1 |
167 |
jshamlet |
-- Copyright (c)2013 Jeremy Seth Henry
|
2 |
|
|
-- All rights reserved.
|
3 |
|
|
--
|
4 |
|
|
-- Redistribution and use in source and binary forms, with or without
|
5 |
|
|
-- modification, are permitted provided that the following conditions are met:
|
6 |
|
|
-- * Redistributions of source code must retain the above copyright
|
7 |
|
|
-- notice, this list of conditions and the following disclaimer.
|
8 |
|
|
-- * Redistributions in binary form must reproduce the above copyright
|
9 |
|
|
-- notice, this list of conditions and the following disclaimer in the
|
10 |
|
|
-- documentation and/or other materials provided with the distribution,
|
11 |
|
|
-- where applicable (as part of a user interface, debugging port, etc.)
|
12 |
|
|
--
|
13 |
|
|
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
|
14 |
|
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
15 |
|
|
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
16 |
|
|
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
|
17 |
|
|
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
18 |
|
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
19 |
|
|
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
20 |
|
|
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
21 |
|
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
22 |
|
|
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
23 |
|
|
--
|
24 |
|
|
-- VHDL Units : o8_vdsm8
|
25 |
|
|
-- Description: 8-bit variable delta-sigma modulator. Requires Open8_pkg.vhd
|
26 |
|
|
|
27 |
|
|
library ieee;
|
28 |
|
|
use ieee.std_logic_1164.all;
|
29 |
|
|
use ieee.std_logic_unsigned.all;
|
30 |
|
|
use ieee.std_logic_arith.all;
|
31 |
|
|
|
32 |
|
|
library work;
|
33 |
|
|
use work.open8_pkg.all;
|
34 |
|
|
|
35 |
|
|
entity o8_vdsm8 is
|
36 |
|
|
generic(
|
37 |
|
|
Reset_Level : std_logic;
|
38 |
|
|
Address : ADDRESS_TYPE
|
39 |
|
|
);
|
40 |
|
|
port(
|
41 |
|
|
Clock : in std_logic;
|
42 |
|
|
Reset : in std_logic;
|
43 |
|
|
--
|
44 |
|
|
Bus_Address : in ADDRESS_TYPE;
|
45 |
|
|
Wr_Enable : in std_logic;
|
46 |
|
|
Wr_Data : in DATA_TYPE;
|
47 |
|
|
Rd_Enable : in std_logic;
|
48 |
|
|
Rd_Data : out DATA_TYPE;
|
49 |
|
|
--
|
50 |
|
|
DACout : out std_logic
|
51 |
|
|
);
|
52 |
|
|
end entity;
|
53 |
|
|
|
54 |
|
|
architecture behave of o8_vdsm8 is
|
55 |
|
|
|
56 |
|
|
function ceil_log2 (x : in natural) return natural is
|
57 |
|
|
variable retval : natural;
|
58 |
|
|
begin
|
59 |
|
|
retval := 1;
|
60 |
|
|
while ((2**retval) - 1) < x loop
|
61 |
|
|
retval := retval + 1;
|
62 |
|
|
end loop;
|
63 |
|
|
return retval;
|
64 |
|
|
end function;
|
65 |
|
|
|
66 |
|
|
constant User_Addr : std_logic_vector(15 downto 0) := Address;
|
67 |
|
|
alias Comp_Addr is Bus_Address(15 downto 0);
|
68 |
|
|
signal Addr_Match : std_logic;
|
69 |
|
|
signal Wr_En : std_logic;
|
70 |
|
|
signal Wr_Data_q : DATA_TYPE;
|
71 |
|
|
signal Rd_En : std_logic;
|
72 |
|
|
signal DACin : DATA_TYPE;
|
73 |
|
|
|
74 |
|
|
-- DAC WIDTH = 8 is fixed, with all constants normalized
|
75 |
|
|
-- against 256 (the MAX PERIOD)
|
76 |
|
|
|
77 |
|
|
constant DAC_WIDTH : integer := 8;
|
78 |
|
|
|
79 |
|
|
constant DELTA_1_I : integer := 1;
|
80 |
|
|
constant DELTA_2_I : integer := 5;
|
81 |
|
|
constant DELTA_3_I : integer := 25;
|
82 |
|
|
constant DELTA_4_I : integer := 75;
|
83 |
|
|
constant DELTA_5_I : integer := 125;
|
84 |
|
|
constant DELTA_6_I : integer := 195;
|
85 |
|
|
|
86 |
|
|
constant DELTA_1 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
87 |
|
|
conv_std_logic_vector(DELTA_1_I, DAC_WIDTH);
|
88 |
|
|
constant DELTA_2 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
89 |
|
|
conv_std_logic_vector(DELTA_2_I, DAC_WIDTH);
|
90 |
|
|
constant DELTA_3 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
91 |
|
|
conv_std_logic_vector(DELTA_3_I, DAC_WIDTH);
|
92 |
|
|
constant DELTA_4 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
93 |
|
|
conv_std_logic_vector(DELTA_4_I, DAC_WIDTH);
|
94 |
|
|
constant DELTA_5 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
95 |
|
|
conv_std_logic_vector(DELTA_5_I, DAC_WIDTH);
|
96 |
|
|
constant DELTA_6 : std_logic_vector(DAC_WIDTH - 1 downto 0) :=
|
97 |
|
|
conv_std_logic_vector(DELTA_6_I, DAC_WIDTH);
|
98 |
|
|
|
99 |
|
|
constant MAX_PERIOD : integer := 2**DAC_WIDTH;
|
100 |
|
|
constant DIV_WIDTH : integer := 2 * DAC_WIDTH;
|
101 |
|
|
|
102 |
|
|
constant PADJ_1_I : integer := DELTA_1_I * MAX_PERIOD;
|
103 |
|
|
constant PADJ_2_I : integer := DELTA_2_I * MAX_PERIOD;
|
104 |
|
|
constant PADJ_3_I : integer := DELTA_3_I * MAX_PERIOD;
|
105 |
|
|
constant PADJ_4_I : integer := DELTA_4_I * MAX_PERIOD;
|
106 |
|
|
constant PADJ_5_I : integer := DELTA_5_I * MAX_PERIOD;
|
107 |
|
|
constant PADJ_6_I : integer := DELTA_6_I * MAX_PERIOD;
|
108 |
|
|
|
109 |
|
|
constant PADJ_1 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
110 |
|
|
conv_std_logic_vector(PADJ_1_I,DIV_WIDTH);
|
111 |
|
|
constant PADJ_2 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
112 |
|
|
conv_std_logic_vector(PADJ_2_I,DIV_WIDTH);
|
113 |
|
|
constant PADJ_3 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
114 |
|
|
conv_std_logic_vector(PADJ_3_I,DIV_WIDTH);
|
115 |
|
|
constant PADJ_4 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
116 |
|
|
conv_std_logic_vector(PADJ_4_I,DIV_WIDTH);
|
117 |
|
|
constant PADJ_5 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
118 |
|
|
conv_std_logic_vector(PADJ_5_I,DIV_WIDTH);
|
119 |
|
|
constant PADJ_6 : std_logic_vector(DIV_WIDTH-1 downto 0) :=
|
120 |
|
|
conv_std_logic_vector(PADJ_6_I,DIV_WIDTH);
|
121 |
|
|
|
122 |
|
|
signal DACin_q : DATA_TYPE;
|
123 |
|
|
|
124 |
|
|
signal Divisor : std_logic_vector(DIV_WIDTH-1 downto 0);
|
125 |
|
|
signal Dividend : std_logic_vector(DIV_WIDTH-1 downto 0);
|
126 |
|
|
|
127 |
|
|
signal q : std_logic_vector(DIV_WIDTH*2-1 downto 0);
|
128 |
|
|
signal diff : std_logic_vector(DIV_WIDTH downto 0);
|
129 |
|
|
|
130 |
|
|
constant CB : integer := ceil_log2(DIV_WIDTH);
|
131 |
|
|
signal count : std_logic_vector(CB-1 downto 0);
|
132 |
|
|
|
133 |
|
|
signal Next_Width : DATA_TYPE;
|
134 |
|
|
signal Next_Period : DATA_TYPE;
|
135 |
|
|
|
136 |
|
|
signal PWM_Width : DATA_TYPE;
|
137 |
|
|
signal PWM_Period : DATA_TYPE;
|
138 |
|
|
|
139 |
|
|
signal Width_Ctr : DATA_TYPE;
|
140 |
|
|
signal Period_Ctr : DATA_TYPE;
|
141 |
|
|
|
142 |
|
|
begin
|
143 |
|
|
|
144 |
|
|
Addr_Match <= '1' when Comp_Addr = User_Addr else '0';
|
145 |
|
|
|
146 |
|
|
io_reg: process( Clock, Reset )
|
147 |
|
|
begin
|
148 |
|
|
if( Reset = Reset_Level )then
|
149 |
|
|
Wr_En <= '0';
|
150 |
|
|
Wr_Data_q <= x"00";
|
151 |
|
|
Rd_En <= '0';
|
152 |
|
|
Rd_Data <= x"00";
|
153 |
|
|
DACin <= x"00";
|
154 |
|
|
elsif( rising_edge( Clock ) )then
|
155 |
|
|
Wr_En <= Addr_Match and Wr_Enable;
|
156 |
|
|
Wr_Data_q <= Wr_Data;
|
157 |
|
|
if( Wr_En = '1' )then
|
158 |
|
|
DACin <= Wr_Data_q;
|
159 |
|
|
end if;
|
160 |
|
|
|
161 |
|
|
Rd_Data <= (others => '0');
|
162 |
|
|
Rd_En <= Addr_Match and Rd_Enable;
|
163 |
|
|
if( Rd_En = '1' )then
|
164 |
|
|
Rd_Data <= DACin;
|
165 |
|
|
end if;
|
166 |
|
|
end if;
|
167 |
|
|
end process;
|
168 |
|
|
|
169 |
|
|
diff <= ('0' & q(DIV_WIDTH*2-2 downto DIV_WIDTH-1)) -
|
170 |
|
|
('0' & Divisor);
|
171 |
|
|
|
172 |
|
|
Dividend <= PADJ_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
173 |
|
|
PADJ_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
174 |
|
|
PADJ_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
175 |
|
|
PADJ_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
176 |
|
|
PADJ_6 when DACin_q >= DELTA_6_I else
|
177 |
|
|
PADJ_1;
|
178 |
|
|
|
179 |
|
|
Next_Width <= DELTA_1 when DACin_q >= DELTA_1_I and DACin_q < DELTA_2_I else
|
180 |
|
|
DELTA_2 when DACin_q >= DELTA_2_I and DACin_q < DELTA_3_I else
|
181 |
|
|
DELTA_3 when DACin_q >= DELTA_3_I and DACin_q < DELTA_4_I else
|
182 |
|
|
DELTA_4 when DACin_q >= DELTA_4_I and DACin_q < DELTA_5_I else
|
183 |
|
|
DELTA_5 when DACin_q >= DELTA_5_I and DACin_q < DELTA_6_I else
|
184 |
|
|
DELTA_6 when DACin_q >= DELTA_6_I else
|
185 |
|
|
(others => '0');
|
186 |
|
|
|
187 |
|
|
Next_Period <= q(7 downto 0) - 1;
|
188 |
|
|
|
189 |
|
|
vDSM_proc: process( Clock, Reset )
|
190 |
|
|
begin
|
191 |
|
|
if( Reset = Reset_Level )then
|
192 |
|
|
q <= (others => '0');
|
193 |
|
|
count <= (others => '1');
|
194 |
|
|
Divisor <= (others => '0');
|
195 |
|
|
DACin_q <= (others => '0');
|
196 |
|
|
PWM_Width <= (others => '0');
|
197 |
|
|
PWM_Period <= (others => '0');
|
198 |
|
|
Period_Ctr <= (others => '0');
|
199 |
|
|
Width_Ctr <= (others => '0');
|
200 |
|
|
DACout <= '0';
|
201 |
|
|
elsif( rising_edge(Clock) )then
|
202 |
|
|
q <= diff(DIV_WIDTH-1 downto 0) &
|
203 |
|
|
q(DIV_WIDTH-2 downto 0) & '1';
|
204 |
|
|
if( diff(DIV_WIDTH) = '1' )then
|
205 |
|
|
q <= q(DIV_WIDTH*2-2 downto 0) & '0';
|
206 |
|
|
end if;
|
207 |
|
|
|
208 |
|
|
count <= count + 1;
|
209 |
|
|
if( count = DIV_WIDTH )then
|
210 |
|
|
PWM_Width <= Next_Width;
|
211 |
|
|
PWM_Period <= Next_Period;
|
212 |
|
|
DACin_q <= DACin;
|
213 |
|
|
Divisor <= (others => '0');
|
214 |
|
|
Divisor(7 downto 0) <= DACin_q;
|
215 |
|
|
q <= conv_std_logic_vector(0,DIV_WIDTH) & Dividend;
|
216 |
|
|
count <= (others => '0');
|
217 |
|
|
end if;
|
218 |
|
|
|
219 |
|
|
Period_Ctr <= Period_Ctr - 1;
|
220 |
|
|
Width_Ctr <= Width_Ctr - 1;
|
221 |
|
|
|
222 |
|
|
DACout <= '1';
|
223 |
|
|
if( Width_Ctr = 0 )then
|
224 |
|
|
DACout <= '0';
|
225 |
|
|
Width_Ctr <= (others => '0');
|
226 |
|
|
end if;
|
227 |
|
|
|
228 |
|
|
if( Period_Ctr = 0 )then
|
229 |
|
|
Period_Ctr <= PWM_Period;
|
230 |
|
|
Width_Ctr <= PWM_Width;
|
231 |
|
|
end if;
|
232 |
|
|
|
233 |
|
|
end if;
|
234 |
|
|
end process;
|
235 |
|
|
|
236 |
|
|
end architecture;
|