OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [ira-int.h] - Blame information for rev 837

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Integrated Register Allocator (IRA) intercommunication header file.
2
   Copyright (C) 2006, 2007, 2008, 2009
3
   Free Software Foundation, Inc.
4
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#include "cfgloop.h"
23
#include "ira.h"
24
#include "alloc-pool.h"
25
 
26
/* To provide consistency in naming, all IRA external variables,
27
   functions, common typedefs start with prefix ira_.  */
28
 
29
#ifdef ENABLE_CHECKING
30
#define ENABLE_IRA_CHECKING
31
#endif
32
 
33
#ifdef ENABLE_IRA_CHECKING
34
#define ira_assert(c) gcc_assert (c)
35
#else
36
/* Always define and include C, so that warnings for empty body in an
37
  ‘if’ statement and unused variable do not occur.  */
38
#define ira_assert(c) ((void)(0 && (c)))
39
#endif
40
 
41
/* Compute register frequency from edge frequency FREQ.  It is
42
   analogous to REG_FREQ_FROM_BB.  When optimizing for size, or
43
   profile driven feedback is available and the function is never
44
   executed, frequency is always equivalent.  Otherwise rescale the
45
   edge frequency.  */
46
#define REG_FREQ_FROM_EDGE_FREQ(freq)                                         \
47
  (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count)    \
48
   ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX)                       \
49
   ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
 
51
/* All natural loops.  */
52
extern struct loops ira_loops;
53
 
54
/* A modified value of flag `-fira-verbose' used internally.  */
55
extern int internal_flag_ira_verbose;
56
 
57
/* Dump file of the allocator if it is not NULL.  */
58
extern FILE *ira_dump_file;
59
 
60
/* Typedefs for pointers to allocno live range, allocno, and copy of
61
   allocnos.  */
62
typedef struct ira_allocno_live_range *allocno_live_range_t;
63
typedef struct ira_allocno *ira_allocno_t;
64
typedef struct ira_allocno_copy *ira_copy_t;
65
 
66
/* Definition of vector of allocnos and copies.  */
67
DEF_VEC_P(ira_allocno_t);
68
DEF_VEC_ALLOC_P(ira_allocno_t, heap);
69
DEF_VEC_P(ira_copy_t);
70
DEF_VEC_ALLOC_P(ira_copy_t, heap);
71
 
72
/* Typedef for pointer to the subsequent structure.  */
73
typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
74
 
75
/* In general case, IRA is a regional allocator.  The regions are
76
   nested and form a tree.  Currently regions are natural loops.  The
77
   following structure describes loop tree node (representing basic
78
   block or loop).  We need such tree because the loop tree from
79
   cfgloop.h is not convenient for the optimization: basic blocks are
80
   not a part of the tree from cfgloop.h.  We also use the nodes for
81
   storing additional information about basic blocks/loops for the
82
   register allocation purposes.  */
83
struct ira_loop_tree_node
84
{
85
  /* The node represents basic block if children == NULL.  */
86
  basic_block bb;    /* NULL for loop.  */
87
  struct loop *loop; /* NULL for BB.  */
88
  /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89
     SUBLOOP_NEXT is always NULL for BBs.  */
90
  ira_loop_tree_node_t subloop_next, next;
91
  /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92
     the node.  They are NULL for BBs.  */
93
  ira_loop_tree_node_t subloops, children;
94
  /* The node immediately containing given node.  */
95
  ira_loop_tree_node_t parent;
96
 
97
  /* Loop level in range [0, ira_loop_tree_height).  */
98
  int level;
99
 
100
  /* All the following members are defined only for nodes representing
101
     loops.  */
102
 
103
  /* True if the loop was marked for removal from the register
104
     allocation.  */
105
  bool to_remove_p;
106
 
107
  /* Allocnos in the loop corresponding to their regnos.  If it is
108
     NULL the loop does not form a separate register allocation region
109
     (e.g. because it has abnormal enter/exit edges and we can not put
110
     code for register shuffling on the edges if a different
111
     allocation is used for a pseudo-register on different sides of
112
     the edges).  Caps are not in the map (remember we can have more
113
     one cap with the same regno in a region).  */
114
  ira_allocno_t *regno_allocno_map;
115
 
116
  /* True if there is an entry to given loop not from its parent (or
117
     grandparent) basic block.  For example, it is possible for two
118
     adjacent loops inside another loop.  */
119
  bool entered_from_non_parent_p;
120
 
121
  /* Maximal register pressure inside loop for given register class
122
     (defined only for the cover classes).  */
123
  int reg_pressure[N_REG_CLASSES];
124
 
125
  /* Numbers of allocnos referred or living in the loop node (except
126
     for its subloops).  */
127
  bitmap all_allocnos;
128
 
129
  /* Numbers of allocnos living at the loop borders.  */
130
  bitmap border_allocnos;
131
 
132
  /* Regnos of pseudos modified in the loop node (including its
133
     subloops).  */
134
  bitmap modified_regnos;
135
 
136
  /* Numbers of copies referred in the corresponding loop.  */
137
  bitmap local_copies;
138
};
139
 
140
/* The root of the loop tree corresponding to the all function.  */
141
extern ira_loop_tree_node_t ira_loop_tree_root;
142
 
143
/* Height of the loop tree.  */
144
extern int ira_loop_tree_height;
145
 
146
/* All nodes representing basic blocks are referred through the
147
   following array.  We can not use basic block member `aux' for this
148
   because it is used for insertion of insns on edges.  */
149
extern ira_loop_tree_node_t ira_bb_nodes;
150
 
151
/* Two access macros to the nodes representing basic blocks.  */
152
#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
153
#define IRA_BB_NODE_BY_INDEX(index) __extension__                       \
154
(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]);        \
155
     if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
156
       {                                                                \
157
         fprintf (stderr,                                               \
158
                  "\n%s: %d: error in %s: it is not a block node\n",    \
159
                  __FILE__, __LINE__, __FUNCTION__);                    \
160
         gcc_unreachable ();                                            \
161
       }                                                                \
162
     _node; }))
163
#else
164
#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
165
#endif
166
 
167
#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
168
 
169
/* All nodes representing loops are referred through the following
170
   array.  */
171
extern ira_loop_tree_node_t ira_loop_nodes;
172
 
173
/* Two access macros to the nodes representing loops.  */
174
#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
175
#define IRA_LOOP_NODE_BY_INDEX(index) __extension__                     \
176
(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
177
     if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
178
       {                                                                \
179
         fprintf (stderr,                                               \
180
                  "\n%s: %d: error in %s: it is not a loop node\n",     \
181
                  __FILE__, __LINE__, __FUNCTION__);                    \
182
         gcc_unreachable ();                                            \
183
       }                                                                \
184
     _node; }))
185
#else
186
#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
187
#endif
188
 
189
#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
190
 
191
 
192
 
193
/* The structure describes program points where a given allocno lives.
194
   To save memory we store allocno conflicts only for the same cover
195
   class allocnos which is enough to assign hard registers.  To find
196
   conflicts for other allocnos (e.g. to assign stack memory slot) we
197
   use the live ranges.  If the live ranges of two allocnos are
198
   intersected, the allocnos are in conflict.  */
199
struct ira_allocno_live_range
200
{
201
  /* Allocno whose live range is described by given structure.  */
202
  ira_allocno_t allocno;
203
  /* Program point range.  */
204
  int start, finish;
205
  /* Next structure describing program points where the allocno
206
     lives.  */
207
  allocno_live_range_t next;
208
  /* Pointer to structures with the same start/finish.  */
209
  allocno_live_range_t start_next, finish_next;
210
};
211
 
212
/* Program points are enumerated by numbers from range
213
   0..IRA_MAX_POINT-1.  There are approximately two times more program
214
   points than insns.  Program points are places in the program where
215
   liveness info can be changed.  In most general case (there are more
216
   complicated cases too) some program points correspond to places
217
   where input operand dies and other ones correspond to places where
218
   output operands are born.  */
219
extern int ira_max_point;
220
 
221
/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222
   live ranges with given start/finish point.  */
223
extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
224
 
225
/* A structure representing an allocno (allocation entity).  Allocno
226
   represents a pseudo-register in an allocation region.  If
227
   pseudo-register does not live in a region but it lives in the
228
   nested regions, it is represented in the region by special allocno
229
   called *cap*.  There may be more one cap representing the same
230
   pseudo-register in region.  It means that the corresponding
231
   pseudo-register lives in more one non-intersected subregion.  */
232
struct ira_allocno
233
{
234
  /* The allocno order number starting with 0.  Each allocno has an
235
     unique number and the number is never changed for the
236
     allocno.  */
237
  int num;
238
  /* Regno for allocno or cap.  */
239
  int regno;
240
  /* Mode of the allocno which is the mode of the corresponding
241
     pseudo-register.  */
242
  enum machine_mode mode;
243
  /* Hard register assigned to given allocno.  Negative value means
244
     that memory was allocated to the allocno.  During the reload,
245
     spilled allocno has value equal to the corresponding stack slot
246
     number (0, ...) - 2.  Value -1 is used for allocnos spilled by the
247
     reload (at this point pseudo-register has only one allocno) which
248
     did not get stack slot yet.  */
249
  int hard_regno;
250
  /* Final rtx representation of the allocno.  */
251
  rtx reg;
252
  /* Allocnos with the same regno are linked by the following member.
253
     Allocnos corresponding to inner loops are first in the list (it
254
     corresponds to depth-first traverse of the loops).  */
255
  ira_allocno_t next_regno_allocno;
256
  /* There may be different allocnos with the same regno in different
257
     regions.  Allocnos are bound to the corresponding loop tree node.
258
     Pseudo-register may have only one regular allocno with given loop
259
     tree node but more than one cap (see comments above).  */
260
  ira_loop_tree_node_t loop_tree_node;
261
  /* Accumulated usage references of the allocno.  Here and below,
262
     word 'accumulated' means info for given region and all nested
263
     subregions.  In this case, 'accumulated' means sum of references
264
     of the corresponding pseudo-register in this region and in all
265
     nested subregions recursively. */
266
  int nrefs;
267
  /* Accumulated frequency of usage of the allocno.  */
268
  int freq;
269
  /* Register class which should be used for allocation for given
270
     allocno.  NO_REGS means that we should use memory.  */
271
  enum reg_class cover_class;
272
  /* Minimal accumulated and updated costs of usage register of the
273
     cover class for the allocno.  */
274
  int cover_class_cost, updated_cover_class_cost;
275
  /* Minimal accumulated, and updated costs of memory for the allocno.
276
     At the allocation start, the original and updated costs are
277
     equal.  The updated cost may be changed after finishing
278
     allocation in a region and starting allocation in a subregion.
279
     The change reflects the cost of spill/restore code on the
280
     subregion border if we assign memory to the pseudo in the
281
     subregion.  */
282
  int memory_cost, updated_memory_cost;
283
  /* Accumulated number of points where the allocno lives and there is
284
     excess pressure for its class.  Excess pressure for a register
285
     class at some point means that there are more allocnos of given
286
     register class living at the point than number of hard-registers
287
     of the class available for the allocation.  */
288
  int excess_pressure_points_num;
289
  /* Copies to other non-conflicting allocnos.  The copies can
290
     represent move insn or potential move insn usually because of two
291
     operand insn constraints.  */
292
  ira_copy_t allocno_copies;
293
  /* It is a allocno (cap) representing given allocno on upper loop tree
294
     level.  */
295
  ira_allocno_t cap;
296
  /* It is a link to allocno (cap) on lower loop level represented by
297
     given cap.  Null if given allocno is not a cap.  */
298
  ira_allocno_t cap_member;
299
  /* Coalesced allocnos form a cyclic list.  One allocno given by
300
     FIRST_COALESCED_ALLOCNO represents all coalesced allocnos.  The
301
     list is chained by NEXT_COALESCED_ALLOCNO.  */
302
  ira_allocno_t first_coalesced_allocno;
303
  ira_allocno_t next_coalesced_allocno;
304
  /* Pointer to structures describing at what program point the
305
     allocno lives.  We always maintain the list in such way that *the
306
     ranges in the list are not intersected and ordered by decreasing
307
     their program points*.  */
308
  allocno_live_range_t live_ranges;
309
  /* Before building conflicts the two member values are
310
     correspondingly minimal and maximal points of the accumulated
311
     allocno live ranges.  After building conflicts the values are
312
     correspondingly minimal and maximal conflict ids of allocnos with
313
     which given allocno can conflict.  */
314
  int min, max;
315
  /* Vector of accumulated conflicting allocnos with NULL end marker
316
     (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
317
     Only allocnos with the same cover class are in the vector or in
318
     the bit vector.  */
319
  void *conflict_allocno_array;
320
  /* The unique member value represents given allocno in conflict bit
321
     vectors.  */
322
  int conflict_id;
323
  /* Allocated size of the previous array.  */
324
  unsigned int conflict_allocno_array_size;
325
  /* Initial and accumulated hard registers conflicting with this
326
     allocno and as a consequences can not be assigned to the allocno.
327
     All non-allocatable hard regs and hard regs of cover classes
328
     different from given allocno one are included in the sets.  */
329
  HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
330
  /* Number of accumulated conflicts in the vector of conflicting
331
     allocnos.  */
332
  int conflict_allocnos_num;
333
  /* Accumulated frequency of calls which given allocno
334
     intersects.  */
335
  int call_freq;
336
  /* Accumulated number of the intersected calls.  */
337
  int calls_crossed_num;
338
  /* TRUE if the allocno assigned to memory was a destination of
339
     removed move (see ira-emit.c) at loop exit because the value of
340
     the corresponding pseudo-register is not changed inside the
341
     loop.  */
342
  unsigned int mem_optimized_dest_p : 1;
343
  /* TRUE if the corresponding pseudo-register has disjoint live
344
     ranges and the other allocnos of the pseudo-register except this
345
     one changed REG.  */
346
  unsigned int somewhere_renamed_p : 1;
347
  /* TRUE if allocno with the same REGNO in a subregion has been
348
     renamed, in other words, got a new pseudo-register.  */
349
  unsigned int child_renamed_p : 1;
350
  /* During the reload, value TRUE means that we should not reassign a
351
     hard register to the allocno got memory earlier.  It is set up
352
     when we removed memory-memory move insn before each iteration of
353
     the reload.  */
354
  unsigned int dont_reassign_p : 1;
355
#ifdef STACK_REGS
356
  /* Set to TRUE if allocno can't be assigned to the stack hard
357
     register correspondingly in this region and area including the
358
     region and all its subregions recursively.  */
359
  unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
360
#endif
361
  /* TRUE value means that there is no sense to spill the allocno
362
     during coloring because the spill will result in additional
363
     reloads in reload pass.  */
364
  unsigned int bad_spill_p : 1;
365
  /* TRUE value means that the allocno was not removed yet from the
366
     conflicting graph during colouring.  */
367
  unsigned int in_graph_p : 1;
368
  /* TRUE if a hard register or memory has been assigned to the
369
     allocno.  */
370
  unsigned int assigned_p : 1;
371
  /* TRUE if it is put on the stack to make other allocnos
372
     colorable.  */
373
  unsigned int may_be_spilled_p : 1;
374
  /* TRUE if the allocno was removed from the splay tree used to
375
     choose allocn for spilling (see ira-color.c::.  */
376
  unsigned int splay_removed_p : 1;
377
  /* TRUE if conflicts for given allocno are represented by vector of
378
     pointers to the conflicting allocnos.  Otherwise, we use a bit
379
     vector where a bit with given index represents allocno with the
380
     same number.  */
381
  unsigned int conflict_vec_p : 1;
382
  /* Non NULL if we remove restoring value from given allocno to
383
     MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
384
     allocno value is not changed inside the loop.  */
385
  ira_allocno_t mem_optimized_dest;
386
  /* Array of usage costs (accumulated and the one updated during
387
     coloring) for each hard register of the allocno cover class.  The
388
     member value can be NULL if all costs are the same and equal to
389
     COVER_CLASS_COST.  For example, the costs of two different hard
390
     registers can be different if one hard register is callee-saved
391
     and another one is callee-used and the allocno lives through
392
     calls.  Another example can be case when for some insn the
393
     corresponding pseudo-register value should be put in specific
394
     register class (e.g. AREG for x86) which is a strict subset of
395
     the allocno cover class (GENERAL_REGS for x86).  We have updated
396
     costs to reflect the situation when the usage cost of a hard
397
     register is decreased because the allocno is connected to another
398
     allocno by a copy and the another allocno has been assigned to
399
     the hard register.  */
400
  int *hard_reg_costs, *updated_hard_reg_costs;
401
  /* Array of decreasing costs (accumulated and the one updated during
402
     coloring) for allocnos conflicting with given allocno for hard
403
     regno of the allocno cover class.  The member value can be NULL
404
     if all costs are the same.  These costs are used to reflect
405
     preferences of other allocnos not assigned yet during assigning
406
     to given allocno.  */
407
  int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
408
  /* Size (in hard registers) of the same cover class allocnos with
409
     TRUE in_graph_p value and conflicting with given allocno during
410
     each point of graph coloring.  */
411
  int left_conflicts_size;
412
  /* Number of hard registers of the allocno cover class really
413
     available for the allocno allocation.  */
414
  int available_regs_num;
415
  /* Allocnos in a bucket (used in coloring) chained by the following
416
     two members.  */
417
  ira_allocno_t next_bucket_allocno;
418
  ira_allocno_t prev_bucket_allocno;
419
  /* Used for temporary purposes.  */
420
  int temp;
421
};
422
 
423
/* All members of the allocno structures should be accessed only
424
   through the following macros.  */
425
#define ALLOCNO_NUM(A) ((A)->num)
426
#define ALLOCNO_REGNO(A) ((A)->regno)
427
#define ALLOCNO_REG(A) ((A)->reg)
428
#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
429
#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
430
#define ALLOCNO_CAP(A) ((A)->cap)
431
#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
432
#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
433
#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
434
  ((A)->conflict_allocno_array_size)
435
#define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
436
  ((A)->conflict_allocnos_num)
437
#define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
438
#define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
439
#define ALLOCNO_NREFS(A) ((A)->nrefs)
440
#define ALLOCNO_FREQ(A) ((A)->freq)
441
#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
442
#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
443
#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
444
#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
445
#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
446
#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
447
#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
448
#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
449
#ifdef STACK_REGS
450
#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
451
#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
452
#endif
453
#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
454
#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
455
#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
456
#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
457
#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
458
#define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
459
#define ALLOCNO_MODE(A) ((A)->mode)
460
#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
461
#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
462
#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
463
#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
464
  ((A)->conflict_hard_reg_costs)
465
#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
466
  ((A)->updated_conflict_hard_reg_costs)
467
#define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size)
468
#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
469
#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
470
#define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
471
#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
472
#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
473
#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
474
#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
475
#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
476
#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
477
#define ALLOCNO_TEMP(A) ((A)->temp)
478
#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
479
#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
480
#define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
481
#define ALLOCNO_MIN(A) ((A)->min)
482
#define ALLOCNO_MAX(A) ((A)->max)
483
#define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
484
 
485
/* Map regno -> allocnos with given regno (see comments for
486
   allocno member `next_regno_allocno').  */
487
extern ira_allocno_t *ira_regno_allocno_map;
488
 
489
/* Array of references to all allocnos.  The order number of the
490
   allocno corresponds to the index in the array.  Removed allocnos
491
   have NULL element value.  */
492
extern ira_allocno_t *ira_allocnos;
493
 
494
/* Sizes of the previous array.  */
495
extern int ira_allocnos_num;
496
 
497
/* Map conflict id -> allocno with given conflict id (see comments for
498
   allocno member `conflict_id').  */
499
extern ira_allocno_t *ira_conflict_id_allocno_map;
500
 
501
/* The following structure represents a copy of two allocnos.  The
502
   copies represent move insns or potential move insns usually because
503
   of two operand insn constraints.  To remove register shuffle, we
504
   also create copies between allocno which is output of an insn and
505
   allocno becoming dead in the insn.  */
506
struct ira_allocno_copy
507
{
508
  /* The unique order number of the copy node starting with 0.  */
509
  int num;
510
  /* Allocnos connected by the copy.  The first allocno should have
511
     smaller order number than the second one.  */
512
  ira_allocno_t first, second;
513
  /* Execution frequency of the copy.  */
514
  int freq;
515
  bool constraint_p;
516
  /* It is a move insn which is an origin of the copy.  The member
517
     value for the copy representing two operand insn constraints or
518
     for the copy created to remove register shuffle is NULL.  In last
519
     case the copy frequency is smaller than the corresponding insn
520
     execution frequency.  */
521
  rtx insn;
522
  /* All copies with the same allocno as FIRST are linked by the two
523
     following members.  */
524
  ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
525
  /* All copies with the same allocno as SECOND are linked by the two
526
     following members.  */
527
  ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
528
  /* Region from which given copy is originated.  */
529
  ira_loop_tree_node_t loop_tree_node;
530
};
531
 
532
/* Array of references to all copies.  The order number of the copy
533
   corresponds to the index in the array.  Removed copies have NULL
534
   element value.  */
535
extern ira_copy_t *ira_copies;
536
 
537
/* Size of the previous array.  */
538
extern int ira_copies_num;
539
 
540
/* The following structure describes a stack slot used for spilled
541
   pseudo-registers.  */
542
struct ira_spilled_reg_stack_slot
543
{
544
  /* pseudo-registers assigned to the stack slot.  */
545
  regset_head spilled_regs;
546
  /* RTL representation of the stack slot.  */
547
  rtx mem;
548
  /* Size of the stack slot.  */
549
  unsigned int width;
550
};
551
 
552
/* The number of elements in the following array.  */
553
extern int ira_spilled_reg_stack_slots_num;
554
 
555
/* The following array contains info about spilled pseudo-registers
556
   stack slots used in current function so far.  */
557
extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
558
 
559
/* Correspondingly overall cost of the allocation, cost of the
560
   allocnos assigned to hard-registers, cost of the allocnos assigned
561
   to memory, cost of loads, stores and register move insns generated
562
   for pseudo-register live range splitting (see ira-emit.c).  */
563
extern int ira_overall_cost;
564
extern int ira_reg_cost, ira_mem_cost;
565
extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
566
extern int ira_move_loops_num, ira_additional_jumps_num;
567
 
568
/* Maximal value of element of array ira_reg_class_nregs.  */
569
extern int ira_max_nregs;
570
 
571
/* The number of bits in each element of array used to implement a bit
572
   vector of allocnos and what type that element has.  We use the
573
   largest integer format on the host machine.  */
574
#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
575
#define IRA_INT_TYPE HOST_WIDE_INT
576
 
577
/* Set, clear or test bit number I in R, a bit vector of elements with
578
   minimal index and maximal index equal correspondingly to MIN and
579
   MAX.  */
580
#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
581
 
582
#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__               \
583
  (({ int _min = (MIN), _max = (MAX), _i = (I);                         \
584
     if (_i < _min || _i > _max)                                        \
585
       {                                                                \
586
         fprintf (stderr,                                               \
587
                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
588
                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);    \
589
         gcc_unreachable ();                                            \
590
       }                                                                \
591
     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]                        \
592
      |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
593
 
594
 
595
#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__             \
596
  (({ int _min = (MIN), _max = (MAX), _i = (I);                         \
597
     if (_i < _min || _i > _max)                                        \
598
       {                                                                \
599
         fprintf (stderr,                                               \
600
                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
601
                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);    \
602
         gcc_unreachable ();                                            \
603
       }                                                                \
604
     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]                        \
605
      &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
606
 
607
#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__              \
608
  (({ int _min = (MIN), _max = (MAX), _i = (I);                         \
609
     if (_i < _min || _i > _max)                                        \
610
       {                                                                \
611
         fprintf (stderr,                                               \
612
                  "\n%s: %d: error in %s: %d not in range [%d,%d]\n",   \
613
                  __FILE__, __LINE__, __FUNCTION__, _i, _min, _max);    \
614
         gcc_unreachable ();                                            \
615
       }                                                                \
616
     ((R)[(unsigned) (_i - _min) / IRA_INT_BITS]                        \
617
      & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
618
 
619
#else
620
 
621
#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX)                     \
622
  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]                 \
623
   |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
624
 
625
#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX)                   \
626
  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]                 \
627
   &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
628
 
629
#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX)                    \
630
  ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS]                 \
631
   & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
632
 
633
#endif
634
 
635
/* The iterator for allocno set implemented ed as allocno bit
636
   vector.  */
637
typedef struct {
638
 
639
  /* Array containing the allocno bit vector.  */
640
  IRA_INT_TYPE *vec;
641
 
642
  /* The number of the current element in the vector.  */
643
  unsigned int word_num;
644
 
645
  /* The number of bits in the bit vector.  */
646
  unsigned int nel;
647
 
648
  /* The current bit index of the bit vector.  */
649
  unsigned int bit_num;
650
 
651
  /* Index corresponding to the 1st bit of the bit vector.   */
652
  int start_val;
653
 
654
  /* The word of the bit vector currently visited.  */
655
  unsigned IRA_INT_TYPE word;
656
} ira_allocno_set_iterator;
657
 
658
/* Initialize the iterator I for allocnos bit vector VEC containing
659
   minimal and maximal values MIN and MAX.  */
660
static inline void
661
ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
662
                           IRA_INT_TYPE *vec, int min, int max)
663
{
664
  i->vec = vec;
665
  i->word_num = 0;
666
  i->nel = max < min ? 0 : max - min + 1;
667
  i->start_val = min;
668
  i->bit_num = 0;
669
  i->word = i->nel == 0 ? 0 : vec[0];
670
}
671
 
672
/* Return TRUE if we have more allocnos to visit, in which case *N is
673
   set to the allocno number to be visited.  Otherwise, return
674
   FALSE.  */
675
static inline bool
676
ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
677
{
678
  /* Skip words that are zeros.  */
679
  for (; i->word == 0; i->word = i->vec[i->word_num])
680
    {
681
      i->word_num++;
682
      i->bit_num = i->word_num * IRA_INT_BITS;
683
 
684
      /* If we have reached the end, break.  */
685
      if (i->bit_num >= i->nel)
686
        return false;
687
    }
688
 
689
  /* Skip bits that are zero.  */
690
  for (; (i->word & 1) == 0; i->word >>= 1)
691
    i->bit_num++;
692
 
693
  *n = (int) i->bit_num + i->start_val;
694
 
695
  return true;
696
}
697
 
698
/* Advance to the next allocno in the set.  */
699
static inline void
700
ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
701
{
702
  i->word >>= 1;
703
  i->bit_num++;
704
}
705
 
706
/* Loop over all elements of allocno set given by bit vector VEC and
707
   their minimal and maximal values MIN and MAX.  In each iteration, N
708
   is set to the number of next allocno.  ITER is an instance of
709
   ira_allocno_set_iterator used to iterate the allocnos in the set.  */
710
#define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER)         \
711
  for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX));        \
712
       ira_allocno_set_iter_cond (&(ITER), &(N));                       \
713
       ira_allocno_set_iter_next (&(ITER)))
714
 
715
/* ira.c: */
716
 
717
/* Map: hard regs X modes -> set of hard registers for storing value
718
   of given mode starting with given hard register.  */
719
extern HARD_REG_SET ira_reg_mode_hard_regset
720
                    [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
721
 
722
/* Array analogous to macro REGISTER_MOVE_COST.  Don't use
723
   ira_register_move_cost directly.  Use function of
724
   ira_get_may_move_cost instead.  */
725
extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
726
 
727
/* Similar to may_move_in_cost but it is calculated in IRA instead of
728
   regclass.  Another difference we take only available hard registers
729
   into account to figure out that one register class is a subset of
730
   the another one.  Don't use it directly.  Use function of
731
   ira_get_may_move_cost instead.  */
732
extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
733
 
734
/* Similar to may_move_out_cost but it is calculated in IRA instead of
735
   regclass.  Another difference we take only available hard registers
736
   into account to figure out that one register class is a subset of
737
   the another one.  Don't use it directly.  Use function of
738
   ira_get_may_move_cost instead.  */
739
extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
740
 
741
/* Register class subset relation: TRUE if the first class is a subset
742
   of the second one considering only hard registers available for the
743
   allocation.  */
744
extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
745
 
746
/* Index (in ira_class_hard_regs) for given register class and hard
747
   register (in general case a hard register can belong to several
748
   register classes).  The index is negative for hard registers
749
   unavailable for the allocation. */
750
extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
751
 
752
/* Array whose values are hard regset of hard registers available for
753
   the allocation of given register class whose HARD_REGNO_MODE_OK
754
   values for given mode are zero.  */
755
extern HARD_REG_SET prohibited_class_mode_regs
756
                    [N_REG_CLASSES][NUM_MACHINE_MODES];
757
 
758
/* Array whose values are hard regset of hard registers for which
759
   move of the hard register in given mode into itself is
760
   prohibited.  */
761
extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
762
 
763
/* The value is number of elements in the subsequent array.  */
764
extern int ira_important_classes_num;
765
 
766
/* The array containing non-empty classes (including non-empty cover
767
   classes) which are subclasses of cover classes.  Such classes is
768
   important for calculation of the hard register usage costs.  */
769
extern enum reg_class ira_important_classes[N_REG_CLASSES];
770
 
771
/* The array containing indexes of important classes in the previous
772
   array.  The array elements are defined only for important
773
   classes.  */
774
extern int ira_important_class_nums[N_REG_CLASSES];
775
 
776
/* The biggest important class inside of intersection of the two
777
   classes (that is calculated taking only hard registers available
778
   for allocation into account).  If the both classes contain no hard
779
   registers available for allocation, the value is calculated with
780
   taking all hard-registers including fixed ones into account.  */
781
extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
782
 
783
/* True if the two classes (that is calculated taking only hard
784
   registers available for allocation into account) are
785
   intersected.  */
786
extern bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
787
 
788
/* Classes with end marker LIM_REG_CLASSES which are intersected with
789
   given class (the first index).  That includes given class itself.
790
   This is calculated taking only hard registers available for
791
   allocation into account.  */
792
extern enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
793
/* The biggest important class inside of union of the two classes
794
   (that is calculated taking only hard registers available for
795
   allocation into account).  If the both classes contain no hard
796
   registers available for allocation, the value is calculated with
797
   taking all hard-registers including fixed ones into account.  In
798
   other words, the value is the corresponding reg_class_subunion
799
   value.  */
800
extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
801
 
802
extern void *ira_allocate (size_t);
803
extern void *ira_reallocate (void *, size_t);
804
extern void ira_free (void *addr);
805
extern bitmap ira_allocate_bitmap (void);
806
extern void ira_free_bitmap (bitmap);
807
extern void ira_print_disposition (FILE *);
808
extern void ira_debug_disposition (void);
809
extern void ira_debug_class_cover (void);
810
extern void ira_init_register_move_cost (enum machine_mode);
811
 
812
/* The length of the two following arrays.  */
813
extern int ira_reg_equiv_len;
814
 
815
/* The element value is TRUE if the corresponding regno value is
816
   invariant.  */
817
extern bool *ira_reg_equiv_invariant_p;
818
 
819
/* The element value is equiv constant of given pseudo-register or
820
   NULL_RTX.  */
821
extern rtx *ira_reg_equiv_const;
822
 
823
/* ira-build.c */
824
 
825
/* The current loop tree node and its regno allocno map.  */
826
extern ira_loop_tree_node_t ira_curr_loop_tree_node;
827
extern ira_allocno_t *ira_curr_regno_allocno_map;
828
 
829
extern void ira_debug_copy (ira_copy_t);
830
extern void ira_debug_copies (void);
831
extern void ira_debug_allocno_copies (ira_allocno_t);
832
 
833
extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
834
                                    void (*) (ira_loop_tree_node_t),
835
                                    void (*) (ira_loop_tree_node_t));
836
extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
837
extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
838
extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
839
extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
840
extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
841
extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
842
extern void ira_print_expanded_allocno (ira_allocno_t);
843
extern allocno_live_range_t ira_create_allocno_live_range
844
                            (ira_allocno_t, int, int, allocno_live_range_t);
845
extern allocno_live_range_t ira_copy_allocno_live_range_list
846
                            (allocno_live_range_t);
847
extern allocno_live_range_t ira_merge_allocno_live_ranges
848
                            (allocno_live_range_t, allocno_live_range_t);
849
extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t,
850
                                                 allocno_live_range_t);
851
extern void ira_finish_allocno_live_range (allocno_live_range_t);
852
extern void ira_finish_allocno_live_range_list (allocno_live_range_t);
853
extern void ira_free_allocno_updated_costs (ira_allocno_t);
854
extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
855
                                   int, bool, rtx, ira_loop_tree_node_t);
856
extern void ira_add_allocno_copy_to_list (ira_copy_t);
857
extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
858
extern void ira_remove_allocno_copy_from_list (ira_copy_t);
859
extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
860
                                        bool, rtx, ira_loop_tree_node_t);
861
 
862
extern int *ira_allocate_cost_vector (enum reg_class);
863
extern void ira_free_cost_vector (int *, enum reg_class);
864
 
865
extern void ira_flattening (int, int);
866
extern bool ira_build (bool);
867
extern void ira_destroy (void);
868
 
869
/* ira-costs.c */
870
extern void ira_init_costs_once (void);
871
extern void ira_init_costs (void);
872
extern void ira_finish_costs_once (void);
873
extern void ira_costs (void);
874
extern void ira_tune_allocno_costs_and_cover_classes (void);
875
 
876
/* ira-lives.c */
877
 
878
extern void ira_rebuild_start_finish_chains (void);
879
extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
880
extern void ira_debug_live_range_list (allocno_live_range_t);
881
extern void ira_debug_allocno_live_ranges (ira_allocno_t);
882
extern void ira_debug_live_ranges (void);
883
extern void ira_create_allocno_live_ranges (void);
884
extern void ira_compress_allocno_live_ranges (void);
885
extern void ira_finish_allocno_live_ranges (void);
886
 
887
/* ira-conflicts.c */
888
extern void ira_debug_conflicts (bool);
889
extern void ira_build_conflicts (void);
890
 
891
/* ira-color.c */
892
extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
893
extern void ira_reassign_conflict_allocnos (int);
894
extern void ira_initiate_assign (void);
895
extern void ira_finish_assign (void);
896
extern void ira_color (void);
897
 
898
/* ira-emit.c */
899
extern void ira_emit (bool);
900
 
901
 
902
 
903
/* Return cost of moving value of MODE from register of class FROM to
904
   register of class TO.  */
905
static inline int
906
ira_get_register_move_cost (enum machine_mode mode,
907
                            enum reg_class from, enum reg_class to)
908
{
909
  if (ira_register_move_cost[mode] == NULL)
910
    ira_init_register_move_cost (mode);
911
  return ira_register_move_cost[mode][from][to];
912
}
913
 
914
/* Return cost of moving value of MODE from register of class FROM to
915
   register of class TO.  Return zero if IN_P is true and FROM is
916
   subset of TO or if IN_P is false and FROM is superset of TO.  */
917
static inline int
918
ira_get_may_move_cost (enum machine_mode mode,
919
                       enum reg_class from, enum reg_class to,
920
                       bool in_p)
921
{
922
  if (ira_register_move_cost[mode] == NULL)
923
    ira_init_register_move_cost (mode);
924
  return (in_p
925
          ? ira_may_move_in_cost[mode][from][to]
926
          : ira_may_move_out_cost[mode][from][to]);
927
}
928
 
929
 
930
 
931
/* The iterator for all allocnos.  */
932
typedef struct {
933
  /* The number of the current element in IRA_ALLOCNOS.  */
934
  int n;
935
} ira_allocno_iterator;
936
 
937
/* Initialize the iterator I.  */
938
static inline void
939
ira_allocno_iter_init (ira_allocno_iterator *i)
940
{
941
  i->n = 0;
942
}
943
 
944
/* Return TRUE if we have more allocnos to visit, in which case *A is
945
   set to the allocno to be visited.  Otherwise, return FALSE.  */
946
static inline bool
947
ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
948
{
949
  int n;
950
 
951
  for (n = i->n; n < ira_allocnos_num; n++)
952
    if (ira_allocnos[n] != NULL)
953
      {
954
        *a = ira_allocnos[n];
955
        i->n = n + 1;
956
        return true;
957
      }
958
  return false;
959
}
960
 
961
/* Loop over all allocnos.  In each iteration, A is set to the next
962
   allocno.  ITER is an instance of ira_allocno_iterator used to iterate
963
   the allocnos.  */
964
#define FOR_EACH_ALLOCNO(A, ITER)                       \
965
  for (ira_allocno_iter_init (&(ITER));                 \
966
       ira_allocno_iter_cond (&(ITER), &(A));)
967
 
968
 
969
 
970
 
971
/* The iterator for copies.  */
972
typedef struct {
973
  /* The number of the current element in IRA_COPIES.  */
974
  int n;
975
} ira_copy_iterator;
976
 
977
/* Initialize the iterator I.  */
978
static inline void
979
ira_copy_iter_init (ira_copy_iterator *i)
980
{
981
  i->n = 0;
982
}
983
 
984
/* Return TRUE if we have more copies to visit, in which case *CP is
985
   set to the copy to be visited.  Otherwise, return FALSE.  */
986
static inline bool
987
ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
988
{
989
  int n;
990
 
991
  for (n = i->n; n < ira_copies_num; n++)
992
    if (ira_copies[n] != NULL)
993
      {
994
        *cp = ira_copies[n];
995
        i->n = n + 1;
996
        return true;
997
      }
998
  return false;
999
}
1000
 
1001
/* Loop over all copies.  In each iteration, C is set to the next
1002
   copy.  ITER is an instance of ira_copy_iterator used to iterate
1003
   the copies.  */
1004
#define FOR_EACH_COPY(C, ITER)                          \
1005
  for (ira_copy_iter_init (&(ITER));                    \
1006
       ira_copy_iter_cond (&(ITER), &(C));)
1007
 
1008
 
1009
 
1010
 
1011
/* The iterator for allocno conflicts.  */
1012
typedef struct {
1013
 
1014
  /* TRUE if the conflicts are represented by vector of allocnos.  */
1015
  bool allocno_conflict_vec_p;
1016
 
1017
  /* The conflict vector or conflict bit vector.  */
1018
  void *vec;
1019
 
1020
  /* The number of the current element in the vector (of type
1021
     ira_allocno_t or IRA_INT_TYPE).  */
1022
  unsigned int word_num;
1023
 
1024
  /* The bit vector size.  It is defined only if
1025
     ALLOCNO_CONFLICT_VEC_P is FALSE.  */
1026
  unsigned int size;
1027
 
1028
  /* The current bit index of bit vector.  It is defined only if
1029
     ALLOCNO_CONFLICT_VEC_P is FALSE.  */
1030
  unsigned int bit_num;
1031
 
1032
  /* Allocno conflict id corresponding to the 1st bit of the bit
1033
     vector.  It is defined only if ALLOCNO_CONFLICT_VEC_P is
1034
     FALSE.  */
1035
  int base_conflict_id;
1036
 
1037
  /* The word of bit vector currently visited.  It is defined only if
1038
     ALLOCNO_CONFLICT_VEC_P is FALSE.  */
1039
  unsigned IRA_INT_TYPE word;
1040
} ira_allocno_conflict_iterator;
1041
 
1042
/* Initialize the iterator I with ALLOCNO conflicts.  */
1043
static inline void
1044
ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1045
                                ira_allocno_t allocno)
1046
{
1047
  i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1048
  i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1049
  i->word_num = 0;
1050
  if (i->allocno_conflict_vec_p)
1051
    i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1052
  else
1053
    {
1054
      if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1055
        i->size = 0;
1056
      else
1057
        i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1058
                    + IRA_INT_BITS)
1059
                   / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1060
      i->bit_num = 0;
1061
      i->base_conflict_id = ALLOCNO_MIN (allocno);
1062
      i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1063
    }
1064
}
1065
 
1066
/* Return TRUE if we have more conflicting allocnos to visit, in which
1067
   case *A is set to the allocno to be visited.  Otherwise, return
1068
   FALSE.  */
1069
static inline bool
1070
ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1071
                                ira_allocno_t *a)
1072
{
1073
  ira_allocno_t conflict_allocno;
1074
 
1075
  if (i->allocno_conflict_vec_p)
1076
    {
1077
      conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1078
      if (conflict_allocno == NULL)
1079
        return false;
1080
      *a = conflict_allocno;
1081
      return true;
1082
    }
1083
  else
1084
    {
1085
      /* Skip words that are zeros.  */
1086
      for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1087
        {
1088
          i->word_num++;
1089
 
1090
          /* If we have reached the end, break.  */
1091
          if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1092
            return false;
1093
 
1094
          i->bit_num = i->word_num * IRA_INT_BITS;
1095
        }
1096
 
1097
      /* Skip bits that are zero.  */
1098
      for (; (i->word & 1) == 0; i->word >>= 1)
1099
        i->bit_num++;
1100
 
1101
      *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1102
 
1103
      return true;
1104
    }
1105
}
1106
 
1107
/* Advance to the next conflicting allocno.  */
1108
static inline void
1109
ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1110
{
1111
  if (i->allocno_conflict_vec_p)
1112
    i->word_num++;
1113
  else
1114
    {
1115
      i->word >>= 1;
1116
      i->bit_num++;
1117
    }
1118
}
1119
 
1120
/* Loop over all allocnos conflicting with ALLOCNO.  In each
1121
   iteration, A is set to the next conflicting allocno.  ITER is an
1122
   instance of ira_allocno_conflict_iterator used to iterate the
1123
   conflicts.  */
1124
#define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER)                     \
1125
  for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO));             \
1126
       ira_allocno_conflict_iter_cond (&(ITER), &(A));                  \
1127
       ira_allocno_conflict_iter_next (&(ITER)))
1128
 
1129
 
1130
 
1131
/* The function returns TRUE if hard registers starting with
1132
   HARD_REGNO and containing value of MODE are not in set
1133
   HARD_REGSET.  */
1134
static inline bool
1135
ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1136
                           HARD_REG_SET hard_regset)
1137
{
1138
  int i;
1139
 
1140
  ira_assert (hard_regno >= 0);
1141
  for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1142
    if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1143
      return false;
1144
  return true;
1145
}
1146
 
1147
 
1148
 
1149
/* To save memory we use a lazy approach for allocation and
1150
   initialization of the cost vectors.  We do this only when it is
1151
   really necessary.  */
1152
 
1153
/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1154
   initialize the elements by VAL if it is necessary */
1155
static inline void
1156
ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1157
{
1158
  int i, *reg_costs;
1159
  int len;
1160
 
1161
  if (*vec != NULL)
1162
    return;
1163
  *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1164
  len = ira_class_hard_regs_num[cover_class];
1165
  for (i = 0; i < len; i++)
1166
    reg_costs[i] = val;
1167
}
1168
 
1169
/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1170
   copy values of vector SRC into the vector if it is necessary */
1171
static inline void
1172
ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1173
{
1174
  int len;
1175
 
1176
  if (*vec != NULL || src == NULL)
1177
    return;
1178
  *vec = ira_allocate_cost_vector (cover_class);
1179
  len = ira_class_hard_regs_num[cover_class];
1180
  memcpy (*vec, src, sizeof (int) * len);
1181
}
1182
 
1183
/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1184
   add values of vector SRC into the vector if it is necessary */
1185
static inline void
1186
ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1187
                                   int *src)
1188
{
1189
  int i, len;
1190
 
1191
  if (src == NULL)
1192
    return;
1193
  len = ira_class_hard_regs_num[cover_class];
1194
  if (*vec == NULL)
1195
    {
1196
      *vec = ira_allocate_cost_vector (cover_class);
1197
      memset (*vec, 0, sizeof (int) * len);
1198
    }
1199
  for (i = 0; i < len; i++)
1200
    (*vec)[i] += src[i];
1201
}
1202
 
1203
/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1204
   copy values of vector SRC into the vector or initialize it by VAL
1205
   (if SRC is null).  */
1206
static inline void
1207
ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1208
                                    int val, int *src)
1209
{
1210
  int i, *reg_costs;
1211
  int len;
1212
 
1213
  if (*vec != NULL)
1214
    return;
1215
  *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1216
  len = ira_class_hard_regs_num[cover_class];
1217
  if (src != NULL)
1218
    memcpy (reg_costs, src, sizeof (int) * len);
1219
  else
1220
    {
1221
      for (i = 0; i < len; i++)
1222
        reg_costs[i] = val;
1223
    }
1224
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.