OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gdb-7.1/] [bfd/] [coff-h8300.c] - Blame information for rev 830

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* BFD back-end for Renesas H8/300 COFF binaries.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4
   Free Software Foundation, Inc.
5
   Written by Steve Chamberlain, <sac@cygnus.com>.
6
 
7
   This file is part of BFD, the Binary File Descriptor library.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
 
24
#include "sysdep.h"
25
#include "bfd.h"
26
#include "libbfd.h"
27
#include "bfdlink.h"
28
#include "genlink.h"
29
#include "coff/h8300.h"
30
#include "coff/internal.h"
31
#include "libcoff.h"
32
#include "libiberty.h"
33
 
34
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
35
 
36
/* We derive a hash table from the basic BFD hash table to
37
   hold entries in the function vector.  Aside from the
38
   info stored by the basic hash table, we need the offset
39
   of a particular entry within the hash table as well as
40
   the offset where we'll add the next entry.  */
41
 
42
struct funcvec_hash_entry
43
  {
44
    /* The basic hash table entry.  */
45
    struct bfd_hash_entry root;
46
 
47
    /* The offset within the vectors section where
48
       this entry lives.  */
49
    bfd_vma offset;
50
  };
51
 
52
struct funcvec_hash_table
53
  {
54
    /* The basic hash table.  */
55
    struct bfd_hash_table root;
56
 
57
    bfd *abfd;
58
 
59
    /* Offset at which we'll add the next entry.  */
60
    unsigned int offset;
61
  };
62
 
63
static struct bfd_hash_entry *
64
funcvec_hash_newfunc
65
  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
66
 
67
static bfd_reloc_status_type special
68
  (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
69
static int select_reloc
70
  (reloc_howto_type *);
71
static void rtype2howto
72
  (arelent *, struct internal_reloc *);
73
static void reloc_processing
74
  (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
75
static bfd_boolean h8300_symbol_address_p
76
  (bfd *, asection *, bfd_vma);
77
static int h8300_reloc16_estimate
78
  (bfd *, asection *, arelent *, unsigned int,
79
   struct bfd_link_info *);
80
static void h8300_reloc16_extra_cases
81
  (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
82
   bfd_byte *, unsigned int *, unsigned int *);
83
static bfd_boolean h8300_bfd_link_add_symbols
84
  (bfd *, struct bfd_link_info *);
85
 
86
/* To lookup a value in the function vector hash table.  */
87
#define funcvec_hash_lookup(table, string, create, copy) \
88
  ((struct funcvec_hash_entry *) \
89
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
90
 
91
/* The derived h8300 COFF linker table.  Note it's derived from
92
   the generic linker hash table, not the COFF backend linker hash
93
   table!  We use this to attach additional data structures we
94
   need while linking on the h8300.  */
95
struct h8300_coff_link_hash_table {
96
  /* The main hash table.  */
97
  struct generic_link_hash_table root;
98
 
99
  /* Section for the vectors table.  This gets attached to a
100
     random input bfd, we keep it here for easy access.  */
101
  asection *vectors_sec;
102
 
103
  /* Hash table of the functions we need to enter into the function
104
     vector.  */
105
  struct funcvec_hash_table *funcvec_hash_table;
106
};
107
 
108
static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
109
 
110
/* Get the H8/300 COFF linker hash table from a link_info structure.  */
111
 
112
#define h8300_coff_hash_table(p) \
113
  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
114
 
115
/* Initialize fields within a funcvec hash table entry.  Called whenever
116
   a new entry is added to the funcvec hash table.  */
117
 
118
static struct bfd_hash_entry *
119
funcvec_hash_newfunc (struct bfd_hash_entry *entry,
120
                      struct bfd_hash_table *gen_table,
121
                      const char *string)
122
{
123
  struct funcvec_hash_entry *ret;
124
  struct funcvec_hash_table *table;
125
 
126
  ret = (struct funcvec_hash_entry *) entry;
127
  table = (struct funcvec_hash_table *) gen_table;
128
 
129
  /* Allocate the structure if it has not already been allocated by a
130
     subclass.  */
131
  if (ret == NULL)
132
    ret = ((struct funcvec_hash_entry *)
133
           bfd_hash_allocate (gen_table,
134
                              sizeof (struct funcvec_hash_entry)));
135
  if (ret == NULL)
136
    return NULL;
137
 
138
  /* Call the allocation method of the superclass.  */
139
  ret = ((struct funcvec_hash_entry *)
140
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
141
 
142
  if (ret == NULL)
143
    return NULL;
144
 
145
  /* Note where this entry will reside in the function vector table.  */
146
  ret->offset = table->offset;
147
 
148
  /* Bump the offset at which we store entries in the function
149
     vector.  We'd like to bump up the size of the vectors section,
150
     but it's not easily available here.  */
151
 switch (bfd_get_mach (table->abfd))
152
   {
153
   case bfd_mach_h8300:
154
   case bfd_mach_h8300hn:
155
   case bfd_mach_h8300sn:
156
     table->offset += 2;
157
     break;
158
   case bfd_mach_h8300h:
159
   case bfd_mach_h8300s:
160
     table->offset += 4;
161
     break;
162
   default:
163
     return NULL;
164
   }
165
 
166
  /* Everything went OK.  */
167
  return (struct bfd_hash_entry *) ret;
168
}
169
 
170
/* Initialize the function vector hash table.  */
171
 
172
static bfd_boolean
173
funcvec_hash_table_init (struct funcvec_hash_table *table,
174
                         bfd *abfd,
175
                         struct bfd_hash_entry *(*newfunc)
176
                           (struct bfd_hash_entry *,
177
                            struct bfd_hash_table *,
178
                            const char *),
179
                         unsigned int entsize)
180
{
181
  /* Initialize our local fields, then call the generic initialization
182
     routine.  */
183
  table->offset = 0;
184
  table->abfd = abfd;
185
  return (bfd_hash_table_init (&table->root, newfunc, entsize));
186
}
187
 
188
/* Create the derived linker hash table.  We use a derived hash table
189
   basically to hold "static" information during an H8/300 coff link
190
   without using static variables.  */
191
 
192
static struct bfd_link_hash_table *
193
h8300_coff_link_hash_table_create (bfd *abfd)
194
{
195
  struct h8300_coff_link_hash_table *ret;
196
  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
197
 
198
  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
199
  if (ret == NULL)
200
    return NULL;
201
  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
202
                                  _bfd_generic_link_hash_newfunc,
203
                                  sizeof (struct generic_link_hash_entry)))
204
    {
205
      free (ret);
206
      return NULL;
207
    }
208
 
209
  /* Initialize our data.  */
210
  ret->vectors_sec = NULL;
211
  ret->funcvec_hash_table = NULL;
212
 
213
  /* OK.  Everything's initialized, return the base pointer.  */
214
  return &ret->root.root;
215
}
216
 
217
/* Special handling for H8/300 relocs.
218
   We only come here for pcrel stuff and return normally if not an -r link.
219
   When doing -r, we can't do any arithmetic for the pcrel stuff, because
220
   the code in reloc.c assumes that we can manipulate the targets of
221
   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
222
   which means that the gap after the instruction may not be enough to
223
   contain the offset required for the branch, so we have to use only
224
   the addend until the final link.  */
225
 
226
static bfd_reloc_status_type
227
special (bfd *abfd ATTRIBUTE_UNUSED,
228
         arelent *reloc_entry ATTRIBUTE_UNUSED,
229
         asymbol *symbol ATTRIBUTE_UNUSED,
230
         PTR data ATTRIBUTE_UNUSED,
231
         asection *input_section ATTRIBUTE_UNUSED,
232
         bfd *output_bfd,
233
         char **error_message ATTRIBUTE_UNUSED)
234
{
235
  if (output_bfd == (bfd *) NULL)
236
    return bfd_reloc_continue;
237
 
238
  /* Adjust the reloc address to that in the output section.  */
239
  reloc_entry->address += input_section->output_offset;
240
  return bfd_reloc_ok;
241
}
242
 
243
static reloc_howto_type howto_table[] = {
244
  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
245
  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
246
  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
247
  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
248
  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
249
  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
250
  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
251
  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
252
  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
253
  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
254
  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
255
  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
256
  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
257
  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
258
 
259
  /* An indirect reference to a function.  This causes the function's address
260
     to be added to the function vector in lo-mem and puts the address of
261
     the function vector's entry in the jsr instruction.  */
262
  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
263
 
264
  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
265
     branch is turned into an 8-bit pc-relative branch.  */
266
  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
267
 
268
  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
269
 
270
  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
271
 
272
  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
273
 
274
  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
275
};
276
 
277
/* Turn a howto into a reloc number.  */
278
 
279
#define SELECT_RELOC(x,howto) \
280
  { x.r_type = select_reloc (howto); }
281
 
282
#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
283
                                   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
284
#define H8300 1                 /* Customize coffcode.h  */
285
#define __A_MAGIC_SET__
286
 
287
/* Code to swap in the reloc.  */
288
#define SWAP_IN_RELOC_OFFSET    H_GET_32
289
#define SWAP_OUT_RELOC_OFFSET   H_PUT_32
290
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
291
  dst->r_stuff[0] = 'S'; \
292
  dst->r_stuff[1] = 'C';
293
 
294
static int
295
select_reloc (reloc_howto_type *howto)
296
{
297
  return howto->type;
298
}
299
 
300
/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
301
 
302
static void
303
rtype2howto (arelent *internal, struct internal_reloc *dst)
304
{
305
  switch (dst->r_type)
306
    {
307
    case R_RELBYTE:
308
      internal->howto = howto_table + 0;
309
      break;
310
    case R_RELWORD:
311
      internal->howto = howto_table + 1;
312
      break;
313
    case R_RELLONG:
314
      internal->howto = howto_table + 2;
315
      break;
316
    case R_PCRBYTE:
317
      internal->howto = howto_table + 3;
318
      break;
319
    case R_PCRWORD:
320
      internal->howto = howto_table + 4;
321
      break;
322
    case R_PCRLONG:
323
      internal->howto = howto_table + 5;
324
      break;
325
    case R_MOV16B1:
326
      internal->howto = howto_table + 6;
327
      break;
328
    case R_MOV16B2:
329
      internal->howto = howto_table + 7;
330
      break;
331
    case R_JMP1:
332
      internal->howto = howto_table + 8;
333
      break;
334
    case R_JMP2:
335
      internal->howto = howto_table + 9;
336
      break;
337
    case R_JMPL1:
338
      internal->howto = howto_table + 10;
339
      break;
340
    case R_JMPL2:
341
      internal->howto = howto_table + 11;
342
      break;
343
    case R_MOV24B1:
344
      internal->howto = howto_table + 12;
345
      break;
346
    case R_MOV24B2:
347
      internal->howto = howto_table + 13;
348
      break;
349
    case R_MEM_INDIRECT:
350
      internal->howto = howto_table + 14;
351
      break;
352
    case R_PCRWORD_B:
353
      internal->howto = howto_table + 15;
354
      break;
355
    case R_MOVL1:
356
      internal->howto = howto_table + 16;
357
      break;
358
    case R_MOVL2:
359
      internal->howto = howto_table + 17;
360
      break;
361
    case R_BCC_INV:
362
      internal->howto = howto_table + 18;
363
      break;
364
    case R_JMP_DEL:
365
      internal->howto = howto_table + 19;
366
      break;
367
    default:
368
      abort ();
369
      break;
370
    }
371
}
372
 
373
#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
374
 
375
/* Perform any necessary magic to the addend in a reloc entry.  */
376
 
377
#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
378
 cache_ptr->addend = ext_reloc.r_offset;
379
 
380
#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
381
 reloc_processing (relent, reloc, symbols, abfd, section)
382
 
383
static void
384
reloc_processing (arelent *relent, struct internal_reloc *reloc,
385
                  asymbol **symbols, bfd *abfd, asection *section)
386
{
387
  relent->address = reloc->r_vaddr;
388
  rtype2howto (relent, reloc);
389
 
390
  if (((int) reloc->r_symndx) > 0)
391
    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
392
  else
393
    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
394
 
395
  relent->addend = reloc->r_offset;
396
  relent->address -= section->vma;
397
}
398
 
399
static bfd_boolean
400
h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
401
{
402
  asymbol **s;
403
 
404
  s = _bfd_generic_link_get_symbols (abfd);
405
  BFD_ASSERT (s != (asymbol **) NULL);
406
 
407
  /* Search all the symbols for one in INPUT_SECTION with
408
     address ADDRESS.  */
409
  while (*s)
410
    {
411
      asymbol *p = *s;
412
 
413
      if (p->section == input_section
414
          && (input_section->output_section->vma
415
              + input_section->output_offset
416
              + p->value) == address)
417
        return TRUE;
418
      s++;
419
    }
420
  return FALSE;
421
}
422
 
423
/* If RELOC represents a relaxable instruction/reloc, change it into
424
   the relaxed reloc, notify the linker that symbol addresses
425
   have changed (bfd_perform_slip) and return how much the current
426
   section has shrunk by.
427
 
428
   FIXME: Much of this code has knowledge of the ordering of entries
429
   in the howto table.  This needs to be fixed.  */
430
 
431
static int
432
h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
433
                        unsigned int shrink, struct bfd_link_info *link_info)
434
{
435
  bfd_vma value;
436
  bfd_vma dot;
437
  bfd_vma gap;
438
  static asection *last_input_section = NULL;
439
  static arelent *last_reloc = NULL;
440
 
441
  /* The address of the thing to be relocated will have moved back by
442
     the size of the shrink - but we don't change reloc->address here,
443
     since we need it to know where the relocation lives in the source
444
     uncooked section.  */
445
  bfd_vma address = reloc->address - shrink;
446
 
447
  if (input_section != last_input_section)
448
    last_reloc = NULL;
449
 
450
  /* Only examine the relocs which might be relaxable.  */
451
  switch (reloc->howto->type)
452
    {
453
      /* This is the 16-/24-bit absolute branch which could become an
454
         8-bit pc-relative branch.  */
455
    case R_JMP1:
456
    case R_JMPL1:
457
      /* Get the address of the target of this branch.  */
458
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
459
 
460
      /* Get the address of the next instruction (not the reloc).  */
461
      dot = (input_section->output_section->vma
462
             + input_section->output_offset + address);
463
 
464
      /* Adjust for R_JMP1 vs R_JMPL1.  */
465
      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
466
 
467
      /* Compute the distance from this insn to the branch target.  */
468
      gap = value - dot;
469
 
470
      /* If the distance is within -128..+128 inclusive, then we can relax
471
         this jump.  +128 is valid since the target will move two bytes
472
         closer if we do relax this branch.  */
473
      if ((int) gap >= -128 && (int) gap <= 128)
474
        {
475
          bfd_byte code;
476
 
477
          if (!bfd_get_section_contents (abfd, input_section, & code,
478
                                         reloc->address, 1))
479
            break;
480
          code = bfd_get_8 (abfd, & code);
481
 
482
          /* It's possible we may be able to eliminate this branch entirely;
483
             if the previous instruction is a branch around this instruction,
484
             and there's no label at this instruction, then we can reverse
485
             the condition on the previous branch and eliminate this jump.
486
 
487
               original:                        new:
488
                 bCC lab1                       bCC' lab2
489
                 jmp lab2
490
                lab1:                           lab1:
491
 
492
             This saves 4 bytes instead of two, and should be relatively
493
             common.
494
 
495
             Only perform this optimisation for jumps (code 0x5a) not
496
             subroutine calls, as otherwise it could transform:
497
 
498
                             mov.w   r0,r0
499
                             beq     .L1
500
                             jsr     @_bar
501
                      .L1:   rts
502
                      _bar:  rts
503
             into:
504
                             mov.w   r0,r0
505
                             bne     _bar
506
                             rts
507
                      _bar:  rts
508
 
509
             which changes the call (jsr) into a branch (bne).  */
510
          if (code == 0x5a
511
              && gap <= 126
512
              && last_reloc
513
              && last_reloc->howto->type == R_PCRBYTE)
514
            {
515
              bfd_vma last_value;
516
              last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
517
                                                       input_section) + 1;
518
 
519
              if (last_value == dot + 2
520
                  && last_reloc->address + 1 == reloc->address
521
                  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
522
                {
523
                  reloc->howto = howto_table + 19;
524
                  last_reloc->howto = howto_table + 18;
525
                  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
526
                  last_reloc->addend = reloc->addend;
527
                  shrink += 4;
528
                  bfd_perform_slip (abfd, 4, input_section, address);
529
                  break;
530
                }
531
            }
532
 
533
          /* Change the reloc type.  */
534
          reloc->howto = reloc->howto + 1;
535
 
536
          /* This shrinks this section by two bytes.  */
537
          shrink += 2;
538
          bfd_perform_slip (abfd, 2, input_section, address);
539
        }
540
      break;
541
 
542
    /* This is the 16-bit pc-relative branch which could become an 8-bit
543
       pc-relative branch.  */
544
    case R_PCRWORD:
545
      /* Get the address of the target of this branch, add one to the value
546
         because the addend field in PCrel jumps is off by -1.  */
547
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
548
 
549
      /* Get the address of the next instruction if we were to relax.  */
550
      dot = input_section->output_section->vma +
551
        input_section->output_offset + address;
552
 
553
      /* Compute the distance from this insn to the branch target.  */
554
      gap = value - dot;
555
 
556
      /* If the distance is within -128..+128 inclusive, then we can relax
557
         this jump.  +128 is valid since the target will move two bytes
558
         closer if we do relax this branch.  */
559
      if ((int) gap >= -128 && (int) gap <= 128)
560
        {
561
          /* Change the reloc type.  */
562
          reloc->howto = howto_table + 15;
563
 
564
          /* This shrinks this section by two bytes.  */
565
          shrink += 2;
566
          bfd_perform_slip (abfd, 2, input_section, address);
567
        }
568
      break;
569
 
570
    /* This is a 16-bit absolute address in a mov.b insn, which can
571
       become an 8-bit absolute address if it's in the right range.  */
572
    case R_MOV16B1:
573
      /* Get the address of the data referenced by this mov.b insn.  */
574
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
575
      value = bfd_h8300_pad_address (abfd, value);
576
 
577
      /* If the address is in the top 256 bytes of the address space
578
         then we can relax this instruction.  */
579
      if (value >= 0xffffff00u)
580
        {
581
          /* Change the reloc type.  */
582
          reloc->howto = reloc->howto + 1;
583
 
584
          /* This shrinks this section by two bytes.  */
585
          shrink += 2;
586
          bfd_perform_slip (abfd, 2, input_section, address);
587
        }
588
      break;
589
 
590
    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
591
       if we can't relax this into an 8-bit absolute, we'll fall through
592
       and try to relax it into a 16-bit absolute.  */
593
    case R_MOV24B1:
594
      /* Get the address of the data referenced by this mov.b insn.  */
595
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
596
      value = bfd_h8300_pad_address (abfd, value);
597
 
598
      if (value >= 0xffffff00u)
599
        {
600
          /* Change the reloc type.  */
601
          reloc->howto = reloc->howto + 1;
602
 
603
          /* This shrinks this section by four bytes.  */
604
          shrink += 4;
605
          bfd_perform_slip (abfd, 4, input_section, address);
606
 
607
          /* Done with this reloc.  */
608
          break;
609
        }
610
 
611
      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
612
         reloc.  */
613
 
614
    /* This is a 24-/32-bit absolute address in a mov insn, which can
615
       become an 16-bit absolute address if it's in the right range.  */
616
    case R_MOVL1:
617
      /* Get the address of the data referenced by this mov insn.  */
618
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
619
      value = bfd_h8300_pad_address (abfd, value);
620
 
621
      /* If the address is a sign-extended 16-bit value then we can
622
         relax this instruction.  */
623
      if (value <= 0x7fff || value >= 0xffff8000u)
624
        {
625
          /* Change the reloc type.  */
626
          reloc->howto = howto_table + 17;
627
 
628
          /* This shrinks this section by two bytes.  */
629
          shrink += 2;
630
          bfd_perform_slip (abfd, 2, input_section, address);
631
        }
632
      break;
633
 
634
      /* No other reloc types represent relaxing opportunities.  */
635
    default:
636
      break;
637
    }
638
 
639
  last_reloc = reloc;
640
  last_input_section = input_section;
641
  return shrink;
642
}
643
 
644
/* Handle relocations for the H8/300, including relocs for relaxed
645
   instructions.
646
 
647
   FIXME: Not all relocations check for overflow!  */
648
 
649
static void
650
h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
651
                           struct bfd_link_order *link_order, arelent *reloc,
652
                           bfd_byte *data, unsigned int *src_ptr,
653
                           unsigned int *dst_ptr)
654
{
655
  unsigned int src_address = *src_ptr;
656
  unsigned int dst_address = *dst_ptr;
657
  asection *input_section = link_order->u.indirect.section;
658
  bfd_vma value;
659
  bfd_vma dot;
660
  int gap, tmp;
661
  unsigned char temp_code;
662
 
663
  switch (reloc->howto->type)
664
    {
665
    /* Generic 8-bit pc-relative relocation.  */
666
    case R_PCRBYTE:
667
      /* Get the address of the target of this branch.  */
668
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
669
 
670
      dot = (input_section->output_offset
671
             + dst_address
672
             + link_order->u.indirect.section->output_section->vma);
673
 
674
      gap = value - dot;
675
 
676
      /* Sanity check.  */
677
      if (gap < -128 || gap > 126)
678
        {
679
          if (! ((*link_info->callbacks->reloc_overflow)
680
                 (link_info, NULL,
681
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
682
                  reloc->howto->name, reloc->addend, input_section->owner,
683
                  input_section, reloc->address)))
684
            abort ();
685
        }
686
 
687
      /* Everything looks OK.  Apply the relocation and update the
688
         src/dst address appropriately.  */
689
      bfd_put_8 (abfd, gap, data + dst_address);
690
      dst_address++;
691
      src_address++;
692
 
693
      /* All done.  */
694
      break;
695
 
696
    /* Generic 16-bit pc-relative relocation.  */
697
    case R_PCRWORD:
698
      /* Get the address of the target of this branch.  */
699
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
700
 
701
      /* Get the address of the instruction (not the reloc).  */
702
      dot = (input_section->output_offset
703
             + dst_address
704
             + link_order->u.indirect.section->output_section->vma + 1);
705
 
706
      gap = value - dot;
707
 
708
      /* Sanity check.  */
709
      if (gap > 32766 || gap < -32768)
710
        {
711
          if (! ((*link_info->callbacks->reloc_overflow)
712
                 (link_info, NULL,
713
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
714
                  reloc->howto->name, reloc->addend, input_section->owner,
715
                  input_section, reloc->address)))
716
            abort ();
717
        }
718
 
719
      /* Everything looks OK.  Apply the relocation and update the
720
         src/dst address appropriately.  */
721
      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
722
      dst_address += 2;
723
      src_address += 2;
724
 
725
      /* All done.  */
726
      break;
727
 
728
    /* Generic 8-bit absolute relocation.  */
729
    case R_RELBYTE:
730
      /* Get the address of the object referenced by this insn.  */
731
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
732
 
733
      bfd_put_8 (abfd, value & 0xff, data + dst_address);
734
      dst_address += 1;
735
      src_address += 1;
736
 
737
      /* All done.  */
738
      break;
739
 
740
    /* Various simple 16-bit absolute relocations.  */
741
    case R_MOV16B1:
742
    case R_JMP1:
743
    case R_RELWORD:
744
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
745
      bfd_put_16 (abfd, value, data + dst_address);
746
      dst_address += 2;
747
      src_address += 2;
748
      break;
749
 
750
    /* Various simple 24-/32-bit absolute relocations.  */
751
    case R_MOV24B1:
752
    case R_MOVL1:
753
    case R_RELLONG:
754
      /* Get the address of the target of this branch.  */
755
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
756
      bfd_put_32 (abfd, value, data + dst_address);
757
      dst_address += 4;
758
      src_address += 4;
759
      break;
760
 
761
    /* Another 24-/32-bit absolute relocation.  */
762
    case R_JMPL1:
763
      /* Get the address of the target of this branch.  */
764
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
765
 
766
      value = ((value & 0x00ffffff)
767
               | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
768
      bfd_put_32 (abfd, value, data + dst_address);
769
      dst_address += 4;
770
      src_address += 4;
771
      break;
772
 
773
      /* This is a 24-/32-bit absolute address in one of the following
774
         instructions:
775
 
776
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
777
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
778
           "stc.w" and "mov.[bwl]"
779
 
780
         We may relax this into an 16-bit absolute address if it's in
781
         the right range.  */
782
    case R_MOVL2:
783
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
784
      value = bfd_h8300_pad_address (abfd, value);
785
 
786
      /* Sanity check.  */
787
      if (value <= 0x7fff || value >= 0xffff8000u)
788
        {
789
          /* Insert the 16-bit value into the proper location.  */
790
          bfd_put_16 (abfd, value, data + dst_address);
791
 
792
          /* Fix the opcode.  For all the instructions that belong to
793
             this relaxation, we simply need to turn off bit 0x20 in
794
             the previous byte.  */
795
          data[dst_address - 1] &= ~0x20;
796
          dst_address += 2;
797
          src_address += 4;
798
        }
799
      else
800
        {
801
          if (! ((*link_info->callbacks->reloc_overflow)
802
                 (link_info, NULL,
803
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
804
                  reloc->howto->name, reloc->addend, input_section->owner,
805
                  input_section, reloc->address)))
806
            abort ();
807
        }
808
      break;
809
 
810
    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
811
    case R_JMP2:
812
      /* Get the address of the target of this branch.  */
813
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
814
 
815
      /* Get the address of the next instruction.  */
816
      dot = (input_section->output_offset
817
             + dst_address
818
             + link_order->u.indirect.section->output_section->vma + 1);
819
 
820
      gap = value - dot;
821
 
822
      /* Sanity check.  */
823
      if (gap < -128 || gap > 126)
824
        {
825
          if (! ((*link_info->callbacks->reloc_overflow)
826
                 (link_info, NULL,
827
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
828
                  reloc->howto->name, reloc->addend, input_section->owner,
829
                  input_section, reloc->address)))
830
            abort ();
831
        }
832
 
833
      /* Now fix the instruction itself.  */
834
      switch (data[dst_address - 1])
835
        {
836
        case 0x5e:
837
          /* jsr -> bsr */
838
          bfd_put_8 (abfd, 0x55, data + dst_address - 1);
839
          break;
840
        case 0x5a:
841
          /* jmp -> bra */
842
          bfd_put_8 (abfd, 0x40, data + dst_address - 1);
843
          break;
844
 
845
        default:
846
          abort ();
847
        }
848
 
849
      /* Write out the 8-bit value.  */
850
      bfd_put_8 (abfd, gap, data + dst_address);
851
 
852
      dst_address += 1;
853
      src_address += 3;
854
 
855
      break;
856
 
857
    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
858
    case R_PCRWORD_B:
859
      /* Get the address of the target of this branch.  */
860
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
861
 
862
      /* Get the address of the instruction (not the reloc).  */
863
      dot = (input_section->output_offset
864
             + dst_address
865
             + link_order->u.indirect.section->output_section->vma - 1);
866
 
867
      gap = value - dot;
868
 
869
      /* Sanity check.  */
870
      if (gap < -128 || gap > 126)
871
        {
872
          if (! ((*link_info->callbacks->reloc_overflow)
873
                 (link_info, NULL,
874
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
875
                  reloc->howto->name, reloc->addend, input_section->owner,
876
                  input_section, reloc->address)))
877
            abort ();
878
        }
879
 
880
      /* Now fix the instruction.  */
881
      switch (data[dst_address - 2])
882
        {
883
        case 0x58:
884
          /* bCC:16 -> bCC:8 */
885
          /* Get the second byte of the original insn, which contains
886
             the condition code.  */
887
          tmp = data[dst_address - 1];
888
 
889
          /* Compute the fisrt byte of the relaxed instruction.  The
890
             original sequence 0x58 0xX0 is relaxed to 0x4X, where X
891
             represents the condition code.  */
892
          tmp &= 0xf0;
893
          tmp >>= 4;
894
          tmp |= 0x40;
895
 
896
          /* Write it.  */
897
          bfd_put_8 (abfd, tmp, data + dst_address - 2);
898
          break;
899
 
900
        case 0x5c:
901
          /* bsr:16 -> bsr:8 */
902
          bfd_put_8 (abfd, 0x55, data + dst_address - 2);
903
          break;
904
 
905
        default:
906
          abort ();
907
        }
908
 
909
      /* Output the target.  */
910
      bfd_put_8 (abfd, gap, data + dst_address - 1);
911
 
912
      /* We don't advance dst_address -- the 8-bit reloc is applied at
913
         dst_address - 1, so the next insn should begin at dst_address.  */
914
      src_address += 2;
915
 
916
      break;
917
 
918
    /* Similarly for a 24-bit absolute that is now 8 bits.  */
919
    case R_JMPL2:
920
      /* Get the address of the target of this branch.  */
921
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
922
 
923
      /* Get the address of the instruction (not the reloc).  */
924
      dot = (input_section->output_offset
925
             + dst_address
926
             + link_order->u.indirect.section->output_section->vma + 2);
927
 
928
      gap = value - dot;
929
 
930
      /* Fix the instruction.  */
931
      switch (data[src_address])
932
        {
933
        case 0x5e:
934
          /* jsr -> bsr */
935
          bfd_put_8 (abfd, 0x55, data + dst_address);
936
          break;
937
        case 0x5a:
938
          /* jmp ->bra */
939
          bfd_put_8 (abfd, 0x40, data + dst_address);
940
          break;
941
        default:
942
          abort ();
943
        }
944
 
945
      bfd_put_8 (abfd, gap, data + dst_address + 1);
946
      dst_address += 2;
947
      src_address += 4;
948
 
949
      break;
950
 
951
      /* This is a 16-bit absolute address in one of the following
952
         instructions:
953
 
954
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
955
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
956
           "mov.b"
957
 
958
         We may relax this into an 8-bit absolute address if it's in
959
         the right range.  */
960
    case R_MOV16B2:
961
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
962
 
963
      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
964
      if (data[dst_address - 2] != 0x6a)
965
        abort ();
966
 
967
      temp_code = data[src_address - 1];
968
 
969
      /* If this is a mov.b instruction, clear the lower nibble, which
970
         contains the source/destination register number.  */
971
      if ((temp_code & 0x10) != 0x10)
972
        temp_code &= 0xf0;
973
 
974
      /* Fix up the opcode.  */
975
      switch (temp_code)
976
        {
977
        case 0x00:
978
          /* This is mov.b @aa:16,Rd.  */
979
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
980
          break;
981
        case 0x80:
982
          /* This is mov.b Rs,@aa:16.  */
983
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
984
          break;
985
        case 0x18:
986
          /* This is a bit-maniputation instruction that stores one
987
             bit into memory, one of "bclr", "bist", "bnot", "bset",
988
             and "bst".  */
989
          data[dst_address - 2] = 0x7f;
990
          break;
991
        case 0x10:
992
          /* This is a bit-maniputation instruction that loads one bit
993
             from memory, one of "band", "biand", "bild", "bior",
994
             "bixor", "bld", "bor", "btst", and "bxor".  */
995
          data[dst_address - 2] = 0x7e;
996
          break;
997
        default:
998
          abort ();
999
        }
1000
 
1001
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1002
      src_address += 2;
1003
      break;
1004
 
1005
      /* This is a 24-bit absolute address in one of the following
1006
         instructions:
1007
 
1008
           "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1009
           "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1010
           "mov.b"
1011
 
1012
         We may relax this into an 8-bit absolute address if it's in
1013
         the right range.  */
1014
    case R_MOV24B2:
1015
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1016
 
1017
      /* All instructions with R_MOV24B2 start with 0x6a.  */
1018
      if (data[dst_address - 2] != 0x6a)
1019
        abort ();
1020
 
1021
      temp_code = data[src_address - 1];
1022
 
1023
      /* If this is a mov.b instruction, clear the lower nibble, which
1024
         contains the source/destination register number.  */
1025
      if ((temp_code & 0x30) != 0x30)
1026
        temp_code &= 0xf0;
1027
 
1028
      /* Fix up the opcode.  */
1029
      switch (temp_code)
1030
        {
1031
        case 0x20:
1032
          /* This is mov.b @aa:24/32,Rd.  */
1033
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1034
          break;
1035
        case 0xa0:
1036
          /* This is mov.b Rs,@aa:24/32.  */
1037
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1038
          break;
1039
        case 0x38:
1040
          /* This is a bit-maniputation instruction that stores one
1041
             bit into memory, one of "bclr", "bist", "bnot", "bset",
1042
             and "bst".  */
1043
          data[dst_address - 2] = 0x7f;
1044
          break;
1045
        case 0x30:
1046
          /* This is a bit-maniputation instruction that loads one bit
1047
             from memory, one of "band", "biand", "bild", "bior",
1048
             "bixor", "bld", "bor", "btst", and "bxor".  */
1049
          data[dst_address - 2] = 0x7e;
1050
          break;
1051
        default:
1052
          abort ();
1053
        }
1054
 
1055
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1056
      src_address += 4;
1057
      break;
1058
 
1059
    case R_BCC_INV:
1060
      /* Get the address of the target of this branch.  */
1061
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1062
 
1063
      dot = (input_section->output_offset
1064
             + dst_address
1065
             + link_order->u.indirect.section->output_section->vma) + 1;
1066
 
1067
      gap = value - dot;
1068
 
1069
      /* Sanity check.  */
1070
      if (gap < -128 || gap > 126)
1071
        {
1072
          if (! ((*link_info->callbacks->reloc_overflow)
1073
                 (link_info, NULL,
1074
                  bfd_asymbol_name (*reloc->sym_ptr_ptr),
1075
                  reloc->howto->name, reloc->addend, input_section->owner,
1076
                  input_section, reloc->address)))
1077
            abort ();
1078
        }
1079
 
1080
      /* Everything looks OK.  Fix the condition in the instruction, apply
1081
         the relocation, and update the src/dst address appropriately.  */
1082
 
1083
      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1084
                 data + dst_address - 1);
1085
      bfd_put_8 (abfd, gap, data + dst_address);
1086
      dst_address++;
1087
      src_address++;
1088
 
1089
      /* All done.  */
1090
      break;
1091
 
1092
    case R_JMP_DEL:
1093
      src_address += 4;
1094
      break;
1095
 
1096
    /* An 8-bit memory indirect instruction (jmp/jsr).
1097
 
1098
       There's several things that need to be done to handle
1099
       this relocation.
1100
 
1101
       If this is a reloc against the absolute symbol, then
1102
       we should handle it just R_RELBYTE.  Likewise if it's
1103
       for a symbol with a value ge 0 and le 0xff.
1104
 
1105
       Otherwise it's a jump/call through the function vector,
1106
       and the linker is expected to set up the function vector
1107
       and put the right value into the jump/call instruction.  */
1108
    case R_MEM_INDIRECT:
1109
      {
1110
        /* We need to find the symbol so we can determine it's
1111
           address in the function vector table.  */
1112
        asymbol *symbol;
1113
        const char *name;
1114
        struct funcvec_hash_table *ftab;
1115
        struct funcvec_hash_entry *h;
1116
        struct h8300_coff_link_hash_table *htab;
1117
        asection *vectors_sec;
1118
 
1119
        if (link_info->output_bfd->xvec != abfd->xvec)
1120
          {
1121
            (*_bfd_error_handler)
1122
              (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1123
               link_info->output_bfd->xvec->name);
1124
 
1125
            /* What else can we do?  This function doesn't allow return
1126
               of an error, and we don't want to call abort as that
1127
               indicates an internal error.  */
1128
#ifndef EXIT_FAILURE
1129
#define EXIT_FAILURE 1
1130
#endif
1131
            xexit (EXIT_FAILURE);
1132
          }
1133
        htab = h8300_coff_hash_table (link_info);
1134
        vectors_sec = htab->vectors_sec;
1135
 
1136
        /* First see if this is a reloc against the absolute symbol
1137
           or against a symbol with a nonnegative value <= 0xff.  */
1138
        symbol = *(reloc->sym_ptr_ptr);
1139
        value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1140
        if (symbol == bfd_abs_section_ptr->symbol
1141
            || value <= 0xff)
1142
          {
1143
            /* This should be handled in a manner very similar to
1144
               R_RELBYTES.   If the value is in range, then just slam
1145
               the value into the right location.  Else trigger a
1146
               reloc overflow callback.  */
1147
            if (value <= 0xff)
1148
              {
1149
                bfd_put_8 (abfd, value, data + dst_address);
1150
                dst_address += 1;
1151
                src_address += 1;
1152
              }
1153
            else
1154
              {
1155
                if (! ((*link_info->callbacks->reloc_overflow)
1156
                       (link_info, NULL,
1157
                        bfd_asymbol_name (*reloc->sym_ptr_ptr),
1158
                        reloc->howto->name, reloc->addend, input_section->owner,
1159
                        input_section, reloc->address)))
1160
                  abort ();
1161
              }
1162
            break;
1163
          }
1164
 
1165
        /* This is a jump/call through a function vector, and we're
1166
           expected to create the function vector ourselves.
1167
 
1168
           First look up this symbol in the linker hash table -- we need
1169
           the derived linker symbol which holds this symbol's index
1170
           in the function vector.  */
1171
        name = symbol->name;
1172
        if (symbol->flags & BSF_LOCAL)
1173
          {
1174
            char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1175
 
1176
            if (new_name == NULL)
1177
              abort ();
1178
 
1179
            sprintf (new_name, "%s_%08x", name, symbol->section->id);
1180
            name = new_name;
1181
          }
1182
 
1183
        ftab = htab->funcvec_hash_table;
1184
        h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1185
 
1186
        /* This shouldn't ever happen.  If it does that means we've got
1187
           data corruption of some kind.  Aborting seems like a reasonable
1188
           thing to do here.  */
1189
        if (h == NULL || vectors_sec == NULL)
1190
          abort ();
1191
 
1192
        /* Place the address of the function vector entry into the
1193
           reloc's address.  */
1194
        bfd_put_8 (abfd,
1195
                   vectors_sec->output_offset + h->offset,
1196
                   data + dst_address);
1197
 
1198
        dst_address++;
1199
        src_address++;
1200
 
1201
        /* Now create an entry in the function vector itself.  */
1202
        switch (bfd_get_mach (input_section->owner))
1203
          {
1204
          case bfd_mach_h8300:
1205
          case bfd_mach_h8300hn:
1206
          case bfd_mach_h8300sn:
1207
            bfd_put_16 (abfd,
1208
                        bfd_coff_reloc16_get_value (reloc,
1209
                                                    link_info,
1210
                                                    input_section),
1211
                        vectors_sec->contents + h->offset);
1212
            break;
1213
          case bfd_mach_h8300h:
1214
          case bfd_mach_h8300s:
1215
            bfd_put_32 (abfd,
1216
                        bfd_coff_reloc16_get_value (reloc,
1217
                                                    link_info,
1218
                                                    input_section),
1219
                        vectors_sec->contents + h->offset);
1220
            break;
1221
          default:
1222
            abort ();
1223
          }
1224
 
1225
        /* Gross.  We've already written the contents of the vector section
1226
           before we get here...  So we write it again with the new data.  */
1227
        bfd_set_section_contents (vectors_sec->output_section->owner,
1228
                                  vectors_sec->output_section,
1229
                                  vectors_sec->contents,
1230
                                  (file_ptr) vectors_sec->output_offset,
1231
                                  vectors_sec->size);
1232
        break;
1233
      }
1234
 
1235
    default:
1236
      abort ();
1237
      break;
1238
 
1239
    }
1240
 
1241
  *src_ptr = src_address;
1242
  *dst_ptr = dst_address;
1243
}
1244
 
1245
/* Routine for the h8300 linker.
1246
 
1247
   This routine is necessary to handle the special R_MEM_INDIRECT
1248
   relocs on the h8300.  It's responsible for generating a vectors
1249
   section and attaching it to an input bfd as well as sizing
1250
   the vectors section.  It also creates our vectors hash table.
1251
 
1252
   It uses the generic linker routines to actually add the symbols.
1253
   from this BFD to the bfd linker hash table.  It may add a few
1254
   selected static symbols to the bfd linker hash table.  */
1255
 
1256
static bfd_boolean
1257
h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1258
{
1259
  asection *sec;
1260
  struct funcvec_hash_table *funcvec_hash_table;
1261
  bfd_size_type amt;
1262
  struct h8300_coff_link_hash_table *htab;
1263
 
1264
  /* Add the symbols using the generic code.  */
1265
  _bfd_generic_link_add_symbols (abfd, info);
1266
 
1267
  if (info->output_bfd->xvec != abfd->xvec)
1268
    return TRUE;
1269
 
1270
  htab = h8300_coff_hash_table (info);
1271
 
1272
  /* If we haven't created a vectors section, do so now.  */
1273
  if (!htab->vectors_sec)
1274
    {
1275
      flagword flags;
1276
 
1277
      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
1278
      flags = (SEC_ALLOC | SEC_LOAD
1279
               | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1280
      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1281
                                                       flags);
1282
 
1283
      /* If the section wasn't created, or we couldn't set the flags,
1284
         quit quickly now, rather than dying a painful death later.  */
1285
      if (!htab->vectors_sec)
1286
        return FALSE;
1287
 
1288
      /* Also create the vector hash table.  */
1289
      amt = sizeof (struct funcvec_hash_table);
1290
      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1291
 
1292
      if (!funcvec_hash_table)
1293
        return FALSE;
1294
 
1295
      /* And initialize the funcvec hash table.  */
1296
      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1297
                                    funcvec_hash_newfunc,
1298
                                    sizeof (struct funcvec_hash_entry)))
1299
        {
1300
          bfd_release (abfd, funcvec_hash_table);
1301
          return FALSE;
1302
        }
1303
 
1304
      /* Store away a pointer to the funcvec hash table.  */
1305
      htab->funcvec_hash_table = funcvec_hash_table;
1306
    }
1307
 
1308
  /* Load up the function vector hash table.  */
1309
  funcvec_hash_table = htab->funcvec_hash_table;
1310
 
1311
  /* Now scan the relocs for all the sections in this bfd; create
1312
     additional space in the .vectors section as needed.  */
1313
  for (sec = abfd->sections; sec; sec = sec->next)
1314
    {
1315
      long reloc_size, reloc_count, i;
1316
      asymbol **symbols;
1317
      arelent **relocs;
1318
 
1319
      /* Suck in the relocs, symbols & canonicalize them.  */
1320
      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1321
      if (reloc_size <= 0)
1322
        continue;
1323
 
1324
      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1325
      if (!relocs)
1326
        return FALSE;
1327
 
1328
      /* The symbols should have been read in by _bfd_generic link_add_symbols
1329
         call abovec, so we can cheat and use the pointer to them that was
1330
         saved in the above call.  */
1331
      symbols = _bfd_generic_link_get_symbols(abfd);
1332
      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1333
      if (reloc_count <= 0)
1334
        {
1335
          free (relocs);
1336
          continue;
1337
        }
1338
 
1339
      /* Now walk through all the relocations in this section.  */
1340
      for (i = 0; i < reloc_count; i++)
1341
        {
1342
          arelent *reloc = relocs[i];
1343
          asymbol *symbol = *(reloc->sym_ptr_ptr);
1344
          const char *name;
1345
 
1346
          /* We've got an indirect reloc.  See if we need to add it
1347
             to the function vector table.   At this point, we have
1348
             to add a new entry for each unique symbol referenced
1349
             by an R_MEM_INDIRECT relocation except for a reloc
1350
             against the absolute section symbol.  */
1351
          if (reloc->howto->type == R_MEM_INDIRECT
1352
              && symbol != bfd_abs_section_ptr->symbol)
1353
 
1354
            {
1355
              struct funcvec_hash_table *ftab;
1356
              struct funcvec_hash_entry *h;
1357
 
1358
              name = symbol->name;
1359
              if (symbol->flags & BSF_LOCAL)
1360
                {
1361
                  char *new_name;
1362
 
1363
                  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1364
                  if (new_name == NULL)
1365
                    abort ();
1366
 
1367
                  sprintf (new_name, "%s_%08x", name, symbol->section->id);
1368
                  name = new_name;
1369
                }
1370
 
1371
              /* Look this symbol up in the function vector hash table.  */
1372
              ftab = htab->funcvec_hash_table;
1373
              h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1374
 
1375
              /* If this symbol isn't already in the hash table, add
1376
                 it and bump up the size of the hash table.  */
1377
              if (h == NULL)
1378
                {
1379
                  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1380
                  if (h == NULL)
1381
                    {
1382
                      free (relocs);
1383
                      return FALSE;
1384
                    }
1385
 
1386
                  /* Bump the size of the vectors section.  Each vector
1387
                     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
1388
                  switch (bfd_get_mach (abfd))
1389
                    {
1390
                    case bfd_mach_h8300:
1391
                    case bfd_mach_h8300hn:
1392
                    case bfd_mach_h8300sn:
1393
                      htab->vectors_sec->size += 2;
1394
                      break;
1395
                    case bfd_mach_h8300h:
1396
                    case bfd_mach_h8300s:
1397
                      htab->vectors_sec->size += 4;
1398
                      break;
1399
                    default:
1400
                      abort ();
1401
                    }
1402
                }
1403
            }
1404
        }
1405
 
1406
      /* We're done with the relocations, release them.  */
1407
      free (relocs);
1408
    }
1409
 
1410
  /* Now actually allocate some space for the function vector.  It's
1411
     wasteful to do this more than once, but this is easier.  */
1412
  sec = htab->vectors_sec;
1413
  if (sec->size != 0)
1414
    {
1415
      /* Free the old contents.  */
1416
      if (sec->contents)
1417
        free (sec->contents);
1418
 
1419
      /* Allocate new contents.  */
1420
      sec->contents = bfd_malloc (sec->size);
1421
    }
1422
 
1423
  return TRUE;
1424
}
1425
 
1426
#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1427
#define coff_reloc16_estimate h8300_reloc16_estimate
1428
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1429
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1430
 
1431
#define COFF_LONG_FILENAMES
1432
 
1433
#ifndef bfd_pe_print_pdata
1434
#define bfd_pe_print_pdata      NULL
1435
#endif
1436
 
1437
#include "coffcode.h"
1438
 
1439
#undef coff_bfd_get_relocated_section_contents
1440
#undef coff_bfd_relax_section
1441
#define coff_bfd_get_relocated_section_contents \
1442
  bfd_coff_reloc16_get_relocated_section_contents
1443
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1444
 
1445
CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.