1 |
148 |
jeremybenn |
/*
|
2 |
|
|
(C) Copyright 2001,2006,
|
3 |
|
|
International Business Machines Corporation,
|
4 |
|
|
Sony Computer Entertainment, Incorporated,
|
5 |
|
|
Toshiba Corporation,
|
6 |
|
|
|
7 |
|
|
All rights reserved.
|
8 |
|
|
|
9 |
|
|
Redistribution and use in source and binary forms, with or without
|
10 |
|
|
modification, are permitted provided that the following conditions are met:
|
11 |
|
|
|
12 |
|
|
* Redistributions of source code must retain the above copyright notice,
|
13 |
|
|
this list of conditions and the following disclaimer.
|
14 |
|
|
* Redistributions in binary form must reproduce the above copyright
|
15 |
|
|
notice, this list of conditions and the following disclaimer in the
|
16 |
|
|
documentation and/or other materials provided with the distribution.
|
17 |
|
|
* Neither the names of the copyright holders nor the names of their
|
18 |
|
|
contributors may be used to endorse or promote products derived from this
|
19 |
|
|
software without specific prior written permission.
|
20 |
|
|
|
21 |
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
22 |
|
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
23 |
|
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
24 |
|
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
25 |
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
26 |
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
27 |
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
28 |
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
29 |
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
30 |
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
31 |
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
32 |
|
|
*/
|
33 |
|
|
#ifndef _FMOD_H_
|
34 |
|
|
#define _FMOD_H_ 1
|
35 |
|
|
|
36 |
|
|
#include <spu_intrinsics.h>
|
37 |
|
|
#include <errno.h>
|
38 |
|
|
#include "headers/vec_literal.h"
|
39 |
|
|
|
40 |
|
|
/* This implementation returns zero if y is a denorm or zero.
|
41 |
|
|
*/
|
42 |
|
|
static __inline double _fmod(double x, double y)
|
43 |
|
|
{
|
44 |
|
|
int n, shift;
|
45 |
|
|
vec_uchar16 swap_words = VEC_LITERAL(vec_uchar16, 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11);
|
46 |
|
|
vec_uchar16 propagate = VEC_LITERAL(vec_uchar16, 4,5,6,7, 192,192,192,192, 12,13,14,15, 192,192,192,192);
|
47 |
|
|
vec_uchar16 splat_hi = VEC_LITERAL(vec_uchar16, 0,1,2,3,0,1,2,3, 8,9,10,11, 8,9,10,11);
|
48 |
|
|
vec_uint4 vx, vy, z;
|
49 |
|
|
vec_uint4 x_hi, y_hi;
|
50 |
|
|
vec_uint4 abs_x, abs_y;
|
51 |
|
|
vec_uint4 exp_x, exp_y;
|
52 |
|
|
vec_uint4 zero_x, zero_y;
|
53 |
|
|
vec_uint4 logb_x, logb_y;
|
54 |
|
|
vec_uint4 mant_x, mant_y;
|
55 |
|
|
vec_uint4 normal, norm, denorm;
|
56 |
|
|
vec_uint4 result, result0, resultx, cnt, sign, borrow;
|
57 |
|
|
vec_uint4 lsb = (vec_uint4)(VEC_SPLAT_U64(0x0000000000000001ULL));
|
58 |
|
|
vec_uint4 sign_mask = (vec_uint4)(VEC_SPLAT_U64(0x8000000000000000ULL));
|
59 |
|
|
vec_uint4 implied_1 = (vec_uint4)(VEC_SPLAT_U64(0x0010000000000000ULL));
|
60 |
|
|
vec_uint4 mant_mask = (vec_uint4)(VEC_SPLAT_U64(0x000FFFFFFFFFFFFFULL));
|
61 |
|
|
vec_ullong2 domain;
|
62 |
|
|
vec_int4 verrno;
|
63 |
|
|
vec_double2 vc = { 0.0, 0.0 };
|
64 |
|
|
vec_int4 fail = { EDOM, EDOM, EDOM, EDOM };
|
65 |
|
|
|
66 |
|
|
vx = (vec_uint4)spu_promote(x, 0);
|
67 |
|
|
vy = (vec_uint4)spu_promote(y, 0);
|
68 |
|
|
|
69 |
|
|
abs_x = spu_andc(vx, sign_mask);
|
70 |
|
|
abs_y = spu_andc(vy, sign_mask);
|
71 |
|
|
|
72 |
|
|
sign = spu_and(vx, sign_mask);
|
73 |
|
|
|
74 |
|
|
x_hi = spu_shuffle(abs_x, abs_x, splat_hi);
|
75 |
|
|
y_hi = spu_shuffle(abs_y, abs_y, splat_hi);
|
76 |
|
|
|
77 |
|
|
/* Determine ilogb of abs_x and abs_y and
|
78 |
|
|
* extract the mantissas (mant_x, mant_y)
|
79 |
|
|
*/
|
80 |
|
|
exp_x = spu_rlmask(x_hi, -20);
|
81 |
|
|
exp_y = spu_rlmask(y_hi, -20);
|
82 |
|
|
|
83 |
|
|
resultx = spu_cmpgt(y_hi, x_hi);
|
84 |
|
|
|
85 |
|
|
zero_x = spu_cmpeq(exp_x, 0);
|
86 |
|
|
zero_y = spu_cmpeq(exp_y, 0);
|
87 |
|
|
|
88 |
|
|
logb_x = spu_add(exp_x, -1023);
|
89 |
|
|
logb_y = spu_add(exp_y, -1023);
|
90 |
|
|
|
91 |
|
|
mant_x = spu_andc(spu_sel(implied_1, abs_x, mant_mask), zero_x);
|
92 |
|
|
mant_y = spu_andc(spu_sel(implied_1, abs_y, mant_mask), zero_y);
|
93 |
|
|
|
94 |
|
|
/* Compute fixed point fmod of mant_x and mant_y. Set the flag,
|
95 |
|
|
* result0, to all ones if we detect that the final result is
|
96 |
|
|
* ever 0.
|
97 |
|
|
*/
|
98 |
|
|
result0 = spu_or(zero_x, zero_y);
|
99 |
|
|
|
100 |
|
|
n = spu_extract(spu_sub(logb_x, logb_y), 0);
|
101 |
|
|
|
102 |
|
|
while (n-- > 0) {
|
103 |
|
|
borrow = spu_genb(mant_x, mant_y);
|
104 |
|
|
borrow = spu_shuffle(borrow, borrow, propagate);
|
105 |
|
|
z = spu_subx(mant_x, mant_y, borrow);
|
106 |
|
|
|
107 |
|
|
result0 = spu_or(spu_cmpeq(spu_or(z, spu_shuffle(z, z, swap_words)), 0), result0);
|
108 |
|
|
|
109 |
|
|
mant_x = spu_sel(spu_slqw(mant_x, 1), spu_andc(spu_slqw(z, 1), lsb),
|
110 |
|
|
spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
borrow = spu_genb(mant_x, mant_y);
|
114 |
|
|
borrow = spu_shuffle(borrow, borrow, propagate);
|
115 |
|
|
z = spu_subx(mant_x, mant_y, borrow);
|
116 |
|
|
|
117 |
|
|
mant_x = spu_sel(mant_x, z,
|
118 |
|
|
spu_cmpgt((vec_int4)spu_shuffle(z, z, splat_hi), -1));
|
119 |
|
|
mant_x = spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0,0,-1,-1));
|
120 |
|
|
|
121 |
|
|
result0 = spu_or(spu_cmpeq(spu_or(mant_x, spu_shuffle(mant_x, mant_x, swap_words)), 0), result0);
|
122 |
|
|
|
123 |
|
|
/* Convert the result back to floating point and restore
|
124 |
|
|
* the sign. If we flagged the result to be zero (result0),
|
125 |
|
|
* zero it. If we flagged the result to equal its input x,
|
126 |
|
|
* (resultx) then return x.
|
127 |
|
|
*
|
128 |
|
|
* Double precision generates a denorm for an output.
|
129 |
|
|
*/
|
130 |
|
|
cnt = spu_cntlz(mant_x);
|
131 |
|
|
cnt = spu_add(cnt, spu_and(spu_rlqwbyte(cnt, 4), spu_cmpeq(cnt, 32)));
|
132 |
|
|
cnt = spu_add(spu_shuffle(cnt, cnt, splat_hi), -11);
|
133 |
|
|
|
134 |
|
|
shift = spu_extract(exp_y, 0) - 1;
|
135 |
|
|
denorm = spu_slqwbytebc(spu_slqw(mant_x, shift), shift);
|
136 |
|
|
|
137 |
|
|
exp_y = spu_sub(exp_y, cnt);
|
138 |
|
|
|
139 |
|
|
normal = spu_cmpgt((vec_int4)exp_y, 0);
|
140 |
|
|
|
141 |
|
|
/* Normalize normal results, denormalize denorm results.
|
142 |
|
|
*/
|
143 |
|
|
shift = spu_extract(cnt, 0);
|
144 |
|
|
norm = spu_slqwbytebc(spu_slqw(spu_andc(mant_x, VEC_LITERAL(vec_uint4, 0x00100000, 0, -1, -1)), shift), shift);
|
145 |
|
|
|
146 |
|
|
mant_x = spu_sel(denorm, norm, normal);
|
147 |
|
|
|
148 |
|
|
exp_y = spu_and(spu_rl(exp_y, 20), normal);
|
149 |
|
|
|
150 |
|
|
result = spu_sel(exp_y, spu_or(sign, mant_x), VEC_LITERAL(vec_uint4, 0x800FFFFF, -1, 0x800FFFFF, -1));
|
151 |
|
|
|
152 |
|
|
result = spu_sel(spu_andc(result, spu_rlmask(result0, -1)), vx,
|
153 |
|
|
resultx);
|
154 |
|
|
|
155 |
|
|
#ifndef _IEEE_LIBM
|
156 |
|
|
/*
|
157 |
|
|
* If y is zero, set errno to EDOM
|
158 |
|
|
*/
|
159 |
|
|
domain = spu_cmpeq(vc, (vec_double2) vy);
|
160 |
|
|
verrno = spu_splats(errno);
|
161 |
|
|
errno = spu_extract(spu_sel(verrno, fail, (vector unsigned int) domain), 0);
|
162 |
|
|
#endif
|
163 |
|
|
|
164 |
|
|
return (spu_extract((vec_double2)result, 0));
|
165 |
|
|
}
|
166 |
|
|
#endif /* _FMOD_H_ */
|