 URL https://opencores.org/ocsvn/zipcpu/zipcpu/trunk

Subversion Repositorieszipcpu

[/] [zipcpu/] [trunk/] [rtl/] [core/] [div.v] - Blame information for rev 205

Line No. Rev Author Line
1 201 dgisselq
////////////////////////////////////////////////////////////////////////////////
2 69 dgisselq
//
3
// Filename:    div.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7 201 dgisselq
// Purpose:     Provide an Integer divide capability to the Zip CPU.  Provides
8
//              for both signed and unsigned divide.
9 69 dgisselq
//
10 201 dgisselq
// Steps:
11
//      i_rst   The DIVide unit starts in idle.  It can also be placed into an
12
//      idle by asserting the reset input.
13 69 dgisselq
//
14 201 dgisselq
//      i_wr    When i_rst is asserted, a divide begins.  On the next clock:
15
//
16
//        o_busy is set high so everyone else knows we are at work and they can
17
//              wait for us to complete.
18
//
19
//        pre_sign is set to true if we need to do a signed divide.  In this
20
//              case, we take a clock cycle to turn the divide into an unsigned
21
//              divide.
22
//
23
//        o_quotient, a place to store our result, is initialized to all zeros.
24
//
25
//        r_dividend is set to the numerator
26
//
27
//        r_divisor is set to 2^31 * the denominator (shift left by 31, or add
28
//              31 zeros to the right of the number.
29
//
30
//      pre_sign When true (clock cycle after i_wr), a clock cycle is used
31
//              to take the absolute value of the various arguments (r_dividend
32
//              and r_divisor), and to calculate what sign the output result
33
//              should be.
34
//
35
//
36
//      At this point, the divide is has started.  The divide works by walking
37 205 dgisselq
//      through every shift of the
38 201 dgisselq
//
39
//                  DIVIDEND    over the
40
//              DIVISOR
41
//
42
//      If the DIVISOR is bigger than the dividend, the divisor is shifted
43
//      right, and nothing is done to the output quotient.
44
//
45
//                  DIVIDEND
46
//               DIVISOR
47
//
48
//      This repeats, until DIVISOR is less than or equal to the divident, as in
49
//
50
//              DIVIDEND
51
//              DIVISOR
52
//
53 205 dgisselq
//      At this point, if the DIVISOR is less than the dividend, the
54 201 dgisselq
//      divisor is subtracted from the dividend, and the DIVISOR is again
55
//      shifted to the right.  Further, a '1' bit gets set in the output
56
//      quotient.
57
//
58
//      Once we've done this for 32 clocks, we've accumulated our answer into
59
//      the output quotient, and we can proceed to the next step.  If the
60
//      result will be signed, the next step negates the quotient, otherwise
61
//      it returns the result.
62
//
63
//      On the clock when we are done, o_busy is set to false, and o_valid set
64
//      to true.  (It is a violation of the ZipCPU internal protocol for both
65 205 dgisselq
//      busy and valid to ever be true on the same clock.  It is also a
66 201 dgisselq
//      violation for busy to be false with valid true thereafter.)
67
//
68
//
69 69 dgisselq
// Creator:     Dan Gisselquist, Ph.D.
70
//              Gisselquist Technology, LLC
71
//
72 201 dgisselq
////////////////////////////////////////////////////////////////////////////////
73 69 dgisselq
//
74 201 dgisselq
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
75 69 dgisselq
//
76
// This program is free software (firmware): you can redistribute it and/or
77
// modify it under the terms of  the GNU General Public License as published
78
// by the Free Software Foundation, either version 3 of the License, or (at
79
// your option) any later version.
80
//
81
// This program is distributed in the hope that it will be useful, but WITHOUT
82
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
83
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
84
// for more details.
85
//
86 201 dgisselq
// You should have received a copy of the GNU General Public License along
87
// with this program.  (It's in the \$(ROOT)/doc directory.  Run make with no
88
// target there if the PDF file isn't present.)  If not, see
89
90
//
91 69 dgisselq
// License:     GPL, v3, as defined and found on www.gnu.org,
92
93
//
94
//
95 201 dgisselq
////////////////////////////////////////////////////////////////////////////////
96 69 dgisselq
//
97 201 dgisselq
//
98 69 dgisselq
// `include "cpudefs.v"
99
//
100
module  div(i_clk, i_rst, i_wr, i_signed, i_numerator, i_denominator,
101
o_busy, o_valid, o_err, o_quotient, o_flags);
102 196 dgisselq
parameter               BW=32, LGBW = 5;
103
input                   i_clk, i_rst;
104 69 dgisselq
// Input parameters
105
input                   i_wr, i_signed;
106
input   [(BW-1):0]       i_numerator, i_denominator;
107
// Output parameters
108
output  reg             o_busy, o_valid, o_err;
109
output  reg [(BW-1):0]   o_quotient;
110
output  wire    [3:0]    o_flags;
111

112 160 dgisselq
// r_busy is an internal busy register.  It will clear one clock
113
// before we are valid, so it can't be o_busy ...
114
//
115
reg                     r_busy;
116 69 dgisselq
reg     [(2*BW-2):0]     r_divisor;
117
reg     [(BW-1):0]       r_dividend;
118
wire    [(BW):0] diff; // , xdiff[(BW-1):0];
119
assign  diff = r_dividend - r_divisor[(BW-1):0];
120
// assign       xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
121

122 160 dgisselq
reg             r_sign, pre_sign, r_z, r_c, last_bit;
123
reg     [(LGBW-1):0]     r_bit;
124 174 dgisselq
reg     zero_divisor;
125

126 205 dgisselq
// The Divide logic begins with r_busy.  We use r_busy to determine
127
// whether or not the divide is in progress, vs being complete.
128
// Here, we clear r_busy on any reset and set it on i_wr (the request
129
// do to a divide).  The divide ends when we are on the last bit,
130
// or equivalently when we discover we are dividing by zero.
131 160 dgisselq
initial r_busy = 1'b0;
132 69 dgisselq
always @(posedge i_clk)
133
if (i_rst)
134 160 dgisselq
r_busy <= 1'b0;
135
else if (i_wr)
136
r_busy <= 1'b1;
137 174 dgisselq
else if ((last_bit)||(zero_divisor))
138 160 dgisselq
r_busy <= 1'b0;
139

140 205 dgisselq
// o_busy is very similar to r_busy, save for some key differences.
141
// Primary among them is that o_busy needs to (possibly) be true
142
// for an extra clock after r_busy clears.  This would be that extra
143
// clock where we negate the result (assuming a signed divide, and that
144
// the result is supposed to be negative.)  Otherwise, the two are
145
// identical.
146 160 dgisselq
initial o_busy = 1'b0;
147
always @(posedge i_clk)
148
if (i_rst)
149 69 dgisselq
o_busy <= 1'b0;
150 160 dgisselq
else if (i_wr)
151 69 dgisselq
o_busy <= 1'b1;
152 174 dgisselq
else if (((last_bit)&&(~r_sign))||(zero_divisor))
153 88 dgisselq
o_busy <= 1'b0;
154 160 dgisselq
else if (~r_busy)
155
o_busy <= 1'b0;
156 88 dgisselq

157 205 dgisselq
// If we are asked to divide by zero, we need to halt.  The sooner
158
// we halt and report the error, the better.  Hence, here we look
159
// for a zero divisor while being busy.  The always above us will then
160
// look at this and halt a divide in the middle if we are trying to
161
// divide by zero.
162
//
163
// Note that this works off of the 2BW-1 length vector.  If we can
164
// simplify that, it should simplify our logic as well.
165
initial zero_divisor = 1'b0;
166 88 dgisselq
always @(posedge i_clk)
167 205 dgisselq
// zero_divisor <= (r_divisor == 0)&&(r_busy);
168
if (i_rst)
169
zero_divisor <= 1'b0;
170
else if (i_wr)
171
zero_divisor <= (i_denominator == 0);
172
else if (!r_busy)
173
zero_divisor <= 1'b0;
174

175
// o_valid is part of the ZipCPU protocol.  It will be set to true
176
// anytime our answer is valid and may be used by the calling module.
177
// Indeed, the ZipCPU will halt (and ignore us) once the i_wr has been
178
// set until o_valid gets set.
179
//
180
// Here, we clear o_valid on a reset, and any time we are on the last
181
// bit while busy (provided the sign is zero, or we are dividing by
182
// zero).  Since o_valid is self-clearing, we don't need to clear
183
// it on an i_wr signal.
184
initial o_valid = 1'b0;
185
always @(posedge i_clk)
186
if (i_rst)
187 69 dgisselq
o_valid <= 1'b0;
188 160 dgisselq
else if (r_busy)
189 69 dgisselq
begin
190 174 dgisselq
if ((last_bit)||(zero_divisor))
191 205 dgisselq
o_valid <= (zero_divisor)||(!r_sign);
192 69 dgisselq
end else if (r_sign)
193
begin
194 205 dgisselq
o_valid <= (!zero_divisor); // 1'b1;
195 88 dgisselq
end else
196 69 dgisselq
o_valid <= 1'b0;
197

198 205 dgisselq
// Division by zero error reporting.  Anytime we detect a zero divisor,
199
// we set our output error, and then hold it until we are valid and
200
// everything clears.
201 174 dgisselq
initial o_err = 1'b0;
202 69 dgisselq
always @(posedge i_clk)
203
if((i_rst)||(o_valid))
204
o_err <= 1'b0;
205 174 dgisselq
else if (((r_busy)||(r_sign))&&(zero_divisor))
206
o_err <= 1'b1;
207
else
208
o_err <= 1'b0;
209 69 dgisselq

210 205 dgisselq
// r_bit
211
//
212
// Keep track of which "bit" of our divide we are on.  This number
213
// ranges from 31 down to zero.  On any write, we set ourselves to
214
// 5'h1f.  Otherwise, while we are busy (but not within the pre-sign
215
// adjustment stage), we subtract one from our value on every clock.
216
always @(posedge i_clk)
217
if ((r_busy)&&(!pre_sign))
218
r_bit <= r_bit + {(LGBW){1'b1}};
219
else
220
r_bit <= {(LGBW){1'b1}};
221

222
// last_bit
223
//
224
// This logic replaces a lot of logic that was inside our giant state
225
// machine with ... something simpler.  In particular, we'll use this
226
// logic to determine we are processing our last bit.  The only trick
227
// is, this bit needs to be set whenever (r_busy) and (r_bit == 0),
228
// hence we need to set on (r_busy) and (r_bit == 1) so as to be set
229
// when (r_bit == 0).
230 160 dgisselq
initial last_bit = 1'b0;
231 69 dgisselq
always @(posedge i_clk)
232 205 dgisselq
if (r_busy)
233
last_bit <= (r_bit == {{(LGBW-1){1'b0}},1'b1});
234
else
235 160 dgisselq
last_bit <= 1'b0;
236

237 205 dgisselq
// pre_sign
238
//
239
// This is part of the state machine.  pre_sign indicates that we need
240
// a extra clock to take the absolute value of our inputs.  It need only
241
// be true for the one clock, and then it must clear itself.
242
initial pre_sign = 1'b0;
243 160 dgisselq
always @(posedge i_clk)
244 69 dgisselq
if (i_wr)
245
pre_sign <= i_signed;
246 205 dgisselq
else
247
pre_sign <= 1'b0;
248

249
// As a result of our operation, we need to set the flags.  The most
250
// difficult of these is the "Z" flag indicating that the result is
251
// zero.  Here, we'll use the same logic that sets the low-order
252
// bit to clear our zero flag, and leave the zero flag set in all
253
// other cases.  Well ... not quite.  If we need to flip the sign of
254
// our value, then we can't quite clear the zero flag ... yet.
255
always @(posedge i_clk)
256
if((r_busy)&&(r_divisor[(2*BW-2):(BW)] == 0)&&(!diff[BW]))
257
// If we are busy, the upper bits of our divisor are
258
// zero (i.e., we got the shift right), and the top
259
// (carry) bit of the difference is zero (no overflow),
260
// then we could subtract our divisor from our dividend
261
// and hence we add a '1' to the quotient, while setting
262
// the zero flag to false.
263
r_z <= 1'b0;
264
else if ((!r_busy)&&(!r_sign))
265 69 dgisselq
r_z <= 1'b1;
266 205 dgisselq

267
// r_dividend
268
// This is initially the numerator.  On a signed divide, it then becomes
269
// the absolute value of the numerator.  We'll subtract from this value
270
// the divisor shifted as appropriate for every output bit we are
271
// looking for--just as with traditional long division.
272
always @(posedge i_clk)
273
if (pre_sign)
274 69 dgisselq
begin
275 205 dgisselq
// If we are doing a signed divide, then take the
276
// absolute value of the dividend
277 69 dgisselq
if (r_dividend[BW-1])
278
r_dividend <= -r_dividend;
279 205 dgisselq
// The begin/end block is important so we don't lose
280
// the fact that on an else we don't do anything.
281
end else if((r_busy)&&(r_divisor[(2*BW-2):(BW)]==0)&&(!diff[BW]))
282
// This is the condition whereby we set a '1' in our
283
// output quotient, and we subtract the (current)
284
// divisor from our dividend.  (The difference is
285
// already kept in the diff vector above.)
286
r_dividend <= diff[(BW-1):0];
287
else if (!r_busy)
288
// Once we are done, and r_busy is no longer high, we'll
289
// always accept new values into our dividend.  This
290
// guarantees that, when i_wr is set, the new value
291
// is already set as desired.
292
r_dividend <=  i_numerator;
293

294
initial r_divisor = 0;
295
always @(posedge i_clk)
296
if (pre_sign)
297
begin
298 69 dgisselq
if (r_divisor[(2*BW-2)])
299 205 dgisselq
r_divisor[(2*BW-2):(BW-1)]
300
<= -r_divisor[(2*BW-2):(BW-1)];
301 160 dgisselq
end else if (r_busy)
302 205 dgisselq
r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
303
else
304
r_divisor <= {  i_denominator, {(BW-1){1'b0}} };
305

306
// r_sign
307
// is a flag for our state machine control(s).  r_sign will be set to
308
// true any time we are doing a signed divide and the result must be
309
// negative.  In that case, we take a final logic stage at the end of
310
// the divide to negate the output.  This flag is what tells us we need
311
// to do that.  r_busy will be true during the divide, then when r_busy
312
// goes low, r_sign will be checked, then the idle/reset stage will have
313
// been reached.  For this reason, we cannot set r_sign unless we are
314
// up to something.
315
initial r_sign = 1'b0;
316
always @(posedge i_clk)
317
if (pre_sign)
318
r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));
319
else if (r_busy)
320
r_sign <= (r_sign)&&(!zero_divisor);
321
else
322
r_sign <= 1'b0;
323

324
always @(posedge i_clk)
325
if (r_busy)
326 69 dgisselq
begin
327 205 dgisselq
o_quotient <= { o_quotient[(BW-2):0], 1'b0 };
328
if ((r_divisor[(2*BW-2):(BW)] == 0)&&(!diff[BW]))
329 69 dgisselq
begin
330 205 dgisselq
o_quotient <= 1'b1;
331 69 dgisselq
end
332
end else if (r_sign)
333
o_quotient <= -o_quotient;
334 205 dgisselq
else
335
o_quotient <= 0;
336 69 dgisselq

337
// Set Carry on an exact divide
338 205 dgisselq
// Perhaps nothing uses this, but ... well, I suppose we could remove
339
// this logic eventually, just ... not yet.
340 69 dgisselq
always @(posedge i_clk)
341 160 dgisselq
r_c <= (r_busy)&&((diff == 0)||(r_dividend == 0));
342 205 dgisselq

343
// The last flag: Negative.  This flag is set assuming that the result
344
// of the divide was negative (i.e., the high order bit is set).  This
345
// will also be true of an unsigned divide--if the high order bit is
346
// ever set upon completion.  Indeed, you might argue that there's no
347
// logic involved.
348
wire    w_n;
349 69 dgisselq
assign w_n = o_quotient[(BW-1)];
350

351
assign o_flags = { 1'b0, w_n, r_c, r_z };
352
endmodule