OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [arch/] [ia64/] [lib/] [memset.S] - Blame information for rev 1275

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
/* Optimized version of the standard memset() function.
2
 
3
   Copyright (c) 2002 Hewlett-Packard Co/CERN
4
        Sverre Jarp 
5
 
6
   Return: dest
7
 
8
   Inputs:
9
        in0:    dest
10
        in1:    value
11
        in2:    count
12
 
13
   The algorithm is fairly straightforward: set byte by byte until we
14
   we get to a 16B-aligned address, then loop on 128 B chunks using an
15
   early store as prefetching, then loop on 32B chucks, then clear remaining
16
   words, finally clear remaining bytes.
17
   Since a stf.spill f0 can store 16B in one go, we use this instruction
18
   to get peak speed when value = 0.  */
19
 
20
#include 
21
#undef ret
22
 
23
#define dest            in0
24
#define value           in1
25
#define cnt             in2
26
 
27
#define tmp             r31
28
#define save_lc         r30
29
#define ptr0            r29
30
#define ptr1            r28
31
#define ptr2            r27
32
#define ptr3            r26
33
#define ptr9            r24
34
#define loopcnt         r23
35
#define linecnt         r22
36
#define bytecnt         r21
37
 
38
#define fvalue          f6
39
 
40
// This routine uses only scratch predicate registers (p6 - p15)
41
#define p_scr           p6                      // default register for same-cycle branches
42
#define p_nz            p7
43
#define p_zr            p8
44
#define p_unalgn        p9
45
#define p_y             p11
46
#define p_n             p12
47
#define p_yy            p13
48
#define p_nn            p14
49
 
50
#define MIN1            15
51
#define MIN1P1HALF      8
52
#define LINE_SIZE       128
53
#define LSIZE_SH        7                       // shift amount
54
#define PREF_AHEAD      8
55
 
56
GLOBAL_ENTRY(memset)
57
{ .mmi
58
        .prologue
59
        alloc   tmp = ar.pfs, 3, 0, 0, 0
60
        .body
61
        lfetch.nt1 [dest]                       //
62
        .save   ar.lc, save_lc
63
        mov.i   save_lc = ar.lc
64
} { .mmi
65
        mov     ret0 = dest                     // return value
66
        cmp.ne  p_nz, p_zr = value, r0          // use stf.spill if value is zero
67
        cmp.eq  p_scr, p0 = cnt, r0
68
;; }
69
{ .mmi
70
        and     ptr2 = -(MIN1+1), dest          // aligned address
71
        and     tmp = MIN1, dest                // prepare to check for correct alignment
72
        tbit.nz p_y, p_n = dest, 0              // Do we have an odd address? (M_B_U)
73
} { .mib
74
        mov     ptr1 = dest
75
        mux1    value = value, @brcst           // create 8 identical bytes in word
76
(p_scr) br.ret.dpnt.many rp                     // return immediately if count = 0
77
;; }
78
{ .mib
79
        cmp.ne  p_unalgn, p0 = tmp, r0          //
80
} { .mib
81
        sub     bytecnt = (MIN1+1), tmp         // NB: # of bytes to move is 1 higher than loopcnt
82
        cmp.gt  p_scr, p0 = 16, cnt             // is it a minimalistic task?
83
(p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
84
;; }
85
{ .mmi
86
(p_unalgn) add  ptr1 = (MIN1+1), ptr2           // after alignment
87
(p_unalgn) add  ptr2 = MIN1P1HALF, ptr2         // after alignment
88
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3    // should we do a st8 ?
89
;; }
90
{ .mib
91
(p_y)   add     cnt = -8, cnt                   //
92
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2  // should we do a st4 ?
93
} { .mib
94
(p_y)   st8     [ptr2] = value,-4               //
95
(p_n)   add     ptr2 = 4, ptr2                  //
96
;; }
97
{ .mib
98
(p_yy)  add     cnt = -4, cnt                   //
99
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1    // should we do a st2 ?
100
} { .mib
101
(p_yy)  st4     [ptr2] = value,-2               //
102
(p_nn)  add     ptr2 = 2, ptr2                  //
103
;; }
104
{ .mmi
105
        mov     tmp = LINE_SIZE+1               // for compare
106
(p_y)   add     cnt = -2, cnt                   //
107
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0  // should we do a st1 ?
108
} { .mmi
109
        setf.sig fvalue=value                   // transfer value to FLP side
110
(p_y)   st2     [ptr2] = value,-1               //
111
(p_n)   add     ptr2 = 1, ptr2                  //
112
;; }
113
 
114
{ .mmi
115
(p_yy)  st1     [ptr2] = value                  //
116
        cmp.gt  p_scr, p0 = tmp, cnt            // is it a minimalistic task?
117
} { .mbb
118
(p_yy)  add     cnt = -1, cnt                   //
119
(p_scr) br.cond.dpnt.many .fraction_of_line     // go move just a few
120
;; }
121
 
122
{ .mib
123
        nop.m 0
124
        shr.u   linecnt = cnt, LSIZE_SH
125
(p_zr)  br.cond.dptk.many .l1b                  // Jump to use stf.spill
126
;; }
127
 
128
//      .align 32 // -------------------------- //  L1A: store ahead into cache lines; fill later
129
{ .mmi
130
        and     tmp = -(LINE_SIZE), cnt         // compute end of range
131
        mov     ptr9 = ptr1                     // used for prefetching
132
        and     cnt = (LINE_SIZE-1), cnt        // remainder
133
} { .mmi
134
        mov     loopcnt = PREF_AHEAD-1          // default prefetch loop
135
        cmp.gt  p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
136
;; }
137
{ .mmi
138
(p_scr) add     loopcnt = -1, linecnt           //
139
        add     ptr2 = 8, ptr1                  // start of stores (beyond prefetch stores)
140
        add     ptr1 = tmp, ptr1                // first address beyond total range
141
;; }
142
{ .mmi
143
        add     tmp = -1, linecnt               // next loop count
144
        mov.i   ar.lc = loopcnt                 //
145
;; }
146
.pref_l1a:
147
{ .mib
148
        stf8 [ptr9] = fvalue, 128               // Do stores one cache line apart
149
        nop.i   0
150
        br.cloop.dptk.few .pref_l1a
151
;; }
152
{ .mmi
153
        add     ptr0 = 16, ptr2                 // Two stores in parallel
154
        mov.i   ar.lc = tmp                     //
155
;; }
156
.l1ax:
157
 { .mmi
158
        stf8 [ptr2] = fvalue, 8
159
        stf8 [ptr0] = fvalue, 8
160
 ;; }
161
 { .mmi
162
        stf8 [ptr2] = fvalue, 24
163
        stf8 [ptr0] = fvalue, 24
164
 ;; }
165
 { .mmi
166
        stf8 [ptr2] = fvalue, 8
167
        stf8 [ptr0] = fvalue, 8
168
 ;; }
169
 { .mmi
170
        stf8 [ptr2] = fvalue, 24
171
        stf8 [ptr0] = fvalue, 24
172
 ;; }
173
 { .mmi
174
        stf8 [ptr2] = fvalue, 8
175
        stf8 [ptr0] = fvalue, 8
176
 ;; }
177
 { .mmi
178
        stf8 [ptr2] = fvalue, 24
179
        stf8 [ptr0] = fvalue, 24
180
 ;; }
181
 { .mmi
182
        stf8 [ptr2] = fvalue, 8
183
        stf8 [ptr0] = fvalue, 32
184
        cmp.lt  p_scr, p0 = ptr9, ptr1          // do we need more prefetching?
185
 ;; }
186
{ .mmb
187
        stf8 [ptr2] = fvalue, 24
188
(p_scr) stf8 [ptr9] = fvalue, 128
189
        br.cloop.dptk.few .l1ax
190
;; }
191
{ .mbb
192
        cmp.le  p_scr, p0 = 8, cnt              // just a few bytes left ?
193
(p_scr) br.cond.dpnt.many  .fraction_of_line    // Branch no. 2
194
        br.cond.dpnt.many  .move_bytes_from_alignment   // Branch no. 3
195
;; }
196
 
197
//      .align 32
198
.l1b:   // ------------------------------------ //  L1B: store ahead into cache lines; fill later
199
{ .mmi
200
        and     tmp = -(LINE_SIZE), cnt         // compute end of range
201
        mov     ptr9 = ptr1                     // used for prefetching
202
        and     cnt = (LINE_SIZE-1), cnt        // remainder
203
} { .mmi
204
        mov     loopcnt = PREF_AHEAD-1          // default prefetch loop
205
        cmp.gt  p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
206
;; }
207
{ .mmi
208
(p_scr) add     loopcnt = -1, linecnt
209
        add     ptr2 = 16, ptr1                 // start of stores (beyond prefetch stores)
210
        add     ptr1 = tmp, ptr1                // first address beyond total range
211
;; }
212
{ .mmi
213
        add     tmp = -1, linecnt               // next loop count
214
        mov.i   ar.lc = loopcnt
215
;; }
216
.pref_l1b:
217
{ .mib
218
        stf.spill [ptr9] = f0, 128              // Do stores one cache line apart
219
        nop.i   0
220
        br.cloop.dptk.few .pref_l1b
221
;; }
222
{ .mmi
223
        add     ptr0 = 16, ptr2                 // Two stores in parallel
224
        mov.i   ar.lc = tmp
225
;; }
226
.l1bx:
227
 { .mmi
228
        stf.spill [ptr2] = f0, 32
229
        stf.spill [ptr0] = f0, 32
230
 ;; }
231
 { .mmi
232
        stf.spill [ptr2] = f0, 32
233
        stf.spill [ptr0] = f0, 32
234
 ;; }
235
 { .mmi
236
        stf.spill [ptr2] = f0, 32
237
        stf.spill [ptr0] = f0, 64
238
        cmp.lt  p_scr, p0 = ptr9, ptr1          // do we need more prefetching?
239
 ;; }
240
{ .mmb
241
        stf.spill [ptr2] = f0, 32
242
(p_scr) stf.spill [ptr9] = f0, 128
243
        br.cloop.dptk.few .l1bx
244
;; }
245
{ .mib
246
        cmp.gt  p_scr, p0 = 8, cnt              // just a few bytes left ?
247
(p_scr) br.cond.dpnt.many  .move_bytes_from_alignment   //
248
;; }
249
 
250
.fraction_of_line:
251
{ .mib
252
        add     ptr2 = 16, ptr1
253
        shr.u   loopcnt = cnt, 5                // loopcnt = cnt / 32
254
;; }
255
{ .mib
256
        cmp.eq  p_scr, p0 = loopcnt, r0
257
        add     loopcnt = -1, loopcnt
258
(p_scr) br.cond.dpnt.many .store_words
259
;; }
260
{ .mib
261
        and     cnt = 0x1f, cnt                 // compute the remaining cnt
262
        mov.i   ar.lc = loopcnt
263
;; }
264
//      .align 32
265
.l2:    // ------------------------------------ //  L2A:  store 32B in 2 cycles
266
{ .mmb
267
        stf8    [ptr1] = fvalue, 8
268
        stf8    [ptr2] = fvalue, 8
269
;; } { .mmb
270
        stf8    [ptr1] = fvalue, 24
271
        stf8    [ptr2] = fvalue, 24
272
        br.cloop.dptk.many .l2
273
;; }
274
.store_words:
275
{ .mib
276
        cmp.gt  p_scr, p0 = 8, cnt              // just a few bytes left ?
277
(p_scr) br.cond.dpnt.many .move_bytes_from_alignment    // Branch
278
;; }
279
 
280
{ .mmi
281
        stf8    [ptr1] = fvalue, 8              // store
282
        cmp.le  p_y, p_n = 16, cnt
283
        add     cnt = -8, cnt                   // subtract
284
;; }
285
{ .mmi
286
(p_y)   stf8    [ptr1] = fvalue, 8              // store
287
(p_y)   cmp.le.unc p_yy, p_nn = 16, cnt
288
(p_y)   add     cnt = -8, cnt                   // subtract
289
;; }
290
{ .mmi                                          // store
291
(p_yy)  stf8    [ptr1] = fvalue, 8
292
(p_yy)  add     cnt = -8, cnt                   // subtract
293
;; }
294
 
295
.move_bytes_from_alignment:
296
{ .mib
297
        cmp.eq  p_scr, p0 = cnt, r0
298
        tbit.nz.unc p_y, p0 = cnt, 2            // should we terminate with a st4 ?
299
(p_scr) br.cond.dpnt.few .restore_and_exit
300
;; }
301
{ .mib
302
(p_y)   st4     [ptr1] = value,4
303
        tbit.nz.unc p_yy, p0 = cnt, 1           // should we terminate with a st2 ?
304
;; }
305
{ .mib
306
(p_yy)  st2     [ptr1] = value,2
307
        tbit.nz.unc p_y, p0 = cnt, 0            // should we terminate with a st1 ?
308
;; }
309
 
310
{ .mib
311
(p_y)   st1     [ptr1] = value
312
;; }
313
.restore_and_exit:
314
{ .mib
315
        nop.m   0
316
        mov.i   ar.lc = save_lc
317
        br.ret.sptk.many rp
318
;; }
319
 
320
.move_bytes_unaligned:
321
{ .mmi
322
       .pred.rel "mutex",p_y, p_n
323
       .pred.rel "mutex",p_yy, p_nn
324
(p_n)   cmp.le  p_yy, p_nn = 4, cnt
325
(p_y)   cmp.le  p_yy, p_nn = 5, cnt
326
(p_n)   add     ptr2 = 2, ptr1
327
} { .mmi
328
(p_y)   add     ptr2 = 3, ptr1
329
(p_y)   st1     [ptr1] = value, 1               // fill 1 (odd-aligned) byte [15, 14 (or less) left]
330
(p_y)   add     cnt = -1, cnt
331
;; }
332
{ .mmi
333
(p_yy)  cmp.le.unc p_y, p0 = 8, cnt
334
        add     ptr3 = ptr1, cnt                // prepare last store
335
        mov.i   ar.lc = save_lc
336
} { .mmi
337
(p_yy)  st2     [ptr1] = value, 4               // fill 2 (aligned) bytes
338
(p_yy)  st2     [ptr2] = value, 4               // fill 2 (aligned) bytes [11, 10 (o less) left]
339
(p_yy)  add     cnt = -4, cnt
340
;; }
341
{ .mmi
342
(p_y)   cmp.le.unc p_yy, p0 = 8, cnt
343
        add     ptr3 = -1, ptr3                 // last store
344
        tbit.nz p_scr, p0 = cnt, 1              // will there be a st2 at the end ?
345
} { .mmi
346
(p_y)   st2     [ptr1] = value, 4               // fill 2 (aligned) bytes
347
(p_y)   st2     [ptr2] = value, 4               // fill 2 (aligned) bytes [7, 6 (or less) left]
348
(p_y)   add     cnt = -4, cnt
349
;; }
350
{ .mmi
351
(p_yy)  st2     [ptr1] = value, 4               // fill 2 (aligned) bytes
352
(p_yy)  st2     [ptr2] = value, 4               // fill 2 (aligned) bytes [3, 2 (or less) left]
353
        tbit.nz p_y, p0 = cnt, 0                // will there be a st1 at the end ?
354
} { .mmi
355
(p_yy)  add     cnt = -4, cnt
356
;; }
357
{ .mmb
358
(p_scr) st2     [ptr1] = value                  // fill 2 (aligned) bytes
359
(p_y)   st1     [ptr3] = value                  // fill last byte (using ptr3)
360
        br.ret.sptk.many rp
361
}
362
END(memset)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.