|
|
return false;
|
| 5110 |
|
|
|
| 5111 |
|
|
if (!is_gimple_assign (stmt))
|
| 5112 |
|
|
return false;
|
| 5113 |
|
|
|
| 5114 |
|
|
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 5115 |
|
|
return false;
|
| 5116 |
|
|
|
| 5117 |
|
|
/* FORNOW. CHECKME. */
|
| 5118 |
|
|
if (nested_in_vect_loop_p (loop, stmt))
|
| 5119 |
|
|
return false;
|
| 5120 |
|
|
|
| 5121 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 5122 |
|
|
op_type = TREE_CODE_LENGTH (code);
|
| 5123 |
|
|
rhs_class = get_gimple_rhs_class (code);
|
| 5124 |
|
|
gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
|
| 5125 |
|
|
gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
|
| 5126 |
|
|
|
| 5127 |
|
|
/* FORNOW: support only if all uses are invariant. This means
|
| 5128 |
|
|
that the scalar operations can remain in place, unvectorized.
|
| 5129 |
|
|
The original last scalar value that they compute will be used. */
|
| 5130 |
|
|
|
| 5131 |
|
|
for (i = 0; i < op_type; i++)
|
| 5132 |
|
|
{
|
| 5133 |
|
|
if (rhs_class == GIMPLE_SINGLE_RHS)
|
| 5134 |
|
|
op = TREE_OPERAND (gimple_op (stmt, 1), i);
|
| 5135 |
|
|
else
|
| 5136 |
|
|
op = gimple_op (stmt, i + 1);
|
| 5137 |
|
|
if (op
|
| 5138 |
|
|
&& !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
|
| 5139 |
|
|
&dt))
|
| 5140 |
|
|
{
|
| 5141 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5142 |
|
|
fprintf (vect_dump, "use not simple.");
|
| 5143 |
|
|
return false;
|
| 5144 |
|
|
}
|
| 5145 |
|
|
|
| 5146 |
|
|
if (dt != vect_external_def && dt != vect_constant_def)
|
| 5147 |
|
|
return false;
|
| 5148 |
|
|
}
|
| 5149 |
|
|
|
| 5150 |
|
|
/* No transformation is required for the cases we currently support. */
|
| 5151 |
|
|
return true;
|
| 5152 |
|
|
}
|
| 5153 |
|
|
|
| 5154 |
|
|
/* Kill any debug uses outside LOOP of SSA names defined in STMT. */
|
| 5155 |
|
|
|
| 5156 |
|
|
static void
|
| 5157 |
|
|
vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
|
| 5158 |
|
|
{
|
| 5159 |
|
|
ssa_op_iter op_iter;
|
| 5160 |
|
|
imm_use_iterator imm_iter;
|
| 5161 |
|
|
def_operand_p def_p;
|
| 5162 |
|
|
gimple ustmt;
|
| 5163 |
|
|
|
| 5164 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
|
| 5165 |
|
|
{
|
| 5166 |
|
|
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
|
| 5167 |
|
|
{
|
| 5168 |
|
|
basic_block bb;
|
| 5169 |
|
|
|
| 5170 |
|
|
if (!is_gimple_debug (ustmt))
|
| 5171 |
|
|
continue;
|
| 5172 |
|
|
|
| 5173 |
|
|
bb = gimple_bb (ustmt);
|
| 5174 |
|
|
|
| 5175 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
| 5176 |
|
|
{
|
| 5177 |
|
|
if (gimple_debug_bind_p (ustmt))
|
| 5178 |
|
|
{
|
| 5179 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5180 |
|
|
fprintf (vect_dump, "killing debug use");
|
| 5181 |
|
|
|
| 5182 |
|
|
gimple_debug_bind_reset_value (ustmt);
|
| 5183 |
|
|
update_stmt (ustmt);
|
| 5184 |
|
|
}
|
| 5185 |
|
|
else
|
| 5186 |
|
|
gcc_unreachable ();
|
| 5187 |
|
|
}
|
| 5188 |
|
|
}
|
| 5189 |
|
|
}
|
| 5190 |
|
|
}
|
| 5191 |
|
|
|
| 5192 |
|
|
/* Function vect_transform_loop.
|
| 5193 |
|
|
|
| 5194 |
|
|
The analysis phase has determined that the loop is vectorizable.
|
| 5195 |
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
| 5196 |
|
|
stmts in the loop, and update the loop exit condition. */
|
| 5197 |
|
|
|
| 5198 |
|
|
void
|
| 5199 |
|
|
vect_transform_loop (loop_vec_info loop_vinfo)
|
| 5200 |
|
|
{
|
| 5201 |
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
| 5202 |
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
| 5203 |
|
|
int nbbs = loop->num_nodes;
|
| 5204 |
|
|
gimple_stmt_iterator si;
|
| 5205 |
|
|
int i;
|
| 5206 |
|
|
tree ratio = NULL;
|
| 5207 |
|
|
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
| 5208 |
|
|
bool strided_store;
|
| 5209 |
|
|
bool slp_scheduled = false;
|
| 5210 |
|
|
unsigned int nunits;
|
| 5211 |
|
|
tree cond_expr = NULL_TREE;
|
| 5212 |
|
|
gimple_seq cond_expr_stmt_list = NULL;
|
| 5213 |
|
|
bool do_peeling_for_loop_bound;
|
| 5214 |
|
|
gimple stmt, pattern_stmt;
|
| 5215 |
|
|
gimple_seq pattern_def_seq = NULL;
|
| 5216 |
|
|
gimple_stmt_iterator pattern_def_si = gsi_start (NULL);
|
| 5217 |
|
|
bool transform_pattern_stmt = false;
|
| 5218 |
|
|
|
| 5219 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5220 |
|
|
fprintf (vect_dump, "=== vec_transform_loop ===");
|
| 5221 |
|
|
|
| 5222 |
|
|
/* Peel the loop if there are data refs with unknown alignment.
|
| 5223 |
|
|
Only one data ref with unknown store is allowed. */
|
| 5224 |
|
|
|
| 5225 |
|
|
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
| 5226 |
|
|
vect_do_peeling_for_alignment (loop_vinfo);
|
| 5227 |
|
|
|
| 5228 |
|
|
do_peeling_for_loop_bound
|
| 5229 |
|
|
= (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 5230 |
|
|
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
| 5231 |
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
|
| 5232 |
|
|
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
|
| 5233 |
|
|
|
| 5234 |
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|
| 5235 |
|
|
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
| 5236 |
|
|
vect_loop_versioning (loop_vinfo,
|
| 5237 |
|
|
!do_peeling_for_loop_bound,
|
| 5238 |
|
|
&cond_expr, &cond_expr_stmt_list);
|
| 5239 |
|
|
|
| 5240 |
|
|
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
|
| 5241 |
|
|
compile time constant), or it is a constant that doesn't divide by the
|
| 5242 |
|
|
vectorization factor, then an epilog loop needs to be created.
|
| 5243 |
|
|
We therefore duplicate the loop: the original loop will be vectorized,
|
| 5244 |
|
|
and will compute the first (n/VF) iterations. The second copy of the loop
|
| 5245 |
|
|
will remain scalar and will compute the remaining (n%VF) iterations.
|
| 5246 |
|
|
(VF is the vectorization factor). */
|
| 5247 |
|
|
|
| 5248 |
|
|
if (do_peeling_for_loop_bound)
|
| 5249 |
|
|
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
|
| 5250 |
|
|
cond_expr, cond_expr_stmt_list);
|
| 5251 |
|
|
else
|
| 5252 |
|
|
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
| 5253 |
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
|
| 5254 |
|
|
|
| 5255 |
|
|
/* 1) Make sure the loop header has exactly two entries
|
| 5256 |
|
|
2) Make sure we have a preheader basic block. */
|
| 5257 |
|
|
|
| 5258 |
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
| 5259 |
|
|
|
| 5260 |
|
|
split_edge (loop_preheader_edge (loop));
|
| 5261 |
|
|
|
| 5262 |
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
| 5263 |
|
|
of one basic block (header + empty latch). When the vectorizer will
|
| 5264 |
|
|
support more involved loop forms, the order by which the BBs are
|
| 5265 |
|
|
traversed need to be reconsidered. */
|
| 5266 |
|
|
|
| 5267 |
|
|
for (i = 0; i < nbbs; i++)
|
| 5268 |
|
|
{
|
| 5269 |
|
|
basic_block bb = bbs[i];
|
| 5270 |
|
|
stmt_vec_info stmt_info;
|
| 5271 |
|
|
gimple phi;
|
| 5272 |
|
|
|
| 5273 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 5274 |
|
|
{
|
| 5275 |
|
|
phi = gsi_stmt (si);
|
| 5276 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5277 |
|
|
{
|
| 5278 |
|
|
fprintf (vect_dump, "------>vectorizing phi: ");
|
| 5279 |
|
|
print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
|
| 5280 |
|
|
}
|
| 5281 |
|
|
stmt_info = vinfo_for_stmt (phi);
|
| 5282 |
|
|
if (!stmt_info)
|
| 5283 |
|
|
continue;
|
| 5284 |
|
|
|
| 5285 |
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
| 5286 |
|
|
vect_loop_kill_debug_uses (loop, phi);
|
| 5287 |
|
|
|
| 5288 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 5289 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 5290 |
|
|
continue;
|
| 5291 |
|
|
|
| 5292 |
|
|
if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
|
| 5293 |
|
|
!= (unsigned HOST_WIDE_INT) vectorization_factor)
|
| 5294 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
| 5295 |
|
|
fprintf (vect_dump, "multiple-types.");
|
| 5296 |
|
|
|
| 5297 |
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
|
| 5298 |
|
|
{
|
| 5299 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5300 |
|
|
fprintf (vect_dump, "transform phi.");
|
| 5301 |
|
|
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
|
| 5302 |
|
|
}
|
| 5303 |
|
|
}
|
| 5304 |
|
|
|
| 5305 |
|
|
pattern_stmt = NULL;
|
| 5306 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
|
| 5307 |
|
|
{
|
| 5308 |
|
|
bool is_store;
|
| 5309 |
|
|
|
| 5310 |
|
|
if (transform_pattern_stmt)
|
| 5311 |
|
|
stmt = pattern_stmt;
|
| 5312 |
|
|
else
|
| 5313 |
|
|
stmt = gsi_stmt (si);
|
| 5314 |
|
|
|
| 5315 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5316 |
|
|
{
|
| 5317 |
|
|
fprintf (vect_dump, "------>vectorizing statement: ");
|
| 5318 |
|
|
print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
|
| 5319 |
|
|
}
|
| 5320 |
|
|
|
| 5321 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 5322 |
|
|
|
| 5323 |
|
|
/* vector stmts created in the outer-loop during vectorization of
|
| 5324 |
|
|
stmts in an inner-loop may not have a stmt_info, and do not
|
| 5325 |
|
|
need to be vectorized. */
|
| 5326 |
|
|
if (!stmt_info)
|
| 5327 |
|
|
{
|
| 5328 |
|
|
gsi_next (&si);
|
| 5329 |
|
|
continue;
|
| 5330 |
|
|
}
|
| 5331 |
|
|
|
| 5332 |
|
|
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
| 5333 |
|
|
vect_loop_kill_debug_uses (loop, stmt);
|
| 5334 |
|
|
|
| 5335 |
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
| 5336 |
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
| 5337 |
|
|
{
|
| 5338 |
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 5339 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
| 5340 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 5341 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 5342 |
|
|
{
|
| 5343 |
|
|
stmt = pattern_stmt;
|
| 5344 |
|
|
stmt_info = vinfo_for_stmt (stmt);
|
| 5345 |
|
|
}
|
| 5346 |
|
|
else
|
| 5347 |
|
|
{
|
| 5348 |
|
|
gsi_next (&si);
|
| 5349 |
|
|
continue;
|
| 5350 |
|
|
}
|
| 5351 |
|
|
}
|
| 5352 |
|
|
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
| 5353 |
|
|
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
|
| 5354 |
|
|
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|
| 5355 |
|
|
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
|
| 5356 |
|
|
transform_pattern_stmt = true;
|
| 5357 |
|
|
|
| 5358 |
|
|
/* If pattern statement has def stmts, vectorize them too. */
|
| 5359 |
|
|
if (is_pattern_stmt_p (stmt_info))
|
| 5360 |
|
|
{
|
| 5361 |
|
|
if (pattern_def_seq == NULL)
|
| 5362 |
|
|
{
|
| 5363 |
|
|
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
| 5364 |
|
|
pattern_def_si = gsi_start (pattern_def_seq);
|
| 5365 |
|
|
}
|
| 5366 |
|
|
else if (!gsi_end_p (pattern_def_si))
|
| 5367 |
|
|
gsi_next (&pattern_def_si);
|
| 5368 |
|
|
if (pattern_def_seq != NULL)
|
| 5369 |
|
|
{
|
| 5370 |
|
|
gimple pattern_def_stmt = NULL;
|
| 5371 |
|
|
stmt_vec_info pattern_def_stmt_info = NULL;
|
| 5372 |
|
|
|
| 5373 |
|
|
while (!gsi_end_p (pattern_def_si))
|
| 5374 |
|
|
{
|
| 5375 |
|
|
pattern_def_stmt = gsi_stmt (pattern_def_si);
|
| 5376 |
|
|
pattern_def_stmt_info
|
| 5377 |
|
|
= vinfo_for_stmt (pattern_def_stmt);
|
| 5378 |
|
|
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|
| 5379 |
|
|
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
|
| 5380 |
|
|
break;
|
| 5381 |
|
|
gsi_next (&pattern_def_si);
|
| 5382 |
|
|
}
|
| 5383 |
|
|
|
| 5384 |
|
|
if (!gsi_end_p (pattern_def_si))
|
| 5385 |
|
|
{
|
| 5386 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5387 |
|
|
{
|
| 5388 |
|
|
fprintf (vect_dump, "==> vectorizing pattern def"
|
| 5389 |
|
|
" stmt: ");
|
| 5390 |
|
|
print_gimple_stmt (vect_dump, pattern_def_stmt, 0,
|
| 5391 |
|
|
TDF_SLIM);
|
| 5392 |
|
|
}
|
| 5393 |
|
|
|
| 5394 |
|
|
stmt = pattern_def_stmt;
|
| 5395 |
|
|
stmt_info = pattern_def_stmt_info;
|
| 5396 |
|
|
}
|
| 5397 |
|
|
else
|
| 5398 |
|
|
{
|
| 5399 |
|
|
pattern_def_si = gsi_start (NULL);
|
| 5400 |
|
|
transform_pattern_stmt = false;
|
| 5401 |
|
|
}
|
| 5402 |
|
|
}
|
| 5403 |
|
|
else
|
| 5404 |
|
|
transform_pattern_stmt = false;
|
| 5405 |
|
|
}
|
| 5406 |
|
|
|
| 5407 |
|
|
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
|
| 5408 |
|
|
nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
|
| 5409 |
|
|
STMT_VINFO_VECTYPE (stmt_info));
|
| 5410 |
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
| 5411 |
|
|
&& nunits != (unsigned int) vectorization_factor
|
| 5412 |
|
|
&& vect_print_dump_info (REPORT_DETAILS))
|
| 5413 |
|
|
/* For SLP VF is set according to unrolling factor, and not to
|
| 5414 |
|
|
vector size, hence for SLP this print is not valid. */
|
| 5415 |
|
|
fprintf (vect_dump, "multiple-types.");
|
| 5416 |
|
|
|
| 5417 |
|
|
/* SLP. Schedule all the SLP instances when the first SLP stmt is
|
| 5418 |
|
|
reached. */
|
| 5419 |
|
|
if (STMT_SLP_TYPE (stmt_info))
|
| 5420 |
|
|
{
|
| 5421 |
|
|
if (!slp_scheduled)
|
| 5422 |
|
|
{
|
| 5423 |
|
|
slp_scheduled = true;
|
| 5424 |
|
|
|
| 5425 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5426 |
|
|
fprintf (vect_dump, "=== scheduling SLP instances ===");
|
| 5427 |
|
|
|
| 5428 |
|
|
vect_schedule_slp (loop_vinfo, NULL);
|
| 5429 |
|
|
}
|
| 5430 |
|
|
|
| 5431 |
|
|
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
|
| 5432 |
|
|
if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
|
| 5433 |
|
|
{
|
| 5434 |
|
|
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
| 5435 |
|
|
{
|
| 5436 |
|
|
pattern_def_seq = NULL;
|
| 5437 |
|
|
gsi_next (&si);
|
| 5438 |
|
|
}
|
| 5439 |
|
|
continue;
|
| 5440 |
|
|
}
|
| 5441 |
|
|
}
|
| 5442 |
|
|
|
| 5443 |
|
|
/* -------- vectorize statement ------------ */
|
| 5444 |
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
| 5445 |
|
|
fprintf (vect_dump, "transform statement.");
|
| 5446 |
|
|
|
| 5447 |
|
|
strided_store = false;
|
| 5448 |
|
|
is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
|
| 5449 |
|
|
if (is_store)
|
| 5450 |
|
|
{
|
| 5451 |
|
|
if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
|
| 5452 |
|
|
{
|
| 5453 |
|
|
/* Interleaving. If IS_STORE is TRUE, the vectorization of the
|
| 5454 |
|
|
interleaving chain was completed - free all the stores in
|
| 5455 |
|
|
the chain. */
|
| 5456 |
|
|
gsi_next (&si);
|
| 5457 |
|
|
vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
|
| 5458 |
|
|
continue;
|
| 5459 |
|
|
}
|
| 5460 |
|
|
else
|
| 5461 |
|
|
{
|
| 5462 |
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
| 5463 |
|
|
free_stmt_vec_info (gsi_stmt (si));
|
| 5464 |
|
|
gsi_remove (&si, true);
|
| 5465 |
|
|
continue;
|
| 5466 |
|
|
}
|
| 5467 |
|
|
}
|
| 5468 |
|
|
|
| 5469 |
|
|
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
|
| 5470 |
|
|
{
|
| 5471 |
|
|
pattern_def_seq = NULL;
|
| 5472 |
|
|
gsi_next (&si);
|
| 5473 |
|
|
}
|
| 5474 |
|
|
} /* stmts in BB */
|
| 5475 |
|
|
} /* BBs in loop */
|
| 5476 |
|
|
|
| 5477 |
|
|
slpeel_make_loop_iterate_ntimes (loop, ratio);
|
| 5478 |
|
|
|
| 5479 |
|
|
/* The memory tags and pointers in vectorized statements need to
|
| 5480 |
|
|
have their SSA forms updated. FIXME, why can't this be delayed
|
| 5481 |
|
|
until all the loops have been transformed? */
|
| 5482 |
|
|
update_ssa (TODO_update_ssa);
|
| 5483 |
|
|
|
| 5484 |
|
|
if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
| 5485 |
|
|
fprintf (vect_dump, "LOOP VECTORIZED.");
|
| 5486 |
|
|
if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
|
| 5487 |
|
|
fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
|
| 5488 |
|
|
}
|