OpenCores
URL https://opencores.org/ocsvn/altor32/altor32/trunk

Subversion Repositories altor32

[/] [altor32/] [trunk/] [gcc-x64/] [or1knd-elf/] [or1knd-elf/] [include/] [c++/] [4.8.0/] [ext/] [bitmap_allocator.h] - Blame information for rev 35

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 35 ultra_embe
// Bitmap Allocator. -*- C++ -*-
2
 
3
// Copyright (C) 2004-2012 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// <http://www.gnu.org/licenses/>.
24
 
25
/** @file ext/bitmap_allocator.h
26
 *  This file is a GNU extension to the Standard C++ Library.
27
 */
28
 
29
#ifndef _BITMAP_ALLOCATOR_H
30
#define _BITMAP_ALLOCATOR_H 1
31
 
32
#include <utility> // For std::pair.
33
#include <bits/functexcept.h> // For __throw_bad_alloc().
34
#include <functional> // For greater_equal, and less_equal.
35
#include <new> // For operator new.
36
#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37
#include <ext/concurrence.h>
38
#include <bits/move.h>
39
 
40
/** @brief The constant in the expression below is the alignment
41
 * required in bytes.
42
 */
43
#define _BALLOC_ALIGN_BYTES 8
44
 
45
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46
{
47
  using std::size_t;
48
  using std::ptrdiff_t;
49
 
50
  namespace __detail
51
  {
52
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
53
    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
54
     *
55
     *  @brief  __mini_vector<> is a stripped down version of the
56
     *  full-fledged std::vector<>.
57
     *
58
     *  It is to be used only for built-in types or PODs. Notable
59
     *  differences are:
60
     *
61
     *  1. Not all accessor functions are present.
62
     *  2. Used ONLY for PODs.
63
     *  3. No Allocator template argument. Uses ::operator new() to get
64
     *  memory, and ::operator delete() to free it.
65
     *  Caveat: The dtor does NOT free the memory allocated, so this a
66
     *  memory-leaking vector!
67
     */
68
    template<typename _Tp>
69
      class __mini_vector
70
      {
71
        __mini_vector(const __mini_vector&);
72
        __mini_vector& operator=(const __mini_vector&);
73
 
74
      public:
75
        typedef _Tp value_type;
76
        typedef _Tp* pointer;
77
        typedef _Tp& reference;
78
        typedef const _Tp& const_reference;
79
        typedef size_t size_type;
80
        typedef ptrdiff_t difference_type;
81
        typedef pointer iterator;
82
 
83
      private:
84
        pointer _M_start;
85
        pointer _M_finish;
86
        pointer _M_end_of_storage;
87
 
88
        size_type
89
        _M_space_left() const throw()
90
        { return _M_end_of_storage - _M_finish; }
91
 
92
        pointer
93
        allocate(size_type __n)
94
        { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
95
 
96
        void
97
        deallocate(pointer __p, size_type)
98
        { ::operator delete(__p); }
99
 
100
      public:
101
        // Members used: size(), push_back(), pop_back(),
102
        // insert(iterator, const_reference), erase(iterator),
103
        // begin(), end(), back(), operator[].
104
 
105
        __mini_vector()
106
        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
107
 
108
        size_type
109
        size() const throw()
110
        { return _M_finish - _M_start; }
111
 
112
        iterator
113
        begin() const throw()
114
        { return this->_M_start; }
115
 
116
        iterator
117
        end() const throw()
118
        { return this->_M_finish; }
119
 
120
        reference
121
        back() const throw()
122
        { return *(this->end() - 1); }
123
 
124
        reference
125
        operator[](const size_type __pos) const throw()
126
        { return this->_M_start[__pos]; }
127
 
128
        void
129
        insert(iterator __pos, const_reference __x);
130
 
131
        void
132
        push_back(const_reference __x)
133
        {
134
          if (this->_M_space_left())
135
            {
136
              *this->end() = __x;
137
              ++this->_M_finish;
138
            }
139
          else
140
            this->insert(this->end(), __x);
141
        }
142
 
143
        void
144
        pop_back() throw()
145
        { --this->_M_finish; }
146
 
147
        void
148
        erase(iterator __pos) throw();
149
 
150
        void
151
        clear() throw()
152
        { this->_M_finish = this->_M_start; }
153
      };
154
 
155
    // Out of line function definitions.
156
    template<typename _Tp>
157
      void __mini_vector<_Tp>::
158
      insert(iterator __pos, const_reference __x)
159
      {
160
        if (this->_M_space_left())
161
          {
162
            size_type __to_move = this->_M_finish - __pos;
163
            iterator __dest = this->end();
164
            iterator __src = this->end() - 1;
165
 
166
            ++this->_M_finish;
167
            while (__to_move)
168
              {
169
                *__dest = *__src;
170
                --__dest; --__src; --__to_move;
171
              }
172
            *__pos = __x;
173
          }
174
        else
175
          {
176
            size_type __new_size = this->size() ? this->size() * 2 : 1;
177
            iterator __new_start = this->allocate(__new_size);
178
            iterator __first = this->begin();
179
            iterator __start = __new_start;
180
            while (__first != __pos)
181
              {
182
                *__start = *__first;
183
                ++__start; ++__first;
184
              }
185
            *__start = __x;
186
            ++__start;
187
            while (__first != this->end())
188
              {
189
                *__start = *__first;
190
                ++__start; ++__first;
191
              }
192
            if (this->_M_start)
193
              this->deallocate(this->_M_start, this->size());
194
 
195
            this->_M_start = __new_start;
196
            this->_M_finish = __start;
197
            this->_M_end_of_storage = this->_M_start + __new_size;
198
          }
199
      }
200
 
201
    template<typename _Tp>
202
      void __mini_vector<_Tp>::
203
      erase(iterator __pos) throw()
204
      {
205
        while (__pos + 1 != this->end())
206
          {
207
            *__pos = __pos[1];
208
            ++__pos;
209
          }
210
        --this->_M_finish;
211
      }
212
 
213
 
214
    template<typename _Tp>
215
      struct __mv_iter_traits
216
      {
217
        typedef typename _Tp::value_type value_type;
218
        typedef typename _Tp::difference_type difference_type;
219
      };
220
 
221
    template<typename _Tp>
222
      struct __mv_iter_traits<_Tp*>
223
      {
224
        typedef _Tp value_type;
225
        typedef ptrdiff_t difference_type;
226
      };
227
 
228
    enum
229
      {
230
        bits_per_byte = 8,
231
        bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
232
      };
233
 
234
    template<typename _ForwardIterator, typename _Tp, typename _Compare>
235
      _ForwardIterator
236
      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
237
                    const _Tp& __val, _Compare __comp)
238
      {
239
        typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
240
          _DistanceType;
241
 
242
        _DistanceType __len = __last - __first;
243
        _DistanceType __half;
244
        _ForwardIterator __middle;
245
 
246
        while (__len > 0)
247
          {
248
            __half = __len >> 1;
249
            __middle = __first;
250
            __middle += __half;
251
            if (__comp(*__middle, __val))
252
              {
253
                __first = __middle;
254
                ++__first;
255
                __len = __len - __half - 1;
256
              }
257
            else
258
              __len = __half;
259
          }
260
        return __first;
261
      }
262
 
263
    /** @brief The number of Blocks pointed to by the address pair
264
     *  passed to the function.
265
     */
266
    template<typename _AddrPair>
267
      inline size_t
268
      __num_blocks(_AddrPair __ap)
269
      { return (__ap.second - __ap.first) + 1; }
270
 
271
    /** @brief The number of Bit-maps pointed to by the address pair
272
     *  passed to the function.
273
     */
274
    template<typename _AddrPair>
275
      inline size_t
276
      __num_bitmaps(_AddrPair __ap)
277
      { return __num_blocks(__ap) / size_t(bits_per_block); }
278
 
279
    // _Tp should be a pointer type.
280
    template<typename _Tp>
281
      class _Inclusive_between
282
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
283
      {
284
        typedef _Tp pointer;
285
        pointer _M_ptr_value;
286
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
287
 
288
      public:
289
        _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
290
        { }
291
 
292
        bool
293
        operator()(_Block_pair __bp) const throw()
294
        {
295
          if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
296
              && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
297
            return true;
298
          else
299
            return false;
300
        }
301
      };
302
 
303
    // Used to pass a Functor to functions by reference.
304
    template<typename _Functor>
305
      class _Functor_Ref
306
      : public std::unary_function<typename _Functor::argument_type,
307
                                   typename _Functor::result_type>
308
      {
309
        _Functor& _M_fref;
310
 
311
      public:
312
        typedef typename _Functor::argument_type argument_type;
313
        typedef typename _Functor::result_type result_type;
314
 
315
        _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
316
        { }
317
 
318
        result_type
319
        operator()(argument_type __arg)
320
        { return _M_fref(__arg); }
321
      };
322
 
323
    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
324
     *
325
     *  @brief  The class which acts as a predicate for applying the
326
     *  first-fit memory allocation policy for the bitmap allocator.
327
     */
328
    // _Tp should be a pointer type, and _Alloc is the Allocator for
329
    // the vector.
330
    template<typename _Tp>
331
      class _Ffit_finder
332
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
333
      {
334
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
335
        typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
336
        typedef typename _BPVector::difference_type _Counter_type;
337
 
338
        size_t* _M_pbitmap;
339
        _Counter_type _M_data_offset;
340
 
341
      public:
342
        _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
343
        { }
344
 
345
        bool
346
        operator()(_Block_pair __bp) throw()
347
        {
348
          // Set the _rover to the last physical location bitmap,
349
          // which is the bitmap which belongs to the first free
350
          // block. Thus, the bitmaps are in exact reverse order of
351
          // the actual memory layout. So, we count down the bitmaps,
352
          // which is the same as moving up the memory.
353
 
354
          // If the used count stored at the start of the Bit Map headers
355
          // is equal to the number of Objects that the current Block can
356
          // store, then there is definitely no space for another single
357
          // object, so just return false.
358
          _Counter_type __diff = __detail::__num_bitmaps(__bp);
359
 
360
          if (*(reinterpret_cast<size_t*>
361
                (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
362
            return false;
363
 
364
          size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
365
 
366
          for (_Counter_type __i = 0; __i < __diff; ++__i)
367
            {
368
              _M_data_offset = __i;
369
              if (*__rover)
370
                {
371
                  _M_pbitmap = __rover;
372
                  return true;
373
                }
374
              --__rover;
375
            }
376
          return false;
377
        }
378
 
379
        size_t*
380
        _M_get() const throw()
381
        { return _M_pbitmap; }
382
 
383
        _Counter_type
384
        _M_offset() const throw()
385
        { return _M_data_offset * size_t(bits_per_block); }
386
      };
387
 
388
    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
389
     *
390
     *  @brief  The bitmap counter which acts as the bitmap
391
     *  manipulator, and manages the bit-manipulation functions and
392
     *  the searching and identification functions on the bit-map.
393
     */
394
    // _Tp should be a pointer type.
395
    template<typename _Tp>
396
      class _Bitmap_counter
397
      {
398
        typedef typename
399
        __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
400
        typedef typename _BPVector::size_type _Index_type;
401
        typedef _Tp pointer;
402
 
403
        _BPVector& _M_vbp;
404
        size_t* _M_curr_bmap;
405
        size_t* _M_last_bmap_in_block;
406
        _Index_type _M_curr_index;
407
 
408
      public:
409
        // Use the 2nd parameter with care. Make sure that such an
410
        // entry exists in the vector before passing that particular
411
        // index to this ctor.
412
        _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
413
        { this->_M_reset(__index); }
414
 
415
        void
416
        _M_reset(long __index = -1) throw()
417
        {
418
          if (__index == -1)
419
            {
420
              _M_curr_bmap = 0;
421
              _M_curr_index = static_cast<_Index_type>(-1);
422
              return;
423
            }
424
 
425
          _M_curr_index = __index;
426
          _M_curr_bmap = reinterpret_cast<size_t*>
427
            (_M_vbp[_M_curr_index].first) - 1;
428
 
429
          _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
430
 
431
          _M_last_bmap_in_block = _M_curr_bmap
432
            - ((_M_vbp[_M_curr_index].second
433
                - _M_vbp[_M_curr_index].first + 1)
434
               / size_t(bits_per_block) - 1);
435
        }
436
 
437
        // Dangerous Function! Use with extreme care. Pass to this
438
        // function ONLY those values that are known to be correct,
439
        // otherwise this will mess up big time.
440
        void
441
        _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
442
        { _M_curr_bmap = __new_internal_marker; }
443
 
444
        bool
445
        _M_finished() const throw()
446
        { return(_M_curr_bmap == 0); }
447
 
448
        _Bitmap_counter&
449
        operator++() throw()
450
        {
451
          if (_M_curr_bmap == _M_last_bmap_in_block)
452
            {
453
              if (++_M_curr_index == _M_vbp.size())
454
                _M_curr_bmap = 0;
455
              else
456
                this->_M_reset(_M_curr_index);
457
            }
458
          else
459
            --_M_curr_bmap;
460
          return *this;
461
        }
462
 
463
        size_t*
464
        _M_get() const throw()
465
        { return _M_curr_bmap; }
466
 
467
        pointer
468
        _M_base() const throw()
469
        { return _M_vbp[_M_curr_index].first; }
470
 
471
        _Index_type
472
        _M_offset() const throw()
473
        {
474
          return size_t(bits_per_block)
475
            * ((reinterpret_cast<size_t*>(this->_M_base())
476
                - _M_curr_bmap) - 1);
477
        }
478
 
479
        _Index_type
480
        _M_where() const throw()
481
        { return _M_curr_index; }
482
      };
483
 
484
    /** @brief  Mark a memory address as allocated by re-setting the
485
     *  corresponding bit in the bit-map.
486
     */
487
    inline void
488
    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
489
    {
490
      size_t __mask = 1 << __pos;
491
      __mask = ~__mask;
492
      *__pbmap &= __mask;
493
    }
494
 
495
    /** @brief  Mark a memory address as free by setting the
496
     *  corresponding bit in the bit-map.
497
     */
498
    inline void
499
    __bit_free(size_t* __pbmap, size_t __pos) throw()
500
    {
501
      size_t __mask = 1 << __pos;
502
      *__pbmap |= __mask;
503
    }
504
 
505
  _GLIBCXX_END_NAMESPACE_VERSION
506
  } // namespace __detail
507
 
508
_GLIBCXX_BEGIN_NAMESPACE_VERSION
509
 
510
  /** @brief  Generic Version of the bsf instruction.
511
   */
512
  inline size_t
513
  _Bit_scan_forward(size_t __num)
514
  { return static_cast<size_t>(__builtin_ctzl(__num)); }
515
 
516
  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
517
   *
518
   *  @brief  The free list class for managing chunks of memory to be
519
   *  given to and returned by the bitmap_allocator.
520
   */
521
  class free_list
522
  {
523
  public:
524
    typedef size_t*                             value_type;
525
    typedef __detail::__mini_vector<value_type> vector_type;
526
    typedef vector_type::iterator               iterator;
527
    typedef __mutex                             __mutex_type;
528
 
529
  private:
530
    struct _LT_pointer_compare
531
    {
532
      bool
533
      operator()(const size_t* __pui,
534
                 const size_t __cui) const throw()
535
      { return *__pui < __cui; }
536
    };
537
 
538
#if defined __GTHREADS
539
    __mutex_type&
540
    _M_get_mutex()
541
    {
542
      static __mutex_type _S_mutex;
543
      return _S_mutex;
544
    }
545
#endif
546
 
547
    vector_type&
548
    _M_get_free_list()
549
    {
550
      static vector_type _S_free_list;
551
      return _S_free_list;
552
    }
553
 
554
    /** @brief  Performs validation of memory based on their size.
555
     *
556
     *  @param  __addr The pointer to the memory block to be
557
     *  validated.
558
     *
559
     *  Validates the memory block passed to this function and
560
     *  appropriately performs the action of managing the free list of
561
     *  blocks by adding this block to the free list or deleting this
562
     *  or larger blocks from the free list.
563
     */
564
    void
565
    _M_validate(size_t* __addr) throw()
566
    {
567
      vector_type& __free_list = _M_get_free_list();
568
      const vector_type::size_type __max_size = 64;
569
      if (__free_list.size() >= __max_size)
570
        {
571
          // Ok, the threshold value has been reached.  We determine
572
          // which block to remove from the list of free blocks.
573
          if (*__addr >= *__free_list.back())
574
            {
575
              // Ok, the new block is greater than or equal to the
576
              // last block in the list of free blocks. We just free
577
              // the new block.
578
              ::operator delete(static_cast<void*>(__addr));
579
              return;
580
            }
581
          else
582
            {
583
              // Deallocate the last block in the list of free lists,
584
              // and insert the new one in its correct position.
585
              ::operator delete(static_cast<void*>(__free_list.back()));
586
              __free_list.pop_back();
587
            }
588
        }
589
 
590
      // Just add the block to the list of free lists unconditionally.
591
      iterator __temp = __detail::__lower_bound
592
        (__free_list.begin(), __free_list.end(),
593
         *__addr, _LT_pointer_compare());
594
 
595
      // We may insert the new free list before _temp;
596
      __free_list.insert(__temp, __addr);
597
    }
598
 
599
    /** @brief  Decides whether the wastage of memory is acceptable for
600
     *  the current memory request and returns accordingly.
601
     *
602
     *  @param __block_size The size of the block available in the free
603
     *  list.
604
     *
605
     *  @param __required_size The required size of the memory block.
606
     *
607
     *  @return true if the wastage incurred is acceptable, else returns
608
     *  false.
609
     */
610
    bool
611
    _M_should_i_give(size_t __block_size,
612
                     size_t __required_size) throw()
613
    {
614
      const size_t __max_wastage_percentage = 36;
615
      if (__block_size >= __required_size &&
616
          (((__block_size - __required_size) * 100 / __block_size)
617
           < __max_wastage_percentage))
618
        return true;
619
      else
620
        return false;
621
    }
622
 
623
  public:
624
    /** @brief This function returns the block of memory to the
625
     *  internal free list.
626
     *
627
     *  @param  __addr The pointer to the memory block that was given
628
     *  by a call to the _M_get function.
629
     */
630
    inline void
631
    _M_insert(size_t* __addr) throw()
632
    {
633
#if defined __GTHREADS
634
      __scoped_lock __bfl_lock(_M_get_mutex());
635
#endif
636
      // Call _M_validate to decide what should be done with
637
      // this particular free list.
638
      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
639
      // See discussion as to why this is 1!
640
    }
641
 
642
    /** @brief  This function gets a block of memory of the specified
643
     *  size from the free list.
644
     *
645
     *  @param  __sz The size in bytes of the memory required.
646
     *
647
     *  @return  A pointer to the new memory block of size at least
648
     *  equal to that requested.
649
     */
650
    size_t*
651
    _M_get(size_t __sz) throw(std::bad_alloc);
652
 
653
    /** @brief  This function just clears the internal Free List, and
654
     *  gives back all the memory to the OS.
655
     */
656
    void
657
    _M_clear();
658
  };
659
 
660
 
661
  // Forward declare the class.
662
  template<typename _Tp>
663
    class bitmap_allocator;
664
 
665
  // Specialize for void:
666
  template<>
667
    class bitmap_allocator<void>
668
    {
669
    public:
670
      typedef void*       pointer;
671
      typedef const void* const_pointer;
672
 
673
      // Reference-to-void members are impossible.
674
      typedef void  value_type;
675
      template<typename _Tp1>
676
        struct rebind
677
        {
678
          typedef bitmap_allocator<_Tp1> other;
679
        };
680
    };
681
 
682
  /**
683
   * @brief Bitmap Allocator, primary template.
684
   * @ingroup allocators
685
   */
686
  template<typename _Tp>
687
    class bitmap_allocator : private free_list
688
    {
689
    public:
690
      typedef size_t                    size_type;
691
      typedef ptrdiff_t                 difference_type;
692
      typedef _Tp*                      pointer;
693
      typedef const _Tp*                const_pointer;
694
      typedef _Tp&                      reference;
695
      typedef const _Tp&                const_reference;
696
      typedef _Tp                       value_type;
697
      typedef free_list::__mutex_type   __mutex_type;
698
 
699
      template<typename _Tp1>
700
        struct rebind
701
        {
702
          typedef bitmap_allocator<_Tp1> other;
703
        };
704
 
705
#if __cplusplus >= 201103L
706
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
707
      // 2103. propagate_on_container_move_assignment
708
      typedef std::true_type propagate_on_container_move_assignment;
709
#endif
710
 
711
    private:
712
      template<size_t _BSize, size_t _AlignSize>
713
        struct aligned_size
714
        {
715
          enum
716
            {
717
              modulus = _BSize % _AlignSize,
718
              value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
719
            };
720
        };
721
 
722
      struct _Alloc_block
723
      {
724
        char __M_unused[aligned_size<sizeof(value_type),
725
                        _BALLOC_ALIGN_BYTES>::value];
726
      };
727
 
728
 
729
      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
730
 
731
      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
732
      typedef typename _BPVector::iterator _BPiter;
733
 
734
      template<typename _Predicate>
735
        static _BPiter
736
        _S_find(_Predicate __p)
737
        {
738
          _BPiter __first = _S_mem_blocks.begin();
739
          while (__first != _S_mem_blocks.end() && !__p(*__first))
740
            ++__first;
741
          return __first;
742
        }
743
 
744
#if defined _GLIBCXX_DEBUG
745
      // Complexity: O(lg(N)). Where, N is the number of block of size
746
      // sizeof(value_type).
747
      void
748
      _S_check_for_free_blocks() throw()
749
      {
750
        typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
751
        _BPiter __bpi = _S_find(_FFF());
752
 
753
        _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
754
      }
755
#endif
756
 
757
      /** @brief  Responsible for exponentially growing the internal
758
       *  memory pool.
759
       *
760
       *  @throw  std::bad_alloc. If memory can not be allocated.
761
       *
762
       *  Complexity: O(1), but internally depends upon the
763
       *  complexity of the function free_list::_M_get. The part where
764
       *  the bitmap headers are written has complexity: O(X),where X
765
       *  is the number of blocks of size sizeof(value_type) within
766
       *  the newly acquired block. Having a tight bound.
767
       */
768
      void
769
      _S_refill_pool() throw(std::bad_alloc)
770
      {
771
#if defined _GLIBCXX_DEBUG
772
        _S_check_for_free_blocks();
773
#endif
774
 
775
        const size_t __num_bitmaps = (_S_block_size
776
                                      / size_t(__detail::bits_per_block));
777
        const size_t __size_to_allocate = sizeof(size_t)
778
          + _S_block_size * sizeof(_Alloc_block)
779
          + __num_bitmaps * sizeof(size_t);
780
 
781
        size_t* __temp =
782
          reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
783
        *__temp = 0;
784
        ++__temp;
785
 
786
        // The Header information goes at the Beginning of the Block.
787
        _Block_pair __bp =
788
          std::make_pair(reinterpret_cast<_Alloc_block*>
789
                         (__temp + __num_bitmaps),
790
                         reinterpret_cast<_Alloc_block*>
791
                         (__temp + __num_bitmaps)
792
                         + _S_block_size - 1);
793
 
794
        // Fill the Vector with this information.
795
        _S_mem_blocks.push_back(__bp);
796
 
797
        for (size_t __i = 0; __i < __num_bitmaps; ++__i)
798
          __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
799
 
800
        _S_block_size *= 2;
801
      }
802
 
803
      static _BPVector _S_mem_blocks;
804
      static size_t _S_block_size;
805
      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
806
      static typename _BPVector::size_type _S_last_dealloc_index;
807
#if defined __GTHREADS
808
      static __mutex_type _S_mut;
809
#endif
810
 
811
    public:
812
 
813
      /** @brief  Allocates memory for a single object of size
814
       *  sizeof(_Tp).
815
       *
816
       *  @throw  std::bad_alloc. If memory can not be allocated.
817
       *
818
       *  Complexity: Worst case complexity is O(N), but that
819
       *  is hardly ever hit. If and when this particular case is
820
       *  encountered, the next few cases are guaranteed to have a
821
       *  worst case complexity of O(1)!  That's why this function
822
       *  performs very well on average. You can consider this
823
       *  function to have a complexity referred to commonly as:
824
       *  Amortized Constant time.
825
       */
826
      pointer
827
      _M_allocate_single_object() throw(std::bad_alloc)
828
      {
829
#if defined __GTHREADS
830
        __scoped_lock __bit_lock(_S_mut);
831
#endif
832
 
833
        // The algorithm is something like this: The last_request
834
        // variable points to the last accessed Bit Map. When such a
835
        // condition occurs, we try to find a free block in the
836
        // current bitmap, or succeeding bitmaps until the last bitmap
837
        // is reached. If no free block turns up, we resort to First
838
        // Fit method.
839
 
840
        // WARNING: Do not re-order the condition in the while
841
        // statement below, because it relies on C++'s short-circuit
842
        // evaluation. The return from _S_last_request->_M_get() will
843
        // NOT be dereference able if _S_last_request->_M_finished()
844
        // returns true. This would inevitably lead to a NULL pointer
845
        // dereference if tinkered with.
846
        while (_S_last_request._M_finished() == false
847
               && (*(_S_last_request._M_get()) == 0))
848
          _S_last_request.operator++();
849
 
850
        if (__builtin_expect(_S_last_request._M_finished() == true, false))
851
          {
852
            // Fall Back to First Fit algorithm.
853
            typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
854
            _FFF __fff;
855
            _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
856
 
857
            if (__bpi != _S_mem_blocks.end())
858
              {
859
                // Search was successful. Ok, now mark the first bit from
860
                // the right as 0, meaning Allocated. This bit is obtained
861
                // by calling _M_get() on __fff.
862
                size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
863
                __detail::__bit_allocate(__fff._M_get(), __nz_bit);
864
 
865
                _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
866
 
867
                // Now, get the address of the bit we marked as allocated.
868
                pointer __ret = reinterpret_cast<pointer>
869
                  (__bpi->first + __fff._M_offset() + __nz_bit);
870
                size_t* __puse_count =
871
                  reinterpret_cast<size_t*>
872
                  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
873
 
874
                ++(*__puse_count);
875
                return __ret;
876
              }
877
            else
878
              {
879
                // Search was unsuccessful. We Add more memory to the
880
                // pool by calling _S_refill_pool().
881
                _S_refill_pool();
882
 
883
                // _M_Reset the _S_last_request structure to the first
884
                // free block's bit map.
885
                _S_last_request._M_reset(_S_mem_blocks.size() - 1);
886
 
887
                // Now, mark that bit as allocated.
888
              }
889
          }
890
 
891
        // _S_last_request holds a pointer to a valid bit map, that
892
        // points to a free block in memory.
893
        size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
894
        __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
895
 
896
        pointer __ret = reinterpret_cast<pointer>
897
          (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
898
 
899
        size_t* __puse_count = reinterpret_cast<size_t*>
900
          (_S_mem_blocks[_S_last_request._M_where()].first)
901
          - (__detail::
902
             __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
903
 
904
        ++(*__puse_count);
905
        return __ret;
906
      }
907
 
908
      /** @brief  Deallocates memory that belongs to a single object of
909
       *  size sizeof(_Tp).
910
       *
911
       *  Complexity: O(lg(N)), but the worst case is not hit
912
       *  often!  This is because containers usually deallocate memory
913
       *  close to each other and this case is handled in O(1) time by
914
       *  the deallocate function.
915
       */
916
      void
917
      _M_deallocate_single_object(pointer __p) throw()
918
      {
919
#if defined __GTHREADS
920
        __scoped_lock __bit_lock(_S_mut);
921
#endif
922
        _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
923
 
924
        typedef typename _BPVector::iterator _Iterator;
925
        typedef typename _BPVector::difference_type _Difference_type;
926
 
927
        _Difference_type __diff;
928
        long __displacement;
929
 
930
        _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
931
 
932
        __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
933
        if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
934
          {
935
            _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
936
                                  <= _S_mem_blocks.size() - 1);
937
 
938
            // Initial Assumption was correct!
939
            __diff = _S_last_dealloc_index;
940
            __displacement = __real_p - _S_mem_blocks[__diff].first;
941
          }
942
        else
943
          {
944
            _Iterator _iter = _S_find(__ibt);
945
 
946
            _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
947
 
948
            __diff = _iter - _S_mem_blocks.begin();
949
            __displacement = __real_p - _S_mem_blocks[__diff].first;
950
            _S_last_dealloc_index = __diff;
951
          }
952
 
953
        // Get the position of the iterator that has been found.
954
        const size_t __rotate = (__displacement
955
                                 % size_t(__detail::bits_per_block));
956
        size_t* __bitmapC =
957
          reinterpret_cast<size_t*>
958
          (_S_mem_blocks[__diff].first) - 1;
959
        __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
960
 
961
        __detail::__bit_free(__bitmapC, __rotate);
962
        size_t* __puse_count = reinterpret_cast<size_t*>
963
          (_S_mem_blocks[__diff].first)
964
          - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
965
 
966
        _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
967
 
968
        --(*__puse_count);
969
 
970
        if (__builtin_expect(*__puse_count == 0, false))
971
          {
972
            _S_block_size /= 2;
973
 
974
            // We can safely remove this block.
975
            // _Block_pair __bp = _S_mem_blocks[__diff];
976
            this->_M_insert(__puse_count);
977
            _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
978
 
979
            // Reset the _S_last_request variable to reflect the
980
            // erased block. We do this to protect future requests
981
            // after the last block has been removed from a particular
982
            // memory Chunk, which in turn has been returned to the
983
            // free list, and hence had been erased from the vector,
984
            // so the size of the vector gets reduced by 1.
985
            if ((_Difference_type)_S_last_request._M_where() >= __diff--)
986
              _S_last_request._M_reset(__diff);
987
 
988
            // If the Index into the vector of the region of memory
989
            // that might hold the next address that will be passed to
990
            // deallocated may have been invalidated due to the above
991
            // erase procedure being called on the vector, hence we
992
            // try to restore this invariant too.
993
            if (_S_last_dealloc_index >= _S_mem_blocks.size())
994
              {
995
                _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
996
                _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
997
              }
998
          }
999
      }
1000
 
1001
    public:
1002
      bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1003
      { }
1004
 
1005
      bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1006
      { }
1007
 
1008
      template<typename _Tp1>
1009
        bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1010
        { }
1011
 
1012
      ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1013
      { }
1014
 
1015
      pointer
1016
      allocate(size_type __n)
1017
      {
1018
        if (__n > this->max_size())
1019
          std::__throw_bad_alloc();
1020
 
1021
        if (__builtin_expect(__n == 1, true))
1022
          return this->_M_allocate_single_object();
1023
        else
1024
          {
1025
            const size_type __b = __n * sizeof(value_type);
1026
            return reinterpret_cast<pointer>(::operator new(__b));
1027
          }
1028
      }
1029
 
1030
      pointer
1031
      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1032
      { return allocate(__n); }
1033
 
1034
      void
1035
      deallocate(pointer __p, size_type __n) throw()
1036
      {
1037
        if (__builtin_expect(__p != 0, true))
1038
          {
1039
            if (__builtin_expect(__n == 1, true))
1040
              this->_M_deallocate_single_object(__p);
1041
            else
1042
              ::operator delete(__p);
1043
          }
1044
      }
1045
 
1046
      pointer
1047
      address(reference __r) const _GLIBCXX_NOEXCEPT
1048
      { return std::__addressof(__r); }
1049
 
1050
      const_pointer
1051
      address(const_reference __r) const _GLIBCXX_NOEXCEPT
1052
      { return std::__addressof(__r); }
1053
 
1054
      size_type
1055
      max_size() const _GLIBCXX_USE_NOEXCEPT
1056
      { return size_type(-1) / sizeof(value_type); }
1057
 
1058
#if __cplusplus >= 201103L
1059
      template<typename _Up, typename... _Args>
1060
        void
1061
        construct(_Up* __p, _Args&&... __args)
1062
        { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1063
 
1064
      template<typename _Up>
1065
        void
1066
        destroy(_Up* __p)
1067
        { __p->~_Up(); }
1068
#else
1069
      void
1070
      construct(pointer __p, const_reference __data)
1071
      { ::new((void *)__p) value_type(__data); }
1072
 
1073
      void
1074
      destroy(pointer __p)
1075
      { __p->~value_type(); }
1076
#endif
1077
    };
1078
 
1079
  template<typename _Tp1, typename _Tp2>
1080
    bool
1081
    operator==(const bitmap_allocator<_Tp1>&,
1082
               const bitmap_allocator<_Tp2>&) throw()
1083
    { return true; }
1084
 
1085
  template<typename _Tp1, typename _Tp2>
1086
    bool
1087
    operator!=(const bitmap_allocator<_Tp1>&,
1088
               const bitmap_allocator<_Tp2>&) throw()
1089
  { return false; }
1090
 
1091
  // Static member definitions.
1092
  template<typename _Tp>
1093
    typename bitmap_allocator<_Tp>::_BPVector
1094
    bitmap_allocator<_Tp>::_S_mem_blocks;
1095
 
1096
  template<typename _Tp>
1097
    size_t bitmap_allocator<_Tp>::_S_block_size =
1098
    2 * size_t(__detail::bits_per_block);
1099
 
1100
  template<typename _Tp>
1101
    typename bitmap_allocator<_Tp>::_BPVector::size_type
1102
    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1103
 
1104
  template<typename _Tp>
1105
    __detail::_Bitmap_counter
1106
      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1107
    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1108
 
1109
#if defined __GTHREADS
1110
  template<typename _Tp>
1111
    typename bitmap_allocator<_Tp>::__mutex_type
1112
    bitmap_allocator<_Tp>::_S_mut;
1113
#endif
1114
 
1115
_GLIBCXX_END_NAMESPACE_VERSION
1116
} // namespace __gnu_cxx
1117
 
1118
#endif 
1119
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.