OpenCores
URL https://opencores.org/ocsvn/openarty/openarty/trunk

Subversion Repositories openarty

[/] [openarty/] [trunk/] [rtl/] [wboled.v] - Blame information for rev 36

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    wboled.v
4
//
5
// Project:     OpenArty, an entirely open SoC based upon the Arty platform
6
//
7 34 dgisselq
// Purpose:     To provide a *very* simplified controller for a PMod OLEDrgb.
8
//              This controller implements four registers (described below),
9
//      although it might feel like only two in practice.  As with all of our
10
//      other wishbone work, all transactions are 32-bits--even though, as an
11
//      example, the data word for the device is only ever 16-bits long.
12 3 dgisselq
//
13 34 dgisselq
//      The device control, outlined below, is also colored by two facts:
14
//      1. There is no means to read from the device.  Sure, the chip on the 
15
//              PMod has a full read/write bus, but it hasn't been entirely
16
//              wired to the PMod pins.  This was probably done so that the
17
//              interface could handle the paucity of pins available, but for
18
//              whatever reason, there's no way to read from the device.
19
//      2. The device is controlled by a SPI port, but with an extra wire that
20
//              determines whether or not you are writing to the control or the
21
//              data port on the device.  Hence the four wire SPI protocol has
22
//              lost the MISO wire and gained a Data / Control (N) (or dcn)
23
//              wire.
24
//      3. As implemented, the device also has two power control wires and a
25
//              reset wire.  The reset wire is negative logic.  Without setting
26
//              the PMOD-Enable wire high, the board has no power.  The
27
//              VCCEN pin is not to be set high without PMOD-Enable high.
28
//              Finally, setting reset low (with PMod-Enable high), places the
29
//              device into a reset condition.
30
//
31
//      The design of the controller, as with the design of other controllers
32
//      we have built, is focused around the design principles:
33
//      1. Use the bottom 23 bits of a word for the command, if possible.
34
//              Such commands can be loaded into registers with simple LDI
35
//              instructions.  Even better, restrict any status results from the
36
//              device to 18 bits, so that instructions that use immediates
37
//              such as TEST #,Rx, can use these immediates.
38
//      2. Protect against inadvertant changes to the power port.  For this,
39
//              we insist that a minimum of two bits be high to change the
40
//              power port bits, and that just reading from the port and
41
//              writing back with a changed power bit is not sufficient to
42
//              change the power.
43
//      3. Permit atomic changes to the individual power control bits,
44
//              by outlining which exact bits change upon any write, and
45
//              permitting only the bits specified to change.
46
//      4. Don't stall the bus.  So, if a command comes in and the
47
//              device is busy, we'll ignore the command.  It is up to the
48
//              user to make certain the device isn't fed faster than it is
49
//              able.  (Perhaps the user wishes to add a FIFO?)
50
//      5. Finally, build this so that either a FIFO or DMA could control it.
51
//
52
// Registers:
53
//      0. Control      -- There are several types of control commands to/from
54
//              the device, all separated and determined by how many bytes are
55
//              to be sent to the device for the said command.  Commands written
56
//              to the control port of the device are initiated by writes
57
//              to this register.
58
//
59
//              - Writes of all { 24'h00, data[7:0] } send the single byte
60
//                      data[7:0] to the device.
61
//              - Writes of     { 16'h01, data[15:0] } send two bytes,
62
//                      data[15:0], to the device.
63
//              - Writes of     {  4'h2, 4'hx, data[23:0] } send three bytes,
64
//                      data[23:0], to the device.
65
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send four bytes,
66
//                      data[23:0], then r_a[31:24] to the device.
67
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send five bytes,
68
//                      data[23:0], then r_a[31:16] to the device.
69
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send six bytes,
70
//                      data[23:0], then r_a[31:8] to the device.
71
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send seven bytes,
72
//                      data[23:0], then r_a[31:0] to the device.
73
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send eight bytes,
74
//                      data[23:0], r_a[31:16], then r_b[31:24] to the device.
75
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send nine bytes,
76
//                      data[23:0], r_a[31:16], then r_b[31:16] to the device.
77
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send ten bytes,
78
//                      data[23:0], r_a[31:16], then r_b[31:8] to the device.
79
//              - Writes of     {  4'h3, 4'hx, data[23:0] } send eleven bytes,
80
//                      data[23:0], r_a[31:16], then r_b[31:0] to the device.
81
//
82
//      1. A    This register is used, just like the B register below, for
83
//              setting up commands that send multiple bytes to the device.
84
//              Be aware that the high order bits/bytes will be sent first.
85
//              This is one of the few registers that may be read with meaning.
86
//              Once the word is written, however, the register is cleared.
87
//
88
//      2. B    This is the same as the A register, save on writes the A
89
//              register will be written first before any bits from the B
90
//              register.  As with the A register, this value is cleared upon
91
//              any write--regardless of whether its value is used in the
92
//              write.
93
//
94
//      3. Data --- This is both the data and the power control register.
95
//
96
//              To write data to the graphics data RAM within the device,
97
//              simply write a 16'bit word: { 16'h00, data[15:0] } to this
98
//              port.
99
//
100
//              To change the three power bits, {reset, vccen, pmoden},
101
//              you must also set a 1'b1 in the corresponding bit position from
102
//              bit 16-18.  Hence a:
103
//
104
//              32'h010001 sets the pmod enable bit, whereas 32'h010000 clears
105
//                      it.
106
//              32'h020002 sets the vcc bit, whereas 32'h010000 clears it.
107
//
108
//              Multiple of the power bits can be changed at once.  Each 
109
//              respective bit is only changed if it's change enable bit is
110
//              also high.
111
//              
112
//
113
//
114 3 dgisselq
// Creator:     Dan Gisselquist, Ph.D.
115
//              Gisselquist Technology, LLC
116
//
117
////////////////////////////////////////////////////////////////////////////////
118
//
119
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
120
//
121
// This program is free software (firmware): you can redistribute it and/or
122
// modify it under the terms of  the GNU General Public License as published
123
// by the Free Software Foundation, either version 3 of the License, or (at
124
// your option) any later version.
125
//
126
// This program is distributed in the hope that it will be useful, but WITHOUT
127
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
128
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
129
// for more details.
130
//
131
// You should have received a copy of the GNU General Public License along
132
// with this program.  (It's in the $(ROOT)/doc directory, run make with no
133
// target there if the PDF file isn't present.)  If not, see
134
// <http://www.gnu.org/licenses/> for a copy.
135
//
136
// License:     GPL, v3, as defined and found on www.gnu.org,
137
//              http://www.gnu.org/licenses/gpl.html
138
//
139
//
140
////////////////////////////////////////////////////////////////////////////////
141
//
142
//
143
module  wboled(i_clk, i_cyc, i_stb, i_we, i_addr, i_data,
144
                        o_ack, o_stall, o_data,
145
                o_sck, o_cs_n, o_mosi, o_dbit,
146
                o_pwr, o_int);
147 36 dgisselq
        parameter       CBITS=4, // 2^4*13ns -> 208ns/clock > 150ns min
148 34 dgisselq
                        EXTRA_BUS_CLOCK = 0;
149 3 dgisselq
        input                   i_clk, i_cyc, i_stb, i_we;
150
        input           [1:0]    i_addr;
151
        input           [31:0]   i_data;
152
        output  reg             o_ack;
153
        output  wire            o_stall;
154
        output  reg     [31:0]   o_data;
155
        output  wire            o_sck, o_cs_n, o_mosi, o_dbit;
156
        output  reg     [2:0]    o_pwr;
157
        output  wire            o_int;
158
 
159
        reg             dev_wr, dev_dbit;
160
        reg     [31:0]   dev_word;
161
        reg     [1:0]    dev_len;
162
        wire            dev_busy;
163
        lloled  #(CBITS)
164
                lwlvl(i_clk, dev_wr, dev_dbit, dev_word, dev_len, dev_busy,
165
                        o_sck, o_cs_n, o_mosi, o_dbit);
166
 
167 34 dgisselq
        wire            wb_stb, wb_we;
168
        wire    [31:0]   wb_data;
169
        wire    [1:0]    wb_addr;
170 21 dgisselq
 
171 34 dgisselq
        // I've thought about bumping this from a clock at <= 100MHz up to a 
172
        // clock near 200MHz.  Doing so requires an extra clock to come off
173
        // the bus--the bus fanout is just too wide otherwise.  However,
174
        // if you don't need to ... why take the extra clock cycle?  Hence
175
        // this little snippet of code allows the rest of the controller
176
        // to work at 200MHz or 100MHz as need be.
177
        generate
178
        if (EXTRA_BUS_CLOCK != 0)
179
        begin
180
                reg             r_wb_stb, r_wb_we;
181
                reg     [31:0]   r_wb_data;
182
                reg     [1:0]    r_wb_addr;
183
                always @(posedge i_clk)
184
                        r_wb_stb <= i_stb;
185
                always @(posedge i_clk)
186
                        r_wb_we <= i_we;
187
                always @(posedge i_clk)
188
                        r_wb_data <= i_data;
189
                always @(posedge i_clk)
190
                        r_wb_addr <= i_addr;
191 21 dgisselq
 
192 34 dgisselq
                assign  wb_stb  = r_wb_stb;
193
                assign  wb_we   = r_wb_we;
194
                assign  wb_data = r_wb_data;
195
                assign  wb_addr = r_wb_addr;
196
        end else begin
197
                assign  wb_stb  = i_stb;
198
                assign  wb_we   = i_we;
199
                assign  wb_data = i_data;
200
                assign  wb_addr = i_addr;
201
        end endgenerate
202 21 dgisselq
 
203
 
204 34 dgisselq
 
205 3 dgisselq
        reg             r_busy;
206
        reg     [3:0]    r_len;
207 34 dgisselq
 
208
 
209
        //
210
        // Handle registers A & B.  These are set either upon a write, or
211
        // cleared (set to zero) upon any command to the control register.
212
        //
213 3 dgisselq
        reg     [31:0]   r_a, r_b;
214
        always @(posedge i_clk)
215 34 dgisselq
                if ((wb_stb)&&(wb_we))
216 3 dgisselq
                begin
217 34 dgisselq
                        if (wb_addr[1:0]==2'b01)
218
                                r_a <= wb_data;
219
                        if (wb_addr[1:0]==2'b10)
220
                                r_b <= wb_data;
221 3 dgisselq
                end else if (r_cstb)
222
                begin
223
                        r_a <= 32'h00;
224
                        r_b <= 32'h00;
225
                end
226
 
227 34 dgisselq
        //
228
        // Handle reads from our device.  These really aren't all that 
229
        // interesting, but ... we can do them anyway.  We attempt to provide
230
        // some sort of useful value here.  For example, upon reading r_a or
231
        // r_b, you can read the current value(s) of those register(s).
232 3 dgisselq
        always @(posedge i_clk)
233
        begin
234 34 dgisselq
                case (wb_addr)
235
                2'b00: o_data <= { 13'h00, o_pwr, 8'h00, r_len, 1'b0, o_dbit, !o_cs_n, r_busy };
236 3 dgisselq
                2'b01: o_data <= r_a;
237
                2'b10: o_data <= r_b;
238 34 dgisselq
                2'b11: o_data <= { 16'h00, 13'h0, o_pwr };
239 3 dgisselq
                endcase
240
        end
241
 
242
        initial o_ack = 1'b0;
243
        always @(posedge i_clk)
244 34 dgisselq
                o_ack <= wb_stb;
245 3 dgisselq
        assign  o_stall = 1'b0;
246
 
247 34 dgisselq
        reg     r_cstb, r_dstb, r_pstb, r_pre_busy;
248
        reg     [18:0]   r_data;
249 3 dgisselq
        initial r_cstb = 1'b0;
250
        initial r_dstb = 1'b0;
251
        initial r_pstb = 1'b0;
252 34 dgisselq
        initial r_pre_busy = 1'b0; // Used to clear the interrupt a touch earlier
253
 
254
        // The control strobe.  This will be true if we need to command a 
255
        // control interaction.
256 3 dgisselq
        always @(posedge i_clk)
257 34 dgisselq
                r_cstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b00);
258
 
259
        // The data strobe, true if we need to command a data interaction.
260 3 dgisselq
        always @(posedge i_clk)
261 34 dgisselq
                r_dstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b11)&&(wb_data[18:16]==3'h0);
262
 
263
        // The power strobe.  True if we are about to adjust the power and/or
264
        // reset bits.
265
        always @(posedge i_clk) // Power strobe, change power settings
266
                r_pstb <= (wb_stb)&&(wb_we)&&(wb_addr[1:0]==2'b11)&&(wb_data[18:16]!=3'h0);
267
 
268
        // Pre-busy: true if either r_cstb or r_dstb is true, and true on the
269
        // same clock they are true.  This is to support our interrupt, by
270
        // clearing the interrupt one clock earlier--lest the DMA decide to send
271
        // two words our way instead of one.
272 3 dgisselq
        always @(posedge i_clk)
273 34 dgisselq
                r_pre_busy <= (wb_stb)&&(wb_we)&&
274
                                ((wb_addr[1:0]==2'b11)||(wb_addr[1:0]==2'b00));
275
 
276
        // But ... to use these strobe values, we are now one more clock
277
        // removed from the bus.  We need something that matches this, so let's
278
        // delay our bus data one more clock 'til the time when we actually use
279
        // it.
280 3 dgisselq
        always @(posedge i_clk)
281 34 dgisselq
                r_data <= wb_data[18:0];
282 3 dgisselq
 
283
        initial o_pwr = 3'h0;
284
        always @(posedge i_clk)
285
                if (r_pstb)
286 34 dgisselq
                        o_pwr <= ((o_pwr)&(~r_data[18:16]))
287
                                |((r_data[2:0])&(r_data[18:16]));
288 3 dgisselq
 
289 34 dgisselq
        // Sadly, because our commands can have a whole slew of different 
290
        // lengths, and because these lengths can be ... difficult to 
291
        // decipher from the command (especially the first two lengths),
292
        // this quick case statement is needed to decode the amount of bytes
293
        // that will be sent.
294 3 dgisselq
        reg     [3:0]    b_len;
295
        always @(posedge i_clk)
296 34 dgisselq
                casez(wb_data[31:28])
297
                4'b0000: b_len <= (wb_data[16])? 4'h2:4'h1;
298
                4'b0001: b_len <= 4'h2;
299 3 dgisselq
                4'b0010: b_len <= 4'h3;
300
                4'b0011: b_len <= 4'h4;
301
                4'b0100: b_len <= 4'h5;
302
                4'b0101: b_len <= 4'h6;
303
                4'b0110: b_len <= 4'h7;
304
                4'b0111: b_len <= 4'h8;
305
                4'b1000: b_len <= 4'h9;
306
                4'b1001: b_len <= 4'ha;
307
                4'b1010: b_len <= 4'hb;
308
                default: b_len <= 4'h0;
309
                endcase
310
 
311 34 dgisselq
        //
312
        // On the next clock, we're going to set our data register to
313
        // whatever's in register A, and B, and ... something of the data
314
        // written to the control register.  Because this must all be 
315
        // written on the most-significant bits of a word, we pause a moment
316
        // here to move the control word that was writen to our bus up
317
        // by an amount given by the length of our message.  That way, you 
318
        // can write to the bottom bits of the register, and yet still end
319
        // up in the top several bits of the following register.
320
        //
321
        reg     [23:0]   c_data;
322
        always @(posedge i_clk)
323
                if (wb_data[31:29] != 3'h0)
324
                        c_data <= wb_data[23:0];
325
                else if (wb_data[16])
326
                        c_data <= { wb_data[15:0], 8'h00 };
327
                else
328
                        c_data <= { wb_data[7:0], 16'h00 };
329
 
330
        //
331
        // Finally, after massaging the incoming data off our bus, we finally
332
        // get to controlling the lower level controller and sending the
333
        // data to the device itself.
334
        //
335
        // The basic idea is this: we use r_busy to know if we are in the
336
        // middle of an operation, or whether or not we will be responsive to
337
        // the bus.  r_sreg holds the data we wish to send, and r_len the
338
        // number of bytes within r_sreg that remain to be sent.  The controller
339
        // will accept up to 32-bits at a time, so once we issue a command
340
        // (dev_wr & !dev_busy), we transition to either the next command.
341
        // Once all the data has been sent, and the device is now idle, we
342
        // clear r_busy and therefore become responsive to the bus again.
343
        //
344
        //
345
        reg     [87:0]   r_sreg; // Composed of 24-bits, 32-bits, and 32-bits
346 3 dgisselq
        initial r_busy = 1'b0;
347 34 dgisselq
        initial dev_wr = 1'b1;
348 3 dgisselq
        always @(posedge i_clk)
349
        begin
350 34 dgisselq
                dev_wr <= 1'b0;
351
                if ((~r_busy)&&(r_cstb))
352
                begin
353
                        dev_dbit <= 1'b0;
354
                        r_sreg <= { c_data[23:0], r_a, r_b };
355
                        r_len <= b_len;
356
                        r_busy <= (b_len != 4'h0);
357
                end else if ((~r_busy)&&(r_dstb))
358
                begin
359
                        dev_dbit <= 1'b1;
360
                        r_sreg <= { r_data[15:0], 72'h00 };
361
                        r_len <= 4'h2;
362
                        r_busy <= 1'b1;
363
                end else if ((r_busy)&&(!dev_busy))
364
                begin
365
                        // Issue the command to write up to 32-bits at a time
366
                        dev_wr <= (r_len != 4'h0);
367
                        dev_word <= r_sreg[87:56];
368
                        r_sreg <= { r_sreg[55:0], 32'h00 };
369
                        dev_len <= (r_len > 4'h4)? 2'b11:(r_len[1:0]+2'b11);
370
                        if (dev_wr)
371
                                r_len <= (r_len > 4'h4) ? (r_len-4'h4):0;
372
                        r_busy <= (dev_wr)||(r_len != 4'h0)&&(!dev_wr);
373
                end else if (r_busy) // & dev_busy
374
                begin
375
                        dev_wr <= (r_len != 4'h0);
376
                        dev_len <= (r_len > 4'h4)? 2'b11:(r_len[1:0]+2'b11);
377
                end
378
        end
379 3 dgisselq
 
380 34 dgisselq
        //
381
        // Here, we pick a self-clearing interrupt input.  This will set the
382
        // interrupt any time we are idle, and will automatically clear itself
383
        // any time we become busy.  This should be sufficient to allow the
384
        // DMA controller to send things to the card.
385
        //
386
        // Of course ... if you are not running in any sort of interrupt mode,
387
        // you *could* just ignore this line and poll the busy bit instead.
388
        //
389
        assign  o_int = (~r_busy)&&(!r_pre_busy);
390 3 dgisselq
 
391
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.