1 |
8 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: aximrd2wbsp.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Pipelined Wishbone to AXI converter
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Bridge an AXI read channel pair to a single wishbone read
|
8 |
|
|
// channel.
|
9 |
|
|
//
|
10 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
11 |
|
|
// Gisselquist Technology, LLC
|
12 |
|
|
//
|
13 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
14 |
|
|
//
|
15 |
|
|
// Copyright (C) 2016, Gisselquist Technology, LLC
|
16 |
|
|
//
|
17 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
18 |
|
|
// modify it under the terms of the GNU General Public License as published
|
19 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
20 |
|
|
// your option) any later version.
|
21 |
|
|
//
|
22 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
23 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
24 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
25 |
|
|
// for more details.
|
26 |
|
|
//
|
27 |
|
|
// You should have received a copy of the GNU General Public License along
|
28 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
29 |
|
|
// target there if the PDF file isn't present.) If not, see
|
30 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
31 |
|
|
//
|
32 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
33 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
34 |
|
|
//
|
35 |
|
|
//
|
36 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
37 |
|
|
//
|
38 |
|
|
//
|
39 |
|
|
`default_nettype none
|
40 |
|
|
//
|
41 |
|
|
module aximrd2wbsp #(
|
42 |
|
|
parameter C_AXI_ID_WIDTH = 6, // The AXI id width used for R&W
|
43 |
|
|
// This is an int between 1-16
|
44 |
|
|
parameter C_AXI_DATA_WIDTH = 32,// Width of the AXI R&W data
|
45 |
|
|
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width
|
46 |
|
|
parameter AW = 26, // AXI Address width
|
47 |
|
|
parameter LGFIFO = 4
|
48 |
|
|
// parameter WBMODE = "B4PIPELINE"
|
49 |
|
|
// Could also be "BLOCK"
|
50 |
|
|
) (
|
51 |
|
|
input wire i_axi_clk, // Bus clock
|
52 |
|
|
input wire i_axi_reset_n, // Bus reset
|
53 |
|
|
|
54 |
|
|
// AXI read address channel signals
|
55 |
|
|
output wire o_axi_arready, // Read address ready
|
56 |
|
|
input wire [C_AXI_ID_WIDTH-1:0] i_axi_arid, // Read ID
|
57 |
|
|
input wire [C_AXI_ADDR_WIDTH-1:0] i_axi_araddr, // Read address
|
58 |
|
|
input wire [7:0] i_axi_arlen, // Read Burst Length
|
59 |
|
|
input wire [2:0] i_axi_arsize, // Read Burst size
|
60 |
|
|
input wire [1:0] i_axi_arburst, // Read Burst type
|
61 |
|
|
input wire [0:0] i_axi_arlock, // Read lock type
|
62 |
|
|
input wire [3:0] i_axi_arcache, // Read Cache type
|
63 |
|
|
input wire [2:0] i_axi_arprot, // Read Protection type
|
64 |
|
|
input wire [3:0] i_axi_arqos, // Read Protection type
|
65 |
|
|
input wire i_axi_arvalid, // Read address valid
|
66 |
|
|
|
67 |
|
|
// AXI read data channel signals
|
68 |
|
|
output wire [C_AXI_ID_WIDTH-1:0] o_axi_rid, // Response ID
|
69 |
|
|
output wire [1:0] o_axi_rresp, // Read response
|
70 |
|
|
output reg o_axi_rvalid, // Read reponse valid
|
71 |
|
|
output wire [C_AXI_DATA_WIDTH-1:0] o_axi_rdata, // Read data
|
72 |
|
|
output wire o_axi_rlast, // Read last
|
73 |
|
|
input wire i_axi_rready, // Read Response ready
|
74 |
|
|
|
75 |
|
|
// We'll share the clock and the reset
|
76 |
|
|
output reg o_wb_cyc,
|
77 |
|
|
output reg o_wb_stb,
|
78 |
|
|
output wire [(AW-1):0] o_wb_addr,
|
79 |
|
|
input wire i_wb_ack,
|
80 |
|
|
input wire i_wb_stall,
|
81 |
|
|
input [(C_AXI_DATA_WIDTH-1):0] i_wb_data,
|
82 |
|
|
input wire i_wb_err
|
83 |
|
|
);
|
84 |
|
|
|
85 |
|
|
localparam DW = C_AXI_DATA_WIDTH;
|
86 |
|
|
|
87 |
|
|
wire w_reset;
|
88 |
|
|
assign w_reset = (i_axi_reset_n == 1'b0);
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
reg [(C_AXI_ID_WIDTH+AW+1)-1:0] afifo [0:((1<<(LGFIFO))-1)];
|
92 |
|
|
reg [(DW+1)-1:0] dfifo [0:((1<<(LGFIFO))-1)];
|
93 |
|
|
reg [(C_AXI_ID_WIDTH+AW+1)-1:0] fifo_at_neck, afifo_at_tail;
|
94 |
|
|
reg [(DW+1)-1:0] dfifo_at_tail;
|
95 |
|
|
|
96 |
|
|
// We're going to need to keep track of transaction bursts in progress,
|
97 |
|
|
// since the wishbone doesn't. For this, we'll use a FIFO, but with
|
98 |
|
|
// multiple pointers:
|
99 |
|
|
//
|
100 |
|
|
// fifo_head - pointer to where to write the next incoming
|
101 |
|
|
// bus request .. adjusted when
|
102 |
|
|
// (o_axi_arready)&&(i_axi_arvalid)
|
103 |
|
|
// fifo_neck - pointer to where to read from the FIFO in
|
104 |
|
|
// order to issue another request. Used
|
105 |
|
|
// when (o_wb_stb)&&(!i_wb_stall)
|
106 |
|
|
// fifo_torso - pointer to where to write a wishbone
|
107 |
|
|
// transaction upon return.
|
108 |
|
|
// when (i_ack)
|
109 |
|
|
// fifo_tail - pointer to where the last transaction is to
|
110 |
|
|
// be retired when
|
111 |
|
|
// (i_axi_rvalid)&&(i_axi_rready)
|
112 |
|
|
//
|
113 |
|
|
// All of these are to be set to zero upon a reset signal.
|
114 |
|
|
//
|
115 |
|
|
reg [LGFIFO-1:0] fifo_head, fifo_neck, fifo_torso, fifo_tail;
|
116 |
|
|
|
117 |
|
|
// Since we need to insure that these pointers wrap properly at
|
118 |
|
|
// LGFIFO bits, and since it is confusing to do that within IF
|
119 |
|
|
// statements,
|
120 |
|
|
wire [LGFIFO-1:0] next_head, next_neck, next_torso, next_tail,
|
121 |
|
|
almost_head;
|
122 |
|
|
wire fifo_full;
|
123 |
|
|
assign next_head = fifo_head + 1;
|
124 |
|
|
assign next_neck = fifo_neck + 1;
|
125 |
|
|
assign next_torso = fifo_torso + 1;
|
126 |
|
|
assign next_tail = fifo_tail + 1;
|
127 |
|
|
assign almost_head = fifo_head + 1;
|
128 |
|
|
|
129 |
|
|
assign fifo_full = (almost_head == fifo_tail);
|
130 |
|
|
|
131 |
|
|
reg wr_last, filling_fifo, incr;
|
132 |
|
|
reg [7:0] len;
|
133 |
|
|
reg [(AW-1):0] wr_fifo_addr;
|
134 |
|
|
reg [(C_AXI_ID_WIDTH-1):0] wr_fifo_id;
|
135 |
|
|
|
136 |
|
|
//
|
137 |
|
|
//
|
138 |
|
|
//
|
139 |
|
|
//
|
140 |
|
|
// Here's our plan: Any time READY & VALID are both true, initiate a
|
141 |
|
|
// transfer (unless one is ongoing). Hold READY false while initiating
|
142 |
|
|
// any burst transaction. Keep the request RID and burst length stuffs
|
143 |
|
|
// into a FIFO.
|
144 |
|
|
// queue are both valid, issue the wishbone read request. Once a read
|
145 |
|
|
// request returns, retire the value in the FIFO queue.
|
146 |
|
|
//
|
147 |
|
|
// The FIFO queue *must* include:
|
148 |
|
|
//
|
149 |
|
|
// RQ, ADDR, LAST
|
150 |
|
|
//
|
151 |
|
|
initial len = 0;
|
152 |
|
|
initial filling_fifo = 0;
|
153 |
|
|
initial fifo_head = 0;
|
154 |
|
|
always @(posedge i_axi_clk)
|
155 |
|
|
begin
|
156 |
|
|
wr_last <= 1'b0;
|
157 |
|
|
|
158 |
|
|
if (filling_fifo)
|
159 |
|
|
begin
|
160 |
|
|
if (!fifo_full)
|
161 |
|
|
begin
|
162 |
|
|
len <= len - 1;
|
163 |
|
|
if (len == 1)
|
164 |
|
|
filling_fifo <= 1'b0;
|
165 |
|
|
fifo_head <= next_head;
|
166 |
|
|
wr_fifo_addr <= wr_fifo_addr
|
167 |
|
|
+ {{(AW-1){1'b0}}, incr};
|
168 |
|
|
wr_last <= (len == 1);
|
169 |
|
|
end
|
170 |
|
|
end else begin
|
171 |
|
|
wr_fifo_addr <= i_axi_araddr[(C_AXI_ADDR_WIDTH-1):(C_AXI_ADDR_WIDTH-AW)];
|
172 |
|
|
wr_fifo_id <= i_axi_arid;
|
173 |
|
|
incr <= i_axi_arburst[0];
|
174 |
|
|
if ((o_axi_arready)&&(i_axi_arvalid))
|
175 |
|
|
begin
|
176 |
|
|
fifo_head <= next_head;
|
177 |
|
|
len <= i_axi_arlen;
|
178 |
|
|
filling_fifo <= (i_axi_arlen != 0);
|
179 |
|
|
wr_last <= 1'b1;
|
180 |
|
|
end
|
181 |
|
|
end
|
182 |
|
|
|
183 |
|
|
if (w_reset)
|
184 |
|
|
begin
|
185 |
|
|
len <= 0;
|
186 |
|
|
filling_fifo <= 1'b0;
|
187 |
|
|
fifo_head <= 0;
|
188 |
|
|
end
|
189 |
|
|
end
|
190 |
|
|
|
191 |
|
|
always @(posedge i_axi_clk)
|
192 |
|
|
afifo[fifo_head] <= { wr_fifo_id, wr_last, wr_fifo_addr };
|
193 |
|
|
|
194 |
|
|
reg err_state;
|
195 |
|
|
initial o_wb_cyc = 1'b0;
|
196 |
|
|
initial o_wb_stb = 1'b0;
|
197 |
|
|
initial fifo_neck = 0;
|
198 |
|
|
initial fifo_torso = 0;
|
199 |
|
|
initial err_state = 0;
|
200 |
|
|
always @(posedge i_axi_clk)
|
201 |
|
|
begin
|
202 |
|
|
if (w_reset)
|
203 |
|
|
begin
|
204 |
|
|
o_wb_cyc <= 1'b0;
|
205 |
|
|
o_wb_stb <= 1'b0;
|
206 |
|
|
|
207 |
|
|
fifo_neck <= 0;
|
208 |
|
|
fifo_torso <= 0;
|
209 |
|
|
|
210 |
|
|
err_state <= 0;
|
211 |
|
|
end else if (o_wb_stb)
|
212 |
|
|
begin
|
213 |
|
|
if (i_wb_err)
|
214 |
|
|
begin
|
215 |
|
|
o_wb_stb <= 1'b0;
|
216 |
|
|
err_state <= 1'b1;
|
217 |
|
|
end else if (!i_wb_stall)
|
218 |
|
|
begin
|
219 |
|
|
o_wb_stb <= (fifo_head != next_neck);
|
220 |
|
|
// && (WBMODE != "B3SINGLE");
|
221 |
|
|
// o_wb_cyc <= (WBMODE != "B3SINGLE");
|
222 |
|
|
end
|
223 |
|
|
|
224 |
|
|
if (!i_wb_stall)
|
225 |
|
|
fifo_neck <= next_neck;
|
226 |
|
|
if (i_wb_ack)
|
227 |
|
|
fifo_torso <= next_torso;
|
228 |
|
|
end else if (err_state)
|
229 |
|
|
begin
|
230 |
|
|
fifo_torso <= next_torso;
|
231 |
|
|
if (fifo_neck == next_torso)
|
232 |
|
|
err_state <= 1'b0;
|
233 |
|
|
o_wb_cyc <= 1'b0;
|
234 |
|
|
end else if (o_wb_cyc)
|
235 |
|
|
begin
|
236 |
|
|
if (i_wb_ack)
|
237 |
|
|
fifo_torso <= next_torso;
|
238 |
|
|
if (fifo_neck == next_torso)
|
239 |
|
|
o_wb_cyc <= 1'b0;
|
240 |
|
|
end else if (fifo_neck != fifo_head)
|
241 |
|
|
begin
|
242 |
|
|
o_wb_cyc <= 1'b1;
|
243 |
|
|
o_wb_stb <= 1'b1;
|
244 |
|
|
end
|
245 |
|
|
end
|
246 |
|
|
|
247 |
|
|
always @(posedge i_axi_clk)
|
248 |
|
|
fifo_at_neck <= afifo[fifo_neck];
|
249 |
|
|
assign o_wb_addr = fifo_at_neck[(AW-1):0];
|
250 |
|
|
|
251 |
|
|
always @(posedge i_axi_clk)
|
252 |
|
|
dfifo[fifo_torso] <= { (err_state)||(i_wb_err), i_wb_data };
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
always @(posedge i_axi_clk)
|
256 |
|
|
if (w_reset)
|
257 |
|
|
fifo_tail <= 0;
|
258 |
|
|
else if ((o_axi_rvalid)&&(i_axi_rready))
|
259 |
|
|
fifo_tail <= next_tail;
|
260 |
|
|
|
261 |
|
|
always @(posedge i_axi_clk)
|
262 |
|
|
begin
|
263 |
|
|
afifo_at_tail <= afifo[fifo_tail];
|
264 |
|
|
dfifo_at_tail <= dfifo[fifo_tail];
|
265 |
|
|
// o_axi_rdata <= dfifo[fifo_tail];
|
266 |
|
|
// o_axi_rlast <= afifo[fifo_tail];
|
267 |
|
|
// o_axi_rid <= afifo[fifo_tail];
|
268 |
|
|
end
|
269 |
|
|
assign o_axi_rlast = afifo_at_tail[AW];
|
270 |
|
|
assign o_axi_rid = afifo_at_tail[(C_AXI_ID_WIDTH+AW):(AW+1)];
|
271 |
|
|
assign o_axi_rresp = { (2){dfifo_at_tail[DW]} };
|
272 |
|
|
assign o_axi_rdata = dfifo_at_tail[(DW-1):0];
|
273 |
|
|
|
274 |
|
|
initial o_axi_rvalid = 1'b0;
|
275 |
|
|
always @(posedge i_axi_clk)
|
276 |
|
|
if (w_reset)
|
277 |
|
|
o_axi_rvalid <= 0;
|
278 |
|
|
else if (fifo_tail != fifo_neck)
|
279 |
|
|
o_axi_rvalid <= (fifo_tail != fifo_neck + 1);
|
280 |
|
|
|
281 |
|
|
assign o_axi_arready = (!fifo_full)&&(!filling_fifo);
|
282 |
|
|
|
283 |
|
|
// Make Verilator happy
|
284 |
|
|
// verilator lint_off UNUSED
|
285 |
|
|
wire [(C_AXI_ID_WIDTH+1)+(C_AXI_ADDR_WIDTH-AW)
|
286 |
|
|
+3+1+1+4+3+4-1:0] unused;
|
287 |
|
|
assign unused = { i_axi_arsize, i_axi_arburst[1],
|
288 |
|
|
i_axi_arlock, i_axi_arcache, i_axi_arprot,
|
289 |
|
|
i_axi_arqos,
|
290 |
|
|
fifo_at_neck[(C_AXI_ID_WIDTH+AW+1)-1:AW],
|
291 |
|
|
i_axi_araddr[(C_AXI_ADDR_WIDTH-AW-1):0] };
|
292 |
|
|
// verilator lint_on UNUSED
|
293 |
|
|
|
294 |
|
|
`ifdef FORMAL
|
295 |
|
|
reg f_past_valid;
|
296 |
|
|
initial f_past_valid = 1'b0;
|
297 |
|
|
always @(posedge i_axi_clk)
|
298 |
|
|
f_past_valid <= 1'b1;
|
299 |
|
|
|
300 |
|
|
wire [LGFIFO-1:0] f_fifo_used, f_fifo_neck_used,
|
301 |
|
|
f_fifo_torso_used;
|
302 |
|
|
assign f_fifo_used = fifo_head - fifo_tail;
|
303 |
|
|
assign f_fifo_neck_used = fifo_head - fifo_neck;
|
304 |
|
|
assign f_fifo_torso_used = fifo_head - fifo_torso;
|
305 |
|
|
|
306 |
|
|
always @(*)
|
307 |
|
|
assert((f_fifo_used < {(LGFIFO){1'b1}})||(!o_axi_arready));
|
308 |
|
|
always @(*)
|
309 |
|
|
assert(f_fifo_neck_used <= f_fifo_used);
|
310 |
|
|
always @(*)
|
311 |
|
|
assert(f_fifo_torso_used <= f_fifo_used);
|
312 |
|
|
|
313 |
|
|
always @(posedge i_axi_clk)
|
314 |
|
|
if ((f_past_valid)&&(!$past(i_axi_reset_n)))
|
315 |
|
|
assert(f_fifo_used == 0);
|
316 |
|
|
|
317 |
|
|
`endif
|
318 |
|
|
endmodule
|