1 |
19 |
robfinch |
`timescale 1ns / 1ps
|
2 |
|
|
// ============================================================================
|
3 |
|
|
// __
|
4 |
|
|
// \\__/ o\ (C) 2005-2022 Robert Finch, Waterloo
|
5 |
|
|
// \ __ / All rights reserved.
|
6 |
|
|
// \/_// robfinch@finitron.ca
|
7 |
|
|
// ||
|
8 |
|
|
//
|
9 |
|
|
// rfSpriteController_x12.v
|
10 |
|
|
// sprite / hardware cursor controller, 12-bit slave bus
|
11 |
|
|
//
|
12 |
|
|
// BSD 3-Clause License
|
13 |
|
|
// Redistribution and use in source and binary forms, with or without
|
14 |
|
|
// modification, are permitted provided that the following conditions are met:
|
15 |
|
|
//
|
16 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
17 |
|
|
// list of conditions and the following disclaimer.
|
18 |
|
|
//
|
19 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
20 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
21 |
|
|
// and/or other materials provided with the distribution.
|
22 |
|
|
//
|
23 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
24 |
|
|
// contributors may be used to endorse or promote products derived from
|
25 |
|
|
// this software without specific prior written permission.
|
26 |
|
|
//
|
27 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
28 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
29 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
30 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
31 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
32 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
33 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
34 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
35 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37 |
|
|
//
|
38 |
|
|
//
|
39 |
|
|
// Sprite Controller
|
40 |
|
|
//
|
41 |
|
|
// FEATURES
|
42 |
|
|
// - parameterized number of sprites 1,2,4,6,8,14 or 32
|
43 |
|
|
// - sprite image cache buffers
|
44 |
|
|
// - each image cache is capable of holding multiple
|
45 |
|
|
// sprite images
|
46 |
|
|
// - an embedded DMA controller is used for sprite reload
|
47 |
|
|
// - programmable image offset within cache
|
48 |
|
|
// - programmable sprite width,height, and pixel size
|
49 |
|
|
// - sprite width and height may vary from 1 to 64 as long
|
50 |
|
|
// as the product doesn't exceed 4096.
|
51 |
|
|
// - pixels may be programmed to be 1,2,3 or 4 video clocks
|
52 |
|
|
// both height and width are programmable
|
53 |
|
|
// - programmable sprite position
|
54 |
|
|
// - programmable 8, 16 or 32 bits for color
|
55 |
|
|
// eg 32k color + 1 bit alpha blending indicator (1,5,5,5)
|
56 |
|
|
// - fixed display and DMA priority
|
57 |
|
|
// sprite 0 highest, sprite 31 lowest
|
58 |
|
|
// - graphics plane control
|
59 |
|
|
//
|
60 |
|
|
// This core requires an external timing generator to
|
61 |
|
|
// provide horizontal and vertical sync signals, but
|
62 |
|
|
// otherwise can be used as a display controller on it's
|
63 |
|
|
// own. However, normally this core would be embedded
|
64 |
|
|
// within another core such as a VGA controller. Sprite
|
65 |
|
|
// positions are referenced to the rising edge of the
|
66 |
|
|
// vertical and horizontal sync pulses.
|
67 |
|
|
// The core includes an embedded dual port RAM to hold the
|
68 |
|
|
// sprite images. The image RAM is updated using a built in DMA
|
69 |
|
|
// controller. The DMA controller uses 32 bit accesses to fill
|
70 |
|
|
// the sprite buffers. The circuit features an automatic bus
|
71 |
|
|
// transaction timeout; if the system bus hasn't responded
|
72 |
|
|
// within 20 clock cycles, the DMA controller moves onto the
|
73 |
|
|
// next address.
|
74 |
|
|
// The controller uses a ram underlay to cache the values
|
75 |
|
|
// of the registers. This is a lot cheaper resource wise than
|
76 |
|
|
// using a 32 to 1 multiplexor (well at least for an FPGA).
|
77 |
|
|
//
|
78 |
|
|
// All registers are 32 bits wide
|
79 |
|
|
//
|
80 |
|
|
// These registers repeat in incrementing block of four registers
|
81 |
|
|
// and pertain to each sprite
|
82 |
|
|
// 00: - position register
|
83 |
|
|
// HPOS [11: 0] horizontal position (hctr value)
|
84 |
|
|
// VPOS [27:16] vertical position (vctr value)
|
85 |
|
|
//
|
86 |
|
|
// 04: SZ - size register
|
87 |
|
|
// bits
|
88 |
|
|
// [ 7: 0] width of sprite in pixels - 1
|
89 |
|
|
// [15: 8] height of sprite in pixels -1
|
90 |
|
|
// [19:16] size of horizontal pixels - 1 in clock cycles
|
91 |
|
|
// [23:20] size of vertical pixels in scan-lines - 1
|
92 |
|
|
// * the product of width * height cannot exceed 2048 !
|
93 |
|
|
// if it does, the display will begin repeating
|
94 |
|
|
// [27:24] output plane
|
95 |
|
|
// [31:30] color depth 01=RGB332,10=RGB555+A,11=RGB888+A
|
96 |
|
|
//
|
97 |
|
|
// 08: ADR [31:12] 20 bits sprite image address bits
|
98 |
|
|
// This registers contain the high order address bits of the
|
99 |
|
|
// location of the sprite image in system memory.
|
100 |
|
|
// The DMA controller will assign the low order 12 bits
|
101 |
|
|
// during DMA.
|
102 |
|
|
// [11:0] image offset bits [11:0]
|
103 |
|
|
// offset of the sprite image within the sprite image cache
|
104 |
|
|
// typically zero
|
105 |
|
|
//
|
106 |
|
|
// 0C: TC [23:0] transparent color
|
107 |
|
|
// This register identifies which color of the sprite
|
108 |
|
|
// is transparent
|
109 |
|
|
//
|
110 |
|
|
//
|
111 |
|
|
//
|
112 |
|
|
// 0C-1FC: registers reserved for up to thirty-one other sprites
|
113 |
|
|
//
|
114 |
|
|
// 200: DMA burst reg sprite 0
|
115 |
|
|
// [8:0] burst start
|
116 |
|
|
// [24:16] burst end
|
117 |
|
|
// ...
|
118 |
|
|
// 27C: DMA burst reg sprite 31
|
119 |
|
|
//
|
120 |
|
|
// Global status and control
|
121 |
|
|
// 3C0: EN [31:0] sprite enable register
|
122 |
|
|
// 3C4: IE [31:0] sprite interrupt enable / status
|
123 |
|
|
// 3C8: SCOL [31:0] sprite-sprite collision register
|
124 |
|
|
// 3CC: BCOL [31:0] sprite-background collision register
|
125 |
|
|
// 3D0: DT [31:0] sprite DMA trigger on
|
126 |
|
|
// 3D4: DT [31:0] sprite DMA trigger off
|
127 |
|
|
// 3D8: VDT [31:0] sprite vertical sync DMA trigger
|
128 |
|
|
// 3EC: BC [23:0] background color
|
129 |
|
|
// 3FC: ADDR [31:0] sprite DMA address bits [63:32]
|
130 |
|
|
//
|
131 |
|
|
//=============================================================================
|
132 |
|
|
|
133 |
|
|
module rfSpriteController_x12(
|
134 |
|
|
// Bus Slave interface
|
135 |
|
|
//------------------------------
|
136 |
|
|
// Slave signals
|
137 |
|
|
input rst_i, // reset
|
138 |
|
|
input s_clk_i, // clock
|
139 |
|
|
input s_cs_i,
|
140 |
|
|
input s_cyc_i, // cycle valid
|
141 |
|
|
input s_stb_i, // data transfer
|
142 |
|
|
output s_ack_o, // transfer acknowledge
|
143 |
|
|
input s_we_i, // write
|
144 |
|
|
input [ 9:0] s_adr_i, // address
|
145 |
|
|
input [11:0] s_dat_i, // data input
|
146 |
|
|
output reg [11:0] s_dat_o, // data output
|
147 |
|
|
//------------------------------
|
148 |
|
|
// Bus Master Signals
|
149 |
|
|
input m_clk_i, // clock
|
150 |
|
|
output [1:0] m_bte_o,
|
151 |
|
|
output [2:0] m_cti_o,
|
152 |
|
|
output reg m_cyc_o, // cycle is valid
|
153 |
|
|
output m_stb_o, // strobe output
|
154 |
|
|
input m_ack_i, // input data is ready
|
155 |
|
|
input m_err_i,
|
156 |
|
|
output m_we_o,
|
157 |
|
|
output [3:0] m_sel_o,
|
158 |
|
|
output reg [35:0] m_adr_o, // DMA address
|
159 |
|
|
input [47:0] m_dat_i, // data input
|
160 |
|
|
output [47:0] m_dat_o,
|
161 |
|
|
output [4:0] m_spriteno_o,
|
162 |
|
|
//--------------------------
|
163 |
|
|
input dot_clk_i, // video dot clock
|
164 |
|
|
input hsync_i, // horizontal sync pulse
|
165 |
|
|
input vsync_i, // vertical sync pulse
|
166 |
|
|
input blank_i, // blanking signal
|
167 |
|
|
//input [3:0] rgbPlane_i, // 0 = background, higher numbers closer to front
|
168 |
|
|
input [31:0] zrgb_i, // input pixel stream
|
169 |
|
|
//output reg [3:0] rgbPlane_o,
|
170 |
|
|
output [31:0] zrgb_o, // output pixel stream
|
171 |
|
|
output irq, // interrupt request
|
172 |
|
|
input test
|
173 |
|
|
);
|
174 |
|
|
|
175 |
|
|
reg m_soc_o;
|
176 |
|
|
wire vclk = dot_clk_i;
|
177 |
|
|
wire hSync = hsync_i;
|
178 |
|
|
wire vSync = vsync_i;
|
179 |
|
|
wire [31:0] zrgbIn = zrgb_i;
|
180 |
|
|
reg [31:0] zrgbOut;
|
181 |
|
|
assign zrgb_o = zrgbOut;
|
182 |
|
|
|
183 |
|
|
//--------------------------------------------------------------------
|
184 |
|
|
// Core Parameters
|
185 |
|
|
//--------------------------------------------------------------------
|
186 |
|
|
parameter pnSpr = 32; // number of sprites
|
187 |
|
|
parameter phBits = 12; // number of bits in horizontal timing counter
|
188 |
|
|
parameter pvBits = 12; // number of bits in vertical timing counter
|
189 |
|
|
localparam pnSprm = pnSpr-1;
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
//--------------------------------------------------------------------
|
193 |
|
|
// Variable Declarations
|
194 |
|
|
//--------------------------------------------------------------------
|
195 |
|
|
|
196 |
|
|
reg [9:0] adr_i;
|
197 |
|
|
reg [11:0] dat_i;
|
198 |
|
|
reg we_i;
|
199 |
|
|
|
200 |
|
|
wire [4:0] sprN = adr_i[8:4];
|
201 |
|
|
|
202 |
|
|
reg [phBits-1:0] hctr; // horizontal reference counter (counts dots since hSync)
|
203 |
|
|
reg [pvBits-1:0] vctr; // vertical reference counter (counts scanlines since vSync)
|
204 |
|
|
reg sprSprIRQ;
|
205 |
|
|
reg sprBkIRQ;
|
206 |
|
|
|
207 |
|
|
reg [23:0] out; // sprite output
|
208 |
|
|
reg outact; // sprite output is active
|
209 |
|
|
reg [3:0] outplane;
|
210 |
|
|
reg [pnSprm:0] bkCollision; // sprite-background collision
|
211 |
|
|
reg [23:0] bgTc; // background transparent color
|
212 |
|
|
reg [23:0] bkColor; // background color
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
reg [pnSprm:0] sprWe; // block ram write enable for image cache update
|
216 |
|
|
reg [pnSprm:0] sprRe; // block ram read enable for image cache update
|
217 |
|
|
|
218 |
|
|
// Global control registers
|
219 |
|
|
reg [31:0] sprEn; // enable sprite
|
220 |
|
|
reg [pnSprm:0] sprCollision; // sprite-sprite collision
|
221 |
|
|
reg sprSprIe; // sprite-sprite interrupt enable
|
222 |
|
|
reg sprBkIe; // sprite-background interrupt enable
|
223 |
|
|
reg sprSprIRQPending; // sprite-sprite collision interrupt pending
|
224 |
|
|
reg sprBkIRQPending; // sprite-background collision interrupt pending
|
225 |
|
|
reg sprSprIRQPending1; // sprite-sprite collision interrupt pending
|
226 |
|
|
reg sprBkIRQPending1; // sprite-background collision interrupt pending
|
227 |
|
|
reg sprSprIRQ1; // vclk domain regs
|
228 |
|
|
reg sprBkIRQ1;
|
229 |
|
|
|
230 |
|
|
// Sprite control registers
|
231 |
|
|
reg [31:0] sprSprCollision;
|
232 |
|
|
reg [pnSprm:0] sprSprCollision1;
|
233 |
|
|
reg [31:0] sprBkCollision;
|
234 |
|
|
reg [pnSprm:0] sprBkCollision1;
|
235 |
|
|
reg [23:0] sprTc [pnSprm:0]; // sprite transparent color code
|
236 |
|
|
// How big the pixels are:
|
237 |
|
|
// 1 to 16 video clocks
|
238 |
|
|
reg [3:0] hSprRes [pnSprm:0]; // sprite horizontal resolution
|
239 |
|
|
reg [3:0] vSprRes [pnSprm:0]; // sprite vertical resolution
|
240 |
|
|
reg [7:0] sprWidth [pnSprm:0]; // number of pixels in X direction
|
241 |
|
|
reg [7:0] sprHeight [pnSprm:0]; // number of vertical pixels
|
242 |
|
|
reg [3:0] sprPlane [pnSprm:0]; // output plane sprite is in
|
243 |
|
|
reg [1:0] sprColorDepth [pnSprm:0];
|
244 |
|
|
reg [1:0] colorBits;
|
245 |
|
|
// Sprite DMA control
|
246 |
|
|
reg [8:0] sprBurstStart [pnSprm:0];
|
247 |
|
|
reg [8:0] sprBurstEnd [pnSprm:0];
|
248 |
|
|
reg [31:0] vSyncT; // DMA on vSync
|
249 |
|
|
|
250 |
|
|
// display and timing signals
|
251 |
|
|
reg [31:0] hSprReset; // horizontal reset
|
252 |
|
|
reg [31:0] vSprReset; // vertical reset
|
253 |
|
|
reg [31:0] hSprDe; // sprite horizontal display enable
|
254 |
|
|
reg [31:0] vSprDe; // sprite vertical display enable
|
255 |
|
|
reg [31:0] sprDe; // display enable
|
256 |
|
|
reg [phBits-1:0] hSprPos [pnSprm:0]; // sprite horizontal position
|
257 |
|
|
reg [pvBits-1:0] vSprPos [pnSprm:0]; // sprite vertical position
|
258 |
|
|
reg [7:0] hSprCnt [pnSprm:0]; // sprite horizontal display counter
|
259 |
|
|
reg [7:0] vSprCnt [pnSprm:0]; // vertical display counter
|
260 |
|
|
reg [11:0] sprImageOffs [pnSprm:0]; // offset within sprite memory
|
261 |
|
|
reg [12:0] sprAddr [pnSprm:0]; // index into sprite memory (pixel number)
|
262 |
|
|
reg [9:0] sprAddr1 [pnSprm:0]; // index into sprite memory
|
263 |
|
|
reg [9:0] sprAddr2 [pnSprm:0]; // index into sprite memory
|
264 |
|
|
reg [9:0] sprAddr3 [pnSprm:0]; // index into sprite memory
|
265 |
|
|
reg [9:0] sprAddr4 [pnSprm:0]; // index into sprite memory
|
266 |
|
|
reg [11:0] sprAddrB [pnSprm:0]; // backup address cache for rescan
|
267 |
|
|
wire [23:0] sprOut4 [pnSprm:0]; // sprite image data output
|
268 |
|
|
reg [23:0] sprOut [pnSprm:0]; // sprite image data output
|
269 |
|
|
reg [23:0] sprOut5 [pnSprm:0]; // sprite image data output
|
270 |
|
|
|
271 |
|
|
// DMA access
|
272 |
|
|
reg [31:12] sprSysAddr [pnSprm:0]; // system memory address of sprite image (low bits)
|
273 |
|
|
reg [4:0] dmaOwner; // which sprite has the DMA channel
|
274 |
|
|
reg [31:0] sprDt; // DMA trigger register
|
275 |
|
|
reg dmaActive; // this flag indicates that a block DMA transfer is active
|
276 |
|
|
|
277 |
|
|
genvar g;
|
278 |
|
|
|
279 |
|
|
//--------------------------------------------------------------------
|
280 |
|
|
// DMA control / bus interfacing
|
281 |
|
|
//--------------------------------------------------------------------
|
282 |
|
|
reg cs_regs;
|
283 |
|
|
always_ff @(posedge s_clk_i)
|
284 |
|
|
cs_regs <= s_cyc_i & s_stb_i & s_cs_i;
|
285 |
|
|
always_ff @(posedge s_clk_i)
|
286 |
|
|
adr_i <= s_adr_i;
|
287 |
|
|
always_ff @(posedge s_clk_i)
|
288 |
|
|
dat_i <= s_dat_i;
|
289 |
|
|
always_ff @(posedge s_clk_i)
|
290 |
|
|
we_i <= s_we_i;
|
291 |
|
|
|
292 |
|
|
ack_gen #(
|
293 |
|
|
.READ_STAGES(3),
|
294 |
|
|
.WRITE_STAGES(1),
|
295 |
|
|
.REGISTER_OUTPUT(1)
|
296 |
|
|
)
|
297 |
|
|
uag1 (
|
298 |
|
|
.clk_i(s_clk_i),
|
299 |
|
|
.ce_i(1'b1),
|
300 |
|
|
.i(cs_regs),
|
301 |
|
|
.we_i(cs_regs & we_i),
|
302 |
|
|
.o(s_ack_o)
|
303 |
|
|
);
|
304 |
|
|
|
305 |
|
|
assign irq = sprSprIRQ|sprBkIRQ;
|
306 |
|
|
|
307 |
|
|
//--------------------------------------------------------------------
|
308 |
|
|
// DMA control / bus interfacing
|
309 |
|
|
//--------------------------------------------------------------------
|
310 |
|
|
|
311 |
|
|
reg [5:0] dmaStart;
|
312 |
|
|
reg [8:0] cob; // count of burst cycles
|
313 |
|
|
|
314 |
|
|
assign m_bte_o = 2'b00;
|
315 |
|
|
assign m_cti_o = 3'b000;
|
316 |
|
|
assign m_stb_o = m_cyc_o;
|
317 |
|
|
assign m_we_o = 1'b0;
|
318 |
|
|
assign m_sel_o = {4{m_cyc_o}};
|
319 |
|
|
assign m_dat_o = 48'h0;
|
320 |
|
|
assign m_spriteno_o = dmaOwner;
|
321 |
|
|
|
322 |
|
|
reg [2:0] mstate;
|
323 |
|
|
parameter IDLE = 3'd0;
|
324 |
|
|
parameter ACTIVE = 3'd1;
|
325 |
|
|
parameter ACK = 3'd2;
|
326 |
|
|
parameter NACK = 3'd3;
|
327 |
|
|
|
328 |
|
|
wire pe_m_ack_i;
|
329 |
|
|
edge_det ued2 (.rst(rst_i), .clk(m_clk_i), .ce(1'b1), .i(m_ack_i), .pe(pe_m_ack_i), .ne(), .ee());
|
330 |
|
|
|
331 |
|
|
always_ff @(posedge m_clk_i)
|
332 |
|
|
if (rst_i)
|
333 |
|
|
mstate <= IDLE;
|
334 |
|
|
else begin
|
335 |
|
|
case(mstate)
|
336 |
|
|
IDLE:
|
337 |
|
|
if (|sprDt)
|
338 |
|
|
mstate <= ACTIVE;
|
339 |
|
|
ACTIVE:
|
340 |
|
|
mstate <= ACK;
|
341 |
|
|
ACK:
|
342 |
|
|
if (m_ack_i | m_err_i)
|
343 |
|
|
mstate <= NACK;
|
344 |
|
|
NACK:
|
345 |
|
|
if (~(m_ack_i|m_err_i))
|
346 |
|
|
mstate <= cob==sprBurstEnd[dmaOwner] ? IDLE : ACTIVE;
|
347 |
|
|
default:
|
348 |
|
|
mstate <= IDLE;
|
349 |
|
|
endcase
|
350 |
|
|
end
|
351 |
|
|
|
352 |
|
|
integer n30;
|
353 |
|
|
always_ff @(posedge m_clk_i)
|
354 |
|
|
begin
|
355 |
|
|
case(mstate)
|
356 |
|
|
IDLE:
|
357 |
|
|
begin
|
358 |
|
|
dmaOwner <= 5'd0;
|
359 |
|
|
for (n30 = pnSprm; n30 >= 0; n30 = n30 - 1)
|
360 |
|
|
if (sprDt[n30])
|
361 |
|
|
dmaOwner <= n30;
|
362 |
|
|
end
|
363 |
|
|
default: ;
|
364 |
|
|
endcase
|
365 |
|
|
end
|
366 |
|
|
|
367 |
|
|
always_ff @(posedge m_clk_i)
|
368 |
|
|
if (rst_i)
|
369 |
|
|
dmaStart <= 6'b0;
|
370 |
|
|
else begin
|
371 |
|
|
dmaStart <= {dmaStart[4:0],1'b0};
|
372 |
|
|
case(mstate)
|
373 |
|
|
IDLE:
|
374 |
|
|
if (|sprDt)
|
375 |
|
|
dmaStart <= 6'h3F;
|
376 |
|
|
default: ;
|
377 |
|
|
endcase
|
378 |
|
|
end
|
379 |
|
|
|
380 |
|
|
integer n32;
|
381 |
|
|
always_ff @(posedge m_clk_i)
|
382 |
|
|
begin
|
383 |
|
|
case(mstate)
|
384 |
|
|
IDLE:
|
385 |
|
|
for (n32 = pnSprm; n32 >= 0; n32 = n32 - 1)
|
386 |
|
|
if (sprDt[n32])
|
387 |
|
|
cob <= sprBurstStart[n32];
|
388 |
|
|
ACTIVE:
|
389 |
|
|
cob <= cob + 2'd1;
|
390 |
|
|
default: ;
|
391 |
|
|
endcase
|
392 |
|
|
end
|
393 |
|
|
|
394 |
|
|
always_ff @(posedge m_clk_i)
|
395 |
|
|
if (rst_i)
|
396 |
|
|
wb_m_nack();
|
397 |
|
|
else begin
|
398 |
|
|
case(mstate)
|
399 |
|
|
IDLE:
|
400 |
|
|
wb_m_nack();
|
401 |
|
|
ACTIVE:
|
402 |
|
|
begin
|
403 |
|
|
m_cyc_o <= 1'b1;
|
404 |
|
|
m_adr_o <= {sprSysAddr[dmaOwner],cob[8:0],3'h0};
|
405 |
|
|
end
|
406 |
|
|
ACK:
|
407 |
|
|
if (m_ack_i|m_err_i)
|
408 |
|
|
wb_m_nack();
|
409 |
|
|
endcase
|
410 |
|
|
end
|
411 |
|
|
|
412 |
|
|
task wb_m_nack;
|
413 |
|
|
begin
|
414 |
|
|
m_cyc_o <= 1'b0;
|
415 |
|
|
m_adr_o <= 36'h0;
|
416 |
|
|
end
|
417 |
|
|
endtask
|
418 |
|
|
|
419 |
|
|
|
420 |
|
|
// generate a write enable strobe for the sprite image memory
|
421 |
|
|
integer n1;
|
422 |
|
|
always_ff @(posedge m_clk_i)
|
423 |
|
|
for (n1 = 0; n1 < pnSpr; n1 = n1 + 1)
|
424 |
|
|
sprWe[n1] <= (dmaOwner==n1 && m_ack_i);
|
425 |
|
|
|
426 |
|
|
reg [8:0] m_adr_or;
|
427 |
|
|
reg [47:0] m_dat_ir;
|
428 |
|
|
always_ff @(posedge m_clk_i)
|
429 |
|
|
if (m_ack_i)
|
430 |
|
|
m_adr_or <= m_adr_o[11:3];
|
431 |
|
|
always_ff @(posedge m_clk_i)
|
432 |
|
|
if (m_ack_i) begin
|
433 |
|
|
if (test)
|
434 |
|
|
m_dat_ir <= {4{1'b0,dmaOwner,10'b0}};
|
435 |
|
|
else
|
436 |
|
|
m_dat_ir <= m_dat_i;
|
437 |
|
|
end
|
438 |
|
|
|
439 |
|
|
//--------------------------------------------------------------------
|
440 |
|
|
//--------------------------------------------------------------------
|
441 |
|
|
|
442 |
|
|
reg [11:0] reg_shadow [0:1023];
|
443 |
|
|
reg [9:0] radr;
|
444 |
|
|
always_ff @(posedge s_clk_i)
|
445 |
|
|
begin
|
446 |
|
|
if (cs_regs & we_i) reg_shadow[adr_i[9:0]] <= dat_i;
|
447 |
|
|
end
|
448 |
|
|
always @(posedge s_clk_i)
|
449 |
|
|
radr <= adr_i[9:0];
|
450 |
|
|
wire [11:0] reg_shadow_o = reg_shadow[radr];
|
451 |
|
|
|
452 |
|
|
// register/sprite memory output mux
|
453 |
|
|
always_ff @(posedge s_clk_i)
|
454 |
|
|
if (cs_regs)
|
455 |
|
|
case (adr_i[9:0]) // synopsys full_case parallel_case
|
456 |
|
|
10'b1111000000: s_dat_o <= 12'h0;
|
457 |
|
|
10'b1111000001: s_dat_o <= {4'h0,sprEn[31:24]};
|
458 |
|
|
10'b1111000010: s_dat_o <= sprEn[23:12];
|
459 |
|
|
10'b1111000011: s_dat_o <= sprEn[11: 0];
|
460 |
|
|
10'b1111000100: s_dat_o <= {10'b0,sprBkIe,sprSprIe};
|
461 |
|
|
10'b1111000101: s_dat_o <= {4'h0,sprBkIRQPending|sprSprIRQPending,5'b0,sprBkIRQPending,sprSprIRQPending};
|
462 |
|
|
10'b1111001000: s_dat_o <= 12'h0;
|
463 |
|
|
10'b1111001001: s_dat_o <= {4'h0,sprSprCollision[31:24]};
|
464 |
|
|
10'b1111001010: s_dat_o <= sprSprCollision[23:12];
|
465 |
|
|
10'b1111001011: s_dat_o <= sprSprCollision[11: 0];
|
466 |
|
|
10'b1111001100: s_dat_o <= 12'h0;
|
467 |
|
|
10'b1111001101: s_dat_o <= {4'h0,sprBkCollision[31:24]};
|
468 |
|
|
10'b1111001110: s_dat_o <= sprBkCollision[23:12];
|
469 |
|
|
10'b1111001111: s_dat_o <= sprBkCollision[11: 0];
|
470 |
|
|
10'b1111010000: s_dat_o <= 12'h0;
|
471 |
|
|
10'b1111010001: s_dat_o <= {4'h0,sprDt[31:24]};
|
472 |
|
|
10'b1111010010: s_dat_o <= sprDt[23:12];
|
473 |
|
|
10'b1111010011: s_dat_o <= sprDt[11: 0];
|
474 |
|
|
default: s_dat_o <= reg_shadow_o;
|
475 |
|
|
endcase
|
476 |
|
|
else
|
477 |
|
|
s_dat_o <= 12'h0;
|
478 |
|
|
|
479 |
|
|
|
480 |
|
|
// vclk -> clk_i
|
481 |
|
|
always @(posedge s_clk_i)
|
482 |
|
|
begin
|
483 |
|
|
sprSprIRQ <= sprSprIRQ1;
|
484 |
|
|
sprBkIRQ <= sprBkIRQ1;
|
485 |
|
|
sprSprIRQPending <= sprSprIRQPending1;
|
486 |
|
|
sprBkIRQPending <= sprBkIRQPending1;
|
487 |
|
|
sprSprCollision <= sprSprCollision1;
|
488 |
|
|
sprBkCollision <= sprBkCollision1;
|
489 |
|
|
end
|
490 |
|
|
|
491 |
|
|
|
492 |
|
|
// register updates
|
493 |
|
|
// on the clk_i domain
|
494 |
|
|
reg vSync1;
|
495 |
|
|
integer n33;
|
496 |
|
|
always_ff @(posedge s_clk_i)
|
497 |
|
|
if (rst_i) begin
|
498 |
|
|
vSyncT <= 32'hFFFFFFFF;
|
499 |
|
|
sprEn <= 32'hFFFFFFFF;
|
500 |
|
|
sprDt <= 0;
|
501 |
|
|
for (n33 = 0; n33 < pnSpr; n33 = n33 + 1) begin
|
502 |
|
|
sprSysAddr[n33] <= 24'b0000_0000_0000_0011_0000_0000 + n33; //0030_0000
|
503 |
|
|
end
|
504 |
|
|
sprSprIe <= 0;
|
505 |
|
|
sprBkIe <= 0;
|
506 |
|
|
|
507 |
|
|
// Set reasonable starting positions on the screen
|
508 |
|
|
// so that the sprites might be visible for testing
|
509 |
|
|
for (n33 = 0; n33 < pnSpr; n33 = n33 + 1) begin
|
510 |
|
|
hSprPos[n33] <= 200 + (n33 & 7) * 70;
|
511 |
|
|
vSprPos[n33] <= 100 + (n33 >> 3) * 100;
|
512 |
|
|
sprTc[n33] <= 24'h396739;
|
513 |
|
|
sprWidth[n33] <= 8'd56; // 56x36 sprites
|
514 |
|
|
sprHeight[n33] <= 8'd36;
|
515 |
|
|
hSprRes[n33] <= 0; // our standard display
|
516 |
|
|
vSprRes[n33] <= 0;
|
517 |
|
|
sprImageOffs[n33] <= 0;
|
518 |
|
|
sprPlane[n33] <= 4'hF;//n[3:0];
|
519 |
|
|
sprBurstStart[n33] <= 9'h000;
|
520 |
|
|
sprBurstEnd[n33] <= 9'h1FF;
|
521 |
|
|
sprColorDepth[n33] <= 2'b10;
|
522 |
|
|
end
|
523 |
|
|
hSprPos[0] <= 210;
|
524 |
|
|
vSprPos[0] <= 72;
|
525 |
|
|
|
526 |
|
|
bgTc <= 24'h08_08_08;
|
527 |
|
|
bkColor <= 24'hFF_FF_60;
|
528 |
|
|
end
|
529 |
|
|
else begin
|
530 |
|
|
vSync1 <= vSync;
|
531 |
|
|
if (vSync & ~vSync1)
|
532 |
|
|
sprDt <= sprDt | vSyncT;
|
533 |
|
|
|
534 |
|
|
// clear DMA trigger bit once DMA is recognized
|
535 |
|
|
if (dmaStart[5])
|
536 |
|
|
sprDt[dmaOwner] <= 1'b0;
|
537 |
|
|
|
538 |
|
|
if (cs_regs & we_i) begin
|
539 |
|
|
|
540 |
|
|
casez (adr_i[9:0])
|
541 |
|
|
10'b100?????00: sprBurstStart[adr_i[6:2]] <= dat_i[8:0];
|
542 |
|
|
10'b100?????01: sprBurstEnd[adr_i[6:2]] <= dat_i[8:0];
|
543 |
|
|
10'b1111000000: ; // 3C0
|
544 |
|
|
10'b1111000001: sprEn[31:24] <= dat_i[7:0];
|
545 |
|
|
10'b1111000010: sprEn[23:12] <= dat_i;
|
546 |
|
|
10'b1111000011: sprEn[11: 0] <= dat_i;
|
547 |
|
|
10'b1111000100: // 3C4
|
548 |
|
|
begin
|
549 |
|
|
sprSprIe <= dat_i[0];
|
550 |
|
|
sprBkIe <= dat_i[1];
|
551 |
|
|
end
|
552 |
|
|
// update DMA trigger
|
553 |
|
|
// s_dat_i[7:0] indicates which triggers to set (1=set,0=ignore)
|
554 |
|
|
// s_dat_i[7:0] indicates which triggers to clear (1=clear,0=ignore)
|
555 |
|
|
10'b1111010000: ; // 3D0
|
556 |
|
|
10'b1111010001: sprDt[31:24] <= sprDt[31:24] | dat_i[7:0];
|
557 |
|
|
10'b1111010010: sprDt[23:12] <= sprDt[23:12] | dat_i;
|
558 |
|
|
10'b1111010011: sprDt[11: 0] <= sprDt[11: 0] | dat_i;
|
559 |
|
|
10'b1111010100: ; // 3D4
|
560 |
|
|
10'b1111010101: sprDt[31:24] <= sprDt[31:24] & ~dat_i[7:0];
|
561 |
|
|
10'b1111010110: sprDt[23:12] <= sprDt[23:12] & ~dat_i;
|
562 |
|
|
10'b1111010111: sprDt[11: 0] <= sprDt[11: 0] & ~dat_i;
|
563 |
|
|
10'b1111011000: ; // 3D8
|
564 |
|
|
10'b1111011001: vSyncT[31:24] <= dat_i[7:0];
|
565 |
|
|
10'b1111011010: vSyncT[23:12] <= dat_i;
|
566 |
|
|
10'b1111011011: vSyncT[11: 0] <= dat_i;
|
567 |
|
|
10'b1111101000: ; // 3E8
|
568 |
|
|
10'b1111101001: ;
|
569 |
|
|
10'b1111101010: bgTc[23:12] <= dat_i;
|
570 |
|
|
10'b1111101011: bgTc[11: 0] <= dat_i;
|
571 |
|
|
10'b1111101100: ; // 3EC
|
572 |
|
|
10'b1111101101: ;
|
573 |
|
|
10'b1111101110: bkColor[23:12] <= dat_i;
|
574 |
|
|
10'b1111101111: bkColor[11: 0] <= dat_i;
|
575 |
|
|
10'b0?????0000: hSprPos[sprN] <= dat_i[10: 0];
|
576 |
|
|
10'b0?????0001: vSprPos[sprN] <= dat_i[10: 0];
|
577 |
|
|
10'b0?????0100: sprWidth[sprN] <= dat_i[7:0];
|
578 |
|
|
10'b0?????0101: sprHeight[sprN] <= dat_i[7:0];
|
579 |
|
|
10'b0?????0110:
|
580 |
|
|
begin
|
581 |
|
|
hSprRes[sprN] <= dat_i[3:0];
|
582 |
|
|
vSprRes[sprN] <= dat_i[7:4];
|
583 |
|
|
end
|
584 |
|
|
10'b0?????0111:
|
585 |
|
|
begin
|
586 |
|
|
sprPlane[sprN] <= dat_i[3:0];
|
587 |
|
|
sprColorDepth[sprN] <= dat_i[7:6];
|
588 |
|
|
end
|
589 |
|
|
10'b0?????1000: ;// DMA address set on clk_i domain
|
590 |
|
|
10'b0?????1001: sprSysAddr[sprN][31:24] <= dat_i[7:0];
|
591 |
|
|
10'b0?????1010: sprSysAddr[sprN][23:12] <= dat_i;
|
592 |
|
|
10'b0?????1011: sprImageOffs[sprN][10:0] <= dat_i[10:0];
|
593 |
|
|
10'b0?????1100: sprTc[sprN][23:12] <= dat_i;
|
594 |
|
|
10'b0?????1101: sprTc[sprN][11: 0] <= dat_i;
|
595 |
|
|
default: ;
|
596 |
|
|
endcase
|
597 |
|
|
|
598 |
|
|
end
|
599 |
|
|
end
|
600 |
|
|
|
601 |
|
|
//-------------------------------------------------------------
|
602 |
|
|
// Sprite Image Cache RAM
|
603 |
|
|
// This RAM is dual ported with an SoC side and a display
|
604 |
|
|
// controller side.
|
605 |
|
|
//-------------------------------------------------------------
|
606 |
|
|
|
607 |
|
|
integer n2;
|
608 |
|
|
always_ff @(posedge vclk)
|
609 |
|
|
for (n2 = 0; n2 < pnSpr; n2 = n2 + 1)
|
610 |
|
|
case(sprColorDepth[n2])
|
611 |
|
|
2'd1: sprAddr1[n2] <= sprAddr[n2][11:2];
|
612 |
|
|
2'd2: sprAddr1[n2] <= sprAddr[n2][10:1];
|
613 |
|
|
2'd3: sprAddr1[n2] <= sprAddr[n2][ 9:0];
|
614 |
|
|
default: ;
|
615 |
|
|
endcase
|
616 |
|
|
|
617 |
|
|
integer n4, n5, n27;
|
618 |
|
|
always_ff @(posedge vclk)
|
619 |
|
|
for (n4 = 0; n4 < pnSpr; n4 = n4 + 1)
|
620 |
|
|
sprAddr2[n4] <= sprAddr1[n4];
|
621 |
|
|
always_ff @(posedge vclk)
|
622 |
|
|
for (n5 = 0; n5 < pnSpr; n5 = n5 + 1)
|
623 |
|
|
sprAddr3[n5] <= sprAddr2[n5];
|
624 |
|
|
always_ff @(posedge vclk)
|
625 |
|
|
for (n27 = 0; n27 < pnSpr; n27 = n27 + 1)
|
626 |
|
|
sprAddr4[n27] <= sprAddr3[n27];
|
627 |
|
|
|
628 |
|
|
// The pixels are displayed from most signicant to least signicant bits of the
|
629 |
|
|
// word. Display order is opposite to memory storage. So, the least significant
|
630 |
|
|
// address bits are flipped to get the correct display.
|
631 |
|
|
integer n3;
|
632 |
|
|
always_ff @(posedge vclk)
|
633 |
|
|
for (n3 = 0; n3 < pnSpr; n3 = n3 + 1)
|
634 |
|
|
case(sprColorDepth[n3])
|
635 |
|
|
2'd1:
|
636 |
|
|
case(~sprAddr4[n3][1:0])
|
637 |
|
|
2'd3: sprOut5[n3] <= sprOut4[n3][23:18];
|
638 |
|
|
2'd2: sprOut5[n3] <= sprOut4[n3][17:12];
|
639 |
|
|
2'd1: sprOut5[n3] <= sprOut4[n3][11:6];
|
640 |
|
|
2'd0: sprOut5[n3] <= sprOut4[n3][5:0];
|
641 |
|
|
endcase
|
642 |
|
|
2'd2:
|
643 |
|
|
case(~sprAddr4[n3][0])
|
644 |
|
|
1'd0: sprOut5[n3] <= {sprOut4[n3][12],20'h0000,sprOut4[n3][10:0]};
|
645 |
|
|
1'd1: sprOut5[n3] <= {sprOut4[n3][23],20'h0000,sprOut4[n3][22:12]};
|
646 |
|
|
endcase
|
647 |
|
|
2'd3:
|
648 |
|
|
sprOut5[n3] <= sprOut4[n3];
|
649 |
|
|
default: ;
|
650 |
|
|
endcase
|
651 |
|
|
|
652 |
|
|
generate
|
653 |
|
|
for (g = 0; g < pnSpr; g = g + 1) begin : sprRam
|
654 |
|
|
SpriteRam_x12 sprRam0
|
655 |
|
|
(
|
656 |
|
|
.clka(m_clk_i),
|
657 |
|
|
.addra(m_adr_or),
|
658 |
|
|
.dina(m_dat_ir),
|
659 |
|
|
.ena(sprWe[g]),
|
660 |
|
|
.wea(sprWe[g]),
|
661 |
|
|
// Core reg and output reg 3 clocks from read address
|
662 |
|
|
.clkb(vclk),
|
663 |
|
|
.addrb(sprAddr1[g]),
|
664 |
|
|
.doutb(sprOut4[g]),
|
665 |
|
|
.enb(1'b1)
|
666 |
|
|
);
|
667 |
|
|
end
|
668 |
|
|
endgenerate
|
669 |
|
|
|
670 |
|
|
//-------------------------------------------------------------
|
671 |
|
|
// Timing counters and addressing
|
672 |
|
|
// Sprites are like miniature bitmapped displays, they need
|
673 |
|
|
// all the same timing controls.
|
674 |
|
|
//-------------------------------------------------------------
|
675 |
|
|
|
676 |
|
|
// Create a timing reference using horizontal and vertical
|
677 |
|
|
// sync
|
678 |
|
|
wire hSyncEdge, vSyncEdge;
|
679 |
|
|
edge_det ed0(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(hSync), .pe(hSyncEdge), .ne(), .ee() );
|
680 |
|
|
edge_det ed1(.rst(rst_i), .clk(vclk), .ce(1'b1), .i(vSync), .pe(vSyncEdge), .ne(), .ee() );
|
681 |
|
|
|
682 |
|
|
always_ff @(posedge vclk)
|
683 |
|
|
if (hSyncEdge) hctr <= {phBits{1'b0}};
|
684 |
|
|
else hctr <= hctr + 2'd1;
|
685 |
|
|
|
686 |
|
|
always_ff @(posedge vclk)
|
687 |
|
|
if (vSyncEdge) vctr <= {pvBits{1'b0}};
|
688 |
|
|
else if (hSyncEdge) vctr <= vctr + 2'd1;
|
689 |
|
|
|
690 |
|
|
// track sprite horizontal reset
|
691 |
|
|
integer n19;
|
692 |
|
|
always_ff @(posedge vclk)
|
693 |
|
|
for (n19 = 0; n19 < pnSpr; n19 = n19 + 1)
|
694 |
|
|
hSprReset[n19] <= hctr==hSprPos[n19];
|
695 |
|
|
|
696 |
|
|
// track sprite vertical reset
|
697 |
|
|
integer n20;
|
698 |
|
|
always_ff @(posedge vclk)
|
699 |
|
|
for (n20 = 0; n20 < pnSpr; n20 = n20 + 1)
|
700 |
|
|
vSprReset[n20] <= vctr==vSprPos[n20];
|
701 |
|
|
|
702 |
|
|
integer n21;
|
703 |
|
|
always_comb
|
704 |
|
|
for (n21 = 0; n21 < pnSpr; n21 = n21 + 1)
|
705 |
|
|
sprDe[n21] <= hSprDe[n21] & vSprDe[n21];
|
706 |
|
|
|
707 |
|
|
|
708 |
|
|
// take care of sprite size scaling
|
709 |
|
|
// video clock division
|
710 |
|
|
reg [31:0] hSprNextPixel;
|
711 |
|
|
reg [31:0] vSprNextPixel;
|
712 |
|
|
reg [3:0] hSprPt [31:0]; // horizontal pixel toggle
|
713 |
|
|
reg [3:0] vSprPt [31:0]; // vertical pixel toggle
|
714 |
|
|
integer n17;
|
715 |
|
|
always_comb
|
716 |
|
|
for (n17 = 0; n17 < pnSpr; n17 = n17 + 1)
|
717 |
|
|
hSprNextPixel[n17] = hSprPt[n17]==hSprRes[n17];
|
718 |
|
|
integer n18;
|
719 |
|
|
always_comb
|
720 |
|
|
for (n18 = 0; n18 < pnSpr; n18 = n18 + 1)
|
721 |
|
|
vSprNextPixel[n18] = vSprPt[n18]==vSprRes[n18];
|
722 |
|
|
|
723 |
|
|
// horizontal pixel toggle counter
|
724 |
|
|
integer n6;
|
725 |
|
|
always_ff @(posedge vclk)
|
726 |
|
|
for (n6 = 0; n6 < pnSpr; n6 = n6 + 1)
|
727 |
|
|
if (hSprReset[n6])
|
728 |
|
|
hSprPt[n6] <= 4'd0;
|
729 |
|
|
else if (hSprNextPixel[n6])
|
730 |
|
|
hSprPt[n6] <= 4'd0;
|
731 |
|
|
else
|
732 |
|
|
hSprPt[n6] <= hSprPt[n6] + 2'd1;
|
733 |
|
|
|
734 |
|
|
// vertical pixel toggle counter
|
735 |
|
|
integer n7;
|
736 |
|
|
always_ff @(posedge vclk)
|
737 |
|
|
for (n7 = 0; n7 < pnSpr; n7 = n7 + 1)
|
738 |
|
|
if (hSprReset[n7]) begin
|
739 |
|
|
if (vSprReset[n7])
|
740 |
|
|
vSprPt[n7] <= 4'd0;
|
741 |
|
|
else if (vSprNextPixel[n7])
|
742 |
|
|
vSprPt[n7] <= 4'd0;
|
743 |
|
|
else
|
744 |
|
|
vSprPt[n7] <= vSprPt[n7] + 2'd1;
|
745 |
|
|
end
|
746 |
|
|
|
747 |
|
|
|
748 |
|
|
// clock sprite image address counters
|
749 |
|
|
integer n8;
|
750 |
|
|
always_ff @(posedge vclk)
|
751 |
|
|
for (n8 = 0; n8 < pnSpr; n8 = n8 + 1) begin
|
752 |
|
|
// hReset and vReset - top left of sprite,
|
753 |
|
|
// reset address to image offset
|
754 |
|
|
if (hSprReset[n8] & vSprReset[n8]) begin
|
755 |
|
|
sprAddr[n8] <= sprImageOffs[n8];
|
756 |
|
|
sprAddrB[n8] <= sprImageOffs[n8];
|
757 |
|
|
end
|
758 |
|
|
// hReset:
|
759 |
|
|
// If the next vertical pixel
|
760 |
|
|
// set backup address to current address
|
761 |
|
|
// else
|
762 |
|
|
// set current address to backup address
|
763 |
|
|
// in order to rescan the line
|
764 |
|
|
else if (hSprReset[n8]) begin
|
765 |
|
|
if (vSprNextPixel[n8])
|
766 |
|
|
sprAddrB[n8] <= sprAddr[n8];
|
767 |
|
|
else
|
768 |
|
|
sprAddr[n8] <= sprAddrB[n8];
|
769 |
|
|
end
|
770 |
|
|
// Not hReset or vReset - somewhere on the sprite scan line
|
771 |
|
|
// just advance the address when the next pixel should be
|
772 |
|
|
// fetched
|
773 |
|
|
else if (hSprDe[n8] & hSprNextPixel[n8])
|
774 |
|
|
sprAddr[n8] <= sprAddr[n8] + 2'd1;
|
775 |
|
|
end
|
776 |
|
|
|
777 |
|
|
|
778 |
|
|
// clock sprite column (X) counter
|
779 |
|
|
integer n9;
|
780 |
|
|
always_ff @(posedge vclk)
|
781 |
|
|
for (n9 = 0; n9 < pnSpr; n9 = n9 + 1)
|
782 |
|
|
if (hSprReset[n9])
|
783 |
|
|
hSprCnt[n9] <= 8'd1;
|
784 |
|
|
else if (hSprNextPixel[n9])
|
785 |
|
|
hSprCnt[n9] <= hSprCnt[n9] + 2'd1;
|
786 |
|
|
|
787 |
|
|
|
788 |
|
|
// clock sprite horizontal display enable
|
789 |
|
|
integer n10;
|
790 |
|
|
always_ff @(posedge vclk)
|
791 |
|
|
for (n10 = 0; n10 < pnSpr; n10 = n10 + 1) begin
|
792 |
|
|
if (hSprReset[n10])
|
793 |
|
|
hSprDe[n10] <= 1'b1;
|
794 |
|
|
else if (hSprNextPixel[n10]) begin
|
795 |
|
|
if (hSprCnt[n10] == sprWidth[n10])
|
796 |
|
|
hSprDe[n10] <= 1'b0;
|
797 |
|
|
end
|
798 |
|
|
end
|
799 |
|
|
|
800 |
|
|
|
801 |
|
|
// clock the sprite row (Y) counter
|
802 |
|
|
integer n11;
|
803 |
|
|
always_ff @(posedge vclk)
|
804 |
|
|
for (n11 = 0; n11 < pnSpr; n11 = n11 + 1)
|
805 |
|
|
if (hSprReset[n11]) begin
|
806 |
|
|
if (vSprReset[n11])
|
807 |
|
|
vSprCnt[n11] <= 8'd1;
|
808 |
|
|
else if (vSprNextPixel[n11])
|
809 |
|
|
vSprCnt[n11] <= vSprCnt[n11] + 2'd1;
|
810 |
|
|
end
|
811 |
|
|
|
812 |
|
|
|
813 |
|
|
// clock sprite vertical display enable
|
814 |
|
|
integer n12;
|
815 |
|
|
always_ff @(posedge vclk)
|
816 |
|
|
for (n12 = 0; n12 < pnSpr; n12 = n12 + 1) begin
|
817 |
|
|
if (hSprReset[n12]) begin
|
818 |
|
|
if (vSprReset[n12])
|
819 |
|
|
vSprDe[n12] <= 1'b1;
|
820 |
|
|
else if (vSprNextPixel[n12]) begin
|
821 |
|
|
if (vSprCnt[n12] == sprHeight[n12])
|
822 |
|
|
vSprDe[n12] <= 1'b0;
|
823 |
|
|
end
|
824 |
|
|
end
|
825 |
|
|
end
|
826 |
|
|
|
827 |
|
|
|
828 |
|
|
//-------------------------------------------------------------
|
829 |
|
|
// Output stage
|
830 |
|
|
//-------------------------------------------------------------
|
831 |
|
|
|
832 |
|
|
// function used for color blending
|
833 |
|
|
// given an alpha and a color component, determine the resulting color
|
834 |
|
|
// this blends towards black or white
|
835 |
|
|
// alpha is eight bits ranging between 0 and 1.999...
|
836 |
|
|
// 1 bit whole, 7 bits fraction
|
837 |
|
|
function [7:0] fnBlend;
|
838 |
|
|
input [7:0] alpha;
|
839 |
|
|
input [7:0] colorbits;
|
840 |
|
|
|
841 |
|
|
begin
|
842 |
|
|
fnBlend = (({8'b0,colorbits} * alpha) >> 7);
|
843 |
|
|
end
|
844 |
|
|
endfunction
|
845 |
|
|
|
846 |
|
|
|
847 |
|
|
// pipeline delays for display enable
|
848 |
|
|
reg [31:0] sprDe1, sprDe2, sprDe3, sprDe4, sprDe5, sprDe6;
|
849 |
|
|
reg [31:0] sproact;
|
850 |
|
|
integer n13;
|
851 |
|
|
always_ff @(posedge vclk)
|
852 |
|
|
for (n13 = 0; n13 < pnSpr; n13 = n13 + 1)
|
853 |
|
|
sprDe1[n13] <= sprDe[n13];
|
854 |
|
|
integer n22;
|
855 |
|
|
always_ff @(posedge vclk)
|
856 |
|
|
for (n22 = 0; n22 < pnSpr; n22 = n22 + 1)
|
857 |
|
|
sprDe2[n22] <= sprDe1[n22];
|
858 |
|
|
integer n23;
|
859 |
|
|
always_ff @(posedge vclk)
|
860 |
|
|
for (n23 = 0; n23 < pnSpr; n23 = n23 + 1)
|
861 |
|
|
sprDe3[n23] <= sprDe2[n23];
|
862 |
|
|
integer n24;
|
863 |
|
|
always_ff @(posedge vclk)
|
864 |
|
|
for (n24 = 0; n24 < pnSpr; n24 = n24 + 1)
|
865 |
|
|
sprDe4[n24] <= sprDe3[n24];
|
866 |
|
|
integer n25;
|
867 |
|
|
always_ff @(posedge vclk)
|
868 |
|
|
for (n25 = 0; n25 < pnSpr; n25 = n25 + 1)
|
869 |
|
|
sprDe5[n25] <= sprDe4[n25];
|
870 |
|
|
integer n26;
|
871 |
|
|
always_ff @(posedge vclk)
|
872 |
|
|
for (n26 = 0; n26 < pnSpr; n26 = n26 + 1)
|
873 |
|
|
sprDe6[n26] <= sprDe5[n26];
|
874 |
|
|
|
875 |
|
|
|
876 |
|
|
// Detect which sprite outputs are active
|
877 |
|
|
// The sprite output is active if the current display pixel
|
878 |
|
|
// address is within the sprite's area, the sprite is enabled,
|
879 |
|
|
// and it's not a transparent pixel that's being displayed.
|
880 |
|
|
integer n14;
|
881 |
|
|
always_ff @(posedge vclk)
|
882 |
|
|
for (n14 = 0; n14 < pnSpr; n14 = n14 + 1)
|
883 |
|
|
sproact[n14] <= sprEn[n14] && sprDe5[n14] && sprTc[n14]!=sprOut5[n14];
|
884 |
|
|
integer n15;
|
885 |
|
|
always_ff @(posedge vclk)
|
886 |
|
|
for (n15 = 0; n15 < pnSpr; n15 = n15 + 1)
|
887 |
|
|
sprOut[n15] <= sprOut5[n15];
|
888 |
|
|
|
889 |
|
|
// register sprite activity flag
|
890 |
|
|
// The image combiner uses this flag to know what to do with
|
891 |
|
|
// the sprite output.
|
892 |
|
|
always_ff @(posedge vclk)
|
893 |
|
|
outact <= |sproact;
|
894 |
|
|
|
895 |
|
|
// Display data comes from the active sprite with the
|
896 |
|
|
// highest display priority.
|
897 |
|
|
// Make sure that alpha blending is turned off when
|
898 |
|
|
// no sprite is active.
|
899 |
|
|
integer n16;
|
900 |
|
|
always_ff @(posedge vclk)
|
901 |
|
|
begin
|
902 |
|
|
out <= 24'h080; // alpha blend max (and off)
|
903 |
|
|
outplane <= 4'h0;
|
904 |
|
|
colorBits <= 2'b00;
|
905 |
|
|
for (n16 = pnSprm; n16 >= 0; n16 = n16 - 1)
|
906 |
|
|
if (sproact[n16]) begin
|
907 |
|
|
out <= sprOut[n16];
|
908 |
|
|
outplane <= sprPlane[n16];
|
909 |
|
|
colorBits <= sprColorDepth[n16];
|
910 |
|
|
end
|
911 |
|
|
end
|
912 |
|
|
|
913 |
|
|
|
914 |
|
|
// combine the text / graphics color output with sprite color output
|
915 |
|
|
// blend color output
|
916 |
|
|
wire [23:0] blendedColor = {
|
917 |
|
|
fnBlend(out[7:0],zrgbIn[23:16]), // R
|
918 |
|
|
fnBlend(out[7:0],zrgbIn[15: 8]), // G
|
919 |
|
|
fnBlend(out[7:0],zrgbIn[ 7: 0])}; // B
|
920 |
|
|
|
921 |
|
|
|
922 |
|
|
always_ff @(posedge vclk)
|
923 |
|
|
if (blank_i)
|
924 |
|
|
zrgbOut <= 0;
|
925 |
|
|
else begin
|
926 |
|
|
if (outact) begin
|
927 |
|
|
if (zrgbIn[31:28] > outplane) begin // rgb input is in front of sprite
|
928 |
|
|
zrgbOut <= zrgbIn;
|
929 |
|
|
end
|
930 |
|
|
else
|
931 |
|
|
if (!out[23]) begin // a sprite is displayed without alpha blending
|
932 |
|
|
case(colorBits)
|
933 |
|
|
2'd0: zrgbOut <= {outplane,4'h0,out[5:4],6'b0,out[3:2],6'b0,out[1:0],6'b0};
|
934 |
|
|
2'd1: zrgbOut <= {outplane,4'h0,out[5:4],6'b0,out[3:2],6'b0,out[1:0],6'b0};
|
935 |
|
|
2'd2: zrgbOut <= {outplane,4'h0,out[10:7],4'b0,out[6:3],4'b0,out[2:0],5'b0};
|
936 |
|
|
2'd3: zrgbOut <= {outplane,4'h0,out[22:15],out[14:7],out[6:0]};
|
937 |
|
|
endcase
|
938 |
|
|
end
|
939 |
|
|
else
|
940 |
|
|
zrgbOut <= {outplane,4'h0,blendedColor};
|
941 |
|
|
end
|
942 |
|
|
else
|
943 |
|
|
zrgbOut <= zrgbIn;
|
944 |
|
|
end
|
945 |
|
|
|
946 |
|
|
|
947 |
|
|
//--------------------------------------------------------------------
|
948 |
|
|
// Collision logic
|
949 |
|
|
//--------------------------------------------------------------------
|
950 |
|
|
|
951 |
|
|
// Detect when a sprite-sprite collision has occurred. The criteria
|
952 |
|
|
// for this is that a pixel from the sprite is being displayed, while
|
953 |
|
|
// there is a pixel from another sprite that could be displayed at the
|
954 |
|
|
// same time.
|
955 |
|
|
|
956 |
|
|
//--------------------------------------------------------------------
|
957 |
|
|
// Note this case has to be modified for the number of sprites
|
958 |
|
|
//--------------------------------------------------------------------
|
959 |
|
|
integer m1;
|
960 |
|
|
always_comb
|
961 |
|
|
begin
|
962 |
|
|
sprCollision = sproact!=32'd0;
|
963 |
|
|
for (m1 = 0; m1 < pnSpr; m1 = m1 + 1)
|
964 |
|
|
sprCollision = sprCollision && !(sproact == (32'd1 << m1));
|
965 |
|
|
end
|
966 |
|
|
|
967 |
|
|
// Detect when a sprite-background collision has occurred
|
968 |
|
|
integer n31;
|
969 |
|
|
always_comb
|
970 |
|
|
for (n31 = 0; n31 < pnSpr; n31 = n31 + 1)
|
971 |
|
|
bkCollision[n31] <=
|
972 |
|
|
sproact[n31] && zrgbIn[31:28]==sprPlane[n31];
|
973 |
|
|
|
974 |
|
|
// Load the sprite collision register. This register continually
|
975 |
|
|
// accumulates collision bits until reset by reading the register.
|
976 |
|
|
// Set the collision IRQ on the first collision and don't set it
|
977 |
|
|
// again until after the collision register has been read.
|
978 |
|
|
always @(posedge vclk)
|
979 |
|
|
if (rst_i) begin
|
980 |
|
|
sprSprIRQPending1 <= 0;
|
981 |
|
|
sprSprCollision1 <= 0;
|
982 |
|
|
sprSprIRQ1 <= 0;
|
983 |
|
|
end
|
984 |
|
|
else if (sprCollision) begin
|
985 |
|
|
// isFirstCollision
|
986 |
|
|
if ((sprSprCollision1==0)||(cs_regs && adr_i[9:2]==8'b11110010)) begin
|
987 |
|
|
sprSprIRQPending1 <= 1;
|
988 |
|
|
sprSprIRQ1 <= sprSprIe;
|
989 |
|
|
sprSprCollision1 <= sproact;
|
990 |
|
|
end
|
991 |
|
|
else
|
992 |
|
|
sprSprCollision1 <= sprSprCollision1|sproact;
|
993 |
|
|
end
|
994 |
|
|
else if (cs_regs && adr_i[9:2]==8'b11110010) begin
|
995 |
|
|
sprSprCollision1 <= 0;
|
996 |
|
|
sprSprIRQPending1 <= 0;
|
997 |
|
|
sprSprIRQ1 <= 0;
|
998 |
|
|
end
|
999 |
|
|
|
1000 |
|
|
|
1001 |
|
|
// Load the sprite background collision register. This register
|
1002 |
|
|
// continually accumulates collision bits until reset by reading
|
1003 |
|
|
// the register.
|
1004 |
|
|
// Set the collision IRQ on the first collision and don't set it
|
1005 |
|
|
// again until after the collision register has been read.
|
1006 |
|
|
// Note the background collision indicator is externally supplied,
|
1007 |
|
|
// it will come from the color processing logic.
|
1008 |
|
|
always @(posedge vclk)
|
1009 |
|
|
if (rst_i) begin
|
1010 |
|
|
sprBkIRQPending1 <= 0;
|
1011 |
|
|
sprBkCollision1 <= 0;
|
1012 |
|
|
sprBkIRQ1 <= 0;
|
1013 |
|
|
end
|
1014 |
|
|
else if (|bkCollision) begin
|
1015 |
|
|
// Is the register being cleared at the same time
|
1016 |
|
|
// a collision occurss ?
|
1017 |
|
|
// isFirstCollision
|
1018 |
|
|
if ((sprBkCollision1==0) || (cs_regs && adr_i[9:2]==8'b11110011)) begin
|
1019 |
|
|
sprBkIRQ1 <= sprBkIe;
|
1020 |
|
|
sprBkCollision1 <= bkCollision;
|
1021 |
|
|
sprBkIRQPending1 <= 1;
|
1022 |
|
|
end
|
1023 |
|
|
else
|
1024 |
|
|
sprBkCollision1 <= sprBkCollision1|bkCollision;
|
1025 |
|
|
end
|
1026 |
|
|
else if (cs_regs && adr_i[9:2]==8'b11110011) begin
|
1027 |
|
|
sprBkCollision1 <= 0;
|
1028 |
|
|
sprBkIRQPending1 <= 0;
|
1029 |
|
|
sprBkIRQ1 <= 0;
|
1030 |
|
|
end
|
1031 |
|
|
|
1032 |
|
|
endmodule
|
1033 |
|
|
|
1034 |
|
|
/*
|
1035 |
|
|
module SpriteRam32 (
|
1036 |
|
|
clka, adra, dia, doa, cea, wea,
|
1037 |
|
|
clkb, adrb, dib, dob, ceb, web
|
1038 |
|
|
);
|
1039 |
|
|
input clka;
|
1040 |
|
|
input [9:0] adra;
|
1041 |
|
|
input [31:0] dia;
|
1042 |
|
|
output [31:0] doa;
|
1043 |
|
|
input cea;
|
1044 |
|
|
input wea;
|
1045 |
|
|
input clkb;
|
1046 |
|
|
input [9:0] adrb;
|
1047 |
|
|
input [31:0] dib;
|
1048 |
|
|
output [31:0] dob;
|
1049 |
|
|
input ceb;
|
1050 |
|
|
input web;
|
1051 |
|
|
|
1052 |
|
|
reg [31:0] mem [0:1023];
|
1053 |
|
|
reg [9:0] radra;
|
1054 |
|
|
reg [9:0] radrb;
|
1055 |
|
|
|
1056 |
|
|
always @(posedge clka) if (cea) radra <= adra;
|
1057 |
|
|
always @(posedge clkb) if (ceb) radrb <= adrb;
|
1058 |
|
|
assign doa = mem [radra];
|
1059 |
|
|
assign dob = mem [radrb];
|
1060 |
|
|
always @(posedge clka)
|
1061 |
|
|
if (cea & wea) mem[adra] <= dia;
|
1062 |
|
|
always @(posedge clkb)
|
1063 |
|
|
if (ceb & web) mem[adrb] <= dib;
|
1064 |
|
|
|
1065 |
|
|
endmodule
|
1066 |
|
|
|
1067 |
|
|
*/
|