1 |
8 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: wbarbiter.v
|
4 |
|
|
//
|
5 |
|
|
// Project: Pipelined Wishbone to AXI converter
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This is a priority bus arbiter. It allows two separate wishbone
|
8 |
|
|
// masters to connect to the same bus, while also guaranteeing
|
9 |
|
|
// that one master can have the bus with no delay any time the other
|
10 |
|
|
// master is not using the bus. The goal is to eliminate as much
|
11 |
|
|
// combinatorial logic as possible, while still guarateeing minimum access
|
12 |
|
|
// time for the priority (last, or alternate) channel.
|
13 |
|
|
//
|
14 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
15 |
|
|
// Gisselquist Technology, LLC
|
16 |
|
|
//
|
17 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
18 |
|
|
//
|
19 |
|
|
// Copyright (C) 2015,2017, Gisselquist Technology, LLC
|
20 |
|
|
//
|
21 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
22 |
|
|
// modify it under the terms of the GNU General Public License as published
|
23 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
24 |
|
|
// your option) any later version.
|
25 |
|
|
//
|
26 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
27 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
28 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
29 |
|
|
// for more details.
|
30 |
|
|
//
|
31 |
|
|
// You should have received a copy of the GNU General Public License along
|
32 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
33 |
|
|
// target there if the PDF file isn't present.) If not, see
|
34 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
35 |
|
|
//
|
36 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
37 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
38 |
|
|
//
|
39 |
|
|
//
|
40 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
41 |
|
|
//
|
42 |
|
|
//
|
43 |
|
|
`default_nettype none
|
44 |
|
|
//
|
45 |
|
|
`define WBA_ALTERNATING
|
46 |
|
|
//
|
47 |
|
|
module wbarbiter(i_clk, i_reset,
|
48 |
|
|
// Bus A -- the priority bus
|
49 |
|
|
i_a_cyc, i_a_stb, i_a_we, i_a_adr, i_a_dat, i_a_sel,
|
50 |
|
|
o_a_ack, o_a_stall, o_a_err,
|
51 |
|
|
// Bus B
|
52 |
|
|
i_b_cyc, i_b_stb, i_b_we, i_b_adr, i_b_dat, i_b_sel,
|
53 |
|
|
o_b_ack, o_b_stall, o_b_err,
|
54 |
|
|
// Combined/arbitrated bus
|
55 |
|
|
o_cyc, o_stb, o_we, o_adr, o_dat, o_sel, i_ack, i_stall, i_err);
|
56 |
|
|
parameter DW=32, AW=32;
|
57 |
|
|
parameter SCHEME="ALTERNATING";
|
58 |
|
|
parameter [0:0] OPT_ZERO_ON_IDLE = 1'b0;
|
59 |
|
|
`ifdef FORMAL
|
60 |
|
|
parameter F_LGDEPTH=3;
|
61 |
|
|
`endif
|
62 |
|
|
|
63 |
|
|
//
|
64 |
|
|
input wire i_clk, i_reset;
|
65 |
|
|
// Bus A
|
66 |
|
|
input wire i_a_cyc, i_a_stb, i_a_we;
|
67 |
|
|
input wire [(AW-1):0] i_a_adr;
|
68 |
|
|
input wire [(DW-1):0] i_a_dat;
|
69 |
|
|
input wire [(DW/8-1):0] i_a_sel;
|
70 |
|
|
output wire o_a_ack, o_a_stall, o_a_err;
|
71 |
|
|
// Bus B
|
72 |
|
|
input wire i_b_cyc, i_b_stb, i_b_we;
|
73 |
|
|
input wire [(AW-1):0] i_b_adr;
|
74 |
|
|
input wire [(DW-1):0] i_b_dat;
|
75 |
|
|
input wire [(DW/8-1):0] i_b_sel;
|
76 |
|
|
output wire o_b_ack, o_b_stall, o_b_err;
|
77 |
|
|
//
|
78 |
|
|
output wire o_cyc, o_stb, o_we;
|
79 |
|
|
output wire [(AW-1):0] o_adr;
|
80 |
|
|
output wire [(DW-1):0] o_dat;
|
81 |
|
|
output wire [(DW/8-1):0] o_sel;
|
82 |
|
|
input wire i_ack, i_stall, i_err;
|
83 |
|
|
|
84 |
|
|
// Go high immediately (new cycle) if ...
|
85 |
|
|
// Previous cycle was low and *someone* is requesting a bus cycle
|
86 |
|
|
// Go low immadiately if ...
|
87 |
|
|
// We were just high and the owner no longer wants the bus
|
88 |
|
|
// WISHBONE Spec recommends no logic between a FF and the o_cyc
|
89 |
|
|
// This violates that spec. (Rec 3.15, p35)
|
90 |
|
|
reg r_a_owner;
|
91 |
|
|
|
92 |
|
|
assign o_cyc = (r_a_owner) ? i_a_cyc : i_b_cyc;
|
93 |
|
|
initial r_a_owner = 1'b1;
|
94 |
|
|
|
95 |
|
|
generate if (SCHEME == "PRIORITY")
|
96 |
|
|
begin : PRI
|
97 |
|
|
|
98 |
|
|
always @(posedge i_clk)
|
99 |
|
|
if (!i_b_cyc)
|
100 |
|
|
r_a_owner <= 1'b1;
|
101 |
|
|
// Allow B to set its CYC line w/o activating this
|
102 |
|
|
// interface
|
103 |
|
|
else if ((i_b_stb)&&(!i_a_cyc))
|
104 |
|
|
r_a_owner <= 1'b0;
|
105 |
|
|
|
106 |
|
|
end else if (SCHEME == "ALTERNATING")
|
107 |
|
|
begin : ALT
|
108 |
|
|
|
109 |
|
|
reg last_owner;
|
110 |
|
|
initial last_owner = 1'b0;
|
111 |
|
|
always @(posedge i_clk)
|
112 |
|
|
if ((i_a_cyc)&&(r_a_owner))
|
113 |
|
|
last_owner <= 1'b1;
|
114 |
|
|
else if ((i_b_cyc)&&(!r_a_owner))
|
115 |
|
|
last_owner <= 1'b0;
|
116 |
|
|
|
117 |
|
|
always @(posedge i_clk)
|
118 |
|
|
if ((!i_a_cyc)&&(!i_b_cyc))
|
119 |
|
|
r_a_owner <= !last_owner;
|
120 |
|
|
else if ((r_a_owner)&&(!i_a_cyc))
|
121 |
|
|
begin
|
122 |
|
|
|
123 |
|
|
if (i_b_stb)
|
124 |
|
|
r_a_owner <= 1'b0;
|
125 |
|
|
|
126 |
|
|
end else if ((!r_a_owner)&&(!i_b_cyc))
|
127 |
|
|
begin
|
128 |
|
|
|
129 |
|
|
if (i_a_stb)
|
130 |
|
|
r_a_owner <= 1'b1;
|
131 |
|
|
|
132 |
|
|
end
|
133 |
|
|
|
134 |
|
|
end else // if (SCHEME == "LAST")
|
135 |
|
|
begin : LST
|
136 |
|
|
always @(posedge i_clk)
|
137 |
|
|
if ((!i_a_cyc)&&(i_b_stb))
|
138 |
|
|
r_a_owner <= 1'b0;
|
139 |
|
|
else if ((!i_b_cyc)&&(i_a_stb))
|
140 |
|
|
r_a_owner <= 1'b1;
|
141 |
|
|
end endgenerate
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
// Realistically, if neither master owns the bus, the output is a
|
145 |
|
|
// don't care. Thus we trigger off whether or not 'A' owns the bus.
|
146 |
|
|
// If 'B' owns it all we care is that 'A' does not. Likewise, if
|
147 |
|
|
// neither owns the bus than the values on the various lines are
|
148 |
|
|
// irrelevant.
|
149 |
|
|
assign o_we = (r_a_owner) ? i_a_we : i_b_we;
|
150 |
|
|
|
151 |
|
|
generate if (OPT_ZERO_ON_IDLE)
|
152 |
|
|
begin
|
153 |
|
|
//
|
154 |
|
|
// OPT_ZERO_ON_IDLE will use up more logic and may even slow
|
155 |
|
|
// down the master clock if set. However, it may also reduce
|
156 |
|
|
// the power used by the FPGA by preventing things from toggling
|
157 |
|
|
// when the bus isn't in use. The option is here because it
|
158 |
|
|
// also makes it a lot easier to look for when things happen
|
159 |
|
|
// on the bus via VERILATOR when timing and logic counts
|
160 |
|
|
// don't matter.
|
161 |
|
|
//
|
162 |
|
|
assign o_stb = (o_cyc)? ((r_a_owner) ? i_a_stb : i_b_stb):0;
|
163 |
|
|
assign o_adr = (o_stb)? ((r_a_owner) ? i_a_adr : i_b_adr):0;
|
164 |
|
|
assign o_dat = (o_stb)? ((r_a_owner) ? i_a_dat : i_b_dat):0;
|
165 |
|
|
assign o_sel = (o_stb)? ((r_a_owner) ? i_a_sel : i_b_sel):0;
|
166 |
|
|
assign o_a_ack = (o_cyc)&&( r_a_owner) ? i_ack : 1'b0;
|
167 |
|
|
assign o_b_ack = (o_cyc)&&(!r_a_owner) ? i_ack : 1'b0;
|
168 |
|
|
assign o_a_stall = (o_cyc)&&( r_a_owner) ? i_stall : 1'b1;
|
169 |
|
|
assign o_b_stall = (o_cyc)&&(!r_a_owner) ? i_stall : 1'b1;
|
170 |
|
|
assign o_a_err = (o_cyc)&&( r_a_owner) ? i_err : 1'b0;
|
171 |
|
|
assign o_b_err = (o_cyc)&&(!r_a_owner) ? i_err : 1'b0;
|
172 |
|
|
end else begin
|
173 |
|
|
|
174 |
|
|
assign o_stb = (r_a_owner) ? i_a_stb : i_b_stb;
|
175 |
|
|
assign o_adr = (r_a_owner) ? i_a_adr : i_b_adr;
|
176 |
|
|
assign o_dat = (r_a_owner) ? i_a_dat : i_b_dat;
|
177 |
|
|
assign o_sel = (r_a_owner) ? i_a_sel : i_b_sel;
|
178 |
|
|
|
179 |
|
|
// We cannot allow the return acknowledgement to ever go high if
|
180 |
|
|
// the master in question does not own the bus. Hence we force
|
181 |
|
|
// it low if the particular master doesn't own the bus.
|
182 |
|
|
assign o_a_ack = ( r_a_owner) ? i_ack : 1'b0;
|
183 |
|
|
assign o_b_ack = (!r_a_owner) ? i_ack : 1'b0;
|
184 |
|
|
|
185 |
|
|
// Stall must be asserted on the same cycle the input master
|
186 |
|
|
// asserts the bus, if the bus isn't granted to him.
|
187 |
|
|
assign o_a_stall = ( r_a_owner) ? i_stall : 1'b1;
|
188 |
|
|
assign o_b_stall = (!r_a_owner) ? i_stall : 1'b1;
|
189 |
|
|
|
190 |
|
|
//
|
191 |
|
|
//
|
192 |
|
|
assign o_a_err = ( r_a_owner) ? i_err : 1'b0;
|
193 |
|
|
assign o_b_err = (!r_a_owner) ? i_err : 1'b0;
|
194 |
|
|
end endgenerate
|
195 |
|
|
|
196 |
|
|
// Make Verilator happy
|
197 |
|
|
// verilator lint_off UNUSED
|
198 |
|
|
wire unused;
|
199 |
|
|
assign unused = i_reset;
|
200 |
|
|
// verilator lint_on UNUSED
|
201 |
|
|
|
202 |
|
|
`ifdef FORMAL
|
203 |
|
|
|
204 |
|
|
`ifdef WBARBITER
|
205 |
|
|
reg f_last_clk;
|
206 |
|
|
initial assume(!i_clk);
|
207 |
|
|
always @($global_clock)
|
208 |
|
|
begin
|
209 |
|
|
assume(i_clk != f_last_clk);
|
210 |
|
|
f_last_clk <= i_clk;
|
211 |
|
|
end
|
212 |
|
|
`define ASSUME assume
|
213 |
|
|
`else
|
214 |
|
|
`define ASSUME assert
|
215 |
|
|
`endif
|
216 |
|
|
|
217 |
|
|
reg f_past_valid;
|
218 |
|
|
initial f_past_valid = 1'b0;
|
219 |
|
|
always @($global_clock)
|
220 |
|
|
f_past_valid <= 1'b1;
|
221 |
|
|
|
222 |
|
|
initial `ASSUME(!i_a_cyc);
|
223 |
|
|
initial `ASSUME(!i_a_stb);
|
224 |
|
|
|
225 |
|
|
initial `ASSUME(!i_b_cyc);
|
226 |
|
|
initial `ASSUME(!i_b_stb);
|
227 |
|
|
|
228 |
|
|
initial `ASSUME(!i_ack);
|
229 |
|
|
initial `ASSUME(!i_err);
|
230 |
|
|
|
231 |
|
|
always @(posedge i_clk)
|
232 |
|
|
begin
|
233 |
|
|
if (o_cyc)
|
234 |
|
|
assert((i_a_cyc)||(i_b_cyc));
|
235 |
|
|
if ((f_past_valid)&&($past(o_cyc))&&(o_cyc))
|
236 |
|
|
assert($past(r_a_owner) == r_a_owner);
|
237 |
|
|
end
|
238 |
|
|
|
239 |
|
|
wire [(F_LGDEPTH-1):0] f_nreqs, f_nacks, f_outstanding,
|
240 |
|
|
f_a_nreqs, f_a_nacks, f_a_outstanding,
|
241 |
|
|
f_b_nreqs, f_b_nacks, f_b_outstanding;
|
242 |
|
|
|
243 |
|
|
fwb_master #(.DW(DW), .AW(AW),
|
244 |
|
|
.F_MAX_STALL(0),
|
245 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
246 |
|
|
.F_MAX_ACK_DELAY(0),
|
247 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
248 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
249 |
|
|
f_wbm(i_clk, i_reset,
|
250 |
|
|
o_cyc, o_stb, o_we, o_adr, o_dat, o_sel,
|
251 |
|
|
i_ack, i_stall, 32'h0, i_err,
|
252 |
|
|
f_nreqs, f_nacks, f_outstanding);
|
253 |
|
|
|
254 |
|
|
fwb_slave #(.DW(DW), .AW(AW),
|
255 |
|
|
.F_MAX_STALL(0),
|
256 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
257 |
|
|
.F_MAX_ACK_DELAY(0),
|
258 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
259 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
260 |
|
|
f_wba(i_clk, i_reset,
|
261 |
|
|
i_a_cyc, i_a_stb, i_a_we, i_a_adr, i_a_dat, i_a_sel,
|
262 |
|
|
o_a_ack, o_a_stall, 32'h0, o_a_err,
|
263 |
|
|
f_a_nreqs, f_a_nacks, f_a_outstanding);
|
264 |
|
|
|
265 |
|
|
fwb_slave #(.DW(DW), .AW(AW),
|
266 |
|
|
.F_MAX_STALL(0),
|
267 |
|
|
.F_LGDEPTH(F_LGDEPTH),
|
268 |
|
|
.F_MAX_ACK_DELAY(0),
|
269 |
|
|
.F_OPT_RMW_BUS_OPTION(1),
|
270 |
|
|
.F_OPT_DISCONTINUOUS(1))
|
271 |
|
|
f_wbb(i_clk, i_reset,
|
272 |
|
|
i_b_cyc, i_b_stb, i_b_we, i_b_adr, i_b_dat, i_b_sel,
|
273 |
|
|
o_b_ack, o_b_stall, 32'h0, o_b_err,
|
274 |
|
|
f_b_nreqs, f_b_nacks, f_b_outstanding);
|
275 |
|
|
|
276 |
|
|
always @(posedge i_clk)
|
277 |
|
|
if (r_a_owner)
|
278 |
|
|
begin
|
279 |
|
|
assert(f_b_nreqs == 0);
|
280 |
|
|
assert(f_b_nacks == 0);
|
281 |
|
|
assert(f_a_outstanding == f_outstanding);
|
282 |
|
|
end else begin
|
283 |
|
|
assert(f_a_nreqs == 0);
|
284 |
|
|
assert(f_a_nacks == 0);
|
285 |
|
|
assert(f_b_outstanding == f_outstanding);
|
286 |
|
|
end
|
287 |
|
|
|
288 |
|
|
always @(posedge i_clk)
|
289 |
|
|
if ((f_past_valid)&&(!$past(i_reset))
|
290 |
|
|
&&($past(i_a_stb))&&(!$past(i_b_cyc)))
|
291 |
|
|
assert(r_a_owner);
|
292 |
|
|
always @(posedge i_clk)
|
293 |
|
|
if ((f_past_valid)&&(!$past(i_reset))
|
294 |
|
|
&&(!$past(i_a_cyc))&&($past(i_b_stb)))
|
295 |
|
|
assert(!r_a_owner);
|
296 |
|
|
|
297 |
|
|
always @(posedge i_clk)
|
298 |
|
|
if ((f_past_valid)&&(r_a_owner != $past(r_a_owner)))
|
299 |
|
|
assert(!$past(o_cyc));
|
300 |
|
|
|
301 |
|
|
`endif
|
302 |
|
|
endmodule
|
303 |
|
|
|