| 1 |
280 |
jeremybenn |
/* Thread edges through blocks and update the control flow and SSA graphs.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
|
| 3 |
|
|
Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "flags.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "ggc.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "output.h"
|
| 32 |
|
|
#include "expr.h"
|
| 33 |
|
|
#include "function.h"
|
| 34 |
|
|
#include "diagnostic.h"
|
| 35 |
|
|
#include "tree-flow.h"
|
| 36 |
|
|
#include "tree-dump.h"
|
| 37 |
|
|
#include "tree-pass.h"
|
| 38 |
|
|
#include "cfgloop.h"
|
| 39 |
|
|
|
| 40 |
|
|
/* Given a block B, update the CFG and SSA graph to reflect redirecting
|
| 41 |
|
|
one or more in-edges to B to instead reach the destination of an
|
| 42 |
|
|
out-edge from B while preserving any side effects in B.
|
| 43 |
|
|
|
| 44 |
|
|
i.e., given A->B and B->C, change A->B to be A->C yet still preserve the
|
| 45 |
|
|
side effects of executing B.
|
| 46 |
|
|
|
| 47 |
|
|
1. Make a copy of B (including its outgoing edges and statements). Call
|
| 48 |
|
|
the copy B'. Note B' has no incoming edges or PHIs at this time.
|
| 49 |
|
|
|
| 50 |
|
|
2. Remove the control statement at the end of B' and all outgoing edges
|
| 51 |
|
|
except B'->C.
|
| 52 |
|
|
|
| 53 |
|
|
3. Add a new argument to each PHI in C with the same value as the existing
|
| 54 |
|
|
argument associated with edge B->C. Associate the new PHI arguments
|
| 55 |
|
|
with the edge B'->C.
|
| 56 |
|
|
|
| 57 |
|
|
4. For each PHI in B, find or create a PHI in B' with an identical
|
| 58 |
|
|
PHI_RESULT. Add an argument to the PHI in B' which has the same
|
| 59 |
|
|
value as the PHI in B associated with the edge A->B. Associate
|
| 60 |
|
|
the new argument in the PHI in B' with the edge A->B.
|
| 61 |
|
|
|
| 62 |
|
|
5. Change the edge A->B to A->B'.
|
| 63 |
|
|
|
| 64 |
|
|
5a. This automatically deletes any PHI arguments associated with the
|
| 65 |
|
|
edge A->B in B.
|
| 66 |
|
|
|
| 67 |
|
|
5b. This automatically associates each new argument added in step 4
|
| 68 |
|
|
with the edge A->B'.
|
| 69 |
|
|
|
| 70 |
|
|
6. Repeat for other incoming edges into B.
|
| 71 |
|
|
|
| 72 |
|
|
7. Put the duplicated resources in B and all the B' blocks into SSA form.
|
| 73 |
|
|
|
| 74 |
|
|
Note that block duplication can be minimized by first collecting the
|
| 75 |
|
|
set of unique destination blocks that the incoming edges should
|
| 76 |
|
|
be threaded to. Block duplication can be further minimized by using
|
| 77 |
|
|
B instead of creating B' for one destination if all edges into B are
|
| 78 |
|
|
going to be threaded to a successor of B.
|
| 79 |
|
|
|
| 80 |
|
|
We further reduce the number of edges and statements we create by
|
| 81 |
|
|
not copying all the outgoing edges and the control statement in
|
| 82 |
|
|
step #1. We instead create a template block without the outgoing
|
| 83 |
|
|
edges and duplicate the template. */
|
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
/* Steps #5 and #6 of the above algorithm are best implemented by walking
|
| 87 |
|
|
all the incoming edges which thread to the same destination edge at
|
| 88 |
|
|
the same time. That avoids lots of table lookups to get information
|
| 89 |
|
|
for the destination edge.
|
| 90 |
|
|
|
| 91 |
|
|
To realize that implementation we create a list of incoming edges
|
| 92 |
|
|
which thread to the same outgoing edge. Thus to implement steps
|
| 93 |
|
|
#5 and #6 we traverse our hash table of outgoing edge information.
|
| 94 |
|
|
For each entry we walk the list of incoming edges which thread to
|
| 95 |
|
|
the current outgoing edge. */
|
| 96 |
|
|
|
| 97 |
|
|
struct el
|
| 98 |
|
|
{
|
| 99 |
|
|
edge e;
|
| 100 |
|
|
struct el *next;
|
| 101 |
|
|
};
|
| 102 |
|
|
|
| 103 |
|
|
/* Main data structure recording information regarding B's duplicate
|
| 104 |
|
|
blocks. */
|
| 105 |
|
|
|
| 106 |
|
|
/* We need to efficiently record the unique thread destinations of this
|
| 107 |
|
|
block and specific information associated with those destinations. We
|
| 108 |
|
|
may have many incoming edges threaded to the same outgoing edge. This
|
| 109 |
|
|
can be naturally implemented with a hash table. */
|
| 110 |
|
|
|
| 111 |
|
|
struct redirection_data
|
| 112 |
|
|
{
|
| 113 |
|
|
/* A duplicate of B with the trailing control statement removed and which
|
| 114 |
|
|
targets a single successor of B. */
|
| 115 |
|
|
basic_block dup_block;
|
| 116 |
|
|
|
| 117 |
|
|
/* An outgoing edge from B. DUP_BLOCK will have OUTGOING_EDGE->dest as
|
| 118 |
|
|
its single successor. */
|
| 119 |
|
|
edge outgoing_edge;
|
| 120 |
|
|
|
| 121 |
|
|
/* A list of incoming edges which we want to thread to
|
| 122 |
|
|
OUTGOING_EDGE->dest. */
|
| 123 |
|
|
struct el *incoming_edges;
|
| 124 |
|
|
|
| 125 |
|
|
/* Flag indicating whether or not we should create a duplicate block
|
| 126 |
|
|
for this thread destination. This is only true if we are threading
|
| 127 |
|
|
all incoming edges and thus are using BB itself as a duplicate block. */
|
| 128 |
|
|
bool do_not_duplicate;
|
| 129 |
|
|
};
|
| 130 |
|
|
|
| 131 |
|
|
/* Main data structure to hold information for duplicates of BB. */
|
| 132 |
|
|
static htab_t redirection_data;
|
| 133 |
|
|
|
| 134 |
|
|
/* Data structure of information to pass to hash table traversal routines. */
|
| 135 |
|
|
struct local_info
|
| 136 |
|
|
{
|
| 137 |
|
|
/* The current block we are working on. */
|
| 138 |
|
|
basic_block bb;
|
| 139 |
|
|
|
| 140 |
|
|
/* A template copy of BB with no outgoing edges or control statement that
|
| 141 |
|
|
we use for creating copies. */
|
| 142 |
|
|
basic_block template_block;
|
| 143 |
|
|
|
| 144 |
|
|
/* TRUE if we thread one or more jumps, FALSE otherwise. */
|
| 145 |
|
|
bool jumps_threaded;
|
| 146 |
|
|
};
|
| 147 |
|
|
|
| 148 |
|
|
/* Passes which use the jump threading code register jump threading
|
| 149 |
|
|
opportunities as they are discovered. We keep the registered
|
| 150 |
|
|
jump threading opportunities in this vector as edge pairs
|
| 151 |
|
|
(original_edge, target_edge). */
|
| 152 |
|
|
static VEC(edge,heap) *threaded_edges;
|
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
/* Jump threading statistics. */
|
| 156 |
|
|
|
| 157 |
|
|
struct thread_stats_d
|
| 158 |
|
|
{
|
| 159 |
|
|
unsigned long num_threaded_edges;
|
| 160 |
|
|
};
|
| 161 |
|
|
|
| 162 |
|
|
struct thread_stats_d thread_stats;
|
| 163 |
|
|
|
| 164 |
|
|
|
| 165 |
|
|
/* Remove the last statement in block BB if it is a control statement
|
| 166 |
|
|
Also remove all outgoing edges except the edge which reaches DEST_BB.
|
| 167 |
|
|
If DEST_BB is NULL, then remove all outgoing edges. */
|
| 168 |
|
|
|
| 169 |
|
|
static void
|
| 170 |
|
|
remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb)
|
| 171 |
|
|
{
|
| 172 |
|
|
gimple_stmt_iterator gsi;
|
| 173 |
|
|
edge e;
|
| 174 |
|
|
edge_iterator ei;
|
| 175 |
|
|
|
| 176 |
|
|
gsi = gsi_last_bb (bb);
|
| 177 |
|
|
|
| 178 |
|
|
/* If the duplicate ends with a control statement, then remove it.
|
| 179 |
|
|
|
| 180 |
|
|
Note that if we are duplicating the template block rather than the
|
| 181 |
|
|
original basic block, then the duplicate might not have any real
|
| 182 |
|
|
statements in it. */
|
| 183 |
|
|
if (!gsi_end_p (gsi)
|
| 184 |
|
|
&& gsi_stmt (gsi)
|
| 185 |
|
|
&& (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
|
| 186 |
|
|
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
|
| 187 |
|
|
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH))
|
| 188 |
|
|
gsi_remove (&gsi, true);
|
| 189 |
|
|
|
| 190 |
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
|
| 191 |
|
|
{
|
| 192 |
|
|
if (e->dest != dest_bb)
|
| 193 |
|
|
remove_edge (e);
|
| 194 |
|
|
else
|
| 195 |
|
|
ei_next (&ei);
|
| 196 |
|
|
}
|
| 197 |
|
|
}
|
| 198 |
|
|
|
| 199 |
|
|
/* Create a duplicate of BB which only reaches the destination of the edge
|
| 200 |
|
|
stored in RD. Record the duplicate block in RD. */
|
| 201 |
|
|
|
| 202 |
|
|
static void
|
| 203 |
|
|
create_block_for_threading (basic_block bb, struct redirection_data *rd)
|
| 204 |
|
|
{
|
| 205 |
|
|
/* We can use the generic block duplication code and simply remove
|
| 206 |
|
|
the stuff we do not need. */
|
| 207 |
|
|
rd->dup_block = duplicate_block (bb, NULL, NULL);
|
| 208 |
|
|
|
| 209 |
|
|
/* Zero out the profile, since the block is unreachable for now. */
|
| 210 |
|
|
rd->dup_block->frequency = 0;
|
| 211 |
|
|
rd->dup_block->count = 0;
|
| 212 |
|
|
|
| 213 |
|
|
/* The call to duplicate_block will copy everything, including the
|
| 214 |
|
|
useless COND_EXPR or SWITCH_EXPR at the end of BB. We just remove
|
| 215 |
|
|
the useless COND_EXPR or SWITCH_EXPR here rather than having a
|
| 216 |
|
|
specialized block copier. We also remove all outgoing edges
|
| 217 |
|
|
from the duplicate block. The appropriate edge will be created
|
| 218 |
|
|
later. */
|
| 219 |
|
|
remove_ctrl_stmt_and_useless_edges (rd->dup_block, NULL);
|
| 220 |
|
|
}
|
| 221 |
|
|
|
| 222 |
|
|
/* Hashing and equality routines for our hash table. */
|
| 223 |
|
|
static hashval_t
|
| 224 |
|
|
redirection_data_hash (const void *p)
|
| 225 |
|
|
{
|
| 226 |
|
|
edge e = ((const struct redirection_data *)p)->outgoing_edge;
|
| 227 |
|
|
return e->dest->index;
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
static int
|
| 231 |
|
|
redirection_data_eq (const void *p1, const void *p2)
|
| 232 |
|
|
{
|
| 233 |
|
|
edge e1 = ((const struct redirection_data *)p1)->outgoing_edge;
|
| 234 |
|
|
edge e2 = ((const struct redirection_data *)p2)->outgoing_edge;
|
| 235 |
|
|
|
| 236 |
|
|
return e1 == e2;
|
| 237 |
|
|
}
|
| 238 |
|
|
|
| 239 |
|
|
/* Given an outgoing edge E lookup and return its entry in our hash table.
|
| 240 |
|
|
|
| 241 |
|
|
If INSERT is true, then we insert the entry into the hash table if
|
| 242 |
|
|
it is not already present. INCOMING_EDGE is added to the list of incoming
|
| 243 |
|
|
edges associated with E in the hash table. */
|
| 244 |
|
|
|
| 245 |
|
|
static struct redirection_data *
|
| 246 |
|
|
lookup_redirection_data (edge e, edge incoming_edge, enum insert_option insert)
|
| 247 |
|
|
{
|
| 248 |
|
|
void **slot;
|
| 249 |
|
|
struct redirection_data *elt;
|
| 250 |
|
|
|
| 251 |
|
|
/* Build a hash table element so we can see if E is already
|
| 252 |
|
|
in the table. */
|
| 253 |
|
|
elt = XNEW (struct redirection_data);
|
| 254 |
|
|
elt->outgoing_edge = e;
|
| 255 |
|
|
elt->dup_block = NULL;
|
| 256 |
|
|
elt->do_not_duplicate = false;
|
| 257 |
|
|
elt->incoming_edges = NULL;
|
| 258 |
|
|
|
| 259 |
|
|
slot = htab_find_slot (redirection_data, elt, insert);
|
| 260 |
|
|
|
| 261 |
|
|
/* This will only happen if INSERT is false and the entry is not
|
| 262 |
|
|
in the hash table. */
|
| 263 |
|
|
if (slot == NULL)
|
| 264 |
|
|
{
|
| 265 |
|
|
free (elt);
|
| 266 |
|
|
return NULL;
|
| 267 |
|
|
}
|
| 268 |
|
|
|
| 269 |
|
|
/* This will only happen if E was not in the hash table and
|
| 270 |
|
|
INSERT is true. */
|
| 271 |
|
|
if (*slot == NULL)
|
| 272 |
|
|
{
|
| 273 |
|
|
*slot = (void *)elt;
|
| 274 |
|
|
elt->incoming_edges = XNEW (struct el);
|
| 275 |
|
|
elt->incoming_edges->e = incoming_edge;
|
| 276 |
|
|
elt->incoming_edges->next = NULL;
|
| 277 |
|
|
return elt;
|
| 278 |
|
|
}
|
| 279 |
|
|
/* E was in the hash table. */
|
| 280 |
|
|
else
|
| 281 |
|
|
{
|
| 282 |
|
|
/* Free ELT as we do not need it anymore, we will extract the
|
| 283 |
|
|
relevant entry from the hash table itself. */
|
| 284 |
|
|
free (elt);
|
| 285 |
|
|
|
| 286 |
|
|
/* Get the entry stored in the hash table. */
|
| 287 |
|
|
elt = (struct redirection_data *) *slot;
|
| 288 |
|
|
|
| 289 |
|
|
/* If insertion was requested, then we need to add INCOMING_EDGE
|
| 290 |
|
|
to the list of incoming edges associated with E. */
|
| 291 |
|
|
if (insert)
|
| 292 |
|
|
{
|
| 293 |
|
|
struct el *el = XNEW (struct el);
|
| 294 |
|
|
el->next = elt->incoming_edges;
|
| 295 |
|
|
el->e = incoming_edge;
|
| 296 |
|
|
elt->incoming_edges = el;
|
| 297 |
|
|
}
|
| 298 |
|
|
|
| 299 |
|
|
return elt;
|
| 300 |
|
|
}
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
/* Given a duplicate block and its single destination (both stored
|
| 304 |
|
|
in RD). Create an edge between the duplicate and its single
|
| 305 |
|
|
destination.
|
| 306 |
|
|
|
| 307 |
|
|
Add an additional argument to any PHI nodes at the single
|
| 308 |
|
|
destination. */
|
| 309 |
|
|
|
| 310 |
|
|
static void
|
| 311 |
|
|
create_edge_and_update_destination_phis (struct redirection_data *rd)
|
| 312 |
|
|
{
|
| 313 |
|
|
edge e = make_edge (rd->dup_block, rd->outgoing_edge->dest, EDGE_FALLTHRU);
|
| 314 |
|
|
gimple_stmt_iterator gsi;
|
| 315 |
|
|
|
| 316 |
|
|
rescan_loop_exit (e, true, false);
|
| 317 |
|
|
e->probability = REG_BR_PROB_BASE;
|
| 318 |
|
|
e->count = rd->dup_block->count;
|
| 319 |
|
|
e->aux = rd->outgoing_edge->aux;
|
| 320 |
|
|
|
| 321 |
|
|
/* If there are any PHI nodes at the destination of the outgoing edge
|
| 322 |
|
|
from the duplicate block, then we will need to add a new argument
|
| 323 |
|
|
to them. The argument should have the same value as the argument
|
| 324 |
|
|
associated with the outgoing edge stored in RD. */
|
| 325 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 326 |
|
|
{
|
| 327 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 328 |
|
|
source_location locus;
|
| 329 |
|
|
int indx = rd->outgoing_edge->dest_idx;
|
| 330 |
|
|
|
| 331 |
|
|
locus = gimple_phi_arg_location (phi, indx);
|
| 332 |
|
|
add_phi_arg (phi, gimple_phi_arg_def (phi, indx), e, locus);
|
| 333 |
|
|
}
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
/* Hash table traversal callback routine to create duplicate blocks. */
|
| 337 |
|
|
|
| 338 |
|
|
static int
|
| 339 |
|
|
create_duplicates (void **slot, void *data)
|
| 340 |
|
|
{
|
| 341 |
|
|
struct redirection_data *rd = (struct redirection_data *) *slot;
|
| 342 |
|
|
struct local_info *local_info = (struct local_info *)data;
|
| 343 |
|
|
|
| 344 |
|
|
/* If this entry should not have a duplicate created, then there's
|
| 345 |
|
|
nothing to do. */
|
| 346 |
|
|
if (rd->do_not_duplicate)
|
| 347 |
|
|
return 1;
|
| 348 |
|
|
|
| 349 |
|
|
/* Create a template block if we have not done so already. Otherwise
|
| 350 |
|
|
use the template to create a new block. */
|
| 351 |
|
|
if (local_info->template_block == NULL)
|
| 352 |
|
|
{
|
| 353 |
|
|
create_block_for_threading (local_info->bb, rd);
|
| 354 |
|
|
local_info->template_block = rd->dup_block;
|
| 355 |
|
|
|
| 356 |
|
|
/* We do not create any outgoing edges for the template. We will
|
| 357 |
|
|
take care of that in a later traversal. That way we do not
|
| 358 |
|
|
create edges that are going to just be deleted. */
|
| 359 |
|
|
}
|
| 360 |
|
|
else
|
| 361 |
|
|
{
|
| 362 |
|
|
create_block_for_threading (local_info->template_block, rd);
|
| 363 |
|
|
|
| 364 |
|
|
/* Go ahead and wire up outgoing edges and update PHIs for the duplicate
|
| 365 |
|
|
block. */
|
| 366 |
|
|
create_edge_and_update_destination_phis (rd);
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
/* Keep walking the hash table. */
|
| 370 |
|
|
return 1;
|
| 371 |
|
|
}
|
| 372 |
|
|
|
| 373 |
|
|
/* We did not create any outgoing edges for the template block during
|
| 374 |
|
|
block creation. This hash table traversal callback creates the
|
| 375 |
|
|
outgoing edge for the template block. */
|
| 376 |
|
|
|
| 377 |
|
|
static int
|
| 378 |
|
|
fixup_template_block (void **slot, void *data)
|
| 379 |
|
|
{
|
| 380 |
|
|
struct redirection_data *rd = (struct redirection_data *) *slot;
|
| 381 |
|
|
struct local_info *local_info = (struct local_info *)data;
|
| 382 |
|
|
|
| 383 |
|
|
/* If this is the template block, then create its outgoing edges
|
| 384 |
|
|
and halt the hash table traversal. */
|
| 385 |
|
|
if (rd->dup_block && rd->dup_block == local_info->template_block)
|
| 386 |
|
|
{
|
| 387 |
|
|
create_edge_and_update_destination_phis (rd);
|
| 388 |
|
|
return 0;
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
return 1;
|
| 392 |
|
|
}
|
| 393 |
|
|
|
| 394 |
|
|
/* Hash table traversal callback to redirect each incoming edge
|
| 395 |
|
|
associated with this hash table element to its new destination. */
|
| 396 |
|
|
|
| 397 |
|
|
static int
|
| 398 |
|
|
redirect_edges (void **slot, void *data)
|
| 399 |
|
|
{
|
| 400 |
|
|
struct redirection_data *rd = (struct redirection_data *) *slot;
|
| 401 |
|
|
struct local_info *local_info = (struct local_info *)data;
|
| 402 |
|
|
struct el *next, *el;
|
| 403 |
|
|
|
| 404 |
|
|
/* Walk over all the incoming edges associated associated with this
|
| 405 |
|
|
hash table entry. */
|
| 406 |
|
|
for (el = rd->incoming_edges; el; el = next)
|
| 407 |
|
|
{
|
| 408 |
|
|
edge e = el->e;
|
| 409 |
|
|
|
| 410 |
|
|
/* Go ahead and free this element from the list. Doing this now
|
| 411 |
|
|
avoids the need for another list walk when we destroy the hash
|
| 412 |
|
|
table. */
|
| 413 |
|
|
next = el->next;
|
| 414 |
|
|
free (el);
|
| 415 |
|
|
|
| 416 |
|
|
/* Go ahead and clear E->aux. It's not needed anymore and failure
|
| 417 |
|
|
to clear it will cause all kinds of unpleasant problems later. */
|
| 418 |
|
|
e->aux = NULL;
|
| 419 |
|
|
|
| 420 |
|
|
thread_stats.num_threaded_edges++;
|
| 421 |
|
|
|
| 422 |
|
|
if (rd->dup_block)
|
| 423 |
|
|
{
|
| 424 |
|
|
edge e2;
|
| 425 |
|
|
|
| 426 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 427 |
|
|
fprintf (dump_file, " Threaded jump %d --> %d to %d\n",
|
| 428 |
|
|
e->src->index, e->dest->index, rd->dup_block->index);
|
| 429 |
|
|
|
| 430 |
|
|
rd->dup_block->count += e->count;
|
| 431 |
|
|
rd->dup_block->frequency += EDGE_FREQUENCY (e);
|
| 432 |
|
|
EDGE_SUCC (rd->dup_block, 0)->count += e->count;
|
| 433 |
|
|
/* Redirect the incoming edge to the appropriate duplicate
|
| 434 |
|
|
block. */
|
| 435 |
|
|
e2 = redirect_edge_and_branch (e, rd->dup_block);
|
| 436 |
|
|
gcc_assert (e == e2);
|
| 437 |
|
|
flush_pending_stmts (e2);
|
| 438 |
|
|
}
|
| 439 |
|
|
else
|
| 440 |
|
|
{
|
| 441 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 442 |
|
|
fprintf (dump_file, " Threaded jump %d --> %d to %d\n",
|
| 443 |
|
|
e->src->index, e->dest->index, local_info->bb->index);
|
| 444 |
|
|
|
| 445 |
|
|
/* We are using BB as the duplicate. Remove the unnecessary
|
| 446 |
|
|
outgoing edges and statements from BB. */
|
| 447 |
|
|
remove_ctrl_stmt_and_useless_edges (local_info->bb,
|
| 448 |
|
|
rd->outgoing_edge->dest);
|
| 449 |
|
|
|
| 450 |
|
|
/* Fixup the flags on the single remaining edge. */
|
| 451 |
|
|
single_succ_edge (local_info->bb)->flags
|
| 452 |
|
|
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
|
| 453 |
|
|
single_succ_edge (local_info->bb)->flags |= EDGE_FALLTHRU;
|
| 454 |
|
|
|
| 455 |
|
|
/* And adjust count and frequency on BB. */
|
| 456 |
|
|
local_info->bb->count = e->count;
|
| 457 |
|
|
local_info->bb->frequency = EDGE_FREQUENCY (e);
|
| 458 |
|
|
}
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
/* Indicate that we actually threaded one or more jumps. */
|
| 462 |
|
|
if (rd->incoming_edges)
|
| 463 |
|
|
local_info->jumps_threaded = true;
|
| 464 |
|
|
|
| 465 |
|
|
return 1;
|
| 466 |
|
|
}
|
| 467 |
|
|
|
| 468 |
|
|
/* Return true if this block has no executable statements other than
|
| 469 |
|
|
a simple ctrl flow instruction. When the number of outgoing edges
|
| 470 |
|
|
is one, this is equivalent to a "forwarder" block. */
|
| 471 |
|
|
|
| 472 |
|
|
static bool
|
| 473 |
|
|
redirection_block_p (basic_block bb)
|
| 474 |
|
|
{
|
| 475 |
|
|
gimple_stmt_iterator gsi;
|
| 476 |
|
|
|
| 477 |
|
|
/* Advance to the first executable statement. */
|
| 478 |
|
|
gsi = gsi_start_bb (bb);
|
| 479 |
|
|
while (!gsi_end_p (gsi)
|
| 480 |
|
|
&& (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
|
| 481 |
|
|
|| is_gimple_debug (gsi_stmt (gsi))
|
| 482 |
|
|
|| gimple_nop_p (gsi_stmt (gsi))))
|
| 483 |
|
|
gsi_next (&gsi);
|
| 484 |
|
|
|
| 485 |
|
|
/* Check if this is an empty block. */
|
| 486 |
|
|
if (gsi_end_p (gsi))
|
| 487 |
|
|
return true;
|
| 488 |
|
|
|
| 489 |
|
|
/* Test that we've reached the terminating control statement. */
|
| 490 |
|
|
return gsi_stmt (gsi)
|
| 491 |
|
|
&& (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
|
| 492 |
|
|
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
|
| 493 |
|
|
|| gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH);
|
| 494 |
|
|
}
|
| 495 |
|
|
|
| 496 |
|
|
/* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB
|
| 497 |
|
|
is reached via one or more specific incoming edges, we know which
|
| 498 |
|
|
outgoing edge from BB will be traversed.
|
| 499 |
|
|
|
| 500 |
|
|
We want to redirect those incoming edges to the target of the
|
| 501 |
|
|
appropriate outgoing edge. Doing so avoids a conditional branch
|
| 502 |
|
|
and may expose new optimization opportunities. Note that we have
|
| 503 |
|
|
to update dominator tree and SSA graph after such changes.
|
| 504 |
|
|
|
| 505 |
|
|
The key to keeping the SSA graph update manageable is to duplicate
|
| 506 |
|
|
the side effects occurring in BB so that those side effects still
|
| 507 |
|
|
occur on the paths which bypass BB after redirecting edges.
|
| 508 |
|
|
|
| 509 |
|
|
We accomplish this by creating duplicates of BB and arranging for
|
| 510 |
|
|
the duplicates to unconditionally pass control to one specific
|
| 511 |
|
|
successor of BB. We then revector the incoming edges into BB to
|
| 512 |
|
|
the appropriate duplicate of BB.
|
| 513 |
|
|
|
| 514 |
|
|
If NOLOOP_ONLY is true, we only perform the threading as long as it
|
| 515 |
|
|
does not affect the structure of the loops in a nontrivial way. */
|
| 516 |
|
|
|
| 517 |
|
|
static bool
|
| 518 |
|
|
thread_block (basic_block bb, bool noloop_only)
|
| 519 |
|
|
{
|
| 520 |
|
|
/* E is an incoming edge into BB that we may or may not want to
|
| 521 |
|
|
redirect to a duplicate of BB. */
|
| 522 |
|
|
edge e, e2;
|
| 523 |
|
|
edge_iterator ei;
|
| 524 |
|
|
struct local_info local_info;
|
| 525 |
|
|
struct loop *loop = bb->loop_father;
|
| 526 |
|
|
|
| 527 |
|
|
/* ALL indicates whether or not all incoming edges into BB should
|
| 528 |
|
|
be threaded to a duplicate of BB. */
|
| 529 |
|
|
bool all = true;
|
| 530 |
|
|
|
| 531 |
|
|
/* To avoid scanning a linear array for the element we need we instead
|
| 532 |
|
|
use a hash table. For normal code there should be no noticeable
|
| 533 |
|
|
difference. However, if we have a block with a large number of
|
| 534 |
|
|
incoming and outgoing edges such linear searches can get expensive. */
|
| 535 |
|
|
redirection_data = htab_create (EDGE_COUNT (bb->succs),
|
| 536 |
|
|
redirection_data_hash,
|
| 537 |
|
|
redirection_data_eq,
|
| 538 |
|
|
free);
|
| 539 |
|
|
|
| 540 |
|
|
/* If we thread the latch of the loop to its exit, the loop ceases to
|
| 541 |
|
|
exist. Make sure we do not restrict ourselves in order to preserve
|
| 542 |
|
|
this loop. */
|
| 543 |
|
|
if (loop->header == bb)
|
| 544 |
|
|
{
|
| 545 |
|
|
e = loop_latch_edge (loop);
|
| 546 |
|
|
e2 = (edge) e->aux;
|
| 547 |
|
|
|
| 548 |
|
|
if (e2 && loop_exit_edge_p (loop, e2))
|
| 549 |
|
|
{
|
| 550 |
|
|
loop->header = NULL;
|
| 551 |
|
|
loop->latch = NULL;
|
| 552 |
|
|
}
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
/* Record each unique threaded destination into a hash table for
|
| 556 |
|
|
efficient lookups. */
|
| 557 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 558 |
|
|
{
|
| 559 |
|
|
e2 = (edge) e->aux;
|
| 560 |
|
|
|
| 561 |
|
|
if (!e2
|
| 562 |
|
|
/* If NOLOOP_ONLY is true, we only allow threading through the
|
| 563 |
|
|
header of a loop to exit edges. */
|
| 564 |
|
|
|| (noloop_only
|
| 565 |
|
|
&& bb == bb->loop_father->header
|
| 566 |
|
|
&& !loop_exit_edge_p (bb->loop_father, e2)))
|
| 567 |
|
|
{
|
| 568 |
|
|
all = false;
|
| 569 |
|
|
continue;
|
| 570 |
|
|
}
|
| 571 |
|
|
|
| 572 |
|
|
update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
|
| 573 |
|
|
e->count, (edge) e->aux);
|
| 574 |
|
|
|
| 575 |
|
|
/* Insert the outgoing edge into the hash table if it is not
|
| 576 |
|
|
already in the hash table. */
|
| 577 |
|
|
lookup_redirection_data (e2, e, INSERT);
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
/* If we are going to thread all incoming edges to an outgoing edge, then
|
| 581 |
|
|
BB will become unreachable. Rather than just throwing it away, use
|
| 582 |
|
|
it for one of the duplicates. Mark the first incoming edge with the
|
| 583 |
|
|
DO_NOT_DUPLICATE attribute. */
|
| 584 |
|
|
if (all)
|
| 585 |
|
|
{
|
| 586 |
|
|
edge e = (edge) EDGE_PRED (bb, 0)->aux;
|
| 587 |
|
|
lookup_redirection_data (e, NULL, NO_INSERT)->do_not_duplicate = true;
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
/* We do not update dominance info. */
|
| 591 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 592 |
|
|
|
| 593 |
|
|
/* Now create duplicates of BB.
|
| 594 |
|
|
|
| 595 |
|
|
Note that for a block with a high outgoing degree we can waste
|
| 596 |
|
|
a lot of time and memory creating and destroying useless edges.
|
| 597 |
|
|
|
| 598 |
|
|
So we first duplicate BB and remove the control structure at the
|
| 599 |
|
|
tail of the duplicate as well as all outgoing edges from the
|
| 600 |
|
|
duplicate. We then use that duplicate block as a template for
|
| 601 |
|
|
the rest of the duplicates. */
|
| 602 |
|
|
local_info.template_block = NULL;
|
| 603 |
|
|
local_info.bb = bb;
|
| 604 |
|
|
local_info.jumps_threaded = false;
|
| 605 |
|
|
htab_traverse (redirection_data, create_duplicates, &local_info);
|
| 606 |
|
|
|
| 607 |
|
|
/* The template does not have an outgoing edge. Create that outgoing
|
| 608 |
|
|
edge and update PHI nodes as the edge's target as necessary.
|
| 609 |
|
|
|
| 610 |
|
|
We do this after creating all the duplicates to avoid creating
|
| 611 |
|
|
unnecessary edges. */
|
| 612 |
|
|
htab_traverse (redirection_data, fixup_template_block, &local_info);
|
| 613 |
|
|
|
| 614 |
|
|
/* The hash table traversals above created the duplicate blocks (and the
|
| 615 |
|
|
statements within the duplicate blocks). This loop creates PHI nodes for
|
| 616 |
|
|
the duplicated blocks and redirects the incoming edges into BB to reach
|
| 617 |
|
|
the duplicates of BB. */
|
| 618 |
|
|
htab_traverse (redirection_data, redirect_edges, &local_info);
|
| 619 |
|
|
|
| 620 |
|
|
/* Done with this block. Clear REDIRECTION_DATA. */
|
| 621 |
|
|
htab_delete (redirection_data);
|
| 622 |
|
|
redirection_data = NULL;
|
| 623 |
|
|
|
| 624 |
|
|
/* Indicate to our caller whether or not any jumps were threaded. */
|
| 625 |
|
|
return local_info.jumps_threaded;
|
| 626 |
|
|
}
|
| 627 |
|
|
|
| 628 |
|
|
/* Threads edge E through E->dest to the edge E->aux. Returns the copy
|
| 629 |
|
|
of E->dest created during threading, or E->dest if it was not necessary
|
| 630 |
|
|
to copy it (E is its single predecessor). */
|
| 631 |
|
|
|
| 632 |
|
|
static basic_block
|
| 633 |
|
|
thread_single_edge (edge e)
|
| 634 |
|
|
{
|
| 635 |
|
|
basic_block bb = e->dest;
|
| 636 |
|
|
edge eto = (edge) e->aux;
|
| 637 |
|
|
struct redirection_data rd;
|
| 638 |
|
|
|
| 639 |
|
|
e->aux = NULL;
|
| 640 |
|
|
|
| 641 |
|
|
thread_stats.num_threaded_edges++;
|
| 642 |
|
|
|
| 643 |
|
|
if (single_pred_p (bb))
|
| 644 |
|
|
{
|
| 645 |
|
|
/* If BB has just a single predecessor, we should only remove the
|
| 646 |
|
|
control statements at its end, and successors except for ETO. */
|
| 647 |
|
|
remove_ctrl_stmt_and_useless_edges (bb, eto->dest);
|
| 648 |
|
|
|
| 649 |
|
|
/* And fixup the flags on the single remaining edge. */
|
| 650 |
|
|
eto->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
|
| 651 |
|
|
eto->flags |= EDGE_FALLTHRU;
|
| 652 |
|
|
|
| 653 |
|
|
return bb;
|
| 654 |
|
|
}
|
| 655 |
|
|
|
| 656 |
|
|
/* Otherwise, we need to create a copy. */
|
| 657 |
|
|
update_bb_profile_for_threading (bb, EDGE_FREQUENCY (e), e->count, eto);
|
| 658 |
|
|
|
| 659 |
|
|
rd.outgoing_edge = eto;
|
| 660 |
|
|
|
| 661 |
|
|
create_block_for_threading (bb, &rd);
|
| 662 |
|
|
create_edge_and_update_destination_phis (&rd);
|
| 663 |
|
|
|
| 664 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 665 |
|
|
fprintf (dump_file, " Threaded jump %d --> %d to %d\n",
|
| 666 |
|
|
e->src->index, e->dest->index, rd.dup_block->index);
|
| 667 |
|
|
|
| 668 |
|
|
rd.dup_block->count = e->count;
|
| 669 |
|
|
rd.dup_block->frequency = EDGE_FREQUENCY (e);
|
| 670 |
|
|
single_succ_edge (rd.dup_block)->count = e->count;
|
| 671 |
|
|
redirect_edge_and_branch (e, rd.dup_block);
|
| 672 |
|
|
flush_pending_stmts (e);
|
| 673 |
|
|
|
| 674 |
|
|
return rd.dup_block;
|
| 675 |
|
|
}
|
| 676 |
|
|
|
| 677 |
|
|
/* Callback for dfs_enumerate_from. Returns true if BB is different
|
| 678 |
|
|
from STOP and DBDS_CE_STOP. */
|
| 679 |
|
|
|
| 680 |
|
|
static basic_block dbds_ce_stop;
|
| 681 |
|
|
static bool
|
| 682 |
|
|
dbds_continue_enumeration_p (const_basic_block bb, const void *stop)
|
| 683 |
|
|
{
|
| 684 |
|
|
return (bb != (const_basic_block) stop
|
| 685 |
|
|
&& bb != dbds_ce_stop);
|
| 686 |
|
|
}
|
| 687 |
|
|
|
| 688 |
|
|
/* Evaluates the dominance relationship of latch of the LOOP and BB, and
|
| 689 |
|
|
returns the state. */
|
| 690 |
|
|
|
| 691 |
|
|
enum bb_dom_status
|
| 692 |
|
|
{
|
| 693 |
|
|
/* BB does not dominate latch of the LOOP. */
|
| 694 |
|
|
DOMST_NONDOMINATING,
|
| 695 |
|
|
/* The LOOP is broken (there is no path from the header to its latch. */
|
| 696 |
|
|
DOMST_LOOP_BROKEN,
|
| 697 |
|
|
/* BB dominates the latch of the LOOP. */
|
| 698 |
|
|
DOMST_DOMINATING
|
| 699 |
|
|
};
|
| 700 |
|
|
|
| 701 |
|
|
static enum bb_dom_status
|
| 702 |
|
|
determine_bb_domination_status (struct loop *loop, basic_block bb)
|
| 703 |
|
|
{
|
| 704 |
|
|
basic_block *bblocks;
|
| 705 |
|
|
unsigned nblocks, i;
|
| 706 |
|
|
bool bb_reachable = false;
|
| 707 |
|
|
edge_iterator ei;
|
| 708 |
|
|
edge e;
|
| 709 |
|
|
|
| 710 |
|
|
#ifdef ENABLE_CHECKING
|
| 711 |
|
|
/* This function assumes BB is a successor of LOOP->header. */
|
| 712 |
|
|
{
|
| 713 |
|
|
bool ok = false;
|
| 714 |
|
|
|
| 715 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 716 |
|
|
{
|
| 717 |
|
|
if (e->src == loop->header)
|
| 718 |
|
|
{
|
| 719 |
|
|
ok = true;
|
| 720 |
|
|
break;
|
| 721 |
|
|
}
|
| 722 |
|
|
}
|
| 723 |
|
|
|
| 724 |
|
|
gcc_assert (ok);
|
| 725 |
|
|
}
|
| 726 |
|
|
#endif
|
| 727 |
|
|
|
| 728 |
|
|
if (bb == loop->latch)
|
| 729 |
|
|
return DOMST_DOMINATING;
|
| 730 |
|
|
|
| 731 |
|
|
/* Check that BB dominates LOOP->latch, and that it is back-reachable
|
| 732 |
|
|
from it. */
|
| 733 |
|
|
|
| 734 |
|
|
bblocks = XCNEWVEC (basic_block, loop->num_nodes);
|
| 735 |
|
|
dbds_ce_stop = loop->header;
|
| 736 |
|
|
nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p,
|
| 737 |
|
|
bblocks, loop->num_nodes, bb);
|
| 738 |
|
|
for (i = 0; i < nblocks; i++)
|
| 739 |
|
|
FOR_EACH_EDGE (e, ei, bblocks[i]->preds)
|
| 740 |
|
|
{
|
| 741 |
|
|
if (e->src == loop->header)
|
| 742 |
|
|
{
|
| 743 |
|
|
free (bblocks);
|
| 744 |
|
|
return DOMST_NONDOMINATING;
|
| 745 |
|
|
}
|
| 746 |
|
|
if (e->src == bb)
|
| 747 |
|
|
bb_reachable = true;
|
| 748 |
|
|
}
|
| 749 |
|
|
|
| 750 |
|
|
free (bblocks);
|
| 751 |
|
|
return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN);
|
| 752 |
|
|
}
|
| 753 |
|
|
|
| 754 |
|
|
/* Thread jumps through the header of LOOP. Returns true if cfg changes.
|
| 755 |
|
|
If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges
|
| 756 |
|
|
to the inside of the loop. */
|
| 757 |
|
|
|
| 758 |
|
|
static bool
|
| 759 |
|
|
thread_through_loop_header (struct loop *loop, bool may_peel_loop_headers)
|
| 760 |
|
|
{
|
| 761 |
|
|
basic_block header = loop->header;
|
| 762 |
|
|
edge e, tgt_edge, latch = loop_latch_edge (loop);
|
| 763 |
|
|
edge_iterator ei;
|
| 764 |
|
|
basic_block tgt_bb, atgt_bb;
|
| 765 |
|
|
enum bb_dom_status domst;
|
| 766 |
|
|
|
| 767 |
|
|
/* We have already threaded through headers to exits, so all the threading
|
| 768 |
|
|
requests now are to the inside of the loop. We need to avoid creating
|
| 769 |
|
|
irreducible regions (i.e., loops with more than one entry block), and
|
| 770 |
|
|
also loop with several latch edges, or new subloops of the loop (although
|
| 771 |
|
|
there are cases where it might be appropriate, it is difficult to decide,
|
| 772 |
|
|
and doing it wrongly may confuse other optimizers).
|
| 773 |
|
|
|
| 774 |
|
|
We could handle more general cases here. However, the intention is to
|
| 775 |
|
|
preserve some information about the loop, which is impossible if its
|
| 776 |
|
|
structure changes significantly, in a way that is not well understood.
|
| 777 |
|
|
Thus we only handle few important special cases, in which also updating
|
| 778 |
|
|
of the loop-carried information should be feasible:
|
| 779 |
|
|
|
| 780 |
|
|
1) Propagation of latch edge to a block that dominates the latch block
|
| 781 |
|
|
of a loop. This aims to handle the following idiom:
|
| 782 |
|
|
|
| 783 |
|
|
first = 1;
|
| 784 |
|
|
while (1)
|
| 785 |
|
|
{
|
| 786 |
|
|
if (first)
|
| 787 |
|
|
initialize;
|
| 788 |
|
|
first = 0;
|
| 789 |
|
|
body;
|
| 790 |
|
|
}
|
| 791 |
|
|
|
| 792 |
|
|
After threading the latch edge, this becomes
|
| 793 |
|
|
|
| 794 |
|
|
first = 1;
|
| 795 |
|
|
if (first)
|
| 796 |
|
|
initialize;
|
| 797 |
|
|
while (1)
|
| 798 |
|
|
{
|
| 799 |
|
|
first = 0;
|
| 800 |
|
|
body;
|
| 801 |
|
|
}
|
| 802 |
|
|
|
| 803 |
|
|
The original header of the loop is moved out of it, and we may thread
|
| 804 |
|
|
the remaining edges through it without further constraints.
|
| 805 |
|
|
|
| 806 |
|
|
2) All entry edges are propagated to a single basic block that dominates
|
| 807 |
|
|
the latch block of the loop. This aims to handle the following idiom
|
| 808 |
|
|
(normally created for "for" loops):
|
| 809 |
|
|
|
| 810 |
|
|
i = 0;
|
| 811 |
|
|
while (1)
|
| 812 |
|
|
{
|
| 813 |
|
|
if (i >= 100)
|
| 814 |
|
|
break;
|
| 815 |
|
|
body;
|
| 816 |
|
|
i++;
|
| 817 |
|
|
}
|
| 818 |
|
|
|
| 819 |
|
|
This becomes
|
| 820 |
|
|
|
| 821 |
|
|
i = 0;
|
| 822 |
|
|
while (1)
|
| 823 |
|
|
{
|
| 824 |
|
|
body;
|
| 825 |
|
|
i++;
|
| 826 |
|
|
if (i >= 100)
|
| 827 |
|
|
break;
|
| 828 |
|
|
}
|
| 829 |
|
|
*/
|
| 830 |
|
|
|
| 831 |
|
|
/* Threading through the header won't improve the code if the header has just
|
| 832 |
|
|
one successor. */
|
| 833 |
|
|
if (single_succ_p (header))
|
| 834 |
|
|
goto fail;
|
| 835 |
|
|
|
| 836 |
|
|
if (latch->aux)
|
| 837 |
|
|
{
|
| 838 |
|
|
tgt_edge = (edge) latch->aux;
|
| 839 |
|
|
tgt_bb = tgt_edge->dest;
|
| 840 |
|
|
}
|
| 841 |
|
|
else if (!may_peel_loop_headers
|
| 842 |
|
|
&& !redirection_block_p (loop->header))
|
| 843 |
|
|
goto fail;
|
| 844 |
|
|
else
|
| 845 |
|
|
{
|
| 846 |
|
|
tgt_bb = NULL;
|
| 847 |
|
|
tgt_edge = NULL;
|
| 848 |
|
|
FOR_EACH_EDGE (e, ei, header->preds)
|
| 849 |
|
|
{
|
| 850 |
|
|
if (!e->aux)
|
| 851 |
|
|
{
|
| 852 |
|
|
if (e == latch)
|
| 853 |
|
|
continue;
|
| 854 |
|
|
|
| 855 |
|
|
/* If latch is not threaded, and there is a header
|
| 856 |
|
|
edge that is not threaded, we would create loop
|
| 857 |
|
|
with multiple entries. */
|
| 858 |
|
|
goto fail;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
tgt_edge = (edge) e->aux;
|
| 862 |
|
|
atgt_bb = tgt_edge->dest;
|
| 863 |
|
|
if (!tgt_bb)
|
| 864 |
|
|
tgt_bb = atgt_bb;
|
| 865 |
|
|
/* Two targets of threading would make us create loop
|
| 866 |
|
|
with multiple entries. */
|
| 867 |
|
|
else if (tgt_bb != atgt_bb)
|
| 868 |
|
|
goto fail;
|
| 869 |
|
|
}
|
| 870 |
|
|
|
| 871 |
|
|
if (!tgt_bb)
|
| 872 |
|
|
{
|
| 873 |
|
|
/* There are no threading requests. */
|
| 874 |
|
|
return false;
|
| 875 |
|
|
}
|
| 876 |
|
|
|
| 877 |
|
|
/* Redirecting to empty loop latch is useless. */
|
| 878 |
|
|
if (tgt_bb == loop->latch
|
| 879 |
|
|
&& empty_block_p (loop->latch))
|
| 880 |
|
|
goto fail;
|
| 881 |
|
|
}
|
| 882 |
|
|
|
| 883 |
|
|
/* The target block must dominate the loop latch, otherwise we would be
|
| 884 |
|
|
creating a subloop. */
|
| 885 |
|
|
domst = determine_bb_domination_status (loop, tgt_bb);
|
| 886 |
|
|
if (domst == DOMST_NONDOMINATING)
|
| 887 |
|
|
goto fail;
|
| 888 |
|
|
if (domst == DOMST_LOOP_BROKEN)
|
| 889 |
|
|
{
|
| 890 |
|
|
/* If the loop ceased to exist, mark it as such, and thread through its
|
| 891 |
|
|
original header. */
|
| 892 |
|
|
loop->header = NULL;
|
| 893 |
|
|
loop->latch = NULL;
|
| 894 |
|
|
return thread_block (header, false);
|
| 895 |
|
|
}
|
| 896 |
|
|
|
| 897 |
|
|
if (tgt_bb->loop_father->header == tgt_bb)
|
| 898 |
|
|
{
|
| 899 |
|
|
/* If the target of the threading is a header of a subloop, we need
|
| 900 |
|
|
to create a preheader for it, so that the headers of the two loops
|
| 901 |
|
|
do not merge. */
|
| 902 |
|
|
if (EDGE_COUNT (tgt_bb->preds) > 2)
|
| 903 |
|
|
{
|
| 904 |
|
|
tgt_bb = create_preheader (tgt_bb->loop_father, 0);
|
| 905 |
|
|
gcc_assert (tgt_bb != NULL);
|
| 906 |
|
|
}
|
| 907 |
|
|
else
|
| 908 |
|
|
tgt_bb = split_edge (tgt_edge);
|
| 909 |
|
|
}
|
| 910 |
|
|
|
| 911 |
|
|
if (latch->aux)
|
| 912 |
|
|
{
|
| 913 |
|
|
/* First handle the case latch edge is redirected. */
|
| 914 |
|
|
loop->latch = thread_single_edge (latch);
|
| 915 |
|
|
gcc_assert (single_succ (loop->latch) == tgt_bb);
|
| 916 |
|
|
loop->header = tgt_bb;
|
| 917 |
|
|
|
| 918 |
|
|
/* Thread the remaining edges through the former header. */
|
| 919 |
|
|
thread_block (header, false);
|
| 920 |
|
|
}
|
| 921 |
|
|
else
|
| 922 |
|
|
{
|
| 923 |
|
|
basic_block new_preheader;
|
| 924 |
|
|
|
| 925 |
|
|
/* Now consider the case entry edges are redirected to the new entry
|
| 926 |
|
|
block. Remember one entry edge, so that we can find the new
|
| 927 |
|
|
preheader (its destination after threading). */
|
| 928 |
|
|
FOR_EACH_EDGE (e, ei, header->preds)
|
| 929 |
|
|
{
|
| 930 |
|
|
if (e->aux)
|
| 931 |
|
|
break;
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
/* The duplicate of the header is the new preheader of the loop. Ensure
|
| 935 |
|
|
that it is placed correctly in the loop hierarchy. */
|
| 936 |
|
|
set_loop_copy (loop, loop_outer (loop));
|
| 937 |
|
|
|
| 938 |
|
|
thread_block (header, false);
|
| 939 |
|
|
set_loop_copy (loop, NULL);
|
| 940 |
|
|
new_preheader = e->dest;
|
| 941 |
|
|
|
| 942 |
|
|
/* Create the new latch block. This is always necessary, as the latch
|
| 943 |
|
|
must have only a single successor, but the original header had at
|
| 944 |
|
|
least two successors. */
|
| 945 |
|
|
loop->latch = NULL;
|
| 946 |
|
|
mfb_kj_edge = single_succ_edge (new_preheader);
|
| 947 |
|
|
loop->header = mfb_kj_edge->dest;
|
| 948 |
|
|
latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL);
|
| 949 |
|
|
loop->header = latch->dest;
|
| 950 |
|
|
loop->latch = latch->src;
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
return true;
|
| 954 |
|
|
|
| 955 |
|
|
fail:
|
| 956 |
|
|
/* We failed to thread anything. Cancel the requests. */
|
| 957 |
|
|
FOR_EACH_EDGE (e, ei, header->preds)
|
| 958 |
|
|
{
|
| 959 |
|
|
e->aux = NULL;
|
| 960 |
|
|
}
|
| 961 |
|
|
return false;
|
| 962 |
|
|
}
|
| 963 |
|
|
|
| 964 |
|
|
/* Walk through the registered jump threads and convert them into a
|
| 965 |
|
|
form convenient for this pass.
|
| 966 |
|
|
|
| 967 |
|
|
Any block which has incoming edges threaded to outgoing edges
|
| 968 |
|
|
will have its entry in THREADED_BLOCK set.
|
| 969 |
|
|
|
| 970 |
|
|
Any threaded edge will have its new outgoing edge stored in the
|
| 971 |
|
|
original edge's AUX field.
|
| 972 |
|
|
|
| 973 |
|
|
This form avoids the need to walk all the edges in the CFG to
|
| 974 |
|
|
discover blocks which need processing and avoids unnecessary
|
| 975 |
|
|
hash table lookups to map from threaded edge to new target. */
|
| 976 |
|
|
|
| 977 |
|
|
static void
|
| 978 |
|
|
mark_threaded_blocks (bitmap threaded_blocks)
|
| 979 |
|
|
{
|
| 980 |
|
|
unsigned int i;
|
| 981 |
|
|
bitmap_iterator bi;
|
| 982 |
|
|
bitmap tmp = BITMAP_ALLOC (NULL);
|
| 983 |
|
|
basic_block bb;
|
| 984 |
|
|
edge e;
|
| 985 |
|
|
edge_iterator ei;
|
| 986 |
|
|
|
| 987 |
|
|
for (i = 0; i < VEC_length (edge, threaded_edges); i += 2)
|
| 988 |
|
|
{
|
| 989 |
|
|
edge e = VEC_index (edge, threaded_edges, i);
|
| 990 |
|
|
edge e2 = VEC_index (edge, threaded_edges, i + 1);
|
| 991 |
|
|
|
| 992 |
|
|
e->aux = e2;
|
| 993 |
|
|
bitmap_set_bit (tmp, e->dest->index);
|
| 994 |
|
|
}
|
| 995 |
|
|
|
| 996 |
|
|
/* If optimizing for size, only thread through block if we don't have
|
| 997 |
|
|
to duplicate it or it's an otherwise empty redirection block. */
|
| 998 |
|
|
if (optimize_function_for_size_p (cfun))
|
| 999 |
|
|
{
|
| 1000 |
|
|
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
|
| 1001 |
|
|
{
|
| 1002 |
|
|
bb = BASIC_BLOCK (i);
|
| 1003 |
|
|
if (EDGE_COUNT (bb->preds) > 1
|
| 1004 |
|
|
&& !redirection_block_p (bb))
|
| 1005 |
|
|
{
|
| 1006 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1007 |
|
|
e->aux = NULL;
|
| 1008 |
|
|
}
|
| 1009 |
|
|
else
|
| 1010 |
|
|
bitmap_set_bit (threaded_blocks, i);
|
| 1011 |
|
|
}
|
| 1012 |
|
|
}
|
| 1013 |
|
|
else
|
| 1014 |
|
|
bitmap_copy (threaded_blocks, tmp);
|
| 1015 |
|
|
|
| 1016 |
|
|
BITMAP_FREE(tmp);
|
| 1017 |
|
|
}
|
| 1018 |
|
|
|
| 1019 |
|
|
|
| 1020 |
|
|
/* Walk through all blocks and thread incoming edges to the appropriate
|
| 1021 |
|
|
outgoing edge for each edge pair recorded in THREADED_EDGES.
|
| 1022 |
|
|
|
| 1023 |
|
|
It is the caller's responsibility to fix the dominance information
|
| 1024 |
|
|
and rewrite duplicated SSA_NAMEs back into SSA form.
|
| 1025 |
|
|
|
| 1026 |
|
|
If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through
|
| 1027 |
|
|
loop headers if it does not simplify the loop.
|
| 1028 |
|
|
|
| 1029 |
|
|
Returns true if one or more edges were threaded, false otherwise. */
|
| 1030 |
|
|
|
| 1031 |
|
|
bool
|
| 1032 |
|
|
thread_through_all_blocks (bool may_peel_loop_headers)
|
| 1033 |
|
|
{
|
| 1034 |
|
|
bool retval = false;
|
| 1035 |
|
|
unsigned int i;
|
| 1036 |
|
|
bitmap_iterator bi;
|
| 1037 |
|
|
bitmap threaded_blocks;
|
| 1038 |
|
|
struct loop *loop;
|
| 1039 |
|
|
loop_iterator li;
|
| 1040 |
|
|
|
| 1041 |
|
|
/* We must know about loops in order to preserve them. */
|
| 1042 |
|
|
gcc_assert (current_loops != NULL);
|
| 1043 |
|
|
|
| 1044 |
|
|
if (threaded_edges == NULL)
|
| 1045 |
|
|
return false;
|
| 1046 |
|
|
|
| 1047 |
|
|
threaded_blocks = BITMAP_ALLOC (NULL);
|
| 1048 |
|
|
memset (&thread_stats, 0, sizeof (thread_stats));
|
| 1049 |
|
|
|
| 1050 |
|
|
mark_threaded_blocks (threaded_blocks);
|
| 1051 |
|
|
|
| 1052 |
|
|
initialize_original_copy_tables ();
|
| 1053 |
|
|
|
| 1054 |
|
|
/* First perform the threading requests that do not affect
|
| 1055 |
|
|
loop structure. */
|
| 1056 |
|
|
EXECUTE_IF_SET_IN_BITMAP (threaded_blocks, 0, i, bi)
|
| 1057 |
|
|
{
|
| 1058 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
| 1059 |
|
|
|
| 1060 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
| 1061 |
|
|
retval |= thread_block (bb, true);
|
| 1062 |
|
|
}
|
| 1063 |
|
|
|
| 1064 |
|
|
/* Then perform the threading through loop headers. We start with the
|
| 1065 |
|
|
innermost loop, so that the changes in cfg we perform won't affect
|
| 1066 |
|
|
further threading. */
|
| 1067 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 1068 |
|
|
{
|
| 1069 |
|
|
if (!loop->header
|
| 1070 |
|
|
|| !bitmap_bit_p (threaded_blocks, loop->header->index))
|
| 1071 |
|
|
continue;
|
| 1072 |
|
|
|
| 1073 |
|
|
retval |= thread_through_loop_header (loop, may_peel_loop_headers);
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
statistics_counter_event (cfun, "Jumps threaded",
|
| 1077 |
|
|
thread_stats.num_threaded_edges);
|
| 1078 |
|
|
|
| 1079 |
|
|
free_original_copy_tables ();
|
| 1080 |
|
|
|
| 1081 |
|
|
BITMAP_FREE (threaded_blocks);
|
| 1082 |
|
|
threaded_blocks = NULL;
|
| 1083 |
|
|
VEC_free (edge, heap, threaded_edges);
|
| 1084 |
|
|
threaded_edges = NULL;
|
| 1085 |
|
|
|
| 1086 |
|
|
if (retval)
|
| 1087 |
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
| 1088 |
|
|
|
| 1089 |
|
|
return retval;
|
| 1090 |
|
|
}
|
| 1091 |
|
|
|
| 1092 |
|
|
/* Register a jump threading opportunity. We queue up all the jump
|
| 1093 |
|
|
threading opportunities discovered by a pass and update the CFG
|
| 1094 |
|
|
and SSA form all at once.
|
| 1095 |
|
|
|
| 1096 |
|
|
E is the edge we can thread, E2 is the new target edge, i.e., we
|
| 1097 |
|
|
are effectively recording that E->dest can be changed to E2->dest
|
| 1098 |
|
|
after fixing the SSA graph. */
|
| 1099 |
|
|
|
| 1100 |
|
|
void
|
| 1101 |
|
|
register_jump_thread (edge e, edge e2)
|
| 1102 |
|
|
{
|
| 1103 |
|
|
if (threaded_edges == NULL)
|
| 1104 |
|
|
threaded_edges = VEC_alloc (edge, heap, 10);
|
| 1105 |
|
|
|
| 1106 |
|
|
VEC_safe_push (edge, heap, threaded_edges, e);
|
| 1107 |
|
|
VEC_safe_push (edge, heap, threaded_edges, e2);
|
| 1108 |
|
|
}
|