OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2020.a] - Blame information for rev 309

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CXG2020.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the complex SQRT function returns
28
--      a result that is within the error bound allowed.
29
--
30
-- TEST DESCRIPTION:
31
--      This test consists of a generic package that is
32
--      instantiated to check complex numbers based upon
33
--      both Float and a long float type.
34
--      The test for each floating point type is divided into
35
--      several parts:
36
--         Special value checks where the result is a known constant.
37
--         Checks that use an identity for determining the result.
38
--
39
-- SPECIAL REQUIREMENTS
40
--      The Strict Mode for the numerical accuracy must be
41
--      selected.  The method by which this mode is selected
42
--      is implementation dependent.
43
--
44
-- APPLICABILITY CRITERIA:
45
--      This test applies only to implementations supporting the
46
--      Numerics Annex.
47
--      This test only applies to the Strict Mode for numerical
48
--      accuracy.
49
--
50
--
51
-- CHANGE HISTORY:
52
--      24 Mar 96   SAIC    Initial release for 2.1
53
--      17 Aug 96   SAIC    Incorporated reviewer comments.
54
--      03 Jun 98   EDS     Added parens to ensure that the expression is not
55
--                          evaluated by multiplying its two large terms
56
--                          together and overflowing.
57
--!
58
 
59
--
60
-- References:
61
--
62
-- W. J. Cody
63
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
64
-- Algorithm 714, Collected Algorithms from ACM.
65
-- Published in Transactions On Mathematical Software,
66
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
67
--
68
-- CRC Standard Mathematical Tables
69
-- 23rd Edition
70
--
71
 
72
with System;
73
with Report;
74
with Ada.Numerics.Generic_Complex_Types;
75
with Ada.Numerics.Generic_Complex_Elementary_Functions;
76
procedure CXG2020 is
77
   Verbose : constant Boolean := False;
78
   -- Note that Max_Samples is the number of samples taken in
79
   -- both the real and imaginary directions.  Thus, for Max_Samples
80
   -- of 100 the number of values checked is 10000.
81
   Max_Samples : constant := 100;
82
 
83
   E  : constant := Ada.Numerics.E;
84
   Pi : constant := Ada.Numerics.Pi;
85
 
86
   -- CRC Standard Mathematical Tables;  23rd Edition; pg 738
87
   Sqrt2 : constant :=
88
        1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
89
   Sqrt3 : constant :=
90
        1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
91
 
92
   generic
93
      type Real is digits <>;
94
   package Generic_Check is
95
      procedure Do_Test;
96
   end Generic_Check;
97
 
98
   package body Generic_Check is
99
      package Complex_Type is new
100
           Ada.Numerics.Generic_Complex_Types (Real);
101
      use Complex_Type;
102
 
103
      package CEF is new
104
           Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
105
 
106
      function Sqrt (X : Complex) return Complex renames CEF.Sqrt;
107
 
108
      -- flag used to terminate some tests early
109
      Accuracy_Error_Reported : Boolean := False;
110
 
111
 
112
      procedure Check (Actual, Expected : Real;
113
                       Test_Name : String;
114
                       MRE : Real) is
115
         Max_Error : Real;
116
         Rel_Error : Real;
117
         Abs_Error : Real;
118
      begin
119
         -- In the case where the expected result is very small or 0
120
         -- we compute the maximum error as a multiple of Model_Epsilon
121
         -- instead of Model_Epsilon and Expected.
122
         Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
123
         Abs_Error := MRE * Real'Model_Epsilon;
124
         if Rel_Error > Abs_Error then
125
            Max_Error := Rel_Error;
126
         else
127
            Max_Error := Abs_Error;
128
         end if;
129
 
130
         if abs (Actual - Expected) > Max_Error then
131
            Accuracy_Error_Reported := True;
132
            Report.Failed (Test_Name &
133
                           " actual: " & Real'Image (Actual) &
134
                           " expected: " & Real'Image (Expected) &
135
                           " difference: " & Real'Image (Actual - Expected) &
136
                           " max err:" & Real'Image (Max_Error) );
137
         elsif Verbose then
138
            if Actual = Expected then
139
               Report.Comment (Test_Name & "  exact result");
140
            else
141
               Report.Comment (Test_Name & "  passed");
142
            end if;
143
         end if;
144
      end Check;
145
 
146
 
147
      procedure Check (Actual, Expected : Complex;
148
                       Test_Name : String;
149
                       MRE : Real) is
150
      begin
151
         Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
152
         Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
153
      end Check;
154
 
155
 
156
      procedure Special_Value_Test is
157
         -- In the following tests the expected result is accurate
158
         -- to the machine precision so the minimum guaranteed error
159
         -- bound can be used if the argument is exact.
160
         --
161
         -- One or i is added to the actual and expected results in
162
         -- order to prevent the expected result from having a
163
         -- real or imaginary part of 0.  This is to allow a reasonable
164
         -- relative error for that component.
165
         Minimum_Error : constant := 6.0;
166
         Z1, Z2 : Complex;
167
      begin
168
         Check (Sqrt(9.0+0.0*i) + i,
169
                3.0+1.0*i,
170
                "sqrt(9+0i)+i",
171
                Minimum_Error);
172
         Check (Sqrt (-2.0 + 0.0 * i) + 1.0,
173
                1.0 + Sqrt2 * i,
174
                "sqrt(-2)+1 ",
175
                Minimum_Error);
176
 
177
         -- make sure no exception occurs when taking the sqrt of
178
         -- very large and very small values.
179
 
180
         Z1 := (Real'Safe_Last * 0.9, Real'Safe_Last * 0.9);
181
         Z2 := Sqrt (Z1);
182
         begin
183
            Check (Z2 * Z2,
184
                   Z1,
185
                   "sqrt((big,big))",
186
                   Minimum_Error + 5.0);  -- +5 for multiply
187
         exception
188
            when others =>
189
                Report.Failed ("unexpected exception in sqrt((big,big))");
190
         end;
191
 
192
         Z1 := (Real'Model_Epsilon * 10.0, Real'Model_Epsilon * 10.0);
193
         Z2 := Sqrt (Z1);
194
         begin
195
            Check (Z2 * Z2,
196
                   Z1,
197
                   "sqrt((little,little))",
198
                   Minimum_Error + 5.0);  -- +5 for multiply
199
         exception
200
            when others =>
201
                Report.Failed ("unexpected exception in " &
202
                    "sqrt((little,little))");
203
         end;
204
 
205
      exception
206
         when Constraint_Error =>
207
            Report.Failed ("Constraint_Error raised in special value test");
208
         when others =>
209
            Report.Failed ("exception in special value test");
210
      end Special_Value_Test;
211
 
212
 
213
 
214
      procedure Exact_Result_Test is
215
         No_Error : constant := 0.0;
216
      begin
217
         -- G.1.2(36);6.0
218
         Check (Sqrt(0.0 + 0.0*i),  0.0 + 0.0 * i, "sqrt(0+0i)", No_Error);
219
 
220
         -- G.1.2(37);6.0
221
         Check (Sqrt(1.0 + 0.0*i),  1.0 + 0.0 * i, "sqrt(1+0i)", No_Error);
222
 
223
         -- G.1.2(38-39);6.0
224
         Check (Sqrt(-1.0 + 0.0*i),  0.0 + 1.0 * i, "sqrt(-1+0i)", No_Error);
225
 
226
         -- G.1.2(40);6.0
227
         if Real'Signed_Zeros then
228
            Check (Sqrt(-1.0-0.0*i), 0.0 - 1.0 * i, "sqrt(-1-0i)", No_Error);
229
         end if;
230
      exception
231
         when Constraint_Error =>
232
            Report.Failed ("Constraint_Error raised in Exact_Result Test");
233
         when others =>
234
            Report.Failed ("exception in Exact_Result Test");
235
      end Exact_Result_Test;
236
 
237
 
238
      procedure Identity_Test (RA, RB, IA, IB : Real) is
239
      -- Tests an identity over a range of values specified
240
      -- by the 4 parameters.  RA and RB denote the range for the
241
      -- real part while IA and IB denote the range for the
242
      -- imaginary part of the result.
243
      --
244
      -- For this test we use the identity
245
      --    Sqrt(Z*Z) = Z
246
      --
247
 
248
         Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);
249
         W, X, Y, Z : Real;
250
         CX : Complex;
251
         Actual, Expected : Complex;
252
      begin
253
         Accuracy_Error_Reported := False;  -- reset
254
         for II in 1..Max_Samples loop
255
            X :=  (RB - RA) * Real (II) / Real (Max_Samples) + RA;
256
            for J in 1..Max_Samples loop
257
               Y :=  (IB - IA) * Real (J) / Real (Max_Samples) + IA;
258
 
259
               -- purify the arguments to minimize roundoff error.
260
               -- We construct the values so that the products X*X,
261
               -- Y*Y, and X*Y are all exact machine numbers.
262
               -- See Cody page 7 and CELEFUNT code.
263
               Z := X * Scale;
264
               W := Z + X;
265
               X := W - Z;
266
               Z := Y * Scale;
267
               W := Z + Y;
268
               Y := W - Z;
269
                 -- G.1.2(21);6.0 - real part of result is non-negative
270
               Expected := Compose_From_Cartesian( abs X,Y);
271
               Z := X*X - Y*Y;
272
               W := X*Y;
273
               CX := Compose_From_Cartesian(Z,W+W);
274
 
275
               -- The arguments are now ready so on with the
276
               -- identity computation.
277
               Actual := Sqrt(CX);
278
 
279
               Check (Actual, Expected,
280
                      "Identity_1_Test " & Integer'Image (II) &
281
                         Integer'Image (J) & ": Sqrt((" &
282
                         Real'Image (CX.Re) & ", " &
283
                         Real'Image (CX.Im) & ")) ",
284
                      8.5);   -- 6.0 from sqrt, 2.5 from argument.
285
               -- See Cody pg 7-8 for analysis of additional error amount.
286
 
287
               if Accuracy_Error_Reported then
288
                 -- only report the first error in this test in order to keep
289
                 -- lots of failures from producing a huge error log
290
                 return;
291
               end if;
292
            end loop;
293
         end loop;
294
 
295
      exception
296
         when Constraint_Error =>
297
            Report.Failed
298
               ("Constraint_Error raised in Identity_Test" &
299
                " for X=(" & Real'Image (X) &
300
                ", " & Real'Image (X) & ")");
301
         when others =>
302
            Report.Failed ("exception in Identity_Test" &
303
                " for X=(" & Real'Image (X) &
304
                ", " & Real'Image (X) & ")");
305
      end Identity_Test;
306
 
307
 
308
      procedure Do_Test is
309
      begin
310
         Special_Value_Test;
311
         Exact_Result_Test;
312
         -- ranges where the sign is the same and where it
313
         -- differs.
314
         Identity_Test (   0.0,   10.0,       0.0,    10.0);
315
         Identity_Test (   0.0,  100.0,    -100.0,     0.0);
316
      end Do_Test;
317
   end Generic_Check;
318
 
319
   -----------------------------------------------------------------------
320
   -----------------------------------------------------------------------
321
   package Float_Check is new Generic_Check (Float);
322
 
323
   -- check the floating point type with the most digits
324
   type A_Long_Float is digits System.Max_Digits;
325
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);
326
 
327
   -----------------------------------------------------------------------
328
   -----------------------------------------------------------------------
329
 
330
 
331
begin
332
   Report.Test ("CXG2020",
333
                "Check the accuracy of the complex SQRT function");
334
 
335
   if Verbose then
336
      Report.Comment ("checking Standard.Float");
337
   end if;
338
 
339
   Float_Check.Do_Test;
340
 
341
   if Verbose then
342
      Report.Comment ("checking a digits" &
343
                      Integer'Image (System.Max_Digits) &
344
                      " floating point type");
345
   end if;
346
 
347
   A_Long_Float_Check.Do_Test;
348
 
349
 
350
   Report.Result;
351
end CXG2020;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.