1 |
5 |
jdoin |
-----------------------------------------------------------------------------------------------------------------------
|
2 |
|
|
-- Author: Jonny Doin, jdoin@opencores.org
|
3 |
|
|
--
|
4 |
|
|
-- Create Date: 12:18:12 04/25/2011
|
5 |
|
|
-- Module Name: SPI_MASTER - RTL
|
6 |
|
|
-- Project Name: SPI MASTER / SLAVE INTERFACE
|
7 |
|
|
-- Target Devices: Spartan-6
|
8 |
|
|
-- Tool versions: ISE 13.1
|
9 |
|
|
-- Description:
|
10 |
|
|
--
|
11 |
|
|
-- This block is the SPI master interface, implemented in one single entity.
|
12 |
|
|
-- All internal core operations are synchronous to the 'sclk_i', and a spi base clock is generated by dividing sclk_i downto
|
13 |
|
|
-- a frequency that is 2x the spi SCK line frequency. The divider value is passed as a generic parameter during instantiation.
|
14 |
|
|
-- All parallel i/o interface operations are synchronous to the 'pclk_i' high speed clock, that can be asynchronous to the serial
|
15 |
|
|
-- 'sclk_i' clock.
|
16 |
|
|
-- Fully pipelined cross-clock circuitry guarantees that no setup artifacts occur on the buffers that are accessed by the two
|
17 |
|
|
-- clock domains.
|
18 |
|
|
-- The block is very simple to use, and has parallel inputs and outputs that behave like a synchronous memory i/o.
|
19 |
|
|
-- It is parameterizable via generics for the data width ('N'), SPI mode (CPHA and CPOL), lookahead prefetch signaling
|
20 |
|
|
-- ('PREFETCH'), and spi base clock division from sclk_i ('SPI_2X_CLK_DIV').
|
21 |
|
|
--
|
22 |
|
|
-- SPI CLOCK GENERATION
|
23 |
|
|
-- ====================
|
24 |
|
|
--
|
25 |
|
|
-- The clock generation for the SPI SCK is derived from the high-speed 'sclk_i' clock. The core divides this reference
|
26 |
|
|
-- clock to form the SPI base clock, by the 'SPI_2X_CLK_DIV' generic parameter. The user must set the divider value for the
|
27 |
|
|
-- SPI_2X clock, which is 2x the desired SCK frequency.
|
28 |
|
|
-- All registers in the core are clocked by the high-speed clocks, and clock enables are used to run the FSM and other logic
|
29 |
|
|
-- at lower rates. This architecture preserves FPGA clock resources like global clock buffers, and avoids path delays caused
|
30 |
|
|
-- by combinatorial clock dividers outputs.
|
31 |
|
|
-- The core has async clock domain circuitry to handle asynchronous clocks for the SPI and parallel interfaces.
|
32 |
|
|
--
|
33 |
|
|
-- PARALLEL WRITE INTERFACE
|
34 |
|
|
-- ========================
|
35 |
|
|
-- The parallel interface has an input port 'di_i' and an output port 'do_o'.
|
36 |
|
|
-- Parallel load is controlled using 3 signals: 'di_i', 'di_req_o' and 'wren_i'. 'di_req_o' is a look ahead data request line,
|
37 |
|
|
-- that is set 'PREFETCH' clock cycles in advance to synchronize a pipelined memory or fifo to present the
|
38 |
|
|
-- next input data at 'di_i' in time to have continuous clock at the spi bus, to allow back-to-back continuous load.
|
39 |
|
|
-- For a pipelined sync RAM, a PREFETCH of 2 cycles allows an address generator to present the new adress to the RAM in one
|
40 |
|
|
-- cycle, and the RAM to respond in one more cycle, in time for 'di_i' to be latched by the shifter.
|
41 |
|
|
-- If the user sequencer needs a different value for PREFETCH, the generic can be altered at instantiation time.
|
42 |
|
|
-- The 'wren_i' write enable strobe must be valid at least one setup time before the rising edge of the last SPI clock cycle,
|
43 |
|
|
-- if continuous transmission is intended. If 'wren_i' is not valid 2 SPI clock cycles after the last transmitted bit, the interface
|
44 |
|
|
-- enters idle state and deasserts SSEL.
|
45 |
|
|
-- When the interface is idle, 'wren_i' write strobe loads the data and starts transmission. 'di_req_o' will strobe when entering
|
46 |
|
|
-- idle state, if a previously loaded data has already been transferred.
|
47 |
|
|
--
|
48 |
|
|
-- PARALLEL WRITE SEQUENCE
|
49 |
|
|
-- =======================
|
50 |
|
|
-- __ __ __ __ __ __ __
|
51 |
|
|
-- pclk_i __/ \__/ \__/ \__/ \__/ \__/ \__/ \... -- parallel interface clock
|
52 |
|
|
-- ___________
|
53 |
|
|
-- di_req_o ________/ \_____________________... -- 'di_req_o' asserted on rising edge of 'pclk_i'
|
54 |
|
|
-- ______________ ___________________________...
|
55 |
|
|
-- di_i __old_data____X______new_data_____________... -- user circuit loads data on 'di_i' at next 'pclk_i' rising edge
|
56 |
|
|
-- _______
|
57 |
|
|
-- wren_i __________________________/ \_______... -- user strobes 'wren_i' for one cycle of 'pclk_i'
|
58 |
|
|
--
|
59 |
|
|
--
|
60 |
|
|
-- PARALLEL READ INTERFACE
|
61 |
|
|
-- =======================
|
62 |
|
|
-- An internal buffer is used to copy the internal shift register data to drive the 'do_o' port. When a complete word is received,
|
63 |
6 |
jdoin |
-- the core shift register is transferred to the buffer, at the rising edge of the spi clock, 'spi_clk'.
|
64 |
|
|
-- The signal 'do_valid_o' is set one 'spi_clk' clock after, to directly drive a synchronous memory or fifo write enable.
|
65 |
5 |
jdoin |
-- 'do_valid_o' is synchronous to the parallel interface clock, and changes only on rising edges of 'pclk_i'.
|
66 |
|
|
-- When the interface is idle, data at the 'do_o' port holds the last word received.
|
67 |
|
|
--
|
68 |
|
|
-- PARALLEL READ SEQUENCE
|
69 |
|
|
-- ======================
|
70 |
|
|
-- ______ ______ ______ ______
|
71 |
6 |
jdoin |
-- spi_clk bit1 \______/ bitN \______/bitN-1\______/bitN-2\__... -- spi 2x base clock
|
72 |
5 |
jdoin |
-- _ __ __ __ __ __ __ __ __
|
73 |
|
|
-- pclk_i \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \_... -- parallel interface clock (may be async to sclk_i)
|
74 |
|
|
-- _____________ _____________________________________... -- 1) rx data is transferred to 'do_buffer_reg'
|
75 |
6 |
jdoin |
-- do_o ___old_data__X__________new_data___________________... -- after last rx bit, at rising 'spi_clk'.
|
76 |
5 |
jdoin |
-- ____________
|
77 |
|
|
-- do_valid_o ____________________________/ \_________... -- 2) 'do_valid_o' strobed for 2 'pclk_i' cycles
|
78 |
|
|
-- -- on the 3rd 'pclk_i' rising edge.
|
79 |
|
|
--
|
80 |
|
|
--
|
81 |
|
|
-- The propagation delay of spi_sck_o and spi_mosi_o, referred to the internal clock, is balanced by similar path delays,
|
82 |
|
|
-- but the sampling delay of spi_miso_i imposes a setup time referred to the sck signal that limits the high frequency
|
83 |
|
|
-- of the interface, for full duplex operation.
|
84 |
|
|
--
|
85 |
|
|
-- This design was originally targeted to a Spartan-6 platform, synthesized with XST and normal constraints.
|
86 |
|
|
-- The VHDL dialect used is VHDL'93, accepted largely by all synthesis tools.
|
87 |
|
|
--
|
88 |
|
|
------------------------------ COPYRIGHT NOTICE -----------------------------------------------------------------------
|
89 |
|
|
--
|
90 |
|
|
-- This file is part of the SPI MASTER/SLAVE INTERFACE project http://opencores.org/project,spi_master_slave
|
91 |
6 |
jdoin |
--
|
92 |
5 |
jdoin |
-- Author(s): Jonny Doin, jdoin@opencores.org
|
93 |
6 |
jdoin |
--
|
94 |
5 |
jdoin |
-- Copyright (C) 2011 Authors and OPENCORES.ORG
|
95 |
6 |
jdoin |
-- --------------------------------------------
|
96 |
|
|
--
|
97 |
|
|
-- This source file may be used and distributed without restriction provided that this copyright statement is not
|
98 |
5 |
jdoin |
-- removed from the file and that any derivative work contains the original copyright notice and the associated
|
99 |
6 |
jdoin |
-- disclaimer.
|
100 |
|
|
--
|
101 |
5 |
jdoin |
-- This source file is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
|
102 |
|
|
-- General Public License as published by the Free Software Foundation; either version 2.1 of the License, or
|
103 |
6 |
jdoin |
-- (at your option) any later version.
|
104 |
|
|
--
|
105 |
|
|
-- This source is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
106 |
|
|
-- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
|
107 |
|
|
-- details.
|
108 |
|
|
--
|
109 |
5 |
jdoin |
-- You should have received a copy of the GNU Lesser General Public License along with this source; if not, download
|
110 |
6 |
jdoin |
-- it from http://www.opencores.org/lgpl.shtml
|
111 |
5 |
jdoin |
--
|
112 |
|
|
------------------------------ REVISION HISTORY -----------------------------------------------------------------------
|
113 |
|
|
--
|
114 |
|
|
-- 2011/04/28 v0.01.0010 [JD] shifter implemented as a sequential process. timing problems and async issues in synthesis.
|
115 |
|
|
-- 2011/05/01 v0.01.0030 [JD] changed original shifter design to a fully pipelined RTL fsmd. solved all synthesis issues.
|
116 |
|
|
-- 2011/05/05 v0.01.0034 [JD] added an internal buffer register for rx_data, to allow greater liberty in data load/store.
|
117 |
|
|
-- 2011/05/08 v0.10.0038 [JD] increased one state to have SSEL start one cycle before SCK. Implemented full CPOL/CPHA
|
118 |
|
|
-- logic, based on generics, and do_valid_o signal.
|
119 |
|
|
-- 2011/05/13 v0.20.0045 [JD] streamlined signal names, added PREFETCH parameter, added assertions.
|
120 |
|
|
-- 2011/05/17 v0.80.0049 [JD] added explicit clock synchronization circuitry across clock boundaries.
|
121 |
|
|
-- 2011/05/18 v0.95.0050 [JD] clock generation circuitry, with generators for all-rising-edge clock core.
|
122 |
|
|
-- 2011/06/05 v0.96.0053 [JD] changed async clear to sync resets.
|
123 |
|
|
-- 2011/06/07 v0.97.0065 [JD] added cross-clock buffers, fixed fsm async glitches.
|
124 |
|
|
-- 2011/06/09 v0.97.0068 [JD] reduced control sets (resets, CE, presets) to the absolute minimum to operate, to reduce
|
125 |
|
|
-- synthesis LUT overhead in Spartan-6 architecture.
|
126 |
|
|
-- 2011/06/11 v0.97.0075 [JD] redesigned all parallel data interfacing ports, and implemented cross-clock strobe logic.
|
127 |
|
|
-- 2011/06/12 v0.97.0079 [JD] streamlined wren_ack for all cases and eliminated unnecessary register resets.
|
128 |
|
|
-- 2011/06/14 v0.97.0083 [JD] (bug CPHA effect) : redesigned SCK output circuit.
|
129 |
|
|
-- (minor bug) : removed fsm registers from (not rst_i) chip enable.
|
130 |
|
|
-- 2011/06/15 v0.97.0086 [JD] removed master MISO input register, to relax MISO data setup time (to get higher speed).
|
131 |
|
|
-- 2011/07/09 v1.00.0095 [JD] changed all clocking scheme to use a single high-speed clock with clock enables to control lower
|
132 |
|
|
-- frequency sequential circuits, to preserve clocking resources and avoid path delay glitches.
|
133 |
|
|
-- 2011/07/10 v1.00.0098 [JD] implemented SCK clock divider circuit to generate spi clock directly from system clock.
|
134 |
|
|
-- 2011/07/10 v1.10.0075 [JD] verified spi_master_slave in silicon at 50MHz, 25MHz, 16.666MHz, 12.5MHz, 10MHz, 8.333MHz,
|
135 |
6 |
jdoin |
-- 7.1428MHz, 6.25MHz, 1MHz and 500kHz. The core proved very robust at all tested frequencies.
|
136 |
5 |
jdoin |
--
|
137 |
|
|
-----------------------------------------------------------------------------------------------------------------------
|
138 |
|
|
-- TODO
|
139 |
|
|
-- ====
|
140 |
|
|
-- > verify the receive interface in silicon, and determine the top usable frequency.
|
141 |
|
|
--
|
142 |
|
|
-----------------------------------------------------------------------------------------------------------------------
|
143 |
|
|
library ieee;
|
144 |
|
|
use ieee.std_logic_1164.all;
|
145 |
|
|
use ieee.numeric_std.all;
|
146 |
6 |
jdoin |
use ieee.std_logic_unsigned.all;
|
147 |
5 |
jdoin |
|
148 |
|
|
--================================================================================================================
|
149 |
|
|
-- There are several output ports that are used to simulate and verify the core operation.
|
150 |
|
|
-- Do not map any signals to the unused ports, and the synthesis tool will remove the related interfacing
|
151 |
|
|
-- circuitry.
|
152 |
|
|
-- The same is valid for the transmit and receive ports. If the receive ports are not mapped, the
|
153 |
|
|
-- synthesis tool will remove the receive logic from the generated circuitry.
|
154 |
|
|
--================================================================================================================
|
155 |
|
|
|
156 |
|
|
entity spi_master is
|
157 |
|
|
Generic (
|
158 |
|
|
N : positive := 32; -- 32bit serial word length is default
|
159 |
|
|
CPOL : std_logic := '0'; -- SPI mode selection (mode 0 default)
|
160 |
|
|
CPHA : std_logic := '0'; -- CPOL = clock polarity, CPHA = clock phase.
|
161 |
|
|
PREFETCH : positive := 2; -- prefetch lookahead cycles
|
162 |
|
|
SPI_2X_CLK_DIV : positive := 5); -- for a 100MHz sclk_i, yields a 10MHz SCK
|
163 |
|
|
Port (
|
164 |
|
|
sclk_i : in std_logic := 'X'; -- high-speed serial interface system clock
|
165 |
|
|
pclk_i : in std_logic := 'X'; -- high-speed parallel interface system clock
|
166 |
|
|
rst_i : in std_logic := 'X'; -- reset core
|
167 |
|
|
spi_ssel_o : out std_logic; -- spi bus slave select line
|
168 |
|
|
spi_sck_o : out std_logic; -- spi bus sck
|
169 |
|
|
spi_mosi_o : out std_logic; -- spi bus mosi output
|
170 |
|
|
spi_miso_i : in std_logic := 'X'; -- spi bus spi_miso_i input
|
171 |
|
|
di_req_o : out std_logic; -- preload lookahead data request line
|
172 |
6 |
jdoin |
di_i : in std_logic_vector (N-1 downto 0) := (others => 'X'); -- parallel data in (clocked on rising spi_clk after last bit)
|
173 |
5 |
jdoin |
wren_i : in std_logic := 'X'; -- user data write enable, starts transmission when interface is idle
|
174 |
6 |
jdoin |
do_valid_o : out std_logic; -- do_o data valid signal, valid during one spi_clk rising edge.
|
175 |
|
|
do_o : out std_logic_vector (N-1 downto 0); -- parallel output (clocked on rising spi_clk after last bit)
|
176 |
5 |
jdoin |
--- debug ports: can be removed for the application circuit ---
|
177 |
|
|
do_transfer_o : out std_logic; -- debug: internal transfer driver
|
178 |
|
|
wren_o : out std_logic; -- debug: internal state of the wren_i pulse stretcher
|
179 |
|
|
wren_ack_o : out std_logic; -- debug: wren ack from state machine
|
180 |
|
|
rx_bit_reg_o : out std_logic; -- debug: internal rx bit
|
181 |
|
|
state_dbg_o : out std_logic_vector (5 downto 0); -- debug: internal state register
|
182 |
|
|
core_clk_o : out std_logic;
|
183 |
|
|
core_n_clk_o : out std_logic;
|
184 |
|
|
core_ce_o : out std_logic;
|
185 |
|
|
core_n_ce_o : out std_logic;
|
186 |
|
|
sh_reg_dbg_o : out std_logic_vector (N-1 downto 0) -- debug: internal shift register
|
187 |
|
|
);
|
188 |
|
|
end spi_master;
|
189 |
|
|
|
190 |
|
|
--================================================================================================================
|
191 |
|
|
-- this architecture is a pipelined register-transfer description.
|
192 |
6 |
jdoin |
-- all signals are clocked at the rising edge of the system clock 'sclk_i'.
|
193 |
5 |
jdoin |
--================================================================================================================
|
194 |
|
|
architecture rtl of spi_master is
|
195 |
6 |
jdoin |
-- core clocks, generated from 'sclk_i': initialized to differential values
|
196 |
5 |
jdoin |
signal core_clk : std_logic := '0'; -- continuous core clock, positive logic
|
197 |
|
|
signal core_n_clk : std_logic := '1'; -- continuous core clock, negative logic
|
198 |
|
|
signal core_ce : std_logic := '0'; -- core clock enable, positive logic
|
199 |
|
|
signal core_n_ce : std_logic := '1'; -- core clock enable, negative logic
|
200 |
|
|
-- spi bus clock, generated from the CPOL selected core clock polarity
|
201 |
|
|
signal spi_2x_ce : std_logic := '1'; -- spi_2x clock enable
|
202 |
|
|
signal spi_clk : std_logic := '0'; -- spi bus output clock
|
203 |
|
|
signal spi_clk_reg : std_logic := '0'; -- output pipeline delay for spi sck
|
204 |
|
|
-- core fsm clock enables
|
205 |
|
|
signal fsm_ce : std_logic := '1'; -- fsm clock enable
|
206 |
|
|
signal samp_ce : std_logic := '1'; -- data sampling clock enable
|
207 |
|
|
--
|
208 |
|
|
-- GLOBAL RESET:
|
209 |
|
|
-- all signals are initialized to zero at GSR (global set/reset) by giving explicit
|
210 |
|
|
-- initialization values at declaration. This is needed for all Xilinx FPGAs, and
|
211 |
|
|
-- especially for the Spartan-6 and newer CLB architectures, where a local reset can
|
212 |
|
|
-- reduce the usability of the slice registers, due to the need to share the control
|
213 |
|
|
-- set (RESET/PRESET, CLOCK ENABLE and CLOCK) by all 8 registers in a slice.
|
214 |
|
|
-- By using GSR for the initialization, and reducing RESET local init to the bare
|
215 |
|
|
-- essential, the model achieves better LUT/FF packing and CLB usability.
|
216 |
|
|
--
|
217 |
|
|
-- internal state signals for register and combinatorial stages
|
218 |
|
|
signal state_next : natural range N+1 downto 0 := 0;
|
219 |
|
|
signal state_reg : natural range N+1 downto 0 := 0;
|
220 |
|
|
-- shifter signals for register and combinatorial stages
|
221 |
|
|
signal sh_next : std_logic_vector (N-1 downto 0) := (others => '0');
|
222 |
|
|
signal sh_reg : std_logic_vector (N-1 downto 0) := (others => '0');
|
223 |
|
|
-- input bit sampled buffer
|
224 |
|
|
signal rx_bit_reg : std_logic := '0';
|
225 |
|
|
-- buffered di_i data signals for register and combinatorial stages
|
226 |
|
|
signal di_reg : std_logic_vector (N-1 downto 0) := (others => '0');
|
227 |
|
|
-- internal wren_i stretcher for fsm combinatorial stage
|
228 |
|
|
signal wren : std_logic := '0';
|
229 |
|
|
signal wren_ack_next : std_logic := '0';
|
230 |
|
|
signal wren_ack_reg : std_logic := '0';
|
231 |
|
|
-- internal SSEL enable control signals
|
232 |
|
|
signal ena_ssel_next : std_logic := '0';
|
233 |
|
|
signal ena_ssel_reg : std_logic := '0';
|
234 |
|
|
-- internal SCK enable control signals
|
235 |
|
|
signal ena_sck_next : std_logic := '0';
|
236 |
|
|
signal ena_sck_reg : std_logic := '0';
|
237 |
|
|
-- buffered do_o data signals for register and combinatorial stages
|
238 |
|
|
signal do_buffer_next : std_logic_vector (N-1 downto 0) := (others => '0');
|
239 |
|
|
signal do_buffer_reg : std_logic_vector (N-1 downto 0) := (others => '0');
|
240 |
|
|
-- internal signal to flag transfer to do_buffer_reg
|
241 |
|
|
signal do_transfer_next : std_logic := '0';
|
242 |
|
|
signal do_transfer_reg : std_logic := '0';
|
243 |
|
|
-- internal input data request signal
|
244 |
|
|
signal di_req_next : std_logic := '0';
|
245 |
|
|
signal di_req_reg : std_logic := '0';
|
246 |
|
|
-- cross-clock do_transfer_reg -> do_valid_o_reg pipeline
|
247 |
|
|
signal do_valid_A : std_logic := '0';
|
248 |
|
|
signal do_valid_B : std_logic := '0';
|
249 |
|
|
signal do_valid_C : std_logic := '0';
|
250 |
|
|
signal do_valid_D : std_logic := '0';
|
251 |
|
|
signal do_valid_next : std_logic := '0';
|
252 |
|
|
signal do_valid_o_reg : std_logic := '0';
|
253 |
|
|
-- cross-clock di_req_reg -> di_req_o_reg pipeline
|
254 |
|
|
signal di_req_o_A : std_logic := '0';
|
255 |
|
|
signal di_req_o_B : std_logic := '0';
|
256 |
|
|
signal di_req_o_C : std_logic := '0';
|
257 |
|
|
signal di_req_o_D : std_logic := '0';
|
258 |
|
|
signal di_req_o_next : std_logic := '1';
|
259 |
|
|
signal di_req_o_reg : std_logic := '1';
|
260 |
|
|
begin
|
261 |
|
|
--=============================================================================================
|
262 |
|
|
-- GENERICS CONSTRAINTS CHECKING
|
263 |
|
|
--=============================================================================================
|
264 |
|
|
-- minimum word width is 8 bits
|
265 |
6 |
jdoin |
assert N >= 8
|
266 |
|
|
report "Generic parameter 'N' (shift register size) needs to be 8 bits minimum"
|
267 |
5 |
jdoin |
severity FAILURE;
|
268 |
|
|
-- minimum prefetch lookahead check
|
269 |
6 |
jdoin |
assert PREFETCH >= 2
|
270 |
|
|
report "Generic parameter 'PREFETCH' (lookahead count) needs to be 1 minimum"
|
271 |
5 |
jdoin |
severity FAILURE;
|
272 |
|
|
-- maximum prefetch lookahead check
|
273 |
6 |
jdoin |
assert PREFETCH <= N-5
|
274 |
|
|
report "Generic parameter 'PREFETCH' (lookahead count) out of range, needs to be N-5 maximum"
|
275 |
5 |
jdoin |
severity FAILURE;
|
276 |
|
|
-- SPI_2X_CLK_DIV clock divider value must not be zero
|
277 |
6 |
jdoin |
assert SPI_2X_CLK_DIV > 0
|
278 |
|
|
report "Generic parameter 'SPI_2X_CLK_DIV' must not be zero"
|
279 |
5 |
jdoin |
severity FAILURE;
|
280 |
|
|
|
281 |
|
|
--=============================================================================================
|
282 |
|
|
-- CLOCK GENERATION
|
283 |
|
|
--=============================================================================================
|
284 |
|
|
-- In order to preserve global clocking resources, the core clocking scheme is completely based
|
285 |
|
|
-- on using clock enables to process the serial high-speed clock at lower rates for the core fsm,
|
286 |
|
|
-- the spi clock generator and the input sampling clock.
|
287 |
|
|
-- The clock generation block derive 2 continuous antiphase signals from the 2x spi base clock
|
288 |
|
|
-- for the core clocking.
|
289 |
|
|
-- The 2 clock phases are generated by sepparate and synchronous FFs, and should have only
|
290 |
|
|
-- interconnect delays.
|
291 |
|
|
-- Clock enable signals are generated with the same phase as the 2 core clocks, and these clock
|
292 |
|
|
-- enables are used to control clocking of all internal synchronous circuitry.
|
293 |
|
|
-- The clock enable phase is selected for serial input sampling, fsm clocking, and spi SCK output,
|
294 |
|
|
-- based on the configuration of CPOL and CPHA.
|
295 |
|
|
-- Each phase is selected so that all the registers can be clocked with a rising edge on all SPI
|
296 |
|
|
-- modes, by a single high-speed global clock, preserving clock resources.
|
297 |
|
|
-----------------------------------------------------------------------------------------------
|
298 |
6 |
jdoin |
-- generate the 2x spi base clock enable from the serial high-speed input clock
|
299 |
5 |
jdoin |
spi_2x_ce_gen_proc: process (sclk_i) is
|
300 |
|
|
variable clk_cnt : integer range SPI_2X_CLK_DIV-1 downto 0 := 0;
|
301 |
|
|
begin
|
302 |
|
|
if sclk_i'event and sclk_i = '1' then
|
303 |
|
|
if clk_cnt = SPI_2X_CLK_DIV-1 then
|
304 |
|
|
spi_2x_ce <= '1';
|
305 |
|
|
clk_cnt := 0;
|
306 |
|
|
else
|
307 |
|
|
spi_2x_ce <= '0';
|
308 |
|
|
clk_cnt := clk_cnt + 1;
|
309 |
|
|
end if;
|
310 |
|
|
end if;
|
311 |
|
|
end process spi_2x_ce_gen_proc;
|
312 |
|
|
-----------------------------------------------------------------------------------------------
|
313 |
6 |
jdoin |
-- generate the core antiphase clocks and clock enables from the 2x base CE.
|
314 |
5 |
jdoin |
core_clock_gen_proc : process (sclk_i) is
|
315 |
|
|
begin
|
316 |
|
|
if sclk_i'event and sclk_i = '1' then
|
317 |
|
|
if spi_2x_ce = '1' then
|
318 |
|
|
-- generate the 2 antiphase core clocks
|
319 |
|
|
core_clk <= core_n_clk;
|
320 |
|
|
core_n_clk <= not core_n_clk;
|
321 |
|
|
-- generate the 2 phase core clock enables
|
322 |
|
|
core_ce <= core_n_clk;
|
323 |
|
|
core_n_ce <= not core_n_clk;
|
324 |
|
|
else
|
325 |
|
|
core_ce <= '0';
|
326 |
|
|
core_n_ce <= '0';
|
327 |
|
|
end if;
|
328 |
|
|
end if;
|
329 |
|
|
end process core_clock_gen_proc;
|
330 |
|
|
-----------------------------------------------------------------------------------------------
|
331 |
|
|
-- spi clk generator: generate spi_clk from core_clk depending on CPOL
|
332 |
|
|
spi_sck_cpol_0_proc :
|
333 |
|
|
if CPOL = '0' generate
|
334 |
|
|
begin
|
335 |
|
|
spi_clk <= core_clk; -- for CPOL=0, spi clk has idle LOW
|
336 |
|
|
end generate;
|
337 |
|
|
spi_sck_cpol_1_proc :
|
338 |
|
|
if CPOL = '1' generate
|
339 |
|
|
begin
|
340 |
|
|
spi_clk <= core_n_clk; -- for CPOL=1, spi clk has idle HIGH
|
341 |
|
|
end generate;
|
342 |
|
|
-----------------------------------------------------------------------------------------------
|
343 |
|
|
-- Sampling clock enable generation: generate 'samp_ce' from 'core_ce' or 'core_n_ce' depending on CPHA
|
344 |
|
|
-- always sample data at the half-cycle of the fsm update cell
|
345 |
|
|
samp_ce_cpha_0_proc :
|
346 |
|
|
if CPHA = '0' generate
|
347 |
|
|
begin
|
348 |
|
|
samp_ce <= core_ce;
|
349 |
|
|
end generate;
|
350 |
|
|
samp_ce_cpha_1_proc :
|
351 |
|
|
if CPHA = '1' generate
|
352 |
|
|
begin
|
353 |
|
|
samp_ce <= core_n_ce;
|
354 |
|
|
end generate;
|
355 |
|
|
-----------------------------------------------------------------------------------------------
|
356 |
6 |
jdoin |
-- FSM clock enable generation: generate 'fsm_ce' from core_ce or core_n_ce depending on CPHA
|
357 |
5 |
jdoin |
fsm_ce_cpha_0_proc :
|
358 |
|
|
if CPHA = '0' generate
|
359 |
|
|
begin
|
360 |
|
|
fsm_ce <= core_n_ce; -- for CPHA=0, latch registers at rising edge of negative core clock enable
|
361 |
|
|
end generate;
|
362 |
|
|
fsm_ce_cpha_1_proc :
|
363 |
|
|
if CPHA = '1' generate
|
364 |
|
|
begin
|
365 |
|
|
fsm_ce <= core_ce; -- for CPHA=1, latch registers at rising edge of positive core clock enable
|
366 |
|
|
end generate;
|
367 |
|
|
|
368 |
|
|
--=============================================================================================
|
369 |
|
|
-- REGISTERED INPUTS
|
370 |
|
|
--=============================================================================================
|
371 |
|
|
-- rx bit flop: capture rx bit after SAMPLE edge of sck
|
372 |
|
|
--
|
373 |
|
|
-- ATTENTION: REMOVING THE FLIPFLOP (DIRECT CONNECTION) WE GET HIGHER PERFORMANCE DUE TO
|
374 |
|
|
-- REDUCED DEMAND ON MISO SETUP TIME.
|
375 |
|
|
--
|
376 |
|
|
rx_bit_proc : process (sclk_i) is
|
377 |
|
|
begin
|
378 |
|
|
if sclk_i'event and sclk_i = '1' then
|
379 |
|
|
if samp_ce = '1' then
|
380 |
|
|
rx_bit_reg <= spi_miso_i;
|
381 |
|
|
end if;
|
382 |
|
|
end if;
|
383 |
|
|
end process rx_bit_proc;
|
384 |
|
|
|
385 |
|
|
--=============================================================================================
|
386 |
|
|
-- RTL REGISTER PROCESSES
|
387 |
|
|
--=============================================================================================
|
388 |
|
|
-- fsm state and data registers: synchronous to the spi base reference clock
|
389 |
|
|
core_reg_proc : process (sclk_i) is
|
390 |
|
|
begin
|
391 |
|
|
-- FF registers clocked on rising edge and cleared on sync rst_i
|
392 |
|
|
if sclk_i'event and sclk_i = '1' then
|
393 |
|
|
if rst_i = '1' then -- sync reset
|
394 |
|
|
state_reg <= 0; -- only provide local reset for the state machine
|
395 |
|
|
elsif fsm_ce = '1' then -- fsm_ce is clock enable for the fsm
|
396 |
|
|
state_reg <= state_next; -- state register
|
397 |
|
|
end if;
|
398 |
|
|
end if;
|
399 |
|
|
-- FF registers clocked on rising edge
|
400 |
|
|
if sclk_i'event and sclk_i = '1' then
|
401 |
|
|
if fsm_ce = '1' then
|
402 |
|
|
sh_reg <= sh_next; -- shift register
|
403 |
|
|
ena_ssel_reg <= ena_ssel_next; -- spi select enable
|
404 |
|
|
ena_sck_reg <= ena_sck_next; -- spi clock enable
|
405 |
|
|
do_buffer_reg <= do_buffer_next; -- registered output data buffer
|
406 |
|
|
do_transfer_reg <= do_transfer_next; -- output data transferred to buffer
|
407 |
|
|
di_req_reg <= di_req_next; -- input data request
|
408 |
|
|
wren_ack_reg <= wren_ack_next; -- wren ack for data load synchronization
|
409 |
|
|
end if;
|
410 |
|
|
end if;
|
411 |
|
|
end process core_reg_proc;
|
412 |
|
|
|
413 |
|
|
--=============================================================================================
|
414 |
|
|
-- CROSS-CLOCK PIPELINE TRANSFER LOGIC
|
415 |
|
|
--=============================================================================================
|
416 |
|
|
-- do_valid_o and di_req_o strobe output logic
|
417 |
|
|
-- this is a delayed pulse generator with a ripple-transfer FFD pipeline, that generates a
|
418 |
|
|
-- fixed-length delayed pulse for the output flags, at the parallel clock domain
|
419 |
|
|
out_transfer_proc : process ( pclk_i, do_transfer_reg, di_req_reg,
|
420 |
|
|
do_valid_A, do_valid_B, do_valid_D,
|
421 |
|
|
di_req_o_A, di_req_o_B, di_req_o_D ) is
|
422 |
|
|
begin
|
423 |
|
|
if pclk_i'event and pclk_i = '1' then -- clock at parallel port clock
|
424 |
|
|
-- do_transfer_reg -> do_valid_o_reg
|
425 |
|
|
do_valid_A <= do_transfer_reg; -- the input signal must be at least 2 clocks long
|
426 |
|
|
do_valid_B <= do_valid_A; -- feed it to a ripple chain of FFDs
|
427 |
|
|
do_valid_C <= do_valid_B;
|
428 |
|
|
do_valid_D <= do_valid_C;
|
429 |
|
|
do_valid_o_reg <= do_valid_next; -- registered output pulse
|
430 |
|
|
--------------------------------
|
431 |
|
|
-- di_req_reg -> di_req_o_reg
|
432 |
|
|
di_req_o_A <= di_req_reg; -- the input signal must be at least 2 clocks long
|
433 |
|
|
di_req_o_B <= di_req_o_A; -- feed it to a ripple chain of FFDs
|
434 |
|
|
di_req_o_C <= di_req_o_B;
|
435 |
|
|
di_req_o_D <= di_req_o_C;
|
436 |
|
|
di_req_o_reg <= di_req_o_next; -- registered output pulse
|
437 |
|
|
end if;
|
438 |
|
|
-- generate a 2-clocks pulse at the 3rd clock cycle
|
439 |
|
|
do_valid_next <= do_valid_A and do_valid_B and not do_valid_D;
|
440 |
|
|
di_req_o_next <= di_req_o_A and di_req_o_B and not di_req_o_D;
|
441 |
|
|
end process out_transfer_proc;
|
442 |
|
|
-- parallel load input registers: data register and write enable
|
443 |
|
|
in_transfer_proc: process ( pclk_i, wren_i, wren_ack_reg ) is
|
444 |
|
|
begin
|
445 |
|
|
-- registered data input, input register with clock enable
|
446 |
|
|
if pclk_i'event and pclk_i = '1' then
|
447 |
|
|
if wren_i = '1' then
|
448 |
|
|
di_reg <= di_i; -- parallel data input buffer register
|
449 |
|
|
end if;
|
450 |
|
|
end if;
|
451 |
|
|
-- stretch wren pulse to be detected by spi fsm (ffd with sync preset and sync reset)
|
452 |
|
|
if pclk_i'event and pclk_i = '1' then
|
453 |
|
|
if wren_i = '1' then -- wren_i is the sync preset for wren
|
454 |
|
|
wren <= '1';
|
455 |
|
|
elsif wren_ack_reg = '1' then -- wren_ack is the sync reset for wren
|
456 |
|
|
wren <= '0';
|
457 |
|
|
end if;
|
458 |
|
|
end if;
|
459 |
|
|
end process in_transfer_proc;
|
460 |
|
|
|
461 |
|
|
--=============================================================================================
|
462 |
|
|
-- RTL combinatorial LOGIC PROCESSES
|
463 |
|
|
--=============================================================================================
|
464 |
|
|
-- state and datapath combinatorial logic
|
465 |
|
|
core_combi_proc : process ( sh_reg, state_reg, rx_bit_reg, ena_ssel_reg, ena_sck_reg, do_buffer_reg,
|
466 |
|
|
do_transfer_reg, di_reg, wren ) is
|
467 |
|
|
begin
|
468 |
|
|
sh_next <= sh_reg; -- all output signals are assigned to (avoid latches)
|
469 |
|
|
ena_ssel_next <= ena_ssel_reg; -- controls the slave select line
|
470 |
|
|
ena_sck_next <= ena_sck_reg; -- controls the clock enable of spi sck line
|
471 |
|
|
do_buffer_next <= do_buffer_reg; -- output data buffer
|
472 |
|
|
do_transfer_next <= do_transfer_reg; -- output data flag
|
473 |
|
|
wren_ack_next <= '0'; -- remove data load ack for all but the load stages
|
474 |
|
|
di_req_next <= '0'; -- prefetch data request: deassert when shifting data
|
475 |
|
|
spi_mosi_o <= sh_reg(N-1); -- shift out tx bit from the MSb
|
476 |
|
|
state_next <= state_reg - 1; -- update next state at each sck pulse
|
477 |
|
|
case state_reg is
|
478 |
|
|
when (N+1) => -- this state is to enable SSEL before SCK
|
479 |
|
|
ena_ssel_next <= '1'; -- tx in progress: will assert SSEL
|
480 |
|
|
ena_sck_next <= '1'; -- enable SCK on next cycle (stays off on first SSEL clock cycle)
|
481 |
|
|
when (N) => -- deassert 'di_rdy'
|
482 |
|
|
sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0); -- shift inner bits
|
483 |
|
|
sh_next(0) <= rx_bit_reg; -- shift in rx bit into LSb
|
484 |
|
|
when (N-1) downto (PREFETCH+3) => -- if rx data is valid, raise 'do_valid'. remove 'do_transfer'
|
485 |
|
|
do_transfer_next <= '0'; -- reset transfer signal
|
486 |
|
|
sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0); -- shift inner bits
|
487 |
|
|
sh_next(0) <= rx_bit_reg; -- shift in rx bit into LSb
|
488 |
|
|
when (PREFETCH+2) downto 2 => -- raise prefetch 'di_req_o_next' signal and remove 'do_valid'
|
489 |
|
|
di_req_next <= '1'; -- request data in advance to allow for pipeline delays
|
490 |
|
|
sh_next(N-1 downto 1) <= sh_reg(N-2 downto 0); -- shift inner bits
|
491 |
|
|
sh_next(0) <= rx_bit_reg; -- shift in rx bit into LSb
|
492 |
|
|
when 1 => -- transfer rx data to do_buffer and restart if wren
|
493 |
|
|
di_req_next <= '1'; -- request data in advance to allow for pipeline delays
|
494 |
|
|
do_buffer_next(N-1 downto 1) <= sh_reg(N-2 downto 0); -- shift rx data directly into rx buffer
|
495 |
|
|
do_buffer_next(0) <= rx_bit_reg; -- shift last rx bit into rx buffer
|
496 |
|
|
do_transfer_next <= '1'; -- signal transfer to do_buffer
|
497 |
|
|
if wren = '1' then -- load tx register if valid data present at di_i
|
498 |
|
|
state_next <= N; -- next state is top bit of new data
|
499 |
|
|
sh_next <= di_reg; -- load parallel data from di_reg into shifter
|
500 |
|
|
ena_sck_next <= '1'; -- SCK enabled
|
501 |
|
|
wren_ack_next <= '1'; -- acknowledge data in transfer
|
502 |
|
|
else
|
503 |
|
|
ena_sck_next <= '0'; -- SCK disabled: tx empty, no data to send
|
504 |
|
|
end if;
|
505 |
|
|
when 0 =>
|
506 |
|
|
di_req_next <= '1'; -- will request data if shifter empty
|
507 |
|
|
ena_sck_next <= '0'; -- SCK disabled: tx empty, no data to send
|
508 |
|
|
if wren = '1' then -- load tx register if valid data present at di_i
|
509 |
|
|
ena_ssel_next <= '1'; -- enable interface SSEL
|
510 |
|
|
state_next <= N+1; -- start from idle: let one cycle for SSEL settling
|
511 |
|
|
spi_mosi_o <= di_reg(N-1); -- special case: shift out first tx bit from the MSb (look ahead)
|
512 |
|
|
sh_next <= di_reg; -- load bits from di_reg into shifter
|
513 |
|
|
wren_ack_next <= '1'; -- acknowledge data in transfer
|
514 |
|
|
else
|
515 |
|
|
ena_ssel_next <= '0'; -- deassert SSEL: interface is idle
|
516 |
|
|
state_next <= 0; -- when idle, keep this state
|
517 |
|
|
end if;
|
518 |
|
|
when others =>
|
519 |
|
|
state_next <= 0; -- state 0 is safe state
|
520 |
|
|
end case;
|
521 |
|
|
end process core_combi_proc;
|
522 |
|
|
|
523 |
|
|
--=============================================================================================
|
524 |
|
|
-- OUTPUT LOGIC PROCESSES
|
525 |
|
|
--=============================================================================================
|
526 |
|
|
-- data output processes
|
527 |
|
|
spi_ssel_o_proc: spi_ssel_o <= not ena_ssel_reg; -- drive active-low slave select line
|
528 |
|
|
do_o_proc : do_o <= do_buffer_reg; -- do_o always available
|
529 |
|
|
do_valid_o_proc: do_valid_o <= do_valid_o_reg; -- copy registered do_valid_o to output
|
530 |
|
|
di_req_o_proc: di_req_o <= di_req_o_reg; -- copy registered di_req_o to output
|
531 |
|
|
-----------------------------------------------------------------------------------------------
|
532 |
|
|
-- SCK out logic: pipeline phase compensation for the SCK line
|
533 |
|
|
-----------------------------------------------------------------------------------------------
|
534 |
|
|
-- This is a MUX with an output register. The register gives us a pipeline delay for the SCK line,
|
535 |
|
|
-- enabling higher SCK frequency. The MOSI and SCK phase are compensated by the pipeline delay.
|
536 |
|
|
spi_sck_o_gen_proc : process (sclk_i, ena_sck_reg, spi_clk, spi_clk_reg) is
|
537 |
|
|
begin
|
538 |
|
|
if sclk_i'event and sclk_i = '1' then
|
539 |
|
|
if ena_sck_reg = '1' then
|
540 |
|
|
spi_clk_reg <= spi_clk; -- copy the selected clock polarity
|
541 |
|
|
else
|
542 |
|
|
spi_clk_reg <= CPOL; -- when clock disabled, set to idle polarity
|
543 |
|
|
end if;
|
544 |
|
|
end if;
|
545 |
|
|
spi_sck_o <= spi_clk_reg; -- connect register to output
|
546 |
|
|
end process spi_sck_o_gen_proc;
|
547 |
|
|
|
548 |
|
|
--=============================================================================================
|
549 |
|
|
-- DEBUG LOGIC PROCESSES
|
550 |
|
|
--=============================================================================================
|
551 |
|
|
-- these signals are useful for verification, and can be deleted or commented-out after debug.
|
552 |
|
|
do_transfer_proc: do_transfer_o <= do_transfer_reg;
|
553 |
|
|
state_dbg_proc: state_dbg_o <= std_logic_vector(to_unsigned(state_reg, 6)); -- export internal state to debug
|
554 |
|
|
rx_bit_reg_proc: rx_bit_reg_o <= rx_bit_reg;
|
555 |
|
|
wren_o_proc: wren_o <= wren;
|
556 |
|
|
wren_ack_o_proc: wren_ack_o <= wren_ack_reg;
|
557 |
|
|
sh_reg_dbg_proc: sh_reg_dbg_o <= sh_reg; -- export sh_reg to debug
|
558 |
|
|
core_clk_o_proc: core_clk_o <= core_clk;
|
559 |
|
|
core_n_clk_o_proc: core_n_clk_o <= core_n_clk;
|
560 |
|
|
core_ce_o_proc: core_ce_o <= core_ce;
|
561 |
|
|
core_n_ce_o_proc: core_n_ce_o <= core_n_ce;
|
562 |
|
|
|
563 |
|
|
end architecture rtl;
|
564 |
|
|
|