| 1 |
330 |
jeremybenn |
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
| 4 |
|
|
2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GDB.
|
| 7 |
|
|
|
| 8 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 11 |
|
|
(at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
This program is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "defs.h"
|
| 22 |
|
|
#include "arch-utils.h"
|
| 23 |
|
|
#include "dis-asm.h"
|
| 24 |
|
|
#include "gdbtypes.h"
|
| 25 |
|
|
#include "regcache.h"
|
| 26 |
|
|
#include "gdb_string.h"
|
| 27 |
|
|
#include "gdb_assert.h"
|
| 28 |
|
|
#include "gdbcore.h" /* for write_memory_unsigned_integer */
|
| 29 |
|
|
#include "value.h"
|
| 30 |
|
|
#include "gdbtypes.h"
|
| 31 |
|
|
#include "frame.h"
|
| 32 |
|
|
#include "frame-unwind.h"
|
| 33 |
|
|
#include "frame-base.h"
|
| 34 |
|
|
#include "symtab.h"
|
| 35 |
|
|
#include "dwarf2-frame.h"
|
| 36 |
|
|
#include "osabi.h"
|
| 37 |
|
|
#include "infcall.h"
|
| 38 |
|
|
#include "prologue-value.h"
|
| 39 |
|
|
#include "target.h"
|
| 40 |
|
|
|
| 41 |
|
|
#include "mn10300-tdep.h"
|
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
/* The am33-2 has 64 registers. */
|
| 45 |
|
|
#define MN10300_MAX_NUM_REGS 64
|
| 46 |
|
|
|
| 47 |
|
|
/* This structure holds the results of a prologue analysis. */
|
| 48 |
|
|
struct mn10300_prologue
|
| 49 |
|
|
{
|
| 50 |
|
|
/* The architecture for which we generated this prologue info. */
|
| 51 |
|
|
struct gdbarch *gdbarch;
|
| 52 |
|
|
|
| 53 |
|
|
/* The offset from the frame base to the stack pointer --- always
|
| 54 |
|
|
zero or negative.
|
| 55 |
|
|
|
| 56 |
|
|
Calling this a "size" is a bit misleading, but given that the
|
| 57 |
|
|
stack grows downwards, using offsets for everything keeps one
|
| 58 |
|
|
from going completely sign-crazy: you never change anything's
|
| 59 |
|
|
sign for an ADD instruction; always change the second operand's
|
| 60 |
|
|
sign for a SUB instruction; and everything takes care of
|
| 61 |
|
|
itself. */
|
| 62 |
|
|
int frame_size;
|
| 63 |
|
|
|
| 64 |
|
|
/* Non-zero if this function has initialized the frame pointer from
|
| 65 |
|
|
the stack pointer, zero otherwise. */
|
| 66 |
|
|
int has_frame_ptr;
|
| 67 |
|
|
|
| 68 |
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
| 69 |
|
|
base to where the frame pointer points. This is always zero or
|
| 70 |
|
|
negative. */
|
| 71 |
|
|
int frame_ptr_offset;
|
| 72 |
|
|
|
| 73 |
|
|
/* The address of the first instruction at which the frame has been
|
| 74 |
|
|
set up and the arguments are where the debug info says they are
|
| 75 |
|
|
--- as best as we can tell. */
|
| 76 |
|
|
CORE_ADDR prologue_end;
|
| 77 |
|
|
|
| 78 |
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
| 79 |
|
|
saved, or 1 if register R has not been saved. (Real values are
|
| 80 |
|
|
always zero or negative.) */
|
| 81 |
|
|
int reg_offset[MN10300_MAX_NUM_REGS];
|
| 82 |
|
|
};
|
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
/* Compute the alignment required by a type. */
|
| 86 |
|
|
|
| 87 |
|
|
static int
|
| 88 |
|
|
mn10300_type_align (struct type *type)
|
| 89 |
|
|
{
|
| 90 |
|
|
int i, align = 1;
|
| 91 |
|
|
|
| 92 |
|
|
switch (TYPE_CODE (type))
|
| 93 |
|
|
{
|
| 94 |
|
|
case TYPE_CODE_INT:
|
| 95 |
|
|
case TYPE_CODE_ENUM:
|
| 96 |
|
|
case TYPE_CODE_SET:
|
| 97 |
|
|
case TYPE_CODE_RANGE:
|
| 98 |
|
|
case TYPE_CODE_CHAR:
|
| 99 |
|
|
case TYPE_CODE_BOOL:
|
| 100 |
|
|
case TYPE_CODE_FLT:
|
| 101 |
|
|
case TYPE_CODE_PTR:
|
| 102 |
|
|
case TYPE_CODE_REF:
|
| 103 |
|
|
return TYPE_LENGTH (type);
|
| 104 |
|
|
|
| 105 |
|
|
case TYPE_CODE_COMPLEX:
|
| 106 |
|
|
return TYPE_LENGTH (type) / 2;
|
| 107 |
|
|
|
| 108 |
|
|
case TYPE_CODE_STRUCT:
|
| 109 |
|
|
case TYPE_CODE_UNION:
|
| 110 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
| 111 |
|
|
{
|
| 112 |
|
|
int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
|
| 113 |
|
|
while (align < falign)
|
| 114 |
|
|
align <<= 1;
|
| 115 |
|
|
}
|
| 116 |
|
|
return align;
|
| 117 |
|
|
|
| 118 |
|
|
case TYPE_CODE_ARRAY:
|
| 119 |
|
|
/* HACK! Structures containing arrays, even small ones, are not
|
| 120 |
|
|
elligible for returning in registers. */
|
| 121 |
|
|
return 256;
|
| 122 |
|
|
|
| 123 |
|
|
case TYPE_CODE_TYPEDEF:
|
| 124 |
|
|
return mn10300_type_align (check_typedef (type));
|
| 125 |
|
|
|
| 126 |
|
|
default:
|
| 127 |
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
| 128 |
|
|
}
|
| 129 |
|
|
}
|
| 130 |
|
|
|
| 131 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
| 132 |
|
|
static int
|
| 133 |
|
|
mn10300_use_struct_convention (struct type *type)
|
| 134 |
|
|
{
|
| 135 |
|
|
/* Structures bigger than a pair of words can't be returned in
|
| 136 |
|
|
registers. */
|
| 137 |
|
|
if (TYPE_LENGTH (type) > 8)
|
| 138 |
|
|
return 1;
|
| 139 |
|
|
|
| 140 |
|
|
switch (TYPE_CODE (type))
|
| 141 |
|
|
{
|
| 142 |
|
|
case TYPE_CODE_STRUCT:
|
| 143 |
|
|
case TYPE_CODE_UNION:
|
| 144 |
|
|
/* Structures with a single field are handled as the field
|
| 145 |
|
|
itself. */
|
| 146 |
|
|
if (TYPE_NFIELDS (type) == 1)
|
| 147 |
|
|
return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
|
| 148 |
|
|
|
| 149 |
|
|
/* Structures with word or double-word size are passed in memory, as
|
| 150 |
|
|
long as they require at least word alignment. */
|
| 151 |
|
|
if (mn10300_type_align (type) >= 4)
|
| 152 |
|
|
return 0;
|
| 153 |
|
|
|
| 154 |
|
|
return 1;
|
| 155 |
|
|
|
| 156 |
|
|
/* Arrays are addressable, so they're never returned in
|
| 157 |
|
|
registers. This condition can only hold when the array is
|
| 158 |
|
|
the only field of a struct or union. */
|
| 159 |
|
|
case TYPE_CODE_ARRAY:
|
| 160 |
|
|
return 1;
|
| 161 |
|
|
|
| 162 |
|
|
case TYPE_CODE_TYPEDEF:
|
| 163 |
|
|
return mn10300_use_struct_convention (check_typedef (type));
|
| 164 |
|
|
|
| 165 |
|
|
default:
|
| 166 |
|
|
return 0;
|
| 167 |
|
|
}
|
| 168 |
|
|
}
|
| 169 |
|
|
|
| 170 |
|
|
static void
|
| 171 |
|
|
mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
|
| 172 |
|
|
struct regcache *regcache, const void *valbuf)
|
| 173 |
|
|
{
|
| 174 |
|
|
int len = TYPE_LENGTH (type);
|
| 175 |
|
|
int reg, regsz;
|
| 176 |
|
|
|
| 177 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
| 178 |
|
|
reg = 4;
|
| 179 |
|
|
else
|
| 180 |
|
|
reg = 0;
|
| 181 |
|
|
|
| 182 |
|
|
regsz = register_size (gdbarch, reg);
|
| 183 |
|
|
|
| 184 |
|
|
if (len <= regsz)
|
| 185 |
|
|
regcache_raw_write_part (regcache, reg, 0, len, valbuf);
|
| 186 |
|
|
else if (len <= 2 * regsz)
|
| 187 |
|
|
{
|
| 188 |
|
|
regcache_raw_write (regcache, reg, valbuf);
|
| 189 |
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
| 190 |
|
|
regcache_raw_write_part (regcache, reg+1, 0,
|
| 191 |
|
|
len - regsz, (char *) valbuf + regsz);
|
| 192 |
|
|
}
|
| 193 |
|
|
else
|
| 194 |
|
|
internal_error (__FILE__, __LINE__,
|
| 195 |
|
|
_("Cannot store return value %d bytes long."), len);
|
| 196 |
|
|
}
|
| 197 |
|
|
|
| 198 |
|
|
static void
|
| 199 |
|
|
mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
|
| 200 |
|
|
struct regcache *regcache, void *valbuf)
|
| 201 |
|
|
{
|
| 202 |
|
|
char buf[MAX_REGISTER_SIZE];
|
| 203 |
|
|
int len = TYPE_LENGTH (type);
|
| 204 |
|
|
int reg, regsz;
|
| 205 |
|
|
|
| 206 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
| 207 |
|
|
reg = 4;
|
| 208 |
|
|
else
|
| 209 |
|
|
reg = 0;
|
| 210 |
|
|
|
| 211 |
|
|
regsz = register_size (gdbarch, reg);
|
| 212 |
|
|
if (len <= regsz)
|
| 213 |
|
|
{
|
| 214 |
|
|
regcache_raw_read (regcache, reg, buf);
|
| 215 |
|
|
memcpy (valbuf, buf, len);
|
| 216 |
|
|
}
|
| 217 |
|
|
else if (len <= 2 * regsz)
|
| 218 |
|
|
{
|
| 219 |
|
|
regcache_raw_read (regcache, reg, buf);
|
| 220 |
|
|
memcpy (valbuf, buf, regsz);
|
| 221 |
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
| 222 |
|
|
regcache_raw_read (regcache, reg + 1, buf);
|
| 223 |
|
|
memcpy ((char *) valbuf + regsz, buf, len - regsz);
|
| 224 |
|
|
}
|
| 225 |
|
|
else
|
| 226 |
|
|
internal_error (__FILE__, __LINE__,
|
| 227 |
|
|
_("Cannot extract return value %d bytes long."), len);
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
| 231 |
|
|
should be returned. If it is supposed to be returned in registers,
|
| 232 |
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
| 233 |
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
| 234 |
|
|
from WRITEBUF into REGCACHE. */
|
| 235 |
|
|
|
| 236 |
|
|
static enum return_value_convention
|
| 237 |
|
|
mn10300_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
| 238 |
|
|
struct type *type, struct regcache *regcache,
|
| 239 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
| 240 |
|
|
{
|
| 241 |
|
|
if (mn10300_use_struct_convention (type))
|
| 242 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
| 243 |
|
|
|
| 244 |
|
|
if (readbuf)
|
| 245 |
|
|
mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
|
| 246 |
|
|
if (writebuf)
|
| 247 |
|
|
mn10300_store_return_value (gdbarch, type, regcache, writebuf);
|
| 248 |
|
|
|
| 249 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
| 250 |
|
|
}
|
| 251 |
|
|
|
| 252 |
|
|
static char *
|
| 253 |
|
|
register_name (int reg, char **regs, long sizeof_regs)
|
| 254 |
|
|
{
|
| 255 |
|
|
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
|
| 256 |
|
|
return NULL;
|
| 257 |
|
|
else
|
| 258 |
|
|
return regs[reg];
|
| 259 |
|
|
}
|
| 260 |
|
|
|
| 261 |
|
|
static const char *
|
| 262 |
|
|
mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
|
| 263 |
|
|
{
|
| 264 |
|
|
static char *regs[] =
|
| 265 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
| 266 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
| 267 |
|
|
"", "", "", "", "", "", "", "",
|
| 268 |
|
|
"", "", "", "", "", "", "", "fp"
|
| 269 |
|
|
};
|
| 270 |
|
|
return register_name (reg, regs, sizeof regs);
|
| 271 |
|
|
}
|
| 272 |
|
|
|
| 273 |
|
|
|
| 274 |
|
|
static const char *
|
| 275 |
|
|
am33_register_name (struct gdbarch *gdbarch, int reg)
|
| 276 |
|
|
{
|
| 277 |
|
|
static char *regs[] =
|
| 278 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
| 279 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "",
|
| 280 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
| 281 |
|
|
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
|
| 282 |
|
|
};
|
| 283 |
|
|
return register_name (reg, regs, sizeof regs);
|
| 284 |
|
|
}
|
| 285 |
|
|
|
| 286 |
|
|
static const char *
|
| 287 |
|
|
am33_2_register_name (struct gdbarch *gdbarch, int reg)
|
| 288 |
|
|
{
|
| 289 |
|
|
static char *regs[] =
|
| 290 |
|
|
{
|
| 291 |
|
|
"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
| 292 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
|
| 293 |
|
|
"r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
|
| 294 |
|
|
"msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
|
| 295 |
|
|
"fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
|
| 296 |
|
|
"fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
|
| 297 |
|
|
"fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
|
| 298 |
|
|
"fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
|
| 299 |
|
|
};
|
| 300 |
|
|
return register_name (reg, regs, sizeof regs);
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
static struct type *
|
| 304 |
|
|
mn10300_register_type (struct gdbarch *gdbarch, int reg)
|
| 305 |
|
|
{
|
| 306 |
|
|
return builtin_type (gdbarch)->builtin_int;
|
| 307 |
|
|
}
|
| 308 |
|
|
|
| 309 |
|
|
static CORE_ADDR
|
| 310 |
|
|
mn10300_read_pc (struct regcache *regcache)
|
| 311 |
|
|
{
|
| 312 |
|
|
ULONGEST val;
|
| 313 |
|
|
regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
|
| 314 |
|
|
return val;
|
| 315 |
|
|
}
|
| 316 |
|
|
|
| 317 |
|
|
static void
|
| 318 |
|
|
mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
|
| 319 |
|
|
{
|
| 320 |
|
|
regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
|
| 321 |
|
|
}
|
| 322 |
|
|
|
| 323 |
|
|
/* The breakpoint instruction must be the same size as the smallest
|
| 324 |
|
|
instruction in the instruction set.
|
| 325 |
|
|
|
| 326 |
|
|
The Matsushita mn10x00 processors have single byte instructions
|
| 327 |
|
|
so we need a single byte breakpoint. Matsushita hasn't defined
|
| 328 |
|
|
one, so we defined it ourselves. */
|
| 329 |
|
|
|
| 330 |
|
|
const static unsigned char *
|
| 331 |
|
|
mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
| 332 |
|
|
int *bp_size)
|
| 333 |
|
|
{
|
| 334 |
|
|
static char breakpoint[] = {0xff};
|
| 335 |
|
|
*bp_size = 1;
|
| 336 |
|
|
return breakpoint;
|
| 337 |
|
|
}
|
| 338 |
|
|
|
| 339 |
|
|
/* Model the semantics of pushing a register onto the stack. This
|
| 340 |
|
|
is a helper function for mn10300_analyze_prologue, below. */
|
| 341 |
|
|
static void
|
| 342 |
|
|
push_reg (pv_t *regs, struct pv_area *stack, int regnum)
|
| 343 |
|
|
{
|
| 344 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
| 345 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
/* Translate an "r" register number extracted from an instruction encoding
|
| 349 |
|
|
into a GDB register number. Adapted from a simulator function
|
| 350 |
|
|
of the same name; see am33.igen. */
|
| 351 |
|
|
static int
|
| 352 |
|
|
translate_rreg (int rreg)
|
| 353 |
|
|
{
|
| 354 |
|
|
/* The higher register numbers actually correspond to the
|
| 355 |
|
|
basic machine's address and data registers. */
|
| 356 |
|
|
if (rreg > 7 && rreg < 12)
|
| 357 |
|
|
return E_A0_REGNUM + rreg - 8;
|
| 358 |
|
|
else if (rreg > 11 && rreg < 16)
|
| 359 |
|
|
return E_D0_REGNUM + rreg - 12;
|
| 360 |
|
|
else
|
| 361 |
|
|
return E_E0_REGNUM + rreg;
|
| 362 |
|
|
}
|
| 363 |
|
|
|
| 364 |
|
|
/* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.
|
| 365 |
|
|
|
| 366 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
| 367 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
| 368 |
|
|
register was saved, record its offset in RESULT_UNTYPED. */
|
| 369 |
|
|
static void
|
| 370 |
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
| 371 |
|
|
{
|
| 372 |
|
|
struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
|
| 373 |
|
|
|
| 374 |
|
|
if (value.kind == pvk_register
|
| 375 |
|
|
&& value.k == 0
|
| 376 |
|
|
&& pv_is_register (addr, E_SP_REGNUM)
|
| 377 |
|
|
&& size == register_size (result->gdbarch, value.reg))
|
| 378 |
|
|
result->reg_offset[value.reg] = addr.k;
|
| 379 |
|
|
}
|
| 380 |
|
|
|
| 381 |
|
|
/* Analyze the prologue to determine where registers are saved,
|
| 382 |
|
|
the end of the prologue, etc. The result of this analysis is
|
| 383 |
|
|
returned in RESULT. See struct mn10300_prologue above for more
|
| 384 |
|
|
information. */
|
| 385 |
|
|
static void
|
| 386 |
|
|
mn10300_analyze_prologue (struct gdbarch *gdbarch,
|
| 387 |
|
|
CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
| 388 |
|
|
struct mn10300_prologue *result)
|
| 389 |
|
|
{
|
| 390 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 391 |
|
|
CORE_ADDR pc, next_pc;
|
| 392 |
|
|
int rn;
|
| 393 |
|
|
pv_t regs[MN10300_MAX_NUM_REGS];
|
| 394 |
|
|
struct pv_area *stack;
|
| 395 |
|
|
struct cleanup *back_to;
|
| 396 |
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
| 397 |
|
|
int am33_mode = AM33_MODE (gdbarch);
|
| 398 |
|
|
|
| 399 |
|
|
memset (result, 0, sizeof (*result));
|
| 400 |
|
|
result->gdbarch = gdbarch;
|
| 401 |
|
|
|
| 402 |
|
|
for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
|
| 403 |
|
|
{
|
| 404 |
|
|
regs[rn] = pv_register (rn, 0);
|
| 405 |
|
|
result->reg_offset[rn] = 1;
|
| 406 |
|
|
}
|
| 407 |
|
|
stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
| 408 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
| 409 |
|
|
|
| 410 |
|
|
/* The typical call instruction will have saved the return address on the
|
| 411 |
|
|
stack. Space for the return address has already been preallocated in
|
| 412 |
|
|
the caller's frame. It's possible, such as when using -mrelax with gcc
|
| 413 |
|
|
that other registers were saved as well. If this happens, we really
|
| 414 |
|
|
have no chance of deciphering the frame. DWARF info can save the day
|
| 415 |
|
|
when this happens. */
|
| 416 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
|
| 417 |
|
|
|
| 418 |
|
|
pc = start_pc;
|
| 419 |
|
|
while (pc < limit_pc)
|
| 420 |
|
|
{
|
| 421 |
|
|
int status;
|
| 422 |
|
|
gdb_byte instr[2];
|
| 423 |
|
|
|
| 424 |
|
|
/* Instructions can be as small as one byte; however, we usually
|
| 425 |
|
|
need at least two bytes to do the decoding, so fetch that many
|
| 426 |
|
|
to begin with. */
|
| 427 |
|
|
status = target_read_memory (pc, instr, 2);
|
| 428 |
|
|
if (status != 0)
|
| 429 |
|
|
break;
|
| 430 |
|
|
|
| 431 |
|
|
/* movm [regs], sp */
|
| 432 |
|
|
if (instr[0] == 0xcf)
|
| 433 |
|
|
{
|
| 434 |
|
|
gdb_byte save_mask;
|
| 435 |
|
|
|
| 436 |
|
|
save_mask = instr[1];
|
| 437 |
|
|
|
| 438 |
|
|
if ((save_mask & movm_exreg0_bit) && am33_mode)
|
| 439 |
|
|
{
|
| 440 |
|
|
push_reg (regs, stack, E_E2_REGNUM);
|
| 441 |
|
|
push_reg (regs, stack, E_E3_REGNUM);
|
| 442 |
|
|
}
|
| 443 |
|
|
if ((save_mask & movm_exreg1_bit) && am33_mode)
|
| 444 |
|
|
{
|
| 445 |
|
|
push_reg (regs, stack, E_E4_REGNUM);
|
| 446 |
|
|
push_reg (regs, stack, E_E5_REGNUM);
|
| 447 |
|
|
push_reg (regs, stack, E_E6_REGNUM);
|
| 448 |
|
|
push_reg (regs, stack, E_E7_REGNUM);
|
| 449 |
|
|
}
|
| 450 |
|
|
if ((save_mask & movm_exother_bit) && am33_mode)
|
| 451 |
|
|
{
|
| 452 |
|
|
push_reg (regs, stack, E_E0_REGNUM);
|
| 453 |
|
|
push_reg (regs, stack, E_E1_REGNUM);
|
| 454 |
|
|
push_reg (regs, stack, E_MDRQ_REGNUM);
|
| 455 |
|
|
push_reg (regs, stack, E_MCRH_REGNUM);
|
| 456 |
|
|
push_reg (regs, stack, E_MCRL_REGNUM);
|
| 457 |
|
|
push_reg (regs, stack, E_MCVF_REGNUM);
|
| 458 |
|
|
}
|
| 459 |
|
|
if (save_mask & movm_d2_bit)
|
| 460 |
|
|
push_reg (regs, stack, E_D2_REGNUM);
|
| 461 |
|
|
if (save_mask & movm_d3_bit)
|
| 462 |
|
|
push_reg (regs, stack, E_D3_REGNUM);
|
| 463 |
|
|
if (save_mask & movm_a2_bit)
|
| 464 |
|
|
push_reg (regs, stack, E_A2_REGNUM);
|
| 465 |
|
|
if (save_mask & movm_a3_bit)
|
| 466 |
|
|
push_reg (regs, stack, E_A3_REGNUM);
|
| 467 |
|
|
if (save_mask & movm_other_bit)
|
| 468 |
|
|
{
|
| 469 |
|
|
push_reg (regs, stack, E_D0_REGNUM);
|
| 470 |
|
|
push_reg (regs, stack, E_D1_REGNUM);
|
| 471 |
|
|
push_reg (regs, stack, E_A0_REGNUM);
|
| 472 |
|
|
push_reg (regs, stack, E_A1_REGNUM);
|
| 473 |
|
|
push_reg (regs, stack, E_MDR_REGNUM);
|
| 474 |
|
|
push_reg (regs, stack, E_LIR_REGNUM);
|
| 475 |
|
|
push_reg (regs, stack, E_LAR_REGNUM);
|
| 476 |
|
|
/* The `other' bit leaves a blank area of four bytes at
|
| 477 |
|
|
the beginning of its block of saved registers, making
|
| 478 |
|
|
it 32 bytes long in total. */
|
| 479 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
pc += 2;
|
| 483 |
|
|
after_last_frame_setup_insn = pc;
|
| 484 |
|
|
}
|
| 485 |
|
|
/* mov sp, aN */
|
| 486 |
|
|
else if ((instr[0] & 0xfc) == 0x3c)
|
| 487 |
|
|
{
|
| 488 |
|
|
int aN = instr[0] & 0x03;
|
| 489 |
|
|
|
| 490 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
|
| 491 |
|
|
|
| 492 |
|
|
pc += 1;
|
| 493 |
|
|
if (aN == 3)
|
| 494 |
|
|
after_last_frame_setup_insn = pc;
|
| 495 |
|
|
}
|
| 496 |
|
|
/* mov aM, aN */
|
| 497 |
|
|
else if ((instr[0] & 0xf0) == 0x90
|
| 498 |
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
| 499 |
|
|
{
|
| 500 |
|
|
int aN = instr[0] & 0x03;
|
| 501 |
|
|
int aM = (instr[0] & 0x0c) >> 2;
|
| 502 |
|
|
|
| 503 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
|
| 504 |
|
|
|
| 505 |
|
|
pc += 1;
|
| 506 |
|
|
}
|
| 507 |
|
|
/* mov dM, dN */
|
| 508 |
|
|
else if ((instr[0] & 0xf0) == 0x80
|
| 509 |
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
| 510 |
|
|
{
|
| 511 |
|
|
int dN = instr[0] & 0x03;
|
| 512 |
|
|
int dM = (instr[0] & 0x0c) >> 2;
|
| 513 |
|
|
|
| 514 |
|
|
regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
|
| 515 |
|
|
|
| 516 |
|
|
pc += 1;
|
| 517 |
|
|
}
|
| 518 |
|
|
/* mov aM, dN */
|
| 519 |
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
|
| 520 |
|
|
{
|
| 521 |
|
|
int dN = instr[1] & 0x03;
|
| 522 |
|
|
int aM = (instr[1] & 0x0c) >> 2;
|
| 523 |
|
|
|
| 524 |
|
|
regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
|
| 525 |
|
|
|
| 526 |
|
|
pc += 2;
|
| 527 |
|
|
}
|
| 528 |
|
|
/* mov dM, aN */
|
| 529 |
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
|
| 530 |
|
|
{
|
| 531 |
|
|
int aN = instr[1] & 0x03;
|
| 532 |
|
|
int dM = (instr[1] & 0x0c) >> 2;
|
| 533 |
|
|
|
| 534 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
|
| 535 |
|
|
|
| 536 |
|
|
pc += 2;
|
| 537 |
|
|
}
|
| 538 |
|
|
/* add imm8, SP */
|
| 539 |
|
|
else if (instr[0] == 0xf8 && instr[1] == 0xfe)
|
| 540 |
|
|
{
|
| 541 |
|
|
gdb_byte buf[1];
|
| 542 |
|
|
LONGEST imm8;
|
| 543 |
|
|
|
| 544 |
|
|
|
| 545 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
| 546 |
|
|
if (status != 0)
|
| 547 |
|
|
break;
|
| 548 |
|
|
|
| 549 |
|
|
imm8 = extract_signed_integer (buf, 1, byte_order);
|
| 550 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
|
| 551 |
|
|
|
| 552 |
|
|
pc += 3;
|
| 553 |
|
|
/* Stack pointer adjustments are frame related. */
|
| 554 |
|
|
after_last_frame_setup_insn = pc;
|
| 555 |
|
|
}
|
| 556 |
|
|
/* add imm16, SP */
|
| 557 |
|
|
else if (instr[0] == 0xfa && instr[1] == 0xfe)
|
| 558 |
|
|
{
|
| 559 |
|
|
gdb_byte buf[2];
|
| 560 |
|
|
LONGEST imm16;
|
| 561 |
|
|
|
| 562 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 563 |
|
|
if (status != 0)
|
| 564 |
|
|
break;
|
| 565 |
|
|
|
| 566 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
| 567 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
|
| 568 |
|
|
|
| 569 |
|
|
pc += 4;
|
| 570 |
|
|
/* Stack pointer adjustments are frame related. */
|
| 571 |
|
|
after_last_frame_setup_insn = pc;
|
| 572 |
|
|
}
|
| 573 |
|
|
/* add imm32, SP */
|
| 574 |
|
|
else if (instr[0] == 0xfc && instr[1] == 0xfe)
|
| 575 |
|
|
{
|
| 576 |
|
|
gdb_byte buf[4];
|
| 577 |
|
|
LONGEST imm32;
|
| 578 |
|
|
|
| 579 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 580 |
|
|
if (status != 0)
|
| 581 |
|
|
break;
|
| 582 |
|
|
|
| 583 |
|
|
|
| 584 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
| 585 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
|
| 586 |
|
|
|
| 587 |
|
|
pc += 6;
|
| 588 |
|
|
/* Stack pointer adjustments are frame related. */
|
| 589 |
|
|
after_last_frame_setup_insn = pc;
|
| 590 |
|
|
}
|
| 591 |
|
|
/* add imm8, aN */
|
| 592 |
|
|
else if ((instr[0] & 0xfc) == 0x20)
|
| 593 |
|
|
{
|
| 594 |
|
|
int aN;
|
| 595 |
|
|
LONGEST imm8;
|
| 596 |
|
|
|
| 597 |
|
|
aN = instr[0] & 0x03;
|
| 598 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
| 599 |
|
|
|
| 600 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
| 601 |
|
|
imm8);
|
| 602 |
|
|
|
| 603 |
|
|
pc += 2;
|
| 604 |
|
|
}
|
| 605 |
|
|
/* add imm16, aN */
|
| 606 |
|
|
else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
|
| 607 |
|
|
{
|
| 608 |
|
|
int aN;
|
| 609 |
|
|
LONGEST imm16;
|
| 610 |
|
|
gdb_byte buf[2];
|
| 611 |
|
|
|
| 612 |
|
|
aN = instr[1] & 0x03;
|
| 613 |
|
|
|
| 614 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 615 |
|
|
if (status != 0)
|
| 616 |
|
|
break;
|
| 617 |
|
|
|
| 618 |
|
|
|
| 619 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
| 620 |
|
|
|
| 621 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
| 622 |
|
|
imm16);
|
| 623 |
|
|
|
| 624 |
|
|
pc += 4;
|
| 625 |
|
|
}
|
| 626 |
|
|
/* add imm32, aN */
|
| 627 |
|
|
else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
|
| 628 |
|
|
{
|
| 629 |
|
|
int aN;
|
| 630 |
|
|
LONGEST imm32;
|
| 631 |
|
|
gdb_byte buf[4];
|
| 632 |
|
|
|
| 633 |
|
|
aN = instr[1] & 0x03;
|
| 634 |
|
|
|
| 635 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 636 |
|
|
if (status != 0)
|
| 637 |
|
|
break;
|
| 638 |
|
|
|
| 639 |
|
|
imm32 = extract_signed_integer (buf, 2, byte_order);
|
| 640 |
|
|
|
| 641 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
| 642 |
|
|
imm32);
|
| 643 |
|
|
pc += 6;
|
| 644 |
|
|
}
|
| 645 |
|
|
/* fmov fsM, (rN) */
|
| 646 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
|
| 647 |
|
|
{
|
| 648 |
|
|
int fsM, sM, Y, rN;
|
| 649 |
|
|
gdb_byte buf[1];
|
| 650 |
|
|
|
| 651 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 652 |
|
|
|
| 653 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
| 654 |
|
|
if (status != 0)
|
| 655 |
|
|
break;
|
| 656 |
|
|
|
| 657 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 658 |
|
|
rN = buf[0] & 0x0f;
|
| 659 |
|
|
fsM = (Y << 4) | sM;
|
| 660 |
|
|
|
| 661 |
|
|
pv_area_store (stack, regs[translate_rreg (rN)], 4,
|
| 662 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
| 663 |
|
|
|
| 664 |
|
|
pc += 3;
|
| 665 |
|
|
}
|
| 666 |
|
|
/* fmov fsM, (sp) */
|
| 667 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
|
| 668 |
|
|
{
|
| 669 |
|
|
int fsM, sM, Y;
|
| 670 |
|
|
gdb_byte buf[1];
|
| 671 |
|
|
|
| 672 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 673 |
|
|
|
| 674 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
| 675 |
|
|
if (status != 0)
|
| 676 |
|
|
break;
|
| 677 |
|
|
|
| 678 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 679 |
|
|
fsM = (Y << 4) | sM;
|
| 680 |
|
|
|
| 681 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4,
|
| 682 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
| 683 |
|
|
|
| 684 |
|
|
pc += 3;
|
| 685 |
|
|
}
|
| 686 |
|
|
/* fmov fsM, (rN, rI) */
|
| 687 |
|
|
else if (instr[0] == 0xfb && instr[1] == 0x37)
|
| 688 |
|
|
{
|
| 689 |
|
|
int fsM, sM, Z, rN, rI;
|
| 690 |
|
|
gdb_byte buf[2];
|
| 691 |
|
|
|
| 692 |
|
|
|
| 693 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 694 |
|
|
if (status != 0)
|
| 695 |
|
|
break;
|
| 696 |
|
|
|
| 697 |
|
|
rI = (buf[0] & 0xf0) >> 4;
|
| 698 |
|
|
rN = buf[0] & 0x0f;
|
| 699 |
|
|
sM = (buf[1] & 0xf0) >> 4;
|
| 700 |
|
|
Z = (buf[1] & 0x02) >> 1;
|
| 701 |
|
|
fsM = (Z << 4) | sM;
|
| 702 |
|
|
|
| 703 |
|
|
pv_area_store (stack,
|
| 704 |
|
|
pv_add (regs[translate_rreg (rN)],
|
| 705 |
|
|
regs[translate_rreg (rI)]),
|
| 706 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 707 |
|
|
|
| 708 |
|
|
pc += 4;
|
| 709 |
|
|
}
|
| 710 |
|
|
/* fmov fsM, (d8, rN) */
|
| 711 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
|
| 712 |
|
|
{
|
| 713 |
|
|
int fsM, sM, Y, rN;
|
| 714 |
|
|
LONGEST d8;
|
| 715 |
|
|
gdb_byte buf[2];
|
| 716 |
|
|
|
| 717 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 718 |
|
|
|
| 719 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 720 |
|
|
if (status != 0)
|
| 721 |
|
|
break;
|
| 722 |
|
|
|
| 723 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 724 |
|
|
rN = buf[0] & 0x0f;
|
| 725 |
|
|
fsM = (Y << 4) | sM;
|
| 726 |
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
| 727 |
|
|
|
| 728 |
|
|
pv_area_store (stack,
|
| 729 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d8),
|
| 730 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 731 |
|
|
|
| 732 |
|
|
pc += 4;
|
| 733 |
|
|
}
|
| 734 |
|
|
/* fmov fsM, (d24, rN) */
|
| 735 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
|
| 736 |
|
|
{
|
| 737 |
|
|
int fsM, sM, Y, rN;
|
| 738 |
|
|
LONGEST d24;
|
| 739 |
|
|
gdb_byte buf[4];
|
| 740 |
|
|
|
| 741 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 742 |
|
|
|
| 743 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 744 |
|
|
if (status != 0)
|
| 745 |
|
|
break;
|
| 746 |
|
|
|
| 747 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 748 |
|
|
rN = buf[0] & 0x0f;
|
| 749 |
|
|
fsM = (Y << 4) | sM;
|
| 750 |
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
| 751 |
|
|
|
| 752 |
|
|
pv_area_store (stack,
|
| 753 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d24),
|
| 754 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 755 |
|
|
|
| 756 |
|
|
pc += 6;
|
| 757 |
|
|
}
|
| 758 |
|
|
/* fmov fsM, (d32, rN) */
|
| 759 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
|
| 760 |
|
|
{
|
| 761 |
|
|
int fsM, sM, Y, rN;
|
| 762 |
|
|
LONGEST d32;
|
| 763 |
|
|
gdb_byte buf[5];
|
| 764 |
|
|
|
| 765 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 766 |
|
|
|
| 767 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
| 768 |
|
|
if (status != 0)
|
| 769 |
|
|
break;
|
| 770 |
|
|
|
| 771 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 772 |
|
|
rN = buf[0] & 0x0f;
|
| 773 |
|
|
fsM = (Y << 4) | sM;
|
| 774 |
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
| 775 |
|
|
|
| 776 |
|
|
pv_area_store (stack,
|
| 777 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d32),
|
| 778 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 779 |
|
|
|
| 780 |
|
|
pc += 7;
|
| 781 |
|
|
}
|
| 782 |
|
|
/* fmov fsM, (d8, SP) */
|
| 783 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
|
| 784 |
|
|
{
|
| 785 |
|
|
int fsM, sM, Y;
|
| 786 |
|
|
LONGEST d8;
|
| 787 |
|
|
gdb_byte buf[2];
|
| 788 |
|
|
|
| 789 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 790 |
|
|
|
| 791 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 792 |
|
|
if (status != 0)
|
| 793 |
|
|
break;
|
| 794 |
|
|
|
| 795 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 796 |
|
|
fsM = (Y << 4) | sM;
|
| 797 |
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
| 798 |
|
|
|
| 799 |
|
|
pv_area_store (stack,
|
| 800 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d8),
|
| 801 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 802 |
|
|
|
| 803 |
|
|
pc += 4;
|
| 804 |
|
|
}
|
| 805 |
|
|
/* fmov fsM, (d24, SP) */
|
| 806 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
|
| 807 |
|
|
{
|
| 808 |
|
|
int fsM, sM, Y;
|
| 809 |
|
|
LONGEST d24;
|
| 810 |
|
|
gdb_byte buf[4];
|
| 811 |
|
|
|
| 812 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 813 |
|
|
|
| 814 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 815 |
|
|
if (status != 0)
|
| 816 |
|
|
break;
|
| 817 |
|
|
|
| 818 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 819 |
|
|
fsM = (Y << 4) | sM;
|
| 820 |
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
| 821 |
|
|
|
| 822 |
|
|
pv_area_store (stack,
|
| 823 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d24),
|
| 824 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 825 |
|
|
|
| 826 |
|
|
pc += 6;
|
| 827 |
|
|
}
|
| 828 |
|
|
/* fmov fsM, (d32, SP) */
|
| 829 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
|
| 830 |
|
|
{
|
| 831 |
|
|
int fsM, sM, Y;
|
| 832 |
|
|
LONGEST d32;
|
| 833 |
|
|
gdb_byte buf[5];
|
| 834 |
|
|
|
| 835 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 836 |
|
|
|
| 837 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
| 838 |
|
|
if (status != 0)
|
| 839 |
|
|
break;
|
| 840 |
|
|
|
| 841 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 842 |
|
|
fsM = (Y << 4) | sM;
|
| 843 |
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
| 844 |
|
|
|
| 845 |
|
|
pv_area_store (stack,
|
| 846 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d32),
|
| 847 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
| 848 |
|
|
|
| 849 |
|
|
pc += 7;
|
| 850 |
|
|
}
|
| 851 |
|
|
/* fmov fsM, (rN+) */
|
| 852 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
|
| 853 |
|
|
{
|
| 854 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
| 855 |
|
|
gdb_byte buf[1];
|
| 856 |
|
|
|
| 857 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 858 |
|
|
|
| 859 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
| 860 |
|
|
if (status != 0)
|
| 861 |
|
|
break;
|
| 862 |
|
|
|
| 863 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 864 |
|
|
rN = buf[0] & 0x0f;
|
| 865 |
|
|
fsM = (Y << 4) | sM;
|
| 866 |
|
|
|
| 867 |
|
|
rN_regnum = translate_rreg (rN);
|
| 868 |
|
|
|
| 869 |
|
|
pv_area_store (stack, regs[rN_regnum], 4,
|
| 870 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
| 871 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
|
| 872 |
|
|
|
| 873 |
|
|
pc += 3;
|
| 874 |
|
|
}
|
| 875 |
|
|
/* fmov fsM, (rN+, imm8) */
|
| 876 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
|
| 877 |
|
|
{
|
| 878 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
| 879 |
|
|
LONGEST imm8;
|
| 880 |
|
|
gdb_byte buf[2];
|
| 881 |
|
|
|
| 882 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 883 |
|
|
|
| 884 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
| 885 |
|
|
if (status != 0)
|
| 886 |
|
|
break;
|
| 887 |
|
|
|
| 888 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 889 |
|
|
rN = buf[0] & 0x0f;
|
| 890 |
|
|
fsM = (Y << 4) | sM;
|
| 891 |
|
|
imm8 = extract_signed_integer (&buf[1], 1, byte_order);
|
| 892 |
|
|
|
| 893 |
|
|
rN_regnum = translate_rreg (rN);
|
| 894 |
|
|
|
| 895 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
| 896 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
|
| 897 |
|
|
|
| 898 |
|
|
pc += 4;
|
| 899 |
|
|
}
|
| 900 |
|
|
/* fmov fsM, (rN+, imm24) */
|
| 901 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
|
| 902 |
|
|
{
|
| 903 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
| 904 |
|
|
LONGEST imm24;
|
| 905 |
|
|
gdb_byte buf[4];
|
| 906 |
|
|
|
| 907 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 908 |
|
|
|
| 909 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 910 |
|
|
if (status != 0)
|
| 911 |
|
|
break;
|
| 912 |
|
|
|
| 913 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 914 |
|
|
rN = buf[0] & 0x0f;
|
| 915 |
|
|
fsM = (Y << 4) | sM;
|
| 916 |
|
|
imm24 = extract_signed_integer (&buf[1], 3, byte_order);
|
| 917 |
|
|
|
| 918 |
|
|
rN_regnum = translate_rreg (rN);
|
| 919 |
|
|
|
| 920 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
| 921 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
|
| 922 |
|
|
|
| 923 |
|
|
pc += 6;
|
| 924 |
|
|
}
|
| 925 |
|
|
/* fmov fsM, (rN+, imm32) */
|
| 926 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
|
| 927 |
|
|
{
|
| 928 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
| 929 |
|
|
LONGEST imm32;
|
| 930 |
|
|
gdb_byte buf[5];
|
| 931 |
|
|
|
| 932 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
| 933 |
|
|
|
| 934 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
| 935 |
|
|
if (status != 0)
|
| 936 |
|
|
break;
|
| 937 |
|
|
|
| 938 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
| 939 |
|
|
rN = buf[0] & 0x0f;
|
| 940 |
|
|
fsM = (Y << 4) | sM;
|
| 941 |
|
|
imm32 = extract_signed_integer (&buf[1], 4, byte_order);
|
| 942 |
|
|
|
| 943 |
|
|
rN_regnum = translate_rreg (rN);
|
| 944 |
|
|
|
| 945 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
| 946 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
|
| 947 |
|
|
|
| 948 |
|
|
pc += 7;
|
| 949 |
|
|
}
|
| 950 |
|
|
/* mov imm8, aN */
|
| 951 |
|
|
else if ((instr[0] & 0xf0) == 0x90)
|
| 952 |
|
|
{
|
| 953 |
|
|
int aN = instr[0] & 0x03;
|
| 954 |
|
|
LONGEST imm8;
|
| 955 |
|
|
|
| 956 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
| 957 |
|
|
|
| 958 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm8);
|
| 959 |
|
|
pc += 2;
|
| 960 |
|
|
}
|
| 961 |
|
|
/* mov imm16, aN */
|
| 962 |
|
|
else if ((instr[0] & 0xfc) == 0x24)
|
| 963 |
|
|
{
|
| 964 |
|
|
int aN = instr[0] & 0x03;
|
| 965 |
|
|
gdb_byte buf[2];
|
| 966 |
|
|
LONGEST imm16;
|
| 967 |
|
|
|
| 968 |
|
|
status = target_read_memory (pc + 1, buf, 2);
|
| 969 |
|
|
if (status != 0)
|
| 970 |
|
|
break;
|
| 971 |
|
|
|
| 972 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
| 973 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm16);
|
| 974 |
|
|
pc += 3;
|
| 975 |
|
|
}
|
| 976 |
|
|
/* mov imm32, aN */
|
| 977 |
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
|
| 978 |
|
|
{
|
| 979 |
|
|
int aN = instr[1] & 0x03;
|
| 980 |
|
|
gdb_byte buf[4];
|
| 981 |
|
|
LONGEST imm32;
|
| 982 |
|
|
|
| 983 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 984 |
|
|
if (status != 0)
|
| 985 |
|
|
break;
|
| 986 |
|
|
|
| 987 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
| 988 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm32);
|
| 989 |
|
|
pc += 6;
|
| 990 |
|
|
}
|
| 991 |
|
|
/* mov imm8, dN */
|
| 992 |
|
|
else if ((instr[0] & 0xf0) == 0x80)
|
| 993 |
|
|
{
|
| 994 |
|
|
int dN = instr[0] & 0x03;
|
| 995 |
|
|
LONGEST imm8;
|
| 996 |
|
|
|
| 997 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
| 998 |
|
|
|
| 999 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm8);
|
| 1000 |
|
|
pc += 2;
|
| 1001 |
|
|
}
|
| 1002 |
|
|
/* mov imm16, dN */
|
| 1003 |
|
|
else if ((instr[0] & 0xfc) == 0x2c)
|
| 1004 |
|
|
{
|
| 1005 |
|
|
int dN = instr[0] & 0x03;
|
| 1006 |
|
|
gdb_byte buf[2];
|
| 1007 |
|
|
LONGEST imm16;
|
| 1008 |
|
|
|
| 1009 |
|
|
status = target_read_memory (pc + 1, buf, 2);
|
| 1010 |
|
|
if (status != 0)
|
| 1011 |
|
|
break;
|
| 1012 |
|
|
|
| 1013 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
| 1014 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm16);
|
| 1015 |
|
|
pc += 3;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
/* mov imm32, dN */
|
| 1018 |
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
|
| 1019 |
|
|
{
|
| 1020 |
|
|
int dN = instr[1] & 0x03;
|
| 1021 |
|
|
gdb_byte buf[4];
|
| 1022 |
|
|
LONGEST imm32;
|
| 1023 |
|
|
|
| 1024 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
| 1025 |
|
|
if (status != 0)
|
| 1026 |
|
|
break;
|
| 1027 |
|
|
|
| 1028 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
| 1029 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm32);
|
| 1030 |
|
|
pc += 6;
|
| 1031 |
|
|
}
|
| 1032 |
|
|
else
|
| 1033 |
|
|
{
|
| 1034 |
|
|
/* We've hit some instruction that we don't recognize. Hopefully,
|
| 1035 |
|
|
we have enough to do prologue analysis. */
|
| 1036 |
|
|
break;
|
| 1037 |
|
|
}
|
| 1038 |
|
|
}
|
| 1039 |
|
|
|
| 1040 |
|
|
/* Is the frame size (offset, really) a known constant? */
|
| 1041 |
|
|
if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
|
| 1042 |
|
|
result->frame_size = regs[E_SP_REGNUM].k;
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Was the frame pointer initialized? */
|
| 1045 |
|
|
if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
|
| 1046 |
|
|
{
|
| 1047 |
|
|
result->has_frame_ptr = 1;
|
| 1048 |
|
|
result->frame_ptr_offset = regs[E_A3_REGNUM].k;
|
| 1049 |
|
|
}
|
| 1050 |
|
|
|
| 1051 |
|
|
/* Record where all the registers were saved. */
|
| 1052 |
|
|
pv_area_scan (stack, check_for_saved, (void *) result);
|
| 1053 |
|
|
|
| 1054 |
|
|
result->prologue_end = after_last_frame_setup_insn;
|
| 1055 |
|
|
|
| 1056 |
|
|
do_cleanups (back_to);
|
| 1057 |
|
|
}
|
| 1058 |
|
|
|
| 1059 |
|
|
/* Function: skip_prologue
|
| 1060 |
|
|
Return the address of the first inst past the prologue of the function. */
|
| 1061 |
|
|
|
| 1062 |
|
|
static CORE_ADDR
|
| 1063 |
|
|
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| 1064 |
|
|
{
|
| 1065 |
|
|
char *name;
|
| 1066 |
|
|
CORE_ADDR func_addr, func_end;
|
| 1067 |
|
|
struct mn10300_prologue p;
|
| 1068 |
|
|
|
| 1069 |
|
|
/* Try to find the extent of the function that contains PC. */
|
| 1070 |
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
| 1071 |
|
|
return pc;
|
| 1072 |
|
|
|
| 1073 |
|
|
mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
|
| 1074 |
|
|
return p.prologue_end;
|
| 1075 |
|
|
}
|
| 1076 |
|
|
|
| 1077 |
|
|
/* Wrapper for mn10300_analyze_prologue: find the function start;
|
| 1078 |
|
|
use the current frame PC as the limit, then
|
| 1079 |
|
|
invoke mn10300_analyze_prologue and return its result. */
|
| 1080 |
|
|
static struct mn10300_prologue *
|
| 1081 |
|
|
mn10300_analyze_frame_prologue (struct frame_info *this_frame,
|
| 1082 |
|
|
void **this_prologue_cache)
|
| 1083 |
|
|
{
|
| 1084 |
|
|
if (!*this_prologue_cache)
|
| 1085 |
|
|
{
|
| 1086 |
|
|
CORE_ADDR func_start, stop_addr;
|
| 1087 |
|
|
|
| 1088 |
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
|
| 1089 |
|
|
|
| 1090 |
|
|
func_start = get_frame_func (this_frame);
|
| 1091 |
|
|
stop_addr = get_frame_pc (this_frame);
|
| 1092 |
|
|
|
| 1093 |
|
|
/* If we couldn't find any function containing the PC, then
|
| 1094 |
|
|
just initialize the prologue cache, but don't do anything. */
|
| 1095 |
|
|
if (!func_start)
|
| 1096 |
|
|
stop_addr = func_start;
|
| 1097 |
|
|
|
| 1098 |
|
|
mn10300_analyze_prologue (get_frame_arch (this_frame),
|
| 1099 |
|
|
func_start, stop_addr, *this_prologue_cache);
|
| 1100 |
|
|
}
|
| 1101 |
|
|
|
| 1102 |
|
|
return *this_prologue_cache;
|
| 1103 |
|
|
}
|
| 1104 |
|
|
|
| 1105 |
|
|
/* Given the next frame and a prologue cache, return this frame's
|
| 1106 |
|
|
base. */
|
| 1107 |
|
|
static CORE_ADDR
|
| 1108 |
|
|
mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
| 1109 |
|
|
{
|
| 1110 |
|
|
struct mn10300_prologue *p
|
| 1111 |
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
| 1112 |
|
|
|
| 1113 |
|
|
/* In functions that use alloca, the distance between the stack
|
| 1114 |
|
|
pointer and the frame base varies dynamically, so we can't use
|
| 1115 |
|
|
the SP plus static information like prologue analysis to find the
|
| 1116 |
|
|
frame base. However, such functions must have a frame pointer,
|
| 1117 |
|
|
to be able to restore the SP on exit. So whenever we do have a
|
| 1118 |
|
|
frame pointer, use that to find the base. */
|
| 1119 |
|
|
if (p->has_frame_ptr)
|
| 1120 |
|
|
{
|
| 1121 |
|
|
CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
|
| 1122 |
|
|
return fp - p->frame_ptr_offset;
|
| 1123 |
|
|
}
|
| 1124 |
|
|
else
|
| 1125 |
|
|
{
|
| 1126 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
| 1127 |
|
|
return sp - p->frame_size;
|
| 1128 |
|
|
}
|
| 1129 |
|
|
}
|
| 1130 |
|
|
|
| 1131 |
|
|
/* Here is a dummy implementation. */
|
| 1132 |
|
|
static struct frame_id
|
| 1133 |
|
|
mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| 1134 |
|
|
{
|
| 1135 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
| 1136 |
|
|
CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
|
| 1137 |
|
|
return frame_id_build (sp, pc);
|
| 1138 |
|
|
}
|
| 1139 |
|
|
|
| 1140 |
|
|
static void
|
| 1141 |
|
|
mn10300_frame_this_id (struct frame_info *this_frame,
|
| 1142 |
|
|
void **this_prologue_cache,
|
| 1143 |
|
|
struct frame_id *this_id)
|
| 1144 |
|
|
{
|
| 1145 |
|
|
*this_id = frame_id_build (mn10300_frame_base (this_frame, this_prologue_cache),
|
| 1146 |
|
|
get_frame_func (this_frame));
|
| 1147 |
|
|
|
| 1148 |
|
|
}
|
| 1149 |
|
|
|
| 1150 |
|
|
static struct value *
|
| 1151 |
|
|
mn10300_frame_prev_register (struct frame_info *this_frame,
|
| 1152 |
|
|
void **this_prologue_cache, int regnum)
|
| 1153 |
|
|
{
|
| 1154 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
| 1155 |
|
|
struct mn10300_prologue *p
|
| 1156 |
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
| 1157 |
|
|
CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
|
| 1158 |
|
|
int reg_size = register_size (get_frame_arch (this_frame), regnum);
|
| 1159 |
|
|
|
| 1160 |
|
|
if (regnum == E_SP_REGNUM)
|
| 1161 |
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
| 1162 |
|
|
|
| 1163 |
|
|
/* If prologue analysis says we saved this register somewhere,
|
| 1164 |
|
|
return a description of the stack slot holding it. */
|
| 1165 |
|
|
if (p->reg_offset[regnum] != 1)
|
| 1166 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
| 1167 |
|
|
frame_base + p->reg_offset[regnum]);
|
| 1168 |
|
|
|
| 1169 |
|
|
/* Otherwise, presume we haven't changed the value of this
|
| 1170 |
|
|
register, and get it from the next frame. */
|
| 1171 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
| 1172 |
|
|
}
|
| 1173 |
|
|
|
| 1174 |
|
|
static const struct frame_unwind mn10300_frame_unwind = {
|
| 1175 |
|
|
NORMAL_FRAME,
|
| 1176 |
|
|
mn10300_frame_this_id,
|
| 1177 |
|
|
mn10300_frame_prev_register,
|
| 1178 |
|
|
NULL,
|
| 1179 |
|
|
default_frame_sniffer
|
| 1180 |
|
|
};
|
| 1181 |
|
|
|
| 1182 |
|
|
static CORE_ADDR
|
| 1183 |
|
|
mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| 1184 |
|
|
{
|
| 1185 |
|
|
ULONGEST pc;
|
| 1186 |
|
|
|
| 1187 |
|
|
pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
|
| 1188 |
|
|
return pc;
|
| 1189 |
|
|
}
|
| 1190 |
|
|
|
| 1191 |
|
|
static CORE_ADDR
|
| 1192 |
|
|
mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| 1193 |
|
|
{
|
| 1194 |
|
|
ULONGEST sp;
|
| 1195 |
|
|
|
| 1196 |
|
|
sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
|
| 1197 |
|
|
return sp;
|
| 1198 |
|
|
}
|
| 1199 |
|
|
|
| 1200 |
|
|
static void
|
| 1201 |
|
|
mn10300_frame_unwind_init (struct gdbarch *gdbarch)
|
| 1202 |
|
|
{
|
| 1203 |
|
|
dwarf2_append_unwinders (gdbarch);
|
| 1204 |
|
|
frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
|
| 1205 |
|
|
set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
|
| 1206 |
|
|
set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
|
| 1207 |
|
|
set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
|
| 1208 |
|
|
}
|
| 1209 |
|
|
|
| 1210 |
|
|
/* Function: push_dummy_call
|
| 1211 |
|
|
*
|
| 1212 |
|
|
* Set up machine state for a target call, including
|
| 1213 |
|
|
* function arguments, stack, return address, etc.
|
| 1214 |
|
|
*
|
| 1215 |
|
|
*/
|
| 1216 |
|
|
|
| 1217 |
|
|
static CORE_ADDR
|
| 1218 |
|
|
mn10300_push_dummy_call (struct gdbarch *gdbarch,
|
| 1219 |
|
|
struct value *target_func,
|
| 1220 |
|
|
struct regcache *regcache,
|
| 1221 |
|
|
CORE_ADDR bp_addr,
|
| 1222 |
|
|
int nargs, struct value **args,
|
| 1223 |
|
|
CORE_ADDR sp,
|
| 1224 |
|
|
int struct_return,
|
| 1225 |
|
|
CORE_ADDR struct_addr)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 1228 |
|
|
const int push_size = register_size (gdbarch, E_PC_REGNUM);
|
| 1229 |
|
|
int regs_used;
|
| 1230 |
|
|
int len, arg_len;
|
| 1231 |
|
|
int stack_offset = 0;
|
| 1232 |
|
|
int argnum;
|
| 1233 |
|
|
char *val, valbuf[MAX_REGISTER_SIZE];
|
| 1234 |
|
|
|
| 1235 |
|
|
/* This should be a nop, but align the stack just in case something
|
| 1236 |
|
|
went wrong. Stacks are four byte aligned on the mn10300. */
|
| 1237 |
|
|
sp &= ~3;
|
| 1238 |
|
|
|
| 1239 |
|
|
/* Now make space on the stack for the args.
|
| 1240 |
|
|
|
| 1241 |
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
| 1242 |
|
|
arguments. */
|
| 1243 |
|
|
regs_used = struct_return ? 1 : 0;
|
| 1244 |
|
|
for (len = 0, argnum = 0; argnum < nargs; argnum++)
|
| 1245 |
|
|
{
|
| 1246 |
|
|
arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
|
| 1247 |
|
|
while (regs_used < 2 && arg_len > 0)
|
| 1248 |
|
|
{
|
| 1249 |
|
|
regs_used++;
|
| 1250 |
|
|
arg_len -= push_size;
|
| 1251 |
|
|
}
|
| 1252 |
|
|
len += arg_len;
|
| 1253 |
|
|
}
|
| 1254 |
|
|
|
| 1255 |
|
|
/* Allocate stack space. */
|
| 1256 |
|
|
sp -= len;
|
| 1257 |
|
|
|
| 1258 |
|
|
if (struct_return)
|
| 1259 |
|
|
{
|
| 1260 |
|
|
regs_used = 1;
|
| 1261 |
|
|
regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
|
| 1262 |
|
|
}
|
| 1263 |
|
|
else
|
| 1264 |
|
|
regs_used = 0;
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Push all arguments onto the stack. */
|
| 1267 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
| 1268 |
|
|
{
|
| 1269 |
|
|
/* FIXME what about structs? Unions? */
|
| 1270 |
|
|
if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
|
| 1271 |
|
|
&& TYPE_LENGTH (value_type (*args)) > 8)
|
| 1272 |
|
|
{
|
| 1273 |
|
|
/* Change to pointer-to-type. */
|
| 1274 |
|
|
arg_len = push_size;
|
| 1275 |
|
|
store_unsigned_integer (valbuf, push_size, byte_order,
|
| 1276 |
|
|
value_address (*args));
|
| 1277 |
|
|
val = &valbuf[0];
|
| 1278 |
|
|
}
|
| 1279 |
|
|
else
|
| 1280 |
|
|
{
|
| 1281 |
|
|
arg_len = TYPE_LENGTH (value_type (*args));
|
| 1282 |
|
|
val = (char *) value_contents (*args);
|
| 1283 |
|
|
}
|
| 1284 |
|
|
|
| 1285 |
|
|
while (regs_used < 2 && arg_len > 0)
|
| 1286 |
|
|
{
|
| 1287 |
|
|
regcache_cooked_write_unsigned (regcache, regs_used,
|
| 1288 |
|
|
extract_unsigned_integer (val, push_size, byte_order));
|
| 1289 |
|
|
val += push_size;
|
| 1290 |
|
|
arg_len -= push_size;
|
| 1291 |
|
|
regs_used++;
|
| 1292 |
|
|
}
|
| 1293 |
|
|
|
| 1294 |
|
|
while (arg_len > 0)
|
| 1295 |
|
|
{
|
| 1296 |
|
|
write_memory (sp + stack_offset, val, push_size);
|
| 1297 |
|
|
arg_len -= push_size;
|
| 1298 |
|
|
val += push_size;
|
| 1299 |
|
|
stack_offset += push_size;
|
| 1300 |
|
|
}
|
| 1301 |
|
|
|
| 1302 |
|
|
args++;
|
| 1303 |
|
|
}
|
| 1304 |
|
|
|
| 1305 |
|
|
/* Make space for the flushback area. */
|
| 1306 |
|
|
sp -= 8;
|
| 1307 |
|
|
|
| 1308 |
|
|
/* Push the return address that contains the magic breakpoint. */
|
| 1309 |
|
|
sp -= 4;
|
| 1310 |
|
|
write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
|
| 1311 |
|
|
|
| 1312 |
|
|
/* The CPU also writes the return address always into the
|
| 1313 |
|
|
MDR register on "call". */
|
| 1314 |
|
|
regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
|
| 1315 |
|
|
|
| 1316 |
|
|
/* Update $sp. */
|
| 1317 |
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
|
| 1318 |
|
|
|
| 1319 |
|
|
/* On the mn10300, it's possible to move some of the stack adjustment
|
| 1320 |
|
|
and saving of the caller-save registers out of the prologue and
|
| 1321 |
|
|
into the call sites. (When using gcc, this optimization can
|
| 1322 |
|
|
occur when using the -mrelax switch.) If this occurs, the dwarf2
|
| 1323 |
|
|
info will reflect this fact. We can test to see if this is the
|
| 1324 |
|
|
case by creating a new frame using the current stack pointer and
|
| 1325 |
|
|
the address of the function that we're about to call. We then
|
| 1326 |
|
|
unwind SP and see if it's different than the SP of our newly
|
| 1327 |
|
|
created frame. If the SP values are the same, the caller is not
|
| 1328 |
|
|
expected to allocate any additional stack. On the other hand, if
|
| 1329 |
|
|
the SP values are different, the difference determines the
|
| 1330 |
|
|
additional stack that must be allocated.
|
| 1331 |
|
|
|
| 1332 |
|
|
Note that we don't update the return value though because that's
|
| 1333 |
|
|
the value of the stack just after pushing the arguments, but prior
|
| 1334 |
|
|
to performing the call. This value is needed in order to
|
| 1335 |
|
|
construct the frame ID of the dummy call. */
|
| 1336 |
|
|
{
|
| 1337 |
|
|
CORE_ADDR func_addr = find_function_addr (target_func, NULL);
|
| 1338 |
|
|
CORE_ADDR unwound_sp
|
| 1339 |
|
|
= mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
|
| 1340 |
|
|
if (sp != unwound_sp)
|
| 1341 |
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
|
| 1342 |
|
|
sp - (unwound_sp - sp));
|
| 1343 |
|
|
}
|
| 1344 |
|
|
|
| 1345 |
|
|
return sp;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
|
| 1348 |
|
|
/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
|
| 1349 |
|
|
mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
|
| 1350 |
|
|
register number. Why don't Dwarf2 and GDB use the same numbering?
|
| 1351 |
|
|
Who knows? But since people have object files lying around with
|
| 1352 |
|
|
the existing Dwarf2 numbering, and other people have written stubs
|
| 1353 |
|
|
to work with the existing GDB, neither of them can change. So we
|
| 1354 |
|
|
just have to cope. */
|
| 1355 |
|
|
static int
|
| 1356 |
|
|
mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
|
| 1357 |
|
|
{
|
| 1358 |
|
|
/* This table is supposed to be shaped like the gdbarch_register_name
|
| 1359 |
|
|
initializer in gcc/config/mn10300/mn10300.h. Registers which
|
| 1360 |
|
|
appear in GCC's numbering, but have no counterpart in GDB's
|
| 1361 |
|
|
world, are marked with a -1. */
|
| 1362 |
|
|
static int dwarf2_to_gdb[] = {
|
| 1363 |
|
|
0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
|
| 1364 |
|
|
15, 16, 17, 18, 19, 20, 21, 22,
|
| 1365 |
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
| 1366 |
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
| 1367 |
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
| 1368 |
|
|
56, 57, 58, 59, 60, 61, 62, 63,
|
| 1369 |
|
|
9, 11
|
| 1370 |
|
|
};
|
| 1371 |
|
|
|
| 1372 |
|
|
if (dwarf2 < 0
|
| 1373 |
|
|
|| dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
|
| 1374 |
|
|
{
|
| 1375 |
|
|
warning (_("Bogus register number in debug info: %d"), dwarf2);
|
| 1376 |
|
|
return -1;
|
| 1377 |
|
|
}
|
| 1378 |
|
|
|
| 1379 |
|
|
return dwarf2_to_gdb[dwarf2];
|
| 1380 |
|
|
}
|
| 1381 |
|
|
|
| 1382 |
|
|
static struct gdbarch *
|
| 1383 |
|
|
mn10300_gdbarch_init (struct gdbarch_info info,
|
| 1384 |
|
|
struct gdbarch_list *arches)
|
| 1385 |
|
|
{
|
| 1386 |
|
|
struct gdbarch *gdbarch;
|
| 1387 |
|
|
struct gdbarch_tdep *tdep;
|
| 1388 |
|
|
int num_regs;
|
| 1389 |
|
|
|
| 1390 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
| 1391 |
|
|
if (arches != NULL)
|
| 1392 |
|
|
return arches->gdbarch;
|
| 1393 |
|
|
|
| 1394 |
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
| 1395 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
| 1396 |
|
|
|
| 1397 |
|
|
switch (info.bfd_arch_info->mach)
|
| 1398 |
|
|
{
|
| 1399 |
|
|
case 0:
|
| 1400 |
|
|
case bfd_mach_mn10300:
|
| 1401 |
|
|
set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
|
| 1402 |
|
|
tdep->am33_mode = 0;
|
| 1403 |
|
|
num_regs = 32;
|
| 1404 |
|
|
break;
|
| 1405 |
|
|
case bfd_mach_am33:
|
| 1406 |
|
|
set_gdbarch_register_name (gdbarch, am33_register_name);
|
| 1407 |
|
|
tdep->am33_mode = 1;
|
| 1408 |
|
|
num_regs = 32;
|
| 1409 |
|
|
break;
|
| 1410 |
|
|
case bfd_mach_am33_2:
|
| 1411 |
|
|
set_gdbarch_register_name (gdbarch, am33_2_register_name);
|
| 1412 |
|
|
tdep->am33_mode = 2;
|
| 1413 |
|
|
num_regs = 64;
|
| 1414 |
|
|
set_gdbarch_fp0_regnum (gdbarch, 32);
|
| 1415 |
|
|
break;
|
| 1416 |
|
|
default:
|
| 1417 |
|
|
internal_error (__FILE__, __LINE__,
|
| 1418 |
|
|
_("mn10300_gdbarch_init: Unknown mn10300 variant"));
|
| 1419 |
|
|
break;
|
| 1420 |
|
|
}
|
| 1421 |
|
|
|
| 1422 |
|
|
/* By default, chars are unsigned. */
|
| 1423 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
| 1424 |
|
|
|
| 1425 |
|
|
/* Registers. */
|
| 1426 |
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
| 1427 |
|
|
set_gdbarch_register_type (gdbarch, mn10300_register_type);
|
| 1428 |
|
|
set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
|
| 1429 |
|
|
set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
|
| 1430 |
|
|
set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
|
| 1431 |
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
| 1432 |
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
| 1433 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
|
| 1434 |
|
|
|
| 1435 |
|
|
/* Stack unwinding. */
|
| 1436 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| 1437 |
|
|
/* Breakpoints. */
|
| 1438 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
|
| 1439 |
|
|
/* decr_pc_after_break? */
|
| 1440 |
|
|
/* Disassembly. */
|
| 1441 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
|
| 1442 |
|
|
|
| 1443 |
|
|
/* Stage 2 */
|
| 1444 |
|
|
set_gdbarch_return_value (gdbarch, mn10300_return_value);
|
| 1445 |
|
|
|
| 1446 |
|
|
/* Stage 3 -- get target calls working. */
|
| 1447 |
|
|
set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
|
| 1448 |
|
|
/* set_gdbarch_return_value (store, extract) */
|
| 1449 |
|
|
|
| 1450 |
|
|
|
| 1451 |
|
|
mn10300_frame_unwind_init (gdbarch);
|
| 1452 |
|
|
|
| 1453 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
| 1454 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
| 1455 |
|
|
|
| 1456 |
|
|
return gdbarch;
|
| 1457 |
|
|
}
|
| 1458 |
|
|
|
| 1459 |
|
|
/* Dump out the mn10300 specific architecture information. */
|
| 1460 |
|
|
|
| 1461 |
|
|
static void
|
| 1462 |
|
|
mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
| 1463 |
|
|
{
|
| 1464 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
| 1465 |
|
|
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
|
| 1466 |
|
|
tdep->am33_mode);
|
| 1467 |
|
|
}
|
| 1468 |
|
|
|
| 1469 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
| 1470 |
|
|
extern initialize_file_ftype _initialize_mn10300_tdep;
|
| 1471 |
|
|
|
| 1472 |
|
|
void
|
| 1473 |
|
|
_initialize_mn10300_tdep (void)
|
| 1474 |
|
|
{
|
| 1475 |
|
|
gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
|
| 1476 |
|
|
}
|
| 1477 |
|
|
|