OpenCores
URL https://opencores.org/ocsvn/test_project/test_project/trunk

Subversion Repositories test_project

[/] [test_project/] [trunk/] [linux_sd_driver/] [drivers/] [md/] [dm-table.c] - Blame information for rev 62

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 62 marcus.erl
/*
2
 * Copyright (C) 2001 Sistina Software (UK) Limited.
3
 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4
 *
5
 * This file is released under the GPL.
6
 */
7
 
8
#include "dm.h"
9
 
10
#include <linux/module.h>
11
#include <linux/vmalloc.h>
12
#include <linux/blkdev.h>
13
#include <linux/namei.h>
14
#include <linux/ctype.h>
15
#include <linux/slab.h>
16
#include <linux/interrupt.h>
17
#include <linux/mutex.h>
18
#include <asm/atomic.h>
19
 
20
#define DM_MSG_PREFIX "table"
21
 
22
#define MAX_DEPTH 16
23
#define NODE_SIZE L1_CACHE_BYTES
24
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
25
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
26
 
27
struct dm_table {
28
        struct mapped_device *md;
29
        atomic_t holders;
30
 
31
        /* btree table */
32
        unsigned int depth;
33
        unsigned int counts[MAX_DEPTH]; /* in nodes */
34
        sector_t *index[MAX_DEPTH];
35
 
36
        unsigned int num_targets;
37
        unsigned int num_allocated;
38
        sector_t *highs;
39
        struct dm_target *targets;
40
 
41
        /*
42
         * Indicates the rw permissions for the new logical
43
         * device.  This should be a combination of FMODE_READ
44
         * and FMODE_WRITE.
45
         */
46
        int mode;
47
 
48
        /* a list of devices used by this table */
49
        struct list_head devices;
50
 
51
        /*
52
         * These are optimistic limits taken from all the
53
         * targets, some targets will need smaller limits.
54
         */
55
        struct io_restrictions limits;
56
 
57
        /* events get handed up using this callback */
58
        void (*event_fn)(void *);
59
        void *event_context;
60
};
61
 
62
/*
63
 * Similar to ceiling(log_size(n))
64
 */
65
static unsigned int int_log(unsigned int n, unsigned int base)
66
{
67
        int result = 0;
68
 
69
        while (n > 1) {
70
                n = dm_div_up(n, base);
71
                result++;
72
        }
73
 
74
        return result;
75
}
76
 
77
/*
78
 * Returns the minimum that is _not_ zero, unless both are zero.
79
 */
80
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
81
 
82
/*
83
 * Combine two io_restrictions, always taking the lower value.
84
 */
85
static void combine_restrictions_low(struct io_restrictions *lhs,
86
                                     struct io_restrictions *rhs)
87
{
88
        lhs->max_sectors =
89
                min_not_zero(lhs->max_sectors, rhs->max_sectors);
90
 
91
        lhs->max_phys_segments =
92
                min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
93
 
94
        lhs->max_hw_segments =
95
                min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
96
 
97
        lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size);
98
 
99
        lhs->max_segment_size =
100
                min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
101
 
102
        lhs->max_hw_sectors =
103
                min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
104
 
105
        lhs->seg_boundary_mask =
106
                min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
107
 
108
        lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
109
 
110
        lhs->no_cluster |= rhs->no_cluster;
111
}
112
 
113
/*
114
 * Calculate the index of the child node of the n'th node k'th key.
115
 */
116
static inline unsigned int get_child(unsigned int n, unsigned int k)
117
{
118
        return (n * CHILDREN_PER_NODE) + k;
119
}
120
 
121
/*
122
 * Return the n'th node of level l from table t.
123
 */
124
static inline sector_t *get_node(struct dm_table *t,
125
                                 unsigned int l, unsigned int n)
126
{
127
        return t->index[l] + (n * KEYS_PER_NODE);
128
}
129
 
130
/*
131
 * Return the highest key that you could lookup from the n'th
132
 * node on level l of the btree.
133
 */
134
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
135
{
136
        for (; l < t->depth - 1; l++)
137
                n = get_child(n, CHILDREN_PER_NODE - 1);
138
 
139
        if (n >= t->counts[l])
140
                return (sector_t) - 1;
141
 
142
        return get_node(t, l, n)[KEYS_PER_NODE - 1];
143
}
144
 
145
/*
146
 * Fills in a level of the btree based on the highs of the level
147
 * below it.
148
 */
149
static int setup_btree_index(unsigned int l, struct dm_table *t)
150
{
151
        unsigned int n, k;
152
        sector_t *node;
153
 
154
        for (n = 0U; n < t->counts[l]; n++) {
155
                node = get_node(t, l, n);
156
 
157
                for (k = 0U; k < KEYS_PER_NODE; k++)
158
                        node[k] = high(t, l + 1, get_child(n, k));
159
        }
160
 
161
        return 0;
162
}
163
 
164
void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
165
{
166
        unsigned long size;
167
        void *addr;
168
 
169
        /*
170
         * Check that we're not going to overflow.
171
         */
172
        if (nmemb > (ULONG_MAX / elem_size))
173
                return NULL;
174
 
175
        size = nmemb * elem_size;
176
        addr = vmalloc(size);
177
        if (addr)
178
                memset(addr, 0, size);
179
 
180
        return addr;
181
}
182
 
183
/*
184
 * highs, and targets are managed as dynamic arrays during a
185
 * table load.
186
 */
187
static int alloc_targets(struct dm_table *t, unsigned int num)
188
{
189
        sector_t *n_highs;
190
        struct dm_target *n_targets;
191
        int n = t->num_targets;
192
 
193
        /*
194
         * Allocate both the target array and offset array at once.
195
         * Append an empty entry to catch sectors beyond the end of
196
         * the device.
197
         */
198
        n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
199
                                          sizeof(sector_t));
200
        if (!n_highs)
201
                return -ENOMEM;
202
 
203
        n_targets = (struct dm_target *) (n_highs + num);
204
 
205
        if (n) {
206
                memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
207
                memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
208
        }
209
 
210
        memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
211
        vfree(t->highs);
212
 
213
        t->num_allocated = num;
214
        t->highs = n_highs;
215
        t->targets = n_targets;
216
 
217
        return 0;
218
}
219
 
220
int dm_table_create(struct dm_table **result, int mode,
221
                    unsigned num_targets, struct mapped_device *md)
222
{
223
        struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
224
 
225
        if (!t)
226
                return -ENOMEM;
227
 
228
        INIT_LIST_HEAD(&t->devices);
229
        atomic_set(&t->holders, 1);
230
 
231
        if (!num_targets)
232
                num_targets = KEYS_PER_NODE;
233
 
234
        num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
235
 
236
        if (alloc_targets(t, num_targets)) {
237
                kfree(t);
238
                t = NULL;
239
                return -ENOMEM;
240
        }
241
 
242
        t->mode = mode;
243
        t->md = md;
244
        *result = t;
245
        return 0;
246
}
247
 
248
int dm_create_error_table(struct dm_table **result, struct mapped_device *md)
249
{
250
        struct dm_table *t;
251
        sector_t dev_size = 1;
252
        int r;
253
 
254
        /*
255
         * Find current size of device.
256
         * Default to 1 sector if inactive.
257
         */
258
        t = dm_get_table(md);
259
        if (t) {
260
                dev_size = dm_table_get_size(t);
261
                dm_table_put(t);
262
        }
263
 
264
        r = dm_table_create(&t, FMODE_READ, 1, md);
265
        if (r)
266
                return r;
267
 
268
        r = dm_table_add_target(t, "error", 0, dev_size, NULL);
269
        if (r)
270
                goto out;
271
 
272
        r = dm_table_complete(t);
273
        if (r)
274
                goto out;
275
 
276
        *result = t;
277
 
278
out:
279
        if (r)
280
                dm_table_put(t);
281
 
282
        return r;
283
}
284
EXPORT_SYMBOL_GPL(dm_create_error_table);
285
 
286
static void free_devices(struct list_head *devices)
287
{
288
        struct list_head *tmp, *next;
289
 
290
        for (tmp = devices->next; tmp != devices; tmp = next) {
291
                struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
292
                next = tmp->next;
293
                kfree(dd);
294
        }
295
}
296
 
297
static void table_destroy(struct dm_table *t)
298
{
299
        unsigned int i;
300
 
301
        /* free the indexes (see dm_table_complete) */
302
        if (t->depth >= 2)
303
                vfree(t->index[t->depth - 2]);
304
 
305
        /* free the targets */
306
        for (i = 0; i < t->num_targets; i++) {
307
                struct dm_target *tgt = t->targets + i;
308
 
309
                if (tgt->type->dtr)
310
                        tgt->type->dtr(tgt);
311
 
312
                dm_put_target_type(tgt->type);
313
        }
314
 
315
        vfree(t->highs);
316
 
317
        /* free the device list */
318
        if (t->devices.next != &t->devices) {
319
                DMWARN("devices still present during destroy: "
320
                       "dm_table_remove_device calls missing");
321
 
322
                free_devices(&t->devices);
323
        }
324
 
325
        kfree(t);
326
}
327
 
328
void dm_table_get(struct dm_table *t)
329
{
330
        atomic_inc(&t->holders);
331
}
332
 
333
void dm_table_put(struct dm_table *t)
334
{
335
        if (!t)
336
                return;
337
 
338
        if (atomic_dec_and_test(&t->holders))
339
                table_destroy(t);
340
}
341
 
342
/*
343
 * Checks to see if we need to extend highs or targets.
344
 */
345
static inline int check_space(struct dm_table *t)
346
{
347
        if (t->num_targets >= t->num_allocated)
348
                return alloc_targets(t, t->num_allocated * 2);
349
 
350
        return 0;
351
}
352
 
353
/*
354
 * Convert a device path to a dev_t.
355
 */
356
static int lookup_device(const char *path, dev_t *dev)
357
{
358
        int r;
359
        struct nameidata nd;
360
        struct inode *inode;
361
 
362
        if ((r = path_lookup(path, LOOKUP_FOLLOW, &nd)))
363
                return r;
364
 
365
        inode = nd.dentry->d_inode;
366
        if (!inode) {
367
                r = -ENOENT;
368
                goto out;
369
        }
370
 
371
        if (!S_ISBLK(inode->i_mode)) {
372
                r = -ENOTBLK;
373
                goto out;
374
        }
375
 
376
        *dev = inode->i_rdev;
377
 
378
 out:
379
        path_release(&nd);
380
        return r;
381
}
382
 
383
/*
384
 * See if we've already got a device in the list.
385
 */
386
static struct dm_dev *find_device(struct list_head *l, dev_t dev)
387
{
388
        struct dm_dev *dd;
389
 
390
        list_for_each_entry (dd, l, list)
391
                if (dd->bdev->bd_dev == dev)
392
                        return dd;
393
 
394
        return NULL;
395
}
396
 
397
/*
398
 * Open a device so we can use it as a map destination.
399
 */
400
static int open_dev(struct dm_dev *d, dev_t dev, struct mapped_device *md)
401
{
402
        static char *_claim_ptr = "I belong to device-mapper";
403
        struct block_device *bdev;
404
 
405
        int r;
406
 
407
        BUG_ON(d->bdev);
408
 
409
        bdev = open_by_devnum(dev, d->mode);
410
        if (IS_ERR(bdev))
411
                return PTR_ERR(bdev);
412
        r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
413
        if (r)
414
                blkdev_put(bdev);
415
        else
416
                d->bdev = bdev;
417
        return r;
418
}
419
 
420
/*
421
 * Close a device that we've been using.
422
 */
423
static void close_dev(struct dm_dev *d, struct mapped_device *md)
424
{
425
        if (!d->bdev)
426
                return;
427
 
428
        bd_release_from_disk(d->bdev, dm_disk(md));
429
        blkdev_put(d->bdev);
430
        d->bdev = NULL;
431
}
432
 
433
/*
434
 * If possible, this checks an area of a destination device is valid.
435
 */
436
static int check_device_area(struct dm_dev *dd, sector_t start, sector_t len)
437
{
438
        sector_t dev_size = dd->bdev->bd_inode->i_size >> SECTOR_SHIFT;
439
 
440
        if (!dev_size)
441
                return 1;
442
 
443
        return ((start < dev_size) && (len <= (dev_size - start)));
444
}
445
 
446
/*
447
 * This upgrades the mode on an already open dm_dev.  Being
448
 * careful to leave things as they were if we fail to reopen the
449
 * device.
450
 */
451
static int upgrade_mode(struct dm_dev *dd, int new_mode, struct mapped_device *md)
452
{
453
        int r;
454
        struct dm_dev dd_copy;
455
        dev_t dev = dd->bdev->bd_dev;
456
 
457
        dd_copy = *dd;
458
 
459
        dd->mode |= new_mode;
460
        dd->bdev = NULL;
461
        r = open_dev(dd, dev, md);
462
        if (!r)
463
                close_dev(&dd_copy, md);
464
        else
465
                *dd = dd_copy;
466
 
467
        return r;
468
}
469
 
470
/*
471
 * Add a device to the list, or just increment the usage count if
472
 * it's already present.
473
 */
474
static int __table_get_device(struct dm_table *t, struct dm_target *ti,
475
                              const char *path, sector_t start, sector_t len,
476
                              int mode, struct dm_dev **result)
477
{
478
        int r;
479
        dev_t dev;
480
        struct dm_dev *dd;
481
        unsigned int major, minor;
482
 
483
        BUG_ON(!t);
484
 
485
        if (sscanf(path, "%u:%u", &major, &minor) == 2) {
486
                /* Extract the major/minor numbers */
487
                dev = MKDEV(major, minor);
488
                if (MAJOR(dev) != major || MINOR(dev) != minor)
489
                        return -EOVERFLOW;
490
        } else {
491
                /* convert the path to a device */
492
                if ((r = lookup_device(path, &dev)))
493
                        return r;
494
        }
495
 
496
        dd = find_device(&t->devices, dev);
497
        if (!dd) {
498
                dd = kmalloc(sizeof(*dd), GFP_KERNEL);
499
                if (!dd)
500
                        return -ENOMEM;
501
 
502
                dd->mode = mode;
503
                dd->bdev = NULL;
504
 
505
                if ((r = open_dev(dd, dev, t->md))) {
506
                        kfree(dd);
507
                        return r;
508
                }
509
 
510
                format_dev_t(dd->name, dev);
511
 
512
                atomic_set(&dd->count, 0);
513
                list_add(&dd->list, &t->devices);
514
 
515
        } else if (dd->mode != (mode | dd->mode)) {
516
                r = upgrade_mode(dd, mode, t->md);
517
                if (r)
518
                        return r;
519
        }
520
        atomic_inc(&dd->count);
521
 
522
        if (!check_device_area(dd, start, len)) {
523
                DMWARN("device %s too small for target", path);
524
                dm_put_device(ti, dd);
525
                return -EINVAL;
526
        }
527
 
528
        *result = dd;
529
 
530
        return 0;
531
}
532
 
533
void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
534
{
535
        struct request_queue *q = bdev_get_queue(bdev);
536
        struct io_restrictions *rs = &ti->limits;
537
 
538
        /*
539
         * Combine the device limits low.
540
         *
541
         * FIXME: if we move an io_restriction struct
542
         *        into q this would just be a call to
543
         *        combine_restrictions_low()
544
         */
545
        rs->max_sectors =
546
                min_not_zero(rs->max_sectors, q->max_sectors);
547
 
548
        /* FIXME: Device-Mapper on top of RAID-0 breaks because DM
549
         *        currently doesn't honor MD's merge_bvec_fn routine.
550
         *        In this case, we'll force DM to use PAGE_SIZE or
551
         *        smaller I/O, just to be safe. A better fix is in the
552
         *        works, but add this for the time being so it will at
553
         *        least operate correctly.
554
         */
555
        if (q->merge_bvec_fn)
556
                rs->max_sectors =
557
                        min_not_zero(rs->max_sectors,
558
                                     (unsigned int) (PAGE_SIZE >> 9));
559
 
560
        rs->max_phys_segments =
561
                min_not_zero(rs->max_phys_segments,
562
                             q->max_phys_segments);
563
 
564
        rs->max_hw_segments =
565
                min_not_zero(rs->max_hw_segments, q->max_hw_segments);
566
 
567
        rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size);
568
 
569
        rs->max_segment_size =
570
                min_not_zero(rs->max_segment_size, q->max_segment_size);
571
 
572
        rs->max_hw_sectors =
573
                min_not_zero(rs->max_hw_sectors, q->max_hw_sectors);
574
 
575
        rs->seg_boundary_mask =
576
                min_not_zero(rs->seg_boundary_mask,
577
                             q->seg_boundary_mask);
578
 
579
        rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn);
580
 
581
        rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
582
}
583
EXPORT_SYMBOL_GPL(dm_set_device_limits);
584
 
585
int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
586
                  sector_t len, int mode, struct dm_dev **result)
587
{
588
        int r = __table_get_device(ti->table, ti, path,
589
                                   start, len, mode, result);
590
 
591
        if (!r)
592
                dm_set_device_limits(ti, (*result)->bdev);
593
 
594
        return r;
595
}
596
 
597
/*
598
 * Decrement a devices use count and remove it if necessary.
599
 */
600
void dm_put_device(struct dm_target *ti, struct dm_dev *dd)
601
{
602
        if (atomic_dec_and_test(&dd->count)) {
603
                close_dev(dd, ti->table->md);
604
                list_del(&dd->list);
605
                kfree(dd);
606
        }
607
}
608
 
609
/*
610
 * Checks to see if the target joins onto the end of the table.
611
 */
612
static int adjoin(struct dm_table *table, struct dm_target *ti)
613
{
614
        struct dm_target *prev;
615
 
616
        if (!table->num_targets)
617
                return !ti->begin;
618
 
619
        prev = &table->targets[table->num_targets - 1];
620
        return (ti->begin == (prev->begin + prev->len));
621
}
622
 
623
/*
624
 * Used to dynamically allocate the arg array.
625
 */
626
static char **realloc_argv(unsigned *array_size, char **old_argv)
627
{
628
        char **argv;
629
        unsigned new_size;
630
 
631
        new_size = *array_size ? *array_size * 2 : 64;
632
        argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
633
        if (argv) {
634
                memcpy(argv, old_argv, *array_size * sizeof(*argv));
635
                *array_size = new_size;
636
        }
637
 
638
        kfree(old_argv);
639
        return argv;
640
}
641
 
642
/*
643
 * Destructively splits up the argument list to pass to ctr.
644
 */
645
int dm_split_args(int *argc, char ***argvp, char *input)
646
{
647
        char *start, *end = input, *out, **argv = NULL;
648
        unsigned array_size = 0;
649
 
650
        *argc = 0;
651
 
652
        if (!input) {
653
                *argvp = NULL;
654
                return 0;
655
        }
656
 
657
        argv = realloc_argv(&array_size, argv);
658
        if (!argv)
659
                return -ENOMEM;
660
 
661
        while (1) {
662
                start = end;
663
 
664
                /* Skip whitespace */
665
                while (*start && isspace(*start))
666
                        start++;
667
 
668
                if (!*start)
669
                        break;  /* success, we hit the end */
670
 
671
                /* 'out' is used to remove any back-quotes */
672
                end = out = start;
673
                while (*end) {
674
                        /* Everything apart from '\0' can be quoted */
675
                        if (*end == '\\' && *(end + 1)) {
676
                                *out++ = *(end + 1);
677
                                end += 2;
678
                                continue;
679
                        }
680
 
681
                        if (isspace(*end))
682
                                break;  /* end of token */
683
 
684
                        *out++ = *end++;
685
                }
686
 
687
                /* have we already filled the array ? */
688
                if ((*argc + 1) > array_size) {
689
                        argv = realloc_argv(&array_size, argv);
690
                        if (!argv)
691
                                return -ENOMEM;
692
                }
693
 
694
                /* we know this is whitespace */
695
                if (*end)
696
                        end++;
697
 
698
                /* terminate the string and put it in the array */
699
                *out = '\0';
700
                argv[*argc] = start;
701
                (*argc)++;
702
        }
703
 
704
        *argvp = argv;
705
        return 0;
706
}
707
 
708
static void check_for_valid_limits(struct io_restrictions *rs)
709
{
710
        if (!rs->max_sectors)
711
                rs->max_sectors = SAFE_MAX_SECTORS;
712
        if (!rs->max_hw_sectors)
713
                rs->max_hw_sectors = SAFE_MAX_SECTORS;
714
        if (!rs->max_phys_segments)
715
                rs->max_phys_segments = MAX_PHYS_SEGMENTS;
716
        if (!rs->max_hw_segments)
717
                rs->max_hw_segments = MAX_HW_SEGMENTS;
718
        if (!rs->hardsect_size)
719
                rs->hardsect_size = 1 << SECTOR_SHIFT;
720
        if (!rs->max_segment_size)
721
                rs->max_segment_size = MAX_SEGMENT_SIZE;
722
        if (!rs->seg_boundary_mask)
723
                rs->seg_boundary_mask = -1;
724
        if (!rs->bounce_pfn)
725
                rs->bounce_pfn = -1;
726
}
727
 
728
int dm_table_add_target(struct dm_table *t, const char *type,
729
                        sector_t start, sector_t len, char *params)
730
{
731
        int r = -EINVAL, argc;
732
        char **argv;
733
        struct dm_target *tgt;
734
 
735
        if ((r = check_space(t)))
736
                return r;
737
 
738
        tgt = t->targets + t->num_targets;
739
        memset(tgt, 0, sizeof(*tgt));
740
 
741
        if (!len) {
742
                DMERR("%s: zero-length target", dm_device_name(t->md));
743
                return -EINVAL;
744
        }
745
 
746
        tgt->type = dm_get_target_type(type);
747
        if (!tgt->type) {
748
                DMERR("%s: %s: unknown target type", dm_device_name(t->md),
749
                      type);
750
                return -EINVAL;
751
        }
752
 
753
        tgt->table = t;
754
        tgt->begin = start;
755
        tgt->len = len;
756
        tgt->error = "Unknown error";
757
 
758
        /*
759
         * Does this target adjoin the previous one ?
760
         */
761
        if (!adjoin(t, tgt)) {
762
                tgt->error = "Gap in table";
763
                r = -EINVAL;
764
                goto bad;
765
        }
766
 
767
        r = dm_split_args(&argc, &argv, params);
768
        if (r) {
769
                tgt->error = "couldn't split parameters (insufficient memory)";
770
                goto bad;
771
        }
772
 
773
        r = tgt->type->ctr(tgt, argc, argv);
774
        kfree(argv);
775
        if (r)
776
                goto bad;
777
 
778
        t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
779
 
780
        /* FIXME: the plan is to combine high here and then have
781
         * the merge fn apply the target level restrictions. */
782
        combine_restrictions_low(&t->limits, &tgt->limits);
783
        return 0;
784
 
785
 bad:
786
        DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
787
        dm_put_target_type(tgt->type);
788
        return r;
789
}
790
 
791
static int setup_indexes(struct dm_table *t)
792
{
793
        int i;
794
        unsigned int total = 0;
795
        sector_t *indexes;
796
 
797
        /* allocate the space for *all* the indexes */
798
        for (i = t->depth - 2; i >= 0; i--) {
799
                t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
800
                total += t->counts[i];
801
        }
802
 
803
        indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
804
        if (!indexes)
805
                return -ENOMEM;
806
 
807
        /* set up internal nodes, bottom-up */
808
        for (i = t->depth - 2, total = 0; i >= 0; i--) {
809
                t->index[i] = indexes;
810
                indexes += (KEYS_PER_NODE * t->counts[i]);
811
                setup_btree_index(i, t);
812
        }
813
 
814
        return 0;
815
}
816
 
817
/*
818
 * Builds the btree to index the map.
819
 */
820
int dm_table_complete(struct dm_table *t)
821
{
822
        int r = 0;
823
        unsigned int leaf_nodes;
824
 
825
        check_for_valid_limits(&t->limits);
826
 
827
        /* how many indexes will the btree have ? */
828
        leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
829
        t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
830
 
831
        /* leaf layer has already been set up */
832
        t->counts[t->depth - 1] = leaf_nodes;
833
        t->index[t->depth - 1] = t->highs;
834
 
835
        if (t->depth >= 2)
836
                r = setup_indexes(t);
837
 
838
        return r;
839
}
840
 
841
static DEFINE_MUTEX(_event_lock);
842
void dm_table_event_callback(struct dm_table *t,
843
                             void (*fn)(void *), void *context)
844
{
845
        mutex_lock(&_event_lock);
846
        t->event_fn = fn;
847
        t->event_context = context;
848
        mutex_unlock(&_event_lock);
849
}
850
 
851
void dm_table_event(struct dm_table *t)
852
{
853
        /*
854
         * You can no longer call dm_table_event() from interrupt
855
         * context, use a bottom half instead.
856
         */
857
        BUG_ON(in_interrupt());
858
 
859
        mutex_lock(&_event_lock);
860
        if (t->event_fn)
861
                t->event_fn(t->event_context);
862
        mutex_unlock(&_event_lock);
863
}
864
 
865
sector_t dm_table_get_size(struct dm_table *t)
866
{
867
        return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
868
}
869
 
870
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
871
{
872
        if (index >= t->num_targets)
873
                return NULL;
874
 
875
        return t->targets + index;
876
}
877
 
878
/*
879
 * Search the btree for the correct target.
880
 *
881
 * Caller should check returned pointer with dm_target_is_valid()
882
 * to trap I/O beyond end of device.
883
 */
884
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
885
{
886
        unsigned int l, n = 0, k = 0;
887
        sector_t *node;
888
 
889
        for (l = 0; l < t->depth; l++) {
890
                n = get_child(n, k);
891
                node = get_node(t, l, n);
892
 
893
                for (k = 0; k < KEYS_PER_NODE; k++)
894
                        if (node[k] >= sector)
895
                                break;
896
        }
897
 
898
        return &t->targets[(KEYS_PER_NODE * n) + k];
899
}
900
 
901
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
902
{
903
        /*
904
         * Make sure we obey the optimistic sub devices
905
         * restrictions.
906
         */
907
        blk_queue_max_sectors(q, t->limits.max_sectors);
908
        q->max_phys_segments = t->limits.max_phys_segments;
909
        q->max_hw_segments = t->limits.max_hw_segments;
910
        q->hardsect_size = t->limits.hardsect_size;
911
        q->max_segment_size = t->limits.max_segment_size;
912
        q->max_hw_sectors = t->limits.max_hw_sectors;
913
        q->seg_boundary_mask = t->limits.seg_boundary_mask;
914
        q->bounce_pfn = t->limits.bounce_pfn;
915
        if (t->limits.no_cluster)
916
                q->queue_flags &= ~(1 << QUEUE_FLAG_CLUSTER);
917
        else
918
                q->queue_flags |= (1 << QUEUE_FLAG_CLUSTER);
919
 
920
}
921
 
922
unsigned int dm_table_get_num_targets(struct dm_table *t)
923
{
924
        return t->num_targets;
925
}
926
 
927
struct list_head *dm_table_get_devices(struct dm_table *t)
928
{
929
        return &t->devices;
930
}
931
 
932
int dm_table_get_mode(struct dm_table *t)
933
{
934
        return t->mode;
935
}
936
 
937
static void suspend_targets(struct dm_table *t, unsigned postsuspend)
938
{
939
        int i = t->num_targets;
940
        struct dm_target *ti = t->targets;
941
 
942
        while (i--) {
943
                if (postsuspend) {
944
                        if (ti->type->postsuspend)
945
                                ti->type->postsuspend(ti);
946
                } else if (ti->type->presuspend)
947
                        ti->type->presuspend(ti);
948
 
949
                ti++;
950
        }
951
}
952
 
953
void dm_table_presuspend_targets(struct dm_table *t)
954
{
955
        if (!t)
956
                return;
957
 
958
        return suspend_targets(t, 0);
959
}
960
 
961
void dm_table_postsuspend_targets(struct dm_table *t)
962
{
963
        if (!t)
964
                return;
965
 
966
        return suspend_targets(t, 1);
967
}
968
 
969
int dm_table_resume_targets(struct dm_table *t)
970
{
971
        int i, r = 0;
972
 
973
        for (i = 0; i < t->num_targets; i++) {
974
                struct dm_target *ti = t->targets + i;
975
 
976
                if (!ti->type->preresume)
977
                        continue;
978
 
979
                r = ti->type->preresume(ti);
980
                if (r)
981
                        return r;
982
        }
983
 
984
        for (i = 0; i < t->num_targets; i++) {
985
                struct dm_target *ti = t->targets + i;
986
 
987
                if (ti->type->resume)
988
                        ti->type->resume(ti);
989
        }
990
 
991
        return 0;
992
}
993
 
994
int dm_table_any_congested(struct dm_table *t, int bdi_bits)
995
{
996
        struct list_head *d, *devices;
997
        int r = 0;
998
 
999
        devices = dm_table_get_devices(t);
1000
        for (d = devices->next; d != devices; d = d->next) {
1001
                struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1002
                struct request_queue *q = bdev_get_queue(dd->bdev);
1003
                r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1004
        }
1005
 
1006
        return r;
1007
}
1008
 
1009
void dm_table_unplug_all(struct dm_table *t)
1010
{
1011
        struct list_head *d, *devices = dm_table_get_devices(t);
1012
 
1013
        for (d = devices->next; d != devices; d = d->next) {
1014
                struct dm_dev *dd = list_entry(d, struct dm_dev, list);
1015
                struct request_queue *q = bdev_get_queue(dd->bdev);
1016
 
1017
                blk_unplug(q);
1018
        }
1019
}
1020
 
1021
struct mapped_device *dm_table_get_md(struct dm_table *t)
1022
{
1023
        dm_get(t->md);
1024
 
1025
        return t->md;
1026
}
1027
 
1028
EXPORT_SYMBOL(dm_vcalloc);
1029
EXPORT_SYMBOL(dm_get_device);
1030
EXPORT_SYMBOL(dm_put_device);
1031
EXPORT_SYMBOL(dm_table_event);
1032
EXPORT_SYMBOL(dm_table_get_size);
1033
EXPORT_SYMBOL(dm_table_get_mode);
1034
EXPORT_SYMBOL(dm_table_get_md);
1035
EXPORT_SYMBOL(dm_table_put);
1036
EXPORT_SYMBOL(dm_table_get);
1037
EXPORT_SYMBOL(dm_table_unplug_all);

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.