OpenCores
URL https://opencores.org/ocsvn/ethmac/ethmac/trunk

Subversion Repositories ethmac

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /
    from Rev 264 to Rev 265
    Reverse comparison

Rev 264 → Rev 265

/tags/rel_13/rtl/verilog/eth_wishbone.v
0,0 → 1,2514
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_wishbone.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.46 2002/11/22 01:57:06 mohor
// Rx Flow control fixed. CF flag added to the RX buffer descriptor. RxAbort
// synchronized.
//
// Revision 1.45 2002/11/19 17:33:34 mohor
// AddressMiss status is connecting to the Rx BD. AddressMiss is identifying
// that a frame was received because of the promiscous mode.
//
// Revision 1.44 2002/11/13 22:21:40 tadejm
// RxError is not generated when small frame reception is enabled and small
// frames are received.
//
// Revision 1.43 2002/10/18 20:53:34 mohor
// case changed to casex.
//
// Revision 1.42 2002/10/18 17:04:20 tadejm
// Changed BIST scan signals.
//
// Revision 1.41 2002/10/18 15:42:09 tadejm
// Igor added WB burst support and repaired BUG when handling TX under-run and retry.
//
// Revision 1.40 2002/10/14 16:07:02 mohor
// TxStatus is written after last access to the TX fifo is finished (in case of abort
// or retry). TxDone is fixed.
//
// Revision 1.39 2002/10/11 15:35:20 mohor
// txfifo_cnt and rxfifo_cnt counters width is defined in the eth_define.v file,
// TxDone and TxRetry are generated after the current WISHBONE access is
// finished.
//
// Revision 1.38 2002/10/10 16:29:30 mohor
// BIST added.
//
// Revision 1.37 2002/09/11 14:18:46 mohor
// Sometimes both RxB_IRQ and RxE_IRQ were activated. Bug fixed.
//
// Revision 1.36 2002/09/10 13:48:46 mohor
// Reception is possible after RxPointer is read and not after BD is read. For
// that reason RxBDReady is changed to RxReady.
// Busy_IRQ interrupt connected. When there is no RxBD ready and frame
// comes, interrupt is generated.
//
// Revision 1.35 2002/09/10 10:35:23 mohor
// Ethernet debug registers removed.
//
// Revision 1.34 2002/09/08 16:31:49 mohor
// Async reset for WB_ACK_O removed (when core was in reset, it was
// impossible to access BDs).
// RxPointers and TxPointers names changed to be more descriptive.
// TxUnderRun synchronized.
//
// Revision 1.33 2002/09/04 18:47:57 mohor
// Debug registers reg1, 2, 3, 4 connected. Synchronization of many signals
// changed (bugs fixed). Access to un-alligned buffers fixed. RxAbort signal
// was not used OK.
//
// Revision 1.32 2002/08/14 19:31:48 mohor
// Register TX_BD_NUM is changed so it contains value of the Tx buffer descriptors. No
// need to multiply or devide any more.
//
// Revision 1.31 2002/07/25 18:29:01 mohor
// WriteRxDataToMemory signal changed so end of frame (when last word is
// written to fifo) is changed.
//
// Revision 1.30 2002/07/23 15:28:31 mohor
// Ram , used for BDs changed from generic_spram to eth_spram_256x32.
//
// Revision 1.29 2002/07/20 00:41:32 mohor
// ShiftEnded synchronization changed.
//
// Revision 1.28 2002/07/18 16:11:46 mohor
// RxBDAddress takes `ETH_TX_BD_NUM_DEF value after reset.
//
// Revision 1.27 2002/07/11 02:53:20 mohor
// RxPointer bug fixed.
//
// Revision 1.26 2002/07/10 13:12:38 mohor
// Previous bug wasn't succesfully removed. Now fixed.
//
// Revision 1.25 2002/07/09 23:53:24 mohor
// Master state machine had a bug when switching from master write to
// master read.
//
// Revision 1.24 2002/07/09 20:44:41 mohor
// m_wb_cyc_o signal released after every single transfer.
//
// Revision 1.23 2002/05/03 10:15:50 mohor
// Outputs registered. Reset changed for eth_wishbone module.
//
// Revision 1.22 2002/04/24 08:52:19 mohor
// Compiler directives added. Tx and Rx fifo size incremented. A "late collision"
// bug fixed.
//
// Revision 1.21 2002/03/29 16:18:11 lampret
// Small typo fixed.
//
// Revision 1.20 2002/03/25 16:19:12 mohor
// Any address can be used for Tx and Rx BD pointers. Address does not need
// to be aligned.
//
// Revision 1.19 2002/03/19 12:51:50 mohor
// Comments in Slovene language removed.
//
// Revision 1.18 2002/03/19 12:46:52 mohor
// casex changed with case, fifo reset changed.
//
// Revision 1.17 2002/03/09 16:08:45 mohor
// rx_fifo was not always cleared ok. Fixed.
//
// Revision 1.16 2002/03/09 13:51:20 mohor
// Status was not latched correctly sometimes. Fixed.
//
// Revision 1.15 2002/03/08 06:56:46 mohor
// Big Endian problem when sending frames fixed.
//
// Revision 1.14 2002/03/02 19:12:40 mohor
// Byte ordering changed (Big Endian used). casex changed with case because
// Xilinx Foundation had problems. Tested in HW. It WORKS.
//
// Revision 1.13 2002/02/26 16:59:55 mohor
// Small fixes for external/internal DMA missmatches.
//
// Revision 1.12 2002/02/26 16:22:07 mohor
// Interrupts changed
//
// Revision 1.11 2002/02/15 17:07:39 mohor
// Status was not written correctly when frames were discarted because of
// address mismatch.
//
// Revision 1.10 2002/02/15 12:17:39 mohor
// RxStartFrm cleared when abort or retry comes.
//
// Revision 1.9 2002/02/15 11:59:10 mohor
// Changes that were lost when updating from 1.5 to 1.8 fixed.
//
// Revision 1.8 2002/02/14 20:54:33 billditt
// Addition of new module eth_addrcheck.v
//
// Revision 1.7 2002/02/12 17:03:47 mohor
// RxOverRun added to statuses.
//
// Revision 1.6 2002/02/11 09:18:22 mohor
// Tx status is written back to the BD.
//
// Revision 1.5 2002/02/08 16:21:54 mohor
// Rx status is written back to the BD.
//
// Revision 1.4 2002/02/06 14:10:21 mohor
// non-DMA host interface added. Select the right configutation in eth_defines.
//
// Revision 1.3 2002/02/05 16:44:39 mohor
// Both rx and tx part are finished. Tested with wb_clk_i between 10 and 200
// MHz. Statuses, overrun, control frame transmission and reception still need
// to be fixed.
//
// Revision 1.2 2002/02/01 12:46:51 mohor
// Tx part finished. TxStatus needs to be fixed. Pause request needs to be
// added.
//
// Revision 1.1 2002/01/23 10:47:59 mohor
// Initial version. Equals to eth_wishbonedma.v at this moment.
//
//
//
 
`include "eth_defines.v"
`include "timescale.v"
 
 
module eth_wishbone
(
 
// WISHBONE common
WB_CLK_I, WB_DAT_I, WB_DAT_O,
 
// WISHBONE slave
WB_ADR_I, WB_WE_I, WB_ACK_O,
BDCs,
 
Reset,
 
// WISHBONE master
m_wb_adr_o, m_wb_sel_o, m_wb_we_o,
m_wb_dat_o, m_wb_dat_i, m_wb_cyc_o,
m_wb_stb_o, m_wb_ack_i, m_wb_err_i,
 
`ifdef ETH_WISHBONE_B3
m_wb_cti_o, m_wb_bte_o,
`endif
 
//TX
MTxClk, TxStartFrm, TxEndFrm, TxUsedData, TxData,
TxRetry, TxAbort, TxUnderRun, TxDone, PerPacketCrcEn,
PerPacketPad,
 
//RX
MRxClk, RxData, RxValid, RxStartFrm, RxEndFrm, RxAbort,
// Register
r_TxEn, r_RxEn, r_TxBDNum, TX_BD_NUM_Wr, r_RxFlow,
 
// Interrupts
TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ,
// Rx Status
InvalidSymbol, LatchedCrcError, RxLateCollision, ShortFrame, DribbleNibble,
ReceivedPacketTooBig, RxLength, LoadRxStatus, ReceivedPacketGood, AddressMiss,
ReceivedPauseFrm,
// Tx Status
RetryCntLatched, RetryLimit, LateCollLatched, DeferLatched, CarrierSenseLost
 
// Bist
`ifdef ETH_BIST
,
// debug chain signals
scanb_rst, // bist scan reset
scanb_clk, // bist scan clock
scanb_si, // bist scan serial in
scanb_so, // bist scan serial out
scanb_en // bist scan shift enable
`endif
 
 
);
 
 
parameter Tp = 1;
 
 
// WISHBONE common
input WB_CLK_I; // WISHBONE clock
input [31:0] WB_DAT_I; // WISHBONE data input
output [31:0] WB_DAT_O; // WISHBONE data output
 
// WISHBONE slave
input [9:2] WB_ADR_I; // WISHBONE address input
input WB_WE_I; // WISHBONE write enable input
input BDCs; // Buffer descriptors are selected
output WB_ACK_O; // WISHBONE acknowledge output
 
// WISHBONE master
output [31:0] m_wb_adr_o; //
output [3:0] m_wb_sel_o; //
output m_wb_we_o; //
output [31:0] m_wb_dat_o; //
output m_wb_cyc_o; //
output m_wb_stb_o; //
input [31:0] m_wb_dat_i; //
input m_wb_ack_i; //
input m_wb_err_i; //
 
`ifdef ETH_WISHBONE_B3
output [2:0] m_wb_cti_o; // Cycle Type Identifier
output [1:0] m_wb_bte_o; // Burst Type Extension
reg [2:0] m_wb_cti_o; // Cycle Type Identifier
`endif
 
input Reset; // Reset signal
 
// Rx Status signals
input InvalidSymbol; // Invalid symbol was received during reception in 100 Mbps mode
input LatchedCrcError; // CRC error
input RxLateCollision; // Late collision occured while receiving frame
input ShortFrame; // Frame shorter then the minimum size (r_MinFL) was received while small packets are enabled (r_RecSmall)
input DribbleNibble; // Extra nibble received
input ReceivedPacketTooBig;// Received packet is bigger than r_MaxFL
input [15:0] RxLength; // Length of the incoming frame
input LoadRxStatus; // Rx status was loaded
input ReceivedPacketGood;// Received packet's length and CRC are good
input AddressMiss; // When a packet is received AddressMiss status is written to the Rx BD
input r_RxFlow;
input ReceivedPauseFrm;
 
// Tx Status signals
input [3:0] RetryCntLatched; // Latched Retry Counter
input RetryLimit; // Retry limit reached (Retry Max value + 1 attempts were made)
input LateCollLatched; // Late collision occured
input DeferLatched; // Defer indication (Frame was defered before sucessfully sent)
input CarrierSenseLost; // Carrier Sense was lost during the frame transmission
 
// Tx
input MTxClk; // Transmit clock (from PHY)
input TxUsedData; // Transmit packet used data
input TxRetry; // Transmit packet retry
input TxAbort; // Transmit packet abort
input TxDone; // Transmission ended
output TxStartFrm; // Transmit packet start frame
output TxEndFrm; // Transmit packet end frame
output [7:0] TxData; // Transmit packet data byte
output TxUnderRun; // Transmit packet under-run
output PerPacketCrcEn; // Per packet crc enable
output PerPacketPad; // Per packet pading
 
// Rx
input MRxClk; // Receive clock (from PHY)
input [7:0] RxData; // Received data byte (from PHY)
input RxValid; //
input RxStartFrm; //
input RxEndFrm; //
input RxAbort; // This signal is set when address doesn't match.
 
//Register
input r_TxEn; // Transmit enable
input r_RxEn; // Receive enable
input [7:0] r_TxBDNum; // Receive buffer descriptor number
input TX_BD_NUM_Wr; // RxBDNumber written
 
// Interrupts
output TxB_IRQ;
output TxE_IRQ;
output RxB_IRQ;
output RxE_IRQ;
output Busy_IRQ;
 
 
// Bist
`ifdef ETH_BIST
input scanb_rst; // bist scan reset
input scanb_clk; // bist scan clock
input scanb_si; // bist scan serial in
output scanb_so; // bist scan serial out
input scanb_en; // bist scan shift enable
`endif
 
reg TxB_IRQ;
reg TxE_IRQ;
reg RxB_IRQ;
reg RxE_IRQ;
 
reg TxStartFrm;
reg TxEndFrm;
reg [7:0] TxData;
 
reg TxUnderRun;
reg TxUnderRun_wb;
 
reg TxBDRead;
wire TxStatusWrite;
 
reg [1:0] TxValidBytesLatched;
 
reg [15:0] TxLength;
reg [15:0] LatchedTxLength;
reg [14:11] TxStatus;
 
reg [14:13] RxStatus;
 
reg TxStartFrm_wb;
reg TxRetry_wb;
reg TxAbort_wb;
reg TxDone_wb;
 
reg TxDone_wb_q;
reg TxAbort_wb_q;
reg TxRetry_wb_q;
reg TxRetryPacket;
reg TxRetryPacket_NotCleared;
reg TxDonePacket;
reg TxDonePacket_NotCleared;
reg TxAbortPacket;
reg TxAbortPacket_NotCleared;
reg RxBDReady;
reg RxReady;
reg TxBDReady;
 
reg RxBDRead;
wire RxStatusWrite;
 
reg [31:0] TxDataLatched;
reg [1:0] TxByteCnt;
reg LastWord;
reg ReadTxDataFromFifo_tck;
 
reg BlockingTxStatusWrite;
reg BlockingTxBDRead;
 
reg Flop;
 
reg [7:0] TxBDAddress;
reg [7:0] RxBDAddress;
 
reg TxRetrySync1;
reg TxAbortSync1;
reg TxDoneSync1;
 
reg TxAbort_q;
reg TxRetry_q;
reg TxUsedData_q;
 
reg [31:0] RxDataLatched2;
 
reg [31:8] RxDataLatched1; // Big Endian Byte Ordering
 
reg [1:0] RxValidBytes;
reg [1:0] RxByteCnt;
reg LastByteIn;
reg ShiftWillEnd;
 
reg WriteRxDataToFifo;
reg [15:0] LatchedRxLength;
reg RxAbortLatched;
 
reg ShiftEnded;
reg RxOverrun;
 
reg BDWrite; // BD Write Enable for access from WISHBONE side
reg BDRead; // BD Read access from WISHBONE side
wire [31:0] RxBDDataIn; // Rx BD data in
wire [31:0] TxBDDataIn; // Tx BD data in
 
reg TxEndFrm_wb;
 
wire TxRetryPulse;
wire TxDonePulse;
wire TxAbortPulse;
 
wire StartRxBDRead;
 
wire StartTxBDRead;
 
wire TxIRQEn;
wire WrapTxStatusBit;
 
wire RxIRQEn;
wire WrapRxStatusBit;
 
wire [1:0] TxValidBytes;
 
wire [7:0] TempTxBDAddress;
wire [7:0] TempRxBDAddress;
 
wire SetGotData;
wire GotDataEvaluate;
 
reg WB_ACK_O;
 
wire [8:0] RxStatusIn;
reg [8:0] RxStatusInLatched;
 
reg WbEn, WbEn_q;
reg RxEn, RxEn_q;
reg TxEn, TxEn_q;
 
wire ram_ce;
wire ram_we;
wire ram_oe;
reg [7:0] ram_addr;
reg [31:0] ram_di;
wire [31:0] ram_do;
 
wire StartTxPointerRead;
reg TxPointerRead;
reg TxEn_needed;
reg RxEn_needed;
 
wire StartRxPointerRead;
reg RxPointerRead;
 
`ifdef ETH_WISHBONE_B3
assign m_wb_bte_o = 2'b00; // Linear burst
`endif
 
 
always @ (posedge WB_CLK_I)
begin
WB_ACK_O <=#Tp BDWrite & WbEn & WbEn_q | BDRead & WbEn & ~WbEn_q;
end
 
assign WB_DAT_O = ram_do;
 
// Generic synchronous single-port RAM interface
eth_spram_256x32 bd_ram (
.clk(WB_CLK_I), .rst(Reset), .ce(ram_ce), .we(ram_we), .oe(ram_oe), .addr(ram_addr), .di(ram_di), .do(ram_do)
`ifdef ETH_BIST
,
.scanb_rst (scanb_rst),
.scanb_clk (scanb_clk),
.scanb_si (scanb_si),
.scanb_so (scanb_so),
.scanb_en (scanb_en)
`endif
);
 
assign ram_ce = 1'b1;
assign ram_we = BDWrite & WbEn & WbEn_q | TxStatusWrite | RxStatusWrite;
assign ram_oe = BDRead & WbEn & WbEn_q | TxEn & TxEn_q & (TxBDRead | TxPointerRead) | RxEn & RxEn_q & (RxBDRead | RxPointerRead);
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxEn_needed <=#Tp 1'b0;
else
if(~TxBDReady & r_TxEn & WbEn & ~WbEn_q)
TxEn_needed <=#Tp 1'b1;
else
if(TxPointerRead & TxEn & TxEn_q)
TxEn_needed <=#Tp 1'b0;
end
 
// Enabling access to the RAM for three devices.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
begin
WbEn <=#Tp 1'b1;
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b0;
ram_addr <=#Tp 8'h0;
ram_di <=#Tp 32'h0;
BDRead <=#Tp 1'b0;
BDWrite <=#Tp 1'b0;
end
else
begin
// Switching between three stages depends on enable signals
case ({WbEn_q, RxEn_q, TxEn_q, RxEn_needed, TxEn_needed}) // synopsys parallel_case
5'b100_10, 5'b100_11 :
begin
WbEn <=#Tp 1'b0;
RxEn <=#Tp 1'b1; // wb access stage and r_RxEn is enabled
TxEn <=#Tp 1'b0;
ram_addr <=#Tp RxBDAddress + RxPointerRead;
ram_di <=#Tp RxBDDataIn;
end
5'b100_01 :
begin
WbEn <=#Tp 1'b0;
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b1; // wb access stage, r_RxEn is disabled but r_TxEn is enabled
ram_addr <=#Tp TxBDAddress + TxPointerRead;
ram_di <=#Tp TxBDDataIn;
end
5'b010_00, 5'b010_10 :
begin
WbEn <=#Tp 1'b1; // RxEn access stage and r_TxEn is disabled
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b0;
ram_addr <=#Tp WB_ADR_I[9:2];
ram_di <=#Tp WB_DAT_I;
BDWrite <=#Tp BDCs & WB_WE_I;
BDRead <=#Tp BDCs & ~WB_WE_I;
end
5'b010_01, 5'b010_11 :
begin
WbEn <=#Tp 1'b0;
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b1; // RxEn access stage and r_TxEn is enabled
ram_addr <=#Tp TxBDAddress + TxPointerRead;
ram_di <=#Tp TxBDDataIn;
end
5'b001_00, 5'b001_01, 5'b001_10, 5'b001_11 :
begin
WbEn <=#Tp 1'b1; // TxEn access stage (we always go to wb access stage)
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b0;
ram_addr <=#Tp WB_ADR_I[9:2];
ram_di <=#Tp WB_DAT_I;
BDWrite <=#Tp BDCs & WB_WE_I;
BDRead <=#Tp BDCs & ~WB_WE_I;
end
5'b100_00 :
begin
WbEn <=#Tp 1'b0; // WbEn access stage and there is no need for other stages. WbEn needs to be switched off for a bit
end
5'b000_00 :
begin
WbEn <=#Tp 1'b1; // Idle state. We go to WbEn access stage.
RxEn <=#Tp 1'b0;
TxEn <=#Tp 1'b0;
ram_addr <=#Tp WB_ADR_I[9:2];
ram_di <=#Tp WB_DAT_I;
BDWrite <=#Tp BDCs & WB_WE_I;
BDRead <=#Tp BDCs & ~WB_WE_I;
end
endcase
end
end
 
 
// Delayed stage signals
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
begin
WbEn_q <=#Tp 1'b0;
RxEn_q <=#Tp 1'b0;
TxEn_q <=#Tp 1'b0;
end
else
begin
WbEn_q <=#Tp WbEn;
RxEn_q <=#Tp RxEn;
TxEn_q <=#Tp TxEn;
end
end
 
// Changes for tx occur every second clock. Flop is used for this manner.
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
Flop <=#Tp 1'b0;
else
if(TxDone | TxAbort | TxRetry_q)
Flop <=#Tp 1'b0;
else
if(TxUsedData)
Flop <=#Tp ~Flop;
end
 
wire ResetTxBDReady;
assign ResetTxBDReady = TxDonePulse | TxAbortPulse | TxRetryPulse;
 
// Latching READY status of the Tx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxBDReady <=#Tp 1'b0;
else
if(TxEn & TxEn_q & TxBDRead)
TxBDReady <=#Tp ram_do[15] & (ram_do[31:16] > 4); // TxBDReady is sampled only once at the beginning.
else // Only packets larger then 4 bytes are transmitted.
if(ResetTxBDReady)
TxBDReady <=#Tp 1'b0;
end
 
 
// Reading the Tx buffer descriptor
assign StartTxBDRead = (TxRetryPacket_NotCleared | TxStatusWrite) & ~BlockingTxBDRead & ~TxBDReady;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxBDRead <=#Tp 1'b1;
else
if(StartTxBDRead)
TxBDRead <=#Tp 1'b1;
else
if(TxBDReady)
TxBDRead <=#Tp 1'b0;
end
 
 
// Reading Tx BD pointer
assign StartTxPointerRead = TxBDRead & TxBDReady;
 
// Reading Tx BD Pointer
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxPointerRead <=#Tp 1'b0;
else
if(StartTxPointerRead)
TxPointerRead <=#Tp 1'b1;
else
if(TxEn_q)
TxPointerRead <=#Tp 1'b0;
end
 
 
// Writing status back to the Tx buffer descriptor
assign TxStatusWrite = (TxDonePacket_NotCleared | TxAbortPacket_NotCleared) & TxEn & TxEn_q & ~BlockingTxStatusWrite;
 
 
 
// Status writing must occur only once. Meanwhile it is blocked.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
BlockingTxStatusWrite <=#Tp 1'b0;
else
if(TxStatusWrite)
BlockingTxStatusWrite <=#Tp 1'b1;
else
if(~TxDone_wb & ~TxAbort_wb)
BlockingTxStatusWrite <=#Tp 1'b0;
end
 
 
reg BlockingTxStatusWrite_sync1;
reg BlockingTxStatusWrite_sync2;
 
// Synchronizing BlockingTxStatusWrite to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
BlockingTxStatusWrite_sync1 <=#Tp 1'b0;
else
BlockingTxStatusWrite_sync1 <=#Tp BlockingTxStatusWrite;
end
 
// Synchronizing BlockingTxStatusWrite to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
BlockingTxStatusWrite_sync2 <=#Tp 1'b0;
else
BlockingTxStatusWrite_sync2 <=#Tp BlockingTxStatusWrite_sync1;
end
 
 
// TxBDRead state is activated only once.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
BlockingTxBDRead <=#Tp 1'b0;
else
if(StartTxBDRead)
BlockingTxBDRead <=#Tp 1'b1;
else
if(~StartTxBDRead & ~TxBDReady)
BlockingTxBDRead <=#Tp 1'b0;
end
 
 
// Latching status from the tx buffer descriptor
// Data is avaliable one cycle after the access is started (at that time signal TxEn is not active)
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxStatus <=#Tp 4'h0;
else
if(TxEn & TxEn_q & TxBDRead)
TxStatus <=#Tp ram_do[14:11];
end
 
reg ReadTxDataFromMemory;
wire WriteRxDataToMemory;
 
reg MasterWbTX;
reg MasterWbRX;
 
reg [31:0] m_wb_adr_o;
reg m_wb_cyc_o;
reg m_wb_stb_o;
reg [3:0] m_wb_sel_o;
reg m_wb_we_o;
 
wire TxLengthEq0;
wire TxLengthLt4;
 
reg BlockingIncrementTxPointer;
reg [31:2] TxPointerMSB;
reg [1:0] TxPointerLSB;
reg [1:0] TxPointerLSB_rst;
reg [31:2] RxPointerMSB;
reg [1:0] RxPointerLSB_rst;
 
wire RxBurstAcc;
wire RxWordAcc;
wire RxHalfAcc;
wire RxByteAcc;
 
//Latching length from the buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxLength <=#Tp 16'h0;
else
if(TxEn & TxEn_q & TxBDRead)
TxLength <=#Tp ram_do[31:16];
else
if(MasterWbTX & m_wb_ack_i)
begin
if(TxLengthLt4)
TxLength <=#Tp 16'h0;
else
if(TxPointerLSB_rst==2'h0)
TxLength <=#Tp TxLength - 3'h4; // Length is subtracted at the data request
else
if(TxPointerLSB_rst==2'h1)
TxLength <=#Tp TxLength - 3'h3; // Length is subtracted at the data request
else
if(TxPointerLSB_rst==2'h2)
TxLength <=#Tp TxLength - 3'h2; // Length is subtracted at the data request
else
if(TxPointerLSB_rst==2'h3)
TxLength <=#Tp TxLength - 3'h1; // Length is subtracted at the data request
end
end
 
 
 
//Latching length from the buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
LatchedTxLength <=#Tp 16'h0;
else
if(TxEn & TxEn_q & TxBDRead)
LatchedTxLength <=#Tp ram_do[31:16];
end
 
assign TxLengthEq0 = TxLength == 0;
assign TxLengthLt4 = TxLength < 4;
 
reg cyc_cleared;
reg IncrTxPointer;
 
 
// Latching Tx buffer pointer from buffer descriptor. Only 30 MSB bits are latched
// because TxPointerMSB is only used for word-aligned accesses.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxPointerMSB <=#Tp 30'h0;
else
if(TxEn & TxEn_q & TxPointerRead)
TxPointerMSB <=#Tp ram_do[31:2];
else
if(IncrTxPointer & ~BlockingIncrementTxPointer)
TxPointerMSB <=#Tp TxPointerMSB + 1'b1; // TxPointer is word-aligned
end
 
 
// Latching 2 MSB bits of the buffer descriptor. Since word accesses are performed,
// valid data does not necesserly start at byte 0 (could be byte 0, 1, 2 or 3). This
// signals are used for proper selection of the start byte (TxData and TxByteCnt) are
// set by this two bits.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxPointerLSB[1:0] <=#Tp 0;
else
if(TxEn & TxEn_q & TxPointerRead)
TxPointerLSB[1:0] <=#Tp ram_do[1:0];
end
 
 
// Latching 2 MSB bits of the buffer descriptor.
// After the read access, TxLength needs to be decremented for the number of the valid
// bytes (1 to 4 bytes are valid in the first word). After the first read all bytes are
// valid so this two bits are reset to zero.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxPointerLSB_rst[1:0] <=#Tp 0;
else
if(TxEn & TxEn_q & TxPointerRead)
TxPointerLSB_rst[1:0] <=#Tp ram_do[1:0];
else
if(MasterWbTX & m_wb_ack_i) // After first access pointer is word alligned
TxPointerLSB_rst[1:0] <=#Tp 0;
end
 
 
reg [3:0] RxByteSel;
wire MasterAccessFinished;
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
BlockingIncrementTxPointer <=#Tp 0;
else
if(MasterAccessFinished)
BlockingIncrementTxPointer <=#Tp 0;
else
if(IncrTxPointer)
BlockingIncrementTxPointer <=#Tp 1'b1;
end
 
 
wire TxBufferAlmostFull;
wire TxBufferFull;
wire TxBufferEmpty;
wire TxBufferAlmostEmpty;
wire SetReadTxDataFromMemory;
 
reg BlockReadTxDataFromMemory;
 
assign SetReadTxDataFromMemory = TxEn & TxEn_q & TxPointerRead;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ReadTxDataFromMemory <=#Tp 1'b0;
else
if(TxLengthEq0 | TxAbortPacket | TxRetryPacket)
ReadTxDataFromMemory <=#Tp 1'b0;
else
if(SetReadTxDataFromMemory)
ReadTxDataFromMemory <=#Tp 1'b1;
end
 
reg tx_burst_en;
reg rx_burst_en;
reg BlockingLastReadOn_Abort_Retry;
 
wire ReadTxDataFromMemory_2 = ReadTxDataFromMemory & ~BlockReadTxDataFromMemory & ~BlockingLastReadOn_Abort_Retry;
wire tx_burst = ReadTxDataFromMemory_2 & tx_burst_en;
 
wire [31:0] TxData_wb;
wire ReadTxDataFromFifo_wb;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
BlockReadTxDataFromMemory <=#Tp 1'b0;
else
if((TxBufferAlmostFull | TxLength <= 4)& MasterWbTX & (!(TxAbortPacket | TxRetryPacket)))
BlockReadTxDataFromMemory <=#Tp 1'b1;
else
if(ReadTxDataFromFifo_wb | TxDonePacket | TxAbortPacket | TxRetryPacket)
BlockReadTxDataFromMemory <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
BlockingLastReadOn_Abort_Retry <=#Tp 1'b0;
else
if(TxAbortPacket | TxRetryPacket)
BlockingLastReadOn_Abort_Retry <=#Tp 1'b0;
else
if(((TxAbort_wb & !TxAbortPacket_NotCleared) | (TxRetry_wb & !TxRetryPacket_NotCleared)) & !TxBDReady)
BlockingLastReadOn_Abort_Retry <=#Tp 1'b1;
end
 
 
 
 
assign MasterAccessFinished = m_wb_ack_i | m_wb_err_i;
wire [`ETH_TX_FIFO_CNT_WIDTH-1:0] txfifo_cnt;
wire [`ETH_RX_FIFO_CNT_WIDTH-1:0] rxfifo_cnt;
reg [`ETH_BURST_CNT_WIDTH-1:0] tx_burst_cnt;
reg [`ETH_BURST_CNT_WIDTH-1:0] rx_burst_cnt;
 
wire rx_burst;
wire enough_data_in_rxfifo_for_burst;
wire enough_data_in_rxfifo_for_burst_plus1;
 
// Enabling master wishbone access to the memory for two devices TX and RX.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
begin
MasterWbTX <=#Tp 1'b0;
MasterWbRX <=#Tp 1'b0;
m_wb_adr_o <=#Tp 32'h0;
m_wb_cyc_o <=#Tp 1'b0;
m_wb_stb_o <=#Tp 1'b0;
m_wb_we_o <=#Tp 1'b0;
m_wb_sel_o <=#Tp 4'h0;
cyc_cleared<=#Tp 1'b0;
tx_burst_cnt<=#Tp 0;
rx_burst_cnt<=#Tp 0;
IncrTxPointer<=#Tp 1'b0;
tx_burst_en<=#Tp 1'b1;
rx_burst_en<=#Tp 1'b0;
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b0;
`endif
end
else
begin
// Switching between two stages depends on enable signals
casex ({MasterWbTX, MasterWbRX, ReadTxDataFromMemory_2, WriteRxDataToMemory, MasterAccessFinished, cyc_cleared, tx_burst, rx_burst}) // synopsys parallel_case
8'b00_10_00_10, // Idle and MRB needed
8'b10_1x_10_1x, // MRB continues
8'b10_10_01_10, // Clear (previously MR) and MRB needed
8'b01_1x_01_1x : // Clear (previously MW) and MRB needed
begin
MasterWbTX <=#Tp 1'b1; // tx burst
MasterWbRX <=#Tp 1'b0;
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b0;
m_wb_sel_o <=#Tp 4'hf;
cyc_cleared<=#Tp 1'b0;
IncrTxPointer<=#Tp 1'b1;
tx_burst_cnt <=#Tp tx_burst_cnt+1;
if(tx_burst_cnt==0)
m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
else
m_wb_adr_o <=#Tp m_wb_adr_o+3'h4;
 
if(tx_burst_cnt==(`ETH_BURST_LENGTH-1))
begin
tx_burst_en<=#Tp 1'b0;
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b111;
`endif
end
else
begin
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b010;
`endif
end
end
8'b00_x1_00_x1, // Idle and MWB needed
8'b01_x1_10_x1, // MWB continues
8'b01_01_01_01, // Clear (previously MW) and MWB needed
8'b10_x1_01_x1 : // Clear (previously MR) and MWB needed
begin
MasterWbTX <=#Tp 1'b0; // rx burst
MasterWbRX <=#Tp 1'b1;
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b1;
m_wb_sel_o <=#Tp RxByteSel;
IncrTxPointer<=#Tp 1'b0;
cyc_cleared<=#Tp 1'b0;
rx_burst_cnt <=#Tp rx_burst_cnt+1;
 
if(rx_burst_cnt==0)
m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
else
m_wb_adr_o <=#Tp m_wb_adr_o+3'h4;
 
if(rx_burst_cnt==(`ETH_BURST_LENGTH-1))
begin
rx_burst_en<=#Tp 1'b0;
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b111;
`endif
end
else
begin
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b010;
`endif
end
end
8'b00_x1_00_x0 : // idle and MW is needed (data write to rx buffer)
begin
MasterWbTX <=#Tp 1'b0;
MasterWbRX <=#Tp 1'b1;
m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b1;
m_wb_sel_o <=#Tp RxByteSel;
IncrTxPointer<=#Tp 1'b0;
end
8'b00_10_00_00 : // idle and MR is needed (data read from tx buffer)
begin
MasterWbTX <=#Tp 1'b1;
MasterWbRX <=#Tp 1'b0;
m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b0;
m_wb_sel_o <=#Tp 4'hf;
IncrTxPointer<=#Tp 1'b1;
end
8'b10_10_01_00, // MR and MR is needed (data read from tx buffer)
8'b01_1x_01_0x : // MW and MR is needed (data read from tx buffer)
begin
MasterWbTX <=#Tp 1'b1;
MasterWbRX <=#Tp 1'b0;
m_wb_adr_o <=#Tp {TxPointerMSB, 2'h0};
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b0;
m_wb_sel_o <=#Tp 4'hf;
cyc_cleared<=#Tp 1'b0;
IncrTxPointer<=#Tp 1'b1;
end
8'b01_01_01_00, // MW and MW needed (data write to rx buffer)
8'b10_x1_01_x0 : // MR and MW is needed (data write to rx buffer)
begin
MasterWbTX <=#Tp 1'b0;
MasterWbRX <=#Tp 1'b1;
m_wb_adr_o <=#Tp {RxPointerMSB, 2'h0};
m_wb_cyc_o <=#Tp 1'b1;
m_wb_stb_o <=#Tp 1'b1;
m_wb_we_o <=#Tp 1'b1;
m_wb_sel_o <=#Tp RxByteSel;
cyc_cleared<=#Tp 1'b0;
IncrTxPointer<=#Tp 1'b0;
end
8'b01_01_10_00, // MW and MW needed (cycle is cleared between previous and next access)
8'b01_1x_10_x0, // MW and MW or MR or MRB needed (cycle is cleared between previous and next access)
8'b10_10_10_00, // MR and MR needed (cycle is cleared between previous and next access)
8'b10_x1_10_0x : // MR and MR or MW or MWB (cycle is cleared between previous and next access)
begin
m_wb_cyc_o <=#Tp 1'b0; // whatever and master read or write is needed. We need to clear m_wb_cyc_o before next access is started
m_wb_stb_o <=#Tp 1'b0;
cyc_cleared<=#Tp 1'b1;
IncrTxPointer<=#Tp 1'b0;
tx_burst_cnt<=#Tp 0;
tx_burst_en<=#Tp txfifo_cnt<(`ETH_TX_FIFO_DEPTH-`ETH_BURST_LENGTH) & (TxLength>(`ETH_BURST_LENGTH*4+4));
rx_burst_cnt<=#Tp 0;
rx_burst_en<=#Tp MasterWbRX ? enough_data_in_rxfifo_for_burst_plus1 : enough_data_in_rxfifo_for_burst; // Counter is not decremented, yet, so plus1 is used.
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b0;
`endif
end
8'bxx_00_10_00, // whatever and no master read or write is needed (ack or err comes finishing previous access)
8'bxx_00_01_00 : // Between cyc_cleared request was cleared
begin
MasterWbTX <=#Tp 1'b0;
MasterWbRX <=#Tp 1'b0;
m_wb_cyc_o <=#Tp 1'b0;
m_wb_stb_o <=#Tp 1'b0;
cyc_cleared<=#Tp 1'b0;
IncrTxPointer<=#Tp 1'b0;
rx_burst_cnt<=#Tp 0;
rx_burst_en<=#Tp MasterWbRX ? enough_data_in_rxfifo_for_burst_plus1 : enough_data_in_rxfifo_for_burst; // Counter is not decremented, yet, so plus1 is used.
`ifdef ETH_WISHBONE_B3
m_wb_cti_o <=#Tp 3'b0;
`endif
end
8'b00_00_00_00: // whatever and no master read or write is needed (ack or err comes finishing previous access)
begin
tx_burst_cnt<=#Tp 0;
tx_burst_en<=#Tp txfifo_cnt<(`ETH_TX_FIFO_DEPTH-`ETH_BURST_LENGTH) & (TxLength>(`ETH_BURST_LENGTH*4+4));
end
default: // Don't touch
begin
MasterWbTX <=#Tp MasterWbTX;
MasterWbRX <=#Tp MasterWbRX;
m_wb_cyc_o <=#Tp m_wb_cyc_o;
m_wb_stb_o <=#Tp m_wb_stb_o;
m_wb_sel_o <=#Tp m_wb_sel_o;
IncrTxPointer<=#Tp IncrTxPointer;
end
endcase
end
end
 
 
wire TxFifoClear;
 
assign TxFifoClear = (TxAbortPacket | TxRetryPacket);
 
eth_fifo #(`ETH_TX_FIFO_DATA_WIDTH, `ETH_TX_FIFO_DEPTH, `ETH_TX_FIFO_CNT_WIDTH)
tx_fifo ( .data_in(m_wb_dat_i), .data_out(TxData_wb),
.clk(WB_CLK_I), .reset(Reset),
.write(MasterWbTX & m_wb_ack_i), .read(ReadTxDataFromFifo_wb & ~TxBufferEmpty),
.clear(TxFifoClear), .full(TxBufferFull),
.almost_full(TxBufferAlmostFull), .almost_empty(TxBufferAlmostEmpty),
.empty(TxBufferEmpty), .cnt(txfifo_cnt)
);
 
 
reg StartOccured;
reg TxStartFrm_sync1;
reg TxStartFrm_sync2;
reg TxStartFrm_syncb1;
reg TxStartFrm_syncb2;
 
 
 
// Start: Generation of the TxStartFrm_wb which is then synchronized to the MTxClk
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxStartFrm_wb <=#Tp 1'b0;
else
if(TxBDReady & ~StartOccured & (TxBufferFull | TxLengthEq0))
TxStartFrm_wb <=#Tp 1'b1;
else
if(TxStartFrm_syncb2)
TxStartFrm_wb <=#Tp 1'b0;
end
 
// StartOccured: TxStartFrm_wb occurs only ones at the beginning. Then it's blocked.
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
StartOccured <=#Tp 1'b0;
else
if(TxStartFrm_wb)
StartOccured <=#Tp 1'b1;
else
if(ResetTxBDReady)
StartOccured <=#Tp 1'b0;
end
 
// Synchronizing TxStartFrm_wb to MTxClk
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxStartFrm_sync1 <=#Tp 1'b0;
else
TxStartFrm_sync1 <=#Tp TxStartFrm_wb;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxStartFrm_sync2 <=#Tp 1'b0;
else
TxStartFrm_sync2 <=#Tp TxStartFrm_sync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxStartFrm_syncb1 <=#Tp 1'b0;
else
TxStartFrm_syncb1 <=#Tp TxStartFrm_sync2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxStartFrm_syncb2 <=#Tp 1'b0;
else
TxStartFrm_syncb2 <=#Tp TxStartFrm_syncb1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxStartFrm <=#Tp 1'b0;
else
if(TxStartFrm_sync2)
TxStartFrm <=#Tp 1'b1;
else
if(TxUsedData_q | ~TxStartFrm_sync2 & (TxRetry | TxAbort))
TxStartFrm <=#Tp 1'b0;
end
// End: Generation of the TxStartFrm_wb which is then synchronized to the MTxClk
 
 
// TxEndFrm_wb: indicator of the end of frame
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxEndFrm_wb <=#Tp 1'b0;
else
if(TxLengthEq0 & TxBufferAlmostEmpty & TxUsedData)
TxEndFrm_wb <=#Tp 1'b1;
else
if(TxRetryPulse | TxDonePulse | TxAbortPulse)
TxEndFrm_wb <=#Tp 1'b0;
end
 
 
// Marks which bytes are valid within the word.
assign TxValidBytes = TxLengthLt4 ? TxLength[1:0] : 2'b0;
 
reg LatchValidBytes;
reg LatchValidBytes_q;
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
LatchValidBytes <=#Tp 1'b0;
else
if(TxLengthLt4 & TxBDReady)
LatchValidBytes <=#Tp 1'b1;
else
LatchValidBytes <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
LatchValidBytes_q <=#Tp 1'b0;
else
LatchValidBytes_q <=#Tp LatchValidBytes;
end
 
 
// Latching valid bytes
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxValidBytesLatched <=#Tp 2'h0;
else
if(LatchValidBytes & ~LatchValidBytes_q)
TxValidBytesLatched <=#Tp TxValidBytes;
else
if(TxRetryPulse | TxDonePulse | TxAbortPulse)
TxValidBytesLatched <=#Tp 2'h0;
end
 
 
assign TxIRQEn = TxStatus[14];
assign WrapTxStatusBit = TxStatus[13];
assign PerPacketPad = TxStatus[12];
assign PerPacketCrcEn = TxStatus[11];
 
 
assign RxIRQEn = RxStatus[14];
assign WrapRxStatusBit = RxStatus[13];
 
 
// Temporary Tx and Rx buffer descriptor address
assign TempTxBDAddress[7:0] = {8{ TxStatusWrite & ~WrapTxStatusBit}} & (TxBDAddress + 2'h2) ; // Tx BD increment or wrap (last BD)
assign TempRxBDAddress[7:0] = {8{ WrapRxStatusBit}} & (r_TxBDNum<<1) | // Using first Rx BD
{8{~WrapRxStatusBit}} & (RxBDAddress + 2'h2) ; // Using next Rx BD (incremenrement address)
 
 
// Latching Tx buffer descriptor address
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxBDAddress <=#Tp 8'h0;
else
if(TxStatusWrite)
TxBDAddress <=#Tp TempTxBDAddress;
end
 
 
// Latching Rx buffer descriptor address
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxBDAddress <=#Tp `ETH_TX_BD_NUM_DEF<<1;
else
if(TX_BD_NUM_Wr) // When r_TxBDNum is updated, RxBDAddress is also
RxBDAddress <=#Tp WB_DAT_I[7:0]<<1;
else
if(RxStatusWrite)
RxBDAddress <=#Tp TempRxBDAddress;
end
 
wire [8:0] TxStatusInLatched = {TxUnderRun, RetryCntLatched[3:0], RetryLimit, LateCollLatched, DeferLatched, CarrierSenseLost};
 
assign RxBDDataIn = {LatchedRxLength, 1'b0, RxStatus, 4'h0, RxStatusInLatched};
assign TxBDDataIn = {LatchedTxLength, 1'b0, TxStatus, 2'h0, TxStatusInLatched};
 
 
// Signals used for various purposes
assign TxRetryPulse = TxRetry_wb & ~TxRetry_wb_q;
assign TxDonePulse = TxDone_wb & ~TxDone_wb_q;
assign TxAbortPulse = TxAbort_wb & ~TxAbort_wb_q;
 
 
 
// Generating delayed signals
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
begin
TxAbort_q <=#Tp 1'b0;
TxRetry_q <=#Tp 1'b0;
TxUsedData_q <=#Tp 1'b0;
end
else
begin
TxAbort_q <=#Tp TxAbort;
TxRetry_q <=#Tp TxRetry;
TxUsedData_q <=#Tp TxUsedData;
end
end
 
// Generating delayed signals
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
begin
TxDone_wb_q <=#Tp 1'b0;
TxAbort_wb_q <=#Tp 1'b0;
TxRetry_wb_q <=#Tp 1'b0;
end
else
begin
TxDone_wb_q <=#Tp TxDone_wb;
TxAbort_wb_q <=#Tp TxAbort_wb;
TxRetry_wb_q <=#Tp TxRetry_wb;
end
end
 
 
reg TxAbortPacketBlocked;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxAbortPacket <=#Tp 1'b0;
else
if(TxAbort_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxAbortPacketBlocked |
TxAbort_wb & !MasterWbTX & !TxAbortPacketBlocked)
TxAbortPacket <=#Tp 1'b1;
else
TxAbortPacket <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxAbortPacket_NotCleared <=#Tp 1'b0;
else
if(TxAbort_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished |
TxAbort_wb & !MasterWbTX)
TxAbortPacket_NotCleared <=#Tp 1'b1;
else
TxAbortPacket_NotCleared <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxAbortPacketBlocked <=#Tp 1'b0;
else
if(TxAbortPacket)
TxAbortPacketBlocked <=#Tp 1'b1;
else
if(!TxAbort_wb & TxAbort_wb_q)
TxAbortPacketBlocked <=#Tp 1'b0;
end
 
 
reg TxRetryPacketBlocked;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxRetryPacket <=#Tp 1'b0;
else
if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxRetryPacketBlocked |
TxRetry_wb & !MasterWbTX & !TxRetryPacketBlocked)
TxRetryPacket <=#Tp 1'b1;
else
TxRetryPacket <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxRetryPacket_NotCleared <=#Tp 1'b0;
else
if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished |
TxRetry_wb & !MasterWbTX)
TxRetryPacket_NotCleared <=#Tp 1'b1;
else
TxRetryPacket_NotCleared <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxRetryPacketBlocked <=#Tp 1'b0;
else
if(TxRetryPacket)
TxRetryPacketBlocked <=#Tp 1'b1;
else
if(!TxRetry_wb & TxRetry_wb_q)
TxRetryPacketBlocked <=#Tp 1'b0;
end
 
 
reg TxDonePacketBlocked;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxDonePacket <=#Tp 1'b0;
else
if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxDonePacketBlocked |
TxDone_wb & !MasterWbTX & !TxDonePacketBlocked)
TxDonePacket <=#Tp 1'b1;
else
TxDonePacket <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxDonePacket_NotCleared <=#Tp 1'b0;
else
if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished |
TxDone_wb & !MasterWbTX)
TxDonePacket_NotCleared <=#Tp 1'b1;
else
TxDonePacket_NotCleared <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxDonePacketBlocked <=#Tp 1'b0;
else
if(TxDonePacket)
TxDonePacketBlocked <=#Tp 1'b1;
else
if(!TxDone_wb & TxDone_wb_q)
TxDonePacketBlocked <=#Tp 1'b0;
end
 
 
// Sinchronizing and evaluating tx data
//assign SetGotData = (TxStartFrm_wb | NewTxDataAvaliable_wb & ~TxAbort_wb & ~TxRetry_wb) & ~WB_CLK_I;
assign SetGotData = (TxStartFrm_wb);
 
// Evaluating data. If abort or retry occured meanwhile than data is ignored.
//assign GotDataEvaluate = GotDataSync3 & ~GotData & (~TxRetry & ~TxAbort | (TxRetry | TxAbort) & (TxStartFrm));
assign GotDataEvaluate = (~TxRetry & ~TxAbort | (TxRetry | TxAbort) & (TxStartFrm));
 
 
// Indication of the last word
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
LastWord <=#Tp 1'b0;
else
if((TxEndFrm | TxAbort | TxRetry) & Flop)
LastWord <=#Tp 1'b0;
else
if(TxUsedData & Flop & TxByteCnt == 2'h3)
LastWord <=#Tp TxEndFrm_wb;
end
 
 
// Tx end frame generation
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxEndFrm <=#Tp 1'b0;
else
if(Flop & TxEndFrm | TxAbort | TxRetry_q)
TxEndFrm <=#Tp 1'b0;
else
if(Flop & LastWord)
begin
case (TxValidBytesLatched) // synopsys parallel_case
1 : TxEndFrm <=#Tp TxByteCnt == 2'h0;
2 : TxEndFrm <=#Tp TxByteCnt == 2'h1;
3 : TxEndFrm <=#Tp TxByteCnt == 2'h2;
0 : TxEndFrm <=#Tp TxByteCnt == 2'h3;
default : TxEndFrm <=#Tp 1'b0;
endcase
end
end
 
 
// Tx data selection (latching)
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxData <=#Tp 0;
else
if(TxStartFrm_sync2 & ~TxStartFrm)
case(TxPointerLSB) // synopsys parallel_case
2'h0 : TxData <=#Tp TxData_wb[31:24]; // Big Endian Byte Ordering
2'h1 : TxData <=#Tp TxData_wb[23:16]; // Big Endian Byte Ordering
2'h2 : TxData <=#Tp TxData_wb[15:08]; // Big Endian Byte Ordering
2'h3 : TxData <=#Tp TxData_wb[07:00]; // Big Endian Byte Ordering
endcase
else
if(TxStartFrm & TxUsedData & TxPointerLSB==2'h3)
TxData <=#Tp TxData_wb[31:24]; // Big Endian Byte Ordering
else
if(TxUsedData & Flop)
begin
case(TxByteCnt) // synopsys parallel_case
0 : TxData <=#Tp TxDataLatched[31:24]; // Big Endian Byte Ordering
1 : TxData <=#Tp TxDataLatched[23:16];
2 : TxData <=#Tp TxDataLatched[15:8];
3 : TxData <=#Tp TxDataLatched[7:0];
endcase
end
end
 
 
// Latching tx data
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxDataLatched[31:0] <=#Tp 32'h0;
else
if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
TxDataLatched[31:0] <=#Tp TxData_wb[31:0];
end
 
 
// Tx under run
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxUnderRun_wb <=#Tp 1'b0;
else
if(TxAbortPulse)
TxUnderRun_wb <=#Tp 1'b0;
else
if(TxBufferEmpty & ReadTxDataFromFifo_wb)
TxUnderRun_wb <=#Tp 1'b1;
end
 
 
reg TxUnderRun_sync1;
 
// Tx under run
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxUnderRun_sync1 <=#Tp 1'b0;
else
if(TxUnderRun_wb)
TxUnderRun_sync1 <=#Tp 1'b1;
else
if(BlockingTxStatusWrite_sync2)
TxUnderRun_sync1 <=#Tp 1'b0;
end
 
// Tx under run
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxUnderRun <=#Tp 1'b0;
else
if(BlockingTxStatusWrite_sync2)
TxUnderRun <=#Tp 1'b0;
else
if(TxUnderRun_sync1)
TxUnderRun <=#Tp 1'b1;
end
 
 
// Tx Byte counter
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
TxByteCnt <=#Tp 2'h0;
else
if(TxAbort_q | TxRetry_q)
TxByteCnt <=#Tp 2'h0;
else
if(TxStartFrm & ~TxUsedData)
case(TxPointerLSB) // synopsys parallel_case
2'h0 : TxByteCnt <=#Tp 2'h1;
2'h1 : TxByteCnt <=#Tp 2'h2;
2'h2 : TxByteCnt <=#Tp 2'h3;
2'h3 : TxByteCnt <=#Tp 2'h0;
endcase
else
if(TxUsedData & Flop)
TxByteCnt <=#Tp TxByteCnt + 1'b1;
end
 
 
// Start: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I
reg ReadTxDataFromFifo_sync1;
reg ReadTxDataFromFifo_sync2;
reg ReadTxDataFromFifo_sync3;
reg ReadTxDataFromFifo_syncb1;
reg ReadTxDataFromFifo_syncb2;
reg ReadTxDataFromFifo_syncb3;
 
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_tck <=#Tp 1'b0;
else
if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 & ~LastWord | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
ReadTxDataFromFifo_tck <=#Tp 1'b1;
else
if(ReadTxDataFromFifo_syncb2 & ~ReadTxDataFromFifo_syncb3)
ReadTxDataFromFifo_tck <=#Tp 1'b0;
end
 
// Synchronizing TxStartFrm_wb to MTxClk
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_sync1 <=#Tp 1'b0;
else
ReadTxDataFromFifo_sync1 <=#Tp ReadTxDataFromFifo_tck;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_sync2 <=#Tp 1'b0;
else
ReadTxDataFromFifo_sync2 <=#Tp ReadTxDataFromFifo_sync1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_syncb1 <=#Tp 1'b0;
else
ReadTxDataFromFifo_syncb1 <=#Tp ReadTxDataFromFifo_sync2;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_syncb2 <=#Tp 1'b0;
else
ReadTxDataFromFifo_syncb2 <=#Tp ReadTxDataFromFifo_syncb1;
end
 
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_syncb3 <=#Tp 1'b0;
else
ReadTxDataFromFifo_syncb3 <=#Tp ReadTxDataFromFifo_syncb2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ReadTxDataFromFifo_sync3 <=#Tp 1'b0;
else
ReadTxDataFromFifo_sync3 <=#Tp ReadTxDataFromFifo_sync2;
end
 
assign ReadTxDataFromFifo_wb = ReadTxDataFromFifo_sync2 & ~ReadTxDataFromFifo_sync3;
// End: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I
 
 
// Synchronizing TxRetry signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxRetrySync1 <=#Tp 1'b0;
else
TxRetrySync1 <=#Tp TxRetry;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxRetry_wb <=#Tp 1'b0;
else
TxRetry_wb <=#Tp TxRetrySync1;
end
 
 
// Synchronized TxDone_wb signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxDoneSync1 <=#Tp 1'b0;
else
TxDoneSync1 <=#Tp TxDone;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxDone_wb <=#Tp 1'b0;
else
TxDone_wb <=#Tp TxDoneSync1;
end
 
// Synchronizing TxAbort signal (synchronized to WISHBONE clock)
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxAbortSync1 <=#Tp 1'b0;
else
TxAbortSync1 <=#Tp TxAbort;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxAbort_wb <=#Tp 1'b0;
else
TxAbort_wb <=#Tp TxAbortSync1;
end
 
 
reg RxAbortSync1;
reg RxAbortSync2;
reg RxAbortSync3;
reg RxAbortSync4;
reg RxAbortSyncb1;
reg RxAbortSyncb2;
 
assign StartRxBDRead = RxStatusWrite | RxAbortSync3 & ~RxAbortSync4;
 
// Reading the Rx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxBDRead <=#Tp 1'b1;
else
if(StartRxBDRead & ~RxReady)
RxBDRead <=#Tp 1'b1;
else
if(RxBDReady)
RxBDRead <=#Tp 1'b0;
end
 
 
// Reading of the next receive buffer descriptor starts after reception status is
// written to the previous one.
 
// Latching READY status of the Rx buffer descriptor
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxBDReady <=#Tp 1'b0;
else
if(RxPointerRead)
RxBDReady <=#Tp 1'b0;
else
if(RxEn & RxEn_q & RxBDRead)
RxBDReady <=#Tp ram_do[15]; // RxBDReady is sampled only once at the beginning
end
 
// Latching Rx buffer descriptor status
// Data is avaliable one cycle after the access is started (at that time signal RxEn is not active)
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxStatus <=#Tp 2'h0;
else
if(RxEn & RxEn_q & RxBDRead)
RxStatus <=#Tp ram_do[14:13];
end
 
 
// RxReady generation
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxReady <=#Tp 1'b0;
else
if(ShiftEnded | RxAbortSync2 & ~RxAbortSync3)
RxReady <=#Tp 1'b0;
else
if(RxEn & RxEn_q & RxPointerRead)
RxReady <=#Tp 1'b1;
end
 
 
// Reading Rx BD pointer
 
 
assign StartRxPointerRead = RxBDRead & RxBDReady;
 
// Reading Tx BD Pointer
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxPointerRead <=#Tp 1'b0;
else
if(StartRxPointerRead)
RxPointerRead <=#Tp 1'b1;
else
if(RxEn & RxEn_q)
RxPointerRead <=#Tp 1'b0;
end
 
 
//Latching Rx buffer pointer from buffer descriptor;
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxPointerMSB <=#Tp 30'h0;
else
if(RxEn & RxEn_q & RxPointerRead)
RxPointerMSB <=#Tp ram_do[31:2];
else
if(MasterWbRX & m_wb_ack_i)
RxPointerMSB <=#Tp RxPointerMSB + 1; // Word access (always word access. m_wb_sel_o are used for selecting bytes)
end
 
 
//Latching last addresses from buffer descriptor (used as byte-half-word indicator);
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxPointerLSB_rst[1:0] <=#Tp 0;
else
if(MasterWbRX & m_wb_ack_i) // After first write all RxByteSel are active
RxPointerLSB_rst[1:0] <=#Tp 0;
else
if(RxEn & RxEn_q & RxPointerRead)
RxPointerLSB_rst[1:0] <=#Tp ram_do[1:0];
end
 
 
always @ (RxPointerLSB_rst)
begin
case(RxPointerLSB_rst[1:0]) // synopsys parallel_case
2'h0 : RxByteSel[3:0] = 4'hf;
2'h1 : RxByteSel[3:0] = 4'h7;
2'h2 : RxByteSel[3:0] = 4'h3;
2'h3 : RxByteSel[3:0] = 4'h1;
endcase
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxEn_needed <=#Tp 1'b0;
else
if(~RxReady & r_RxEn & WbEn & ~WbEn_q)
RxEn_needed <=#Tp 1'b1;
else
if(RxPointerRead & RxEn & RxEn_q)
RxEn_needed <=#Tp 1'b0;
end
 
 
// Reception status is written back to the buffer descriptor after the end of frame is detected.
assign RxStatusWrite = ShiftEnded & RxEn & RxEn_q;
 
reg RxEnableWindow;
 
// Indicating that last byte is being reveived
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LastByteIn <=#Tp 1'b0;
else
if(ShiftWillEnd & (&RxByteCnt) | RxAbort)
LastByteIn <=#Tp 1'b0;
else
if(RxValid & RxReady & RxEndFrm & ~(&RxByteCnt) & RxEnableWindow)
LastByteIn <=#Tp 1'b1;
end
 
reg ShiftEnded_rck;
reg ShiftEndedSync1;
reg ShiftEndedSync2;
reg ShiftEndedSync3;
reg ShiftEndedSync_c1;
reg ShiftEndedSync_c2;
 
wire StartShiftWillEnd;
assign StartShiftWillEnd = LastByteIn | RxValid & RxEndFrm & (&RxByteCnt) & RxEnableWindow;
 
// Indicating that data reception will end
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ShiftWillEnd <=#Tp 1'b0;
else
if(ShiftEnded_rck | RxAbort)
ShiftWillEnd <=#Tp 1'b0;
else
if(StartShiftWillEnd)
ShiftWillEnd <=#Tp 1'b1;
end
 
 
 
// Receive byte counter
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxByteCnt <=#Tp 2'h0;
else
if(ShiftEnded_rck | RxAbort)
RxByteCnt <=#Tp 2'h0;
else
if(RxValid & RxStartFrm & RxReady)
case(RxPointerLSB_rst) // synopsys parallel_case
2'h0 : RxByteCnt <=#Tp 2'h1;
2'h1 : RxByteCnt <=#Tp 2'h2;
2'h2 : RxByteCnt <=#Tp 2'h3;
2'h3 : RxByteCnt <=#Tp 2'h0;
endcase
else
if(RxValid & RxEnableWindow & RxReady | LastByteIn)
RxByteCnt <=#Tp RxByteCnt + 1'b1;
end
 
 
// Indicates how many bytes are valid within the last word
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxValidBytes <=#Tp 2'h1;
else
if(RxValid & RxStartFrm)
case(RxPointerLSB_rst) // synopsys parallel_case
2'h0 : RxValidBytes <=#Tp 2'h1;
2'h1 : RxValidBytes <=#Tp 2'h2;
2'h2 : RxValidBytes <=#Tp 2'h3;
2'h3 : RxValidBytes <=#Tp 2'h0;
endcase
else
if(RxValid & ~LastByteIn & ~RxStartFrm & RxEnableWindow)
RxValidBytes <=#Tp RxValidBytes + 1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxDataLatched1 <=#Tp 24'h0;
else
if(RxValid & RxReady & ~LastByteIn)
if(RxStartFrm)
begin
case(RxPointerLSB_rst) // synopsys parallel_case
2'h0: RxDataLatched1[31:24] <=#Tp RxData; // Big Endian Byte Ordering
2'h1: RxDataLatched1[23:16] <=#Tp RxData;
2'h2: RxDataLatched1[15:8] <=#Tp RxData;
2'h3: RxDataLatched1 <=#Tp RxDataLatched1;
endcase
end
else if (RxEnableWindow)
begin
case(RxByteCnt) // synopsys parallel_case
2'h0: RxDataLatched1[31:24] <=#Tp RxData; // Big Endian Byte Ordering
2'h1: RxDataLatched1[23:16] <=#Tp RxData;
2'h2: RxDataLatched1[15:8] <=#Tp RxData;
2'h3: RxDataLatched1 <=#Tp RxDataLatched1;
endcase
end
end
 
wire SetWriteRxDataToFifo;
 
// Assembling data that will be written to the rx_fifo
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxDataLatched2 <=#Tp 32'h0;
else
if(SetWriteRxDataToFifo & ~ShiftWillEnd)
RxDataLatched2 <=#Tp {RxDataLatched1[31:8], RxData}; // Big Endian Byte Ordering
else
if(SetWriteRxDataToFifo & ShiftWillEnd)
case(RxValidBytes) // synopsys parallel_case
0 : RxDataLatched2 <=#Tp {RxDataLatched1[31:8], RxData}; // Big Endian Byte Ordering
1 : RxDataLatched2 <=#Tp {RxDataLatched1[31:24], 24'h0};
2 : RxDataLatched2 <=#Tp {RxDataLatched1[31:16], 16'h0};
3 : RxDataLatched2 <=#Tp {RxDataLatched1[31:8], 8'h0};
endcase
end
 
 
reg WriteRxDataToFifoSync1;
reg WriteRxDataToFifoSync2;
reg WriteRxDataToFifoSync3;
 
 
// Indicating start of the reception process
assign SetWriteRxDataToFifo = (RxValid & RxReady & ~RxStartFrm & RxEnableWindow & (&RxByteCnt)) |
(RxValid & RxReady & RxStartFrm & (&RxPointerLSB_rst)) |
(ShiftWillEnd & LastByteIn & (&RxByteCnt));
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
WriteRxDataToFifo <=#Tp 1'b0;
else
if(SetWriteRxDataToFifo & ~RxAbort)
WriteRxDataToFifo <=#Tp 1'b1;
else
if(WriteRxDataToFifoSync2 | RxAbort)
WriteRxDataToFifo <=#Tp 1'b0;
end
 
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
WriteRxDataToFifoSync1 <=#Tp 1'b0;
else
if(WriteRxDataToFifo)
WriteRxDataToFifoSync1 <=#Tp 1'b1;
else
WriteRxDataToFifoSync1 <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
WriteRxDataToFifoSync2 <=#Tp 1'b0;
else
WriteRxDataToFifoSync2 <=#Tp WriteRxDataToFifoSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
WriteRxDataToFifoSync3 <=#Tp 1'b0;
else
WriteRxDataToFifoSync3 <=#Tp WriteRxDataToFifoSync2;
end
 
wire WriteRxDataToFifo_wb;
assign WriteRxDataToFifo_wb = WriteRxDataToFifoSync2 & ~WriteRxDataToFifoSync3;
 
 
reg LatchedRxStartFrm;
reg SyncRxStartFrm;
reg SyncRxStartFrm_q;
reg SyncRxStartFrm_q2;
wire RxFifoReset;
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LatchedRxStartFrm <=#Tp 0;
else
if(RxStartFrm & ~SyncRxStartFrm_q)
LatchedRxStartFrm <=#Tp 1;
else
if(SyncRxStartFrm_q)
LatchedRxStartFrm <=#Tp 0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
SyncRxStartFrm <=#Tp 0;
else
if(LatchedRxStartFrm)
SyncRxStartFrm <=#Tp 1;
else
SyncRxStartFrm <=#Tp 0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
SyncRxStartFrm_q <=#Tp 0;
else
SyncRxStartFrm_q <=#Tp SyncRxStartFrm;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
SyncRxStartFrm_q2 <=#Tp 0;
else
SyncRxStartFrm_q2 <=#Tp SyncRxStartFrm_q;
end
 
 
assign RxFifoReset = SyncRxStartFrm_q & ~SyncRxStartFrm_q2;
 
 
eth_fifo #(`ETH_RX_FIFO_DATA_WIDTH, `ETH_RX_FIFO_DEPTH, `ETH_RX_FIFO_CNT_WIDTH)
rx_fifo (.data_in(RxDataLatched2), .data_out(m_wb_dat_o),
.clk(WB_CLK_I), .reset(Reset),
.write(WriteRxDataToFifo_wb & ~RxBufferFull), .read(MasterWbRX & m_wb_ack_i),
.clear(RxFifoReset), .full(RxBufferFull),
.almost_full(), .almost_empty(RxBufferAlmostEmpty),
.empty(RxBufferEmpty), .cnt(rxfifo_cnt)
);
 
assign enough_data_in_rxfifo_for_burst = rxfifo_cnt>=`ETH_BURST_LENGTH;
assign enough_data_in_rxfifo_for_burst_plus1 = rxfifo_cnt>`ETH_BURST_LENGTH;
assign WriteRxDataToMemory = ~RxBufferEmpty;
assign rx_burst = rx_burst_en & WriteRxDataToMemory;
 
 
// Generation of the end-of-frame signal
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ShiftEnded_rck <=#Tp 1'b0;
else
if(~RxAbort & SetWriteRxDataToFifo & StartShiftWillEnd)
ShiftEnded_rck <=#Tp 1'b1;
else
if(RxAbort | ShiftEndedSync_c1 & ShiftEndedSync_c2)
ShiftEnded_rck <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ShiftEndedSync1 <=#Tp 1'b0;
else
ShiftEndedSync1 <=#Tp ShiftEnded_rck;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ShiftEndedSync2 <=#Tp 1'b0;
else
ShiftEndedSync2 <=#Tp ShiftEndedSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ShiftEndedSync3 <=#Tp 1'b0;
else
if(ShiftEndedSync1 & ~ShiftEndedSync2)
ShiftEndedSync3 <=#Tp 1'b1;
else
if(ShiftEnded)
ShiftEndedSync3 <=#Tp 1'b0;
end
 
// Generation of the end-of-frame signal
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
ShiftEnded <=#Tp 1'b0;
else
if(ShiftEndedSync3 & MasterWbRX & m_wb_ack_i & RxBufferAlmostEmpty & ~ShiftEnded)
ShiftEnded <=#Tp 1'b1;
else
if(RxStatusWrite)
ShiftEnded <=#Tp 1'b0;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ShiftEndedSync_c1 <=#Tp 1'b0;
else
ShiftEndedSync_c1 <=#Tp ShiftEndedSync2;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ShiftEndedSync_c2 <=#Tp 1'b0;
else
ShiftEndedSync_c2 <=#Tp ShiftEndedSync_c1;
end
 
// Generation of the end-of-frame signal
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxEnableWindow <=#Tp 1'b0;
else
if(RxStartFrm)
RxEnableWindow <=#Tp 1'b1;
else
if(RxEndFrm | RxAbort)
RxEnableWindow <=#Tp 1'b0;
end
 
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxAbortSync1 <=#Tp 1'b0;
else
RxAbortSync1 <=#Tp RxAbortLatched;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxAbortSync2 <=#Tp 1'b0;
else
RxAbortSync2 <=#Tp RxAbortSync1;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxAbortSync3 <=#Tp 1'b0;
else
RxAbortSync3 <=#Tp RxAbortSync2;
end
 
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxAbortSync4 <=#Tp 1'b0;
else
RxAbortSync4 <=#Tp RxAbortSync3;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxAbortSyncb1 <=#Tp 1'b0;
else
RxAbortSyncb1 <=#Tp RxAbortSync2;
end
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxAbortSyncb2 <=#Tp 1'b0;
else
RxAbortSyncb2 <=#Tp RxAbortSyncb1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxAbortLatched <=#Tp 1'b0;
else
if(RxAbortSyncb2)
RxAbortLatched <=#Tp 1'b0;
else
if(RxAbort)
RxAbortLatched <=#Tp 1'b1;
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LatchedRxLength[15:0] <=#Tp 16'h0;
else
if(LoadRxStatus)
LatchedRxLength[15:0] <=#Tp RxLength[15:0];
end
 
 
assign RxStatusIn = {ReceivedPauseFrm, AddressMiss, RxOverrun, InvalidSymbol, DribbleNibble, ReceivedPacketTooBig, ShortFrame, LatchedCrcError, RxLateCollision};
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxStatusInLatched <=#Tp 'h0;
else
if(LoadRxStatus)
RxStatusInLatched <=#Tp RxStatusIn;
end
 
 
// Rx overrun
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxOverrun <=#Tp 1'b0;
else
if(RxStatusWrite)
RxOverrun <=#Tp 1'b0;
else
if(RxBufferFull & WriteRxDataToFifo_wb)
RxOverrun <=#Tp 1'b1;
end
 
 
 
wire TxError;
assign TxError = TxUnderRun | RetryLimit | LateCollLatched | CarrierSenseLost;
 
wire RxError;
 
// ShortFrame (RxStatusInLatched[2]) can not set an error because short frames
// are aborted when signal r_RecSmall is set to 0 in MODER register.
// AddressMiss is identifying that a frame was received because of the promiscous
// mode and is not an error
assign RxError = (|RxStatusInLatched[6:3]) | (|RxStatusInLatched[1:0]);
 
// Tx Done Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxB_IRQ <=#Tp 1'b0;
else
if(TxStatusWrite & TxIRQEn)
TxB_IRQ <=#Tp ~TxError;
else
TxB_IRQ <=#Tp 1'b0;
end
 
 
// Tx Error Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
TxE_IRQ <=#Tp 1'b0;
else
if(TxStatusWrite & TxIRQEn)
TxE_IRQ <=#Tp TxError;
else
TxE_IRQ <=#Tp 1'b0;
end
 
 
// Rx Done Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxB_IRQ <=#Tp 1'b0;
else
if(RxStatusWrite & RxIRQEn)
RxB_IRQ <=#Tp ReceivedPacketGood & (~RxError) & (~r_RxFlow); // When r_RxFlow is set, RXC irq is set.
else
RxB_IRQ <=#Tp 1'b0;
end
 
 
// Rx Error Interrupt
always @ (posedge WB_CLK_I or posedge Reset)
begin
if(Reset)
RxE_IRQ <=#Tp 1'b0;
else
if(RxStatusWrite & RxIRQEn)
RxE_IRQ <=#Tp RxError;
else
RxE_IRQ <=#Tp 1'b0;
end
 
 
// Busy Interrupt
 
reg Busy_IRQ_rck;
reg Busy_IRQ_sync1;
reg Busy_IRQ_sync2;
reg Busy_IRQ_sync3;
reg Busy_IRQ_syncb1;
reg Busy_IRQ_syncb2;
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
Busy_IRQ_rck <=#Tp 1'b0;
else
if(RxValid & RxStartFrm & ~RxReady)
Busy_IRQ_rck <=#Tp 1'b1;
else
if(Busy_IRQ_syncb2)
Busy_IRQ_rck <=#Tp 1'b0;
end
 
always @ (posedge WB_CLK_I)
begin
Busy_IRQ_sync1 <=#Tp Busy_IRQ_rck;
Busy_IRQ_sync2 <=#Tp Busy_IRQ_sync1;
Busy_IRQ_sync3 <=#Tp Busy_IRQ_sync2;
end
 
always @ (posedge MRxClk)
begin
Busy_IRQ_syncb1 <=#Tp Busy_IRQ_sync2;
Busy_IRQ_syncb2 <=#Tp Busy_IRQ_syncb1;
end
 
assign Busy_IRQ = Busy_IRQ_sync2 & ~Busy_IRQ_sync3;
 
 
// TX
// bit 15 ready
// bit 14 interrupt
// bit 13 wrap
// bit 12 pad
// bit 11 crc
// bit 10 last
// bit 9 pause request (control frame)
// bit 8 TxUnderRun
// bit 7-4 RetryCntLatched
// bit 3 retransmittion limit
// bit 2 LateCollLatched
// bit 1 DeferLatched
// bit 0 CarrierSenseLost
 
 
// RX
// bit 15 od rx je empty
// bit 14 od rx je interrupt
// bit 13 od rx je wrap
// bit 12 od rx je reserved
// bit 11 od rx je reserved
// bit 10 od rx je reserved
// bit 9 od rx je reserved
// bit 8 od rx je reserved
// bit 7 od rx je Miss
// bit 6 od rx je RxOverrun
// bit 5 od rx je InvalidSymbol
// bit 4 od rx je DribbleNibble
// bit 3 od rx je ReceivedPacketTooBig
// bit 2 od rx je ShortFrame
// bit 1 od rx je LatchedCrcError
// bit 0 od rx je RxLateCollision
 
 
endmodule
 
/tags/rel_13/rtl/verilog/eth_rxethmac.v
0,0 → 1,368
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_rxethmac.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// - Novan Hartadi (novan@vlsi.itb.ac.id) ////
//// - Mahmud Galela (mgalela@vlsi.itb.ac.id) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.9 2002/11/19 17:35:35 mohor
// AddressMiss status is connecting to the Rx BD. AddressMiss is identifying
// that a frame was received because of the promiscous mode.
//
// Revision 1.8 2002/02/16 07:15:27 mohor
// Testbench fixed, code simplified, unused signals removed.
//
// Revision 1.7 2002/02/15 13:44:28 mohor
// RxAbort is an output. No need to have is declared as wire.
//
// Revision 1.6 2002/02/15 11:17:48 mohor
// File format changed.
//
// Revision 1.5 2002/02/14 20:48:43 billditt
// Addition of new module eth_addrcheck.v
//
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.1 2001/06/27 21:26:19 mohor
// Initial release of the RxEthMAC module.
//
//
//
//
//
 
`include "timescale.v"
 
 
module eth_rxethmac (MRxClk, MRxDV, MRxD, Reset, Transmitting, MaxFL, r_IFG, HugEn, DlyCrcEn,
RxData, RxValid, RxStartFrm, RxEndFrm, ByteCnt, ByteCntEq0, ByteCntGreat2,
ByteCntMaxFrame, CrcError, StateIdle, StatePreamble, StateSFD, StateData,
MAC, r_Pro, r_Bro,r_HASH0, r_HASH1, RxAbort, AddressMiss, PassAll, ControlFrmAddressOK
);
 
parameter Tp = 1;
 
 
 
input MRxClk;
input MRxDV;
input [3:0] MRxD;
input Transmitting;
input HugEn;
input DlyCrcEn;
input [15:0] MaxFL;
input r_IFG;
input Reset;
input [47:0] MAC; // Station Address
input r_Bro; // broadcast disable
input r_Pro; // promiscuous enable
input [31:0] r_HASH0; // lower 4 bytes Hash Table
input [31:0] r_HASH1; // upper 4 bytes Hash Table
input PassAll;
input ControlFrmAddressOK;
 
output [7:0] RxData;
output RxValid;
output RxStartFrm;
output RxEndFrm;
output [15:0] ByteCnt;
output ByteCntEq0;
output ByteCntGreat2;
output ByteCntMaxFrame;
output CrcError;
output StateIdle;
output StatePreamble;
output StateSFD;
output [1:0] StateData;
output RxAbort;
output AddressMiss;
 
reg [7:0] RxData;
reg RxValid;
reg RxStartFrm;
reg RxEndFrm;
reg Broadcast;
reg Multicast;
reg [8:0] CrcHash;
reg CrcHashGood;
reg DelayData;
reg [3:0] LatchedNibble;
reg [7:0] LatchedByte;
reg [7:0] RxData_d;
reg RxValid_d;
reg RxStartFrm_d;
reg RxEndFrm_d;
 
wire MRxDEqD;
wire MRxDEq5;
wire StateDrop;
wire ByteCntEq1;
wire ByteCntEq2;
wire ByteCntEq3;
wire ByteCntEq4;
wire ByteCntEq5;
wire ByteCntEq6;
wire ByteCntEq7;
wire ByteCntSmall7;
wire [31:0] Crc;
wire Enable_Crc;
wire Initialize_Crc;
wire [3:0] Data_Crc;
wire GenerateRxValid;
wire GenerateRxStartFrm;
wire GenerateRxEndFrm;
wire DribbleRxEndFrm;
wire [3:0] DlyCrcCnt;
 
 
assign MRxDEqD = MRxD == 4'hd;
assign MRxDEq5 = MRxD == 4'h5;
 
 
// Rx State Machine module
eth_rxstatem rxstatem1 (.MRxClk(MRxClk), .Reset(Reset), .MRxDV(MRxDV), .ByteCntEq0(ByteCntEq0),
.ByteCntGreat2(ByteCntGreat2), .Transmitting(Transmitting), .MRxDEq5(MRxDEq5),
.MRxDEqD(MRxDEqD), .IFGCounterEq24(IFGCounterEq24), .ByteCntMaxFrame(ByteCntMaxFrame),
.StateData(StateData), .StateIdle(StateIdle), .StatePreamble(StatePreamble),
.StateSFD(StateSFD), .StateDrop(StateDrop)
);
 
 
// Rx Counters module
eth_rxcounters rxcounters1 (.MRxClk(MRxClk), .Reset(Reset), .MRxDV(MRxDV), .StateIdle(StateIdle),
.StateSFD(StateSFD), .StateData(StateData), .StateDrop(StateDrop),
.StatePreamble(StatePreamble), .MRxDEqD(MRxDEqD), .DlyCrcEn(DlyCrcEn),
.DlyCrcCnt(DlyCrcCnt), .Transmitting(Transmitting), .MaxFL(MaxFL), .r_IFG(r_IFG),
.HugEn(HugEn), .IFGCounterEq24(IFGCounterEq24), .ByteCntEq0(ByteCntEq0),
.ByteCntEq1(ByteCntEq1), .ByteCntEq2(ByteCntEq2), .ByteCntEq3(ByteCntEq3),
.ByteCntEq4(ByteCntEq4), .ByteCntEq5(ByteCntEq5), .ByteCntEq6(ByteCntEq6),
.ByteCntEq7(ByteCntEq7), .ByteCntGreat2(ByteCntGreat2),
.ByteCntSmall7(ByteCntSmall7), .ByteCntMaxFrame(ByteCntMaxFrame),
.ByteCnt(ByteCnt)
);
 
// Rx Address Check
 
eth_rxaddrcheck rxaddrcheck1
(.MRxClk(MRxClk), .Reset( Reset), .RxData(RxData),
.Broadcast (Broadcast), .r_Bro (r_Bro), .r_Pro(r_Pro),
.ByteCntEq6(ByteCntEq6), .ByteCntEq7(ByteCntEq7), .ByteCntEq2(ByteCntEq2),
.ByteCntEq3(ByteCntEq3), .ByteCntEq4(ByteCntEq4), .ByteCntEq5(ByteCntEq5),
.HASH0(r_HASH0), .HASH1(r_HASH1),
.CrcHash(CrcHash[5:0]), .CrcHashGood(CrcHashGood), .StateData(StateData),
.Multicast(Multicast), .MAC(MAC), .RxAbort(RxAbort),
.RxEndFrm(RxEndFrm), .AddressMiss(AddressMiss), .PassAll(PassAll),
.ControlFrmAddressOK(ControlFrmAddressOK)
);
 
 
assign Enable_Crc = MRxDV & (|StateData & ~ByteCntMaxFrame);
assign Initialize_Crc = StateSFD | DlyCrcEn & (|DlyCrcCnt[3:0]) & DlyCrcCnt[3:0] < 4'h9;
 
assign Data_Crc[0] = MRxD[3];
assign Data_Crc[1] = MRxD[2];
assign Data_Crc[2] = MRxD[1];
assign Data_Crc[3] = MRxD[0];
 
 
// Connecting module Crc
eth_crc crcrx (.Clk(MRxClk), .Reset(Reset), .Data(Data_Crc), .Enable(Enable_Crc), .Initialize(Initialize_Crc),
.Crc(Crc), .CrcError(CrcError)
);
 
 
 
// Latching CRC for use in the hash table
 
always @ (posedge MRxClk)
begin
CrcHashGood <= #Tp StateData[0] & ByteCntEq6;
end
 
always @ (posedge MRxClk)
begin
if(Reset | StateIdle)
CrcHash[8:0] <= #Tp 9'h0;
else
if(StateData[0] & ByteCntEq6)
CrcHash[8:0] <= #Tp Crc[31:23];
end
 
 
// Output byte stream
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
begin
RxData_d[7:0] <= #Tp 8'h0;
DelayData <= #Tp 1'b0;
LatchedNibble[3:0] <= #Tp 4'h0;
LatchedByte[7:0] <= #Tp 8'h0;
RxData[7:0] <= #Tp 8'h0;
end
else
begin
LatchedNibble[3:0] <= #Tp MRxD[3:0]; // Latched nibble
LatchedByte[7:0] <= #Tp {MRxD[3:0], LatchedNibble[3:0]}; // Latched byte
DelayData <= #Tp StateData[0];
 
if(GenerateRxValid)
RxData_d[7:0] <= #Tp LatchedByte[7:0] & {8{|StateData}}; // Data goes through only in data state
else
if(~DelayData)
RxData_d[7:0] <= #Tp 8'h0; // Delaying data to be valid for two cycles. Zero when not active.
 
RxData[7:0] <= #Tp RxData_d[7:0]; // Output data byte
end
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
Broadcast <= #Tp 1'b0;
else
begin
if(StateData[0] & ~(&LatchedByte[7:0]) & ByteCntSmall7)
Broadcast <= #Tp 1'b0;
else
if(StateData[0] & (&LatchedByte[7:0]) & ByteCntEq1)
Broadcast <= #Tp 1'b1;
else
if(RxAbort | RxEndFrm)
Broadcast <= #Tp 1'b0;
end
end
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
Multicast <= #Tp 1'b0;
else
begin
if(Reset)
Multicast <= #Tp 1'b0;
else
if(StateData[0] & ByteCntEq1 & LatchedByte == 8'h01)
Multicast <= #Tp 1'b1;
else if(RxAbort | RxEndFrm)
Multicast <= #Tp 1'b0;
end
end
 
 
assign GenerateRxValid = StateData[0] & (~ByteCntEq0 | DlyCrcCnt >= 4'h3);
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
begin
RxValid_d <= #Tp 1'b0;
RxValid <= #Tp 1'b0;
end
else
begin
RxValid_d <= #Tp GenerateRxValid;
RxValid <= #Tp RxValid_d;
end
end
 
 
assign GenerateRxStartFrm = StateData[0] & (ByteCntEq1 & ~DlyCrcEn | DlyCrcCnt == 4'h3 & DlyCrcEn);
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
begin
RxStartFrm_d <= #Tp 1'b0;
RxStartFrm <= #Tp 1'b0;
end
else
begin
RxStartFrm_d <= #Tp GenerateRxStartFrm;
RxStartFrm <= #Tp RxStartFrm_d;
end
end
 
 
assign GenerateRxEndFrm = StateData[0] & (~MRxDV & ByteCntGreat2 | ByteCntMaxFrame);
assign DribbleRxEndFrm = StateData[1] & ~MRxDV & ByteCntGreat2;
 
 
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
begin
RxEndFrm_d <= #Tp 1'b0;
RxEndFrm <= #Tp 1'b0;
end
else
begin
RxEndFrm_d <= #Tp GenerateRxEndFrm;
RxEndFrm <= #Tp RxEndFrm_d | DribbleRxEndFrm;
end
end
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_rxaddrcheck.v
0,0 → 1,207
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_rxaddrcheck.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/cores/ethmac/ ////
//// ////
//// Author(s): ////
//// - Bill Dittenhofer (billditt@aol.com) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.8 2002/11/19 17:34:52 mohor
// AddressMiss status is connecting to the Rx BD. AddressMiss is identifying
// that a frame was received because of the promiscous mode.
//
// Revision 1.7 2002/09/04 18:41:06 mohor
// Bug when last byte of destination address was not checked fixed.
//
// Revision 1.6 2002/03/20 15:14:11 mohor
// When in promiscous mode some frames were not received correctly. Fixed.
//
// Revision 1.5 2002/03/02 21:06:32 mohor
// Log info was missing.
//
//
// Revision 1.1 2002/02/08 12:51:54 ditt
// Initial release of the ethernet addresscheck module.
//
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_rxaddrcheck(MRxClk, Reset, RxData, Broadcast ,r_Bro ,r_Pro,
ByteCntEq2, ByteCntEq3, ByteCntEq4, ByteCntEq5,
ByteCntEq6, ByteCntEq7, HASH0, HASH1,
CrcHash, CrcHashGood, StateData, RxEndFrm,
Multicast, MAC, RxAbort, AddressMiss, PassAll,
ControlFrmAddressOK
);
 
parameter Tp = 1;
 
input MRxClk;
input Reset;
input [7:0] RxData;
input Broadcast;
input r_Bro;
input r_Pro;
input ByteCntEq2;
input ByteCntEq3;
input ByteCntEq4;
input ByteCntEq5;
input ByteCntEq6;
input ByteCntEq7;
input [31:0] HASH0;
input [31:0] HASH1;
input [5:0] CrcHash;
input CrcHashGood;
input Multicast;
input [47:0] MAC;
input [1:0] StateData;
input RxEndFrm;
input PassAll;
input ControlFrmAddressOK;
output RxAbort;
output AddressMiss;
 
wire BroadcastOK;
wire ByteCntEq2;
wire ByteCntEq3;
wire ByteCntEq4;
wire ByteCntEq5;
wire RxAddressInvalid;
wire RxCheckEn;
wire HashBit;
wire [31:0] IntHash;
reg [7:0] ByteHash;
reg MulticastOK;
reg UnicastOK;
reg RxAbort;
reg AddressMiss;
assign RxAddressInvalid = ~(UnicastOK | BroadcastOK | MulticastOK | r_Pro);
assign BroadcastOK = Broadcast & ~r_Bro;
assign RxCheckEn = | StateData;
// Address Error Reported at end of address cycle
// RxAbort clears after one cycle
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxAbort <= #Tp 1'b0;
else if(RxAddressInvalid & ByteCntEq7 & RxCheckEn)
RxAbort <= #Tp 1'b1;
else
RxAbort <= #Tp 1'b0;
end
 
// This ff holds the "Address Miss" information that is written to the RX BD status.
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
AddressMiss <= #Tp 1'b0;
else if(ByteCntEq7 & RxCheckEn)
AddressMiss <= #Tp (~(UnicastOK | BroadcastOK | MulticastOK | (PassAll & ControlFrmAddressOK)));
end
 
 
// Hash Address Check, Multicast
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
MulticastOK <= #Tp 1'b0;
else if(RxEndFrm | RxAbort)
MulticastOK <= #Tp 1'b0;
else if(CrcHashGood & Multicast)
MulticastOK <= #Tp HashBit;
end
// Address Detection (unicast)
// start with ByteCntEq2 due to delay of addres from RxData
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
UnicastOK <= #Tp 1'b0;
else
if(RxCheckEn & ByteCntEq2)
UnicastOK <= #Tp RxData[7:0] == MAC[47:40];
else
if(RxCheckEn & ByteCntEq3)
UnicastOK <= #Tp ( RxData[7:0] == MAC[39:32]) & UnicastOK;
else
if(RxCheckEn & ByteCntEq4)
UnicastOK <= #Tp ( RxData[7:0] == MAC[31:24]) & UnicastOK;
else
if(RxCheckEn & ByteCntEq5)
UnicastOK <= #Tp ( RxData[7:0] == MAC[23:16]) & UnicastOK;
else
if(RxCheckEn & ByteCntEq6)
UnicastOK <= #Tp ( RxData[7:0] == MAC[15:8]) & UnicastOK;
else
if(RxCheckEn & ByteCntEq7)
UnicastOK <= #Tp ( RxData[7:0] == MAC[7:0]) & UnicastOK;
else
if(RxEndFrm | RxAbort)
UnicastOK <= #Tp 1'b0;
end
assign IntHash = (CrcHash[5])? HASH1 : HASH0;
always@(CrcHash or IntHash)
begin
case(CrcHash[4:3])
2'b00: ByteHash = IntHash[7:0];
2'b01: ByteHash = IntHash[15:8];
2'b10: ByteHash = IntHash[23:16];
2'b11: ByteHash = IntHash[31:24];
endcase
end
assign HashBit = ByteHash[CrcHash[2:0]];
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_receivecontrol.v
0,0 → 1,432
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_receivecontrol.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.1 2001/07/03 12:51:54 mohor
// Initial release of the MAC Control module.
//
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_receivecontrol (MTxClk, MRxClk, TxReset, RxReset, RxData, RxValid, RxStartFrm,
RxEndFrm, RxFlow, ReceiveEnd, MAC, DlyCrcEn, TxDoneIn,
TxAbortIn, TxStartFrmOut, ReceivedLengthOK, ReceivedPacketGood,
TxUsedDataOutDetected, Pause, ReceivedPauseFrm, AddressOK,
LoadRxStatus, SetPauseTimer
);
 
parameter Tp = 1;
 
 
input MTxClk;
input MRxClk;
input TxReset;
input RxReset;
input [7:0] RxData;
input RxValid;
input RxStartFrm;
input RxEndFrm;
input RxFlow;
input ReceiveEnd;
input [47:0]MAC;
input DlyCrcEn;
input TxDoneIn;
input TxAbortIn;
input TxStartFrmOut;
input ReceivedLengthOK;
input ReceivedPacketGood;
input TxUsedDataOutDetected;
input LoadRxStatus;
 
output Pause;
output ReceivedPauseFrm;
output AddressOK;
output SetPauseTimer;
 
reg Pause;
reg AddressOK; // Multicast or unicast address detected
reg TypeLengthOK; // Type/Length field contains 0x8808
reg DetectionWindow; // Detection of the PAUSE frame is possible within this window
reg OpCodeOK; // PAUSE opcode detected (0x0001)
reg [2:0] DlyCrcCnt;
reg [4:0] ByteCnt;
reg [15:0] AssembledTimerValue;
reg [15:0] LatchedTimerValue;
reg ReceivedPauseFrm;
reg ReceivedPauseFrmWAddr;
reg PauseTimerEq0_sync1;
reg PauseTimerEq0_sync2;
reg [15:0] PauseTimer;
reg Divider2;
reg [5:0] SlotTimer;
 
wire [47:0] ReservedMulticast; // 0x0180C2000001
wire [15:0] TypeLength; // 0x8808
wire ResetByteCnt; //
wire IncrementByteCnt; //
wire ByteCntEq0; // ByteCnt = 0
wire ByteCntEq1; // ByteCnt = 1
wire ByteCntEq2; // ByteCnt = 2
wire ByteCntEq3; // ByteCnt = 3
wire ByteCntEq4; // ByteCnt = 4
wire ByteCntEq5; // ByteCnt = 5
wire ByteCntEq12; // ByteCnt = 12
wire ByteCntEq13; // ByteCnt = 13
wire ByteCntEq14; // ByteCnt = 14
wire ByteCntEq15; // ByteCnt = 15
wire ByteCntEq16; // ByteCnt = 16
wire ByteCntEq17; // ByteCnt = 17
wire ByteCntEq18; // ByteCnt = 18
wire DecrementPauseTimer; //
wire PauseTimerEq0; //
wire ResetSlotTimer; //
wire IncrementSlotTimer; //
wire SlotFinished; //
 
 
 
// Reserved multicast address and Type/Length for PAUSE control
assign ReservedMulticast = 48'h0180C2000001;
assign TypeLength = 16'h8808;
 
 
// Address Detection (Multicast or unicast)
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
AddressOK <= #Tp 1'b0;
else
if(DetectionWindow & ByteCntEq0)
AddressOK <= #Tp RxData[7:0] == ReservedMulticast[47:40] | RxData[7:0] == MAC[47:40];
else
if(DetectionWindow & ByteCntEq1)
AddressOK <= #Tp (RxData[7:0] == ReservedMulticast[39:32] | RxData[7:0] == MAC[39:32]) & AddressOK;
else
if(DetectionWindow & ByteCntEq2)
AddressOK <= #Tp (RxData[7:0] == ReservedMulticast[31:24] | RxData[7:0] == MAC[31:24]) & AddressOK;
else
if(DetectionWindow & ByteCntEq3)
AddressOK <= #Tp (RxData[7:0] == ReservedMulticast[23:16] | RxData[7:0] == MAC[23:16]) & AddressOK;
else
if(DetectionWindow & ByteCntEq4)
AddressOK <= #Tp (RxData[7:0] == ReservedMulticast[15:8] | RxData[7:0] == MAC[15:8]) & AddressOK;
else
if(DetectionWindow & ByteCntEq5)
AddressOK <= #Tp (RxData[7:0] == ReservedMulticast[7:0] | RxData[7:0] == MAC[7:0]) & AddressOK;
else
if(ReceiveEnd)
AddressOK <= #Tp 1'b0;
end
 
 
 
// TypeLengthOK (Type/Length Control frame detected)
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
TypeLengthOK <= #Tp 1'b0;
else
if(DetectionWindow & ByteCntEq12)
TypeLengthOK <= #Tp ByteCntEq12 & (RxData[7:0] == TypeLength[15:8]);
else
if(DetectionWindow & ByteCntEq13)
TypeLengthOK <= #Tp ByteCntEq13 & (RxData[7:0] == TypeLength[7:0]) & TypeLengthOK;
else
if(ReceiveEnd)
TypeLengthOK <= #Tp 1'b0;
end
 
 
 
// Latch Control Frame Opcode
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
OpCodeOK <= #Tp 1'b0;
else
if(RxStartFrm)
OpCodeOK <= #Tp 1'b0;
else
begin
if(DetectionWindow & ByteCntEq14)
OpCodeOK <= #Tp ByteCntEq14 & RxData[7:0] == 8'h00;
if(DetectionWindow & ByteCntEq15)
OpCodeOK <= #Tp ByteCntEq15 & RxData[7:0] == 8'h01 & OpCodeOK;
end
end
 
 
// ReceivedPauseFrmWAddr (+Address Check)
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
ReceivedPauseFrmWAddr <= #Tp 1'b0;
else
if(ReceiveEnd)
ReceivedPauseFrmWAddr <= #Tp 1'b0;
else
if(ByteCntEq16 & TypeLengthOK & OpCodeOK & AddressOK)
ReceivedPauseFrmWAddr <= #Tp 1'b1;
end
 
 
 
// Assembling 16-bit timer value from two 8-bit data
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
AssembledTimerValue[15:0] <= #Tp 16'h0;
else
if(RxStartFrm)
AssembledTimerValue[15:0] <= #Tp 16'h0;
else
begin
if(DetectionWindow & ByteCntEq16)
AssembledTimerValue[15:8] <= #Tp RxData[7:0];
if(DetectionWindow & ByteCntEq17)
AssembledTimerValue[7:0] <= #Tp RxData[7:0];
end
end
 
 
// Detection window (while PAUSE detection is possible)
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
DetectionWindow <= #Tp 1'b1;
else
if(ByteCntEq18)
DetectionWindow <= #Tp 1'b0;
else
if(ReceiveEnd)
DetectionWindow <= #Tp 1'b1;
end
 
 
 
// Latching Timer Value
always @ (posedge MRxClk or posedge RxReset )
begin
if(RxReset)
LatchedTimerValue[15:0] <= #Tp 16'h0;
else
if(DetectionWindow & ReceivedPauseFrmWAddr & ByteCntEq18)
LatchedTimerValue[15:0] <= #Tp AssembledTimerValue[15:0];
else
if(ReceiveEnd)
LatchedTimerValue[15:0] <= #Tp 16'h0;
end
 
 
 
// Delayed CEC counter
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
DlyCrcCnt <= #Tp 3'h0;
else
if(RxValid & RxEndFrm)
DlyCrcCnt <= #Tp 3'h0;
else
if(RxValid & ~RxEndFrm & ~DlyCrcCnt[2])
DlyCrcCnt <= #Tp DlyCrcCnt + 1'b1;
end
 
assign ResetByteCnt = RxEndFrm;
assign IncrementByteCnt = RxValid & DetectionWindow & ~ByteCntEq18 & (~DlyCrcEn | DlyCrcEn & DlyCrcCnt[2]);
 
 
// Byte counter
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
ByteCnt[4:0] <= #Tp 5'h0;
else
if(ResetByteCnt)
ByteCnt[4:0] <= #Tp 5'h0;
else
if(IncrementByteCnt)
ByteCnt[4:0] <= #Tp ByteCnt[4:0] + 1'b1;
end
 
 
assign ByteCntEq0 = RxValid & ByteCnt[4:0] == 5'h0;
assign ByteCntEq1 = RxValid & ByteCnt[4:0] == 5'h1;
assign ByteCntEq2 = RxValid & ByteCnt[4:0] == 5'h2;
assign ByteCntEq3 = RxValid & ByteCnt[4:0] == 5'h3;
assign ByteCntEq4 = RxValid & ByteCnt[4:0] == 5'h4;
assign ByteCntEq5 = RxValid & ByteCnt[4:0] == 5'h5;
assign ByteCntEq12 = RxValid & ByteCnt[4:0] == 5'h0C;
assign ByteCntEq13 = RxValid & ByteCnt[4:0] == 5'h0D;
assign ByteCntEq14 = RxValid & ByteCnt[4:0] == 5'h0E;
assign ByteCntEq15 = RxValid & ByteCnt[4:0] == 5'h0F;
assign ByteCntEq16 = RxValid & ByteCnt[4:0] == 5'h10;
assign ByteCntEq17 = RxValid & ByteCnt[4:0] == 5'h11;
assign ByteCntEq18 = RxValid & ByteCnt[4:0] == 5'h12 & DetectionWindow;
 
 
assign SetPauseTimer = ReceiveEnd & ReceivedPauseFrmWAddr & ReceivedPacketGood & ReceivedLengthOK & RxFlow;
assign DecrementPauseTimer = SlotFinished & |PauseTimer;
 
 
// PauseTimer[15:0]
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
PauseTimer[15:0] <= #Tp 16'h0;
else
if(SetPauseTimer)
PauseTimer[15:0] <= #Tp LatchedTimerValue[15:0];
else
if(DecrementPauseTimer)
PauseTimer[15:0] <= #Tp PauseTimer[15:0] - 1'b1;
end
 
assign PauseTimerEq0 = ~(|PauseTimer[15:0]);
 
 
 
// Synchronization of the pause timer
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
begin
PauseTimerEq0_sync1 <= #Tp 1'b1;
PauseTimerEq0_sync2 <= #Tp 1'b1;
end
else
begin
PauseTimerEq0_sync1 <= #Tp PauseTimerEq0;
PauseTimerEq0_sync2 <= #Tp PauseTimerEq0_sync1;
end
end
 
 
// Pause signal generation
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
Pause <= #Tp 1'b0;
else
if((TxDoneIn | TxAbortIn | ~TxUsedDataOutDetected) & ~TxStartFrmOut)
Pause <= #Tp RxFlow & ~PauseTimerEq0_sync2;
end
 
 
// Divider2 is used for incrementing the Slot timer every other clock
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
Divider2 <= #Tp 1'b0;
else
if(|PauseTimer[15:0] & RxFlow)
Divider2 <= #Tp ~Divider2;
else
Divider2 <= #Tp 1'b0;
end
 
 
assign ResetSlotTimer = RxReset;
assign IncrementSlotTimer = Pause & RxFlow & Divider2;
 
 
// SlotTimer
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
SlotTimer[5:0] <= #Tp 6'h0;
else
if(ResetSlotTimer)
SlotTimer[5:0] <= #Tp 6'h0;
else
if(IncrementSlotTimer)
SlotTimer[5:0] <= #Tp SlotTimer[5:0] + 1'b1;
end
 
 
assign SlotFinished = &SlotTimer[5:0] & IncrementSlotTimer; // Slot is 512 bits (64 bytes)
 
 
 
// Pause Frame received
always @ (posedge MRxClk or posedge RxReset)
begin
if(RxReset)
ReceivedPauseFrm <=#Tp 1'b0;
else
if(ByteCntEq16 & TypeLengthOK & OpCodeOK)
ReceivedPauseFrm <=#Tp 1'b1;
else
if(RxStartFrm)
ReceivedPauseFrm <=#Tp 1'b0;
end
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_maccontrol.v
0,0 → 1,266
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_maccontrol.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5 2002/11/21 00:14:39 mohor
// TxDone and TxAbort changed so they're not propagated to the wishbone
// module when control frame is transmitted.
//
// Revision 1.4 2002/11/19 17:37:32 mohor
// When control frame (PAUSE) was sent, status was written in the
// eth_wishbone module and both TXB and TXC interrupts were set. Fixed.
// Only TXC interrupt is set.
//
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.1 2001/07/03 12:51:54 mohor
// Initial release of the MAC Control module.
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_maccontrol (MTxClk, MRxClk, TxReset, RxReset, TPauseRq, TxDataIn, TxStartFrmIn, TxUsedDataIn,
TxEndFrmIn, TxDoneIn, TxAbortIn, RxData, RxValid, RxStartFrm, RxEndFrm, ReceiveEnd,
ReceivedPacketGood, ReceivedLengthOK, TxFlow, RxFlow, DlyCrcEn, TxPauseTV,
MAC, PadIn, PadOut, CrcEnIn, CrcEnOut, TxDataOut, TxStartFrmOut, TxEndFrmOut,
TxDoneOut, TxAbortOut, TxUsedDataOut, WillSendControlFrame, TxCtrlEndFrm,
ReceivedPauseFrm, ControlFrmAddressOK, LoadRxStatus, SetPauseTimer
);
 
 
parameter Tp = 1;
 
 
input MTxClk; // Transmit clock (from PHY)
input MRxClk; // Receive clock (from PHY)
input TxReset; // Transmit reset
input RxReset; // Receive reset
input TPauseRq; // Transmit control frame (from host)
input [7:0] TxDataIn; // Transmit packet data byte (from host)
input TxStartFrmIn; // Transmit packet start frame input (from host)
input TxUsedDataIn; // Transmit packet used data (from TxEthMAC)
input TxEndFrmIn; // Transmit packet end frame input (from host)
input TxDoneIn; // Transmit packet done (from TxEthMAC)
input TxAbortIn; // Transmit packet abort (input from TxEthMAC)
input PadIn; // Padding (input from registers)
input CrcEnIn; // Crc append (input from registers)
input [7:0] RxData; // Receive Packet Data (from RxEthMAC)
input RxValid; // Received a valid packet
input RxStartFrm; // Receive packet start frame (input from RxEthMAC)
input RxEndFrm; // Receive packet end frame (input from RxEthMAC)
input ReceiveEnd; // End of receiving of the current packet (input from RxEthMAC)
input ReceivedPacketGood; // Received packet is good
input ReceivedLengthOK; // Length of the received packet is OK
input TxFlow; // Tx flow control (from registers)
input RxFlow; // Rx flow control (from registers)
input DlyCrcEn; // Delayed CRC enabled (from registers)
input [15:0] TxPauseTV; // Transmit Pause Timer Value (from registers)
input [47:0] MAC; // MAC address (from registers)
input LoadRxStatus;
 
output [7:0] TxDataOut; // Transmit Packet Data (to TxEthMAC)
output TxStartFrmOut; // Transmit packet start frame (output to TxEthMAC)
output TxEndFrmOut; // Transmit packet end frame (output to TxEthMAC)
output TxDoneOut; // Transmit packet done (to host)
output TxAbortOut; // Transmit packet aborted (to host)
output TxUsedDataOut; // Transmit packet used data (to host)
output PadOut; // Padding (output to TxEthMAC)
output CrcEnOut; // Crc append (output to TxEthMAC)
output WillSendControlFrame;
output TxCtrlEndFrm;
output ReceivedPauseFrm;
output ControlFrmAddressOK;
output SetPauseTimer;
 
reg TxUsedDataOutDetected;
reg TxAbortInLatched;
reg TxDoneInLatched;
reg MuxedDone;
reg MuxedAbort;
 
wire Pause;
wire TxCtrlStartFrm;
wire [7:0] ControlData;
wire CtrlMux;
wire SendingCtrlFrm; // Sending Control Frame (enables padding and CRC)
wire BlockTxDone;
 
 
// Signal TxUsedDataOut was detected (a transfer is already in progress)
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
TxUsedDataOutDetected <= #Tp 1'b0;
else
if(TxDoneIn | TxAbortIn)
TxUsedDataOutDetected <= #Tp 1'b0;
else
if(TxUsedDataOut)
TxUsedDataOutDetected <= #Tp 1'b1;
end
 
 
// Latching variables
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
begin
TxAbortInLatched <= #Tp 1'b0;
TxDoneInLatched <= #Tp 1'b0;
end
else
begin
TxAbortInLatched <= #Tp TxAbortIn;
TxDoneInLatched <= #Tp TxDoneIn;
end
end
 
 
 
// Generating muxed abort signal
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
MuxedAbort <= #Tp 1'b0;
else
if(TxStartFrmIn)
MuxedAbort <= #Tp 1'b0;
else
if(TxAbortIn & ~TxAbortInLatched & TxUsedDataOutDetected)
MuxedAbort <= #Tp 1'b1;
end
 
 
// Generating muxed done signal
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
MuxedDone <= #Tp 1'b0;
else
if(TxStartFrmIn)
MuxedDone <= #Tp 1'b0;
else
if(TxDoneIn & (~TxDoneInLatched) & TxUsedDataOutDetected)
MuxedDone <= #Tp 1'b1;
end
 
 
// TxDoneOut
assign TxDoneOut = CtrlMux? ((~TxStartFrmIn) & (~BlockTxDone) & MuxedDone) :
((~TxStartFrmIn) & (~BlockTxDone) & TxDoneIn);
 
// TxAbortOut
assign TxAbortOut = CtrlMux? ((~TxStartFrmIn) & (~BlockTxDone) & MuxedAbort) :
((~TxStartFrmIn) & (~BlockTxDone) & TxAbortIn);
 
// TxUsedDataOut
assign TxUsedDataOut = ~CtrlMux & TxUsedDataIn;
 
// TxStartFrmOut
assign TxStartFrmOut = CtrlMux? TxCtrlStartFrm : (TxStartFrmIn & ~Pause);
 
 
// TxEndFrmOut
assign TxEndFrmOut = CtrlMux? TxCtrlEndFrm : TxEndFrmIn;
 
 
// TxDataOut[7:0]
assign TxDataOut[7:0] = CtrlMux? ControlData[7:0] : TxDataIn[7:0];
 
 
// PadOut
assign PadOut = PadIn | SendingCtrlFrm;
 
 
// CrcEnOut
assign CrcEnOut = CrcEnIn | SendingCtrlFrm;
 
 
 
// Connecting receivecontrol module
eth_receivecontrol receivecontrol1
(
.MTxClk(MTxClk), .MRxClk(MRxClk), .TxReset(TxReset), .RxReset(RxReset), .RxData(RxData),
.RxValid(RxValid), .RxStartFrm(RxStartFrm), .RxEndFrm(RxEndFrm), .RxFlow(RxFlow),
.ReceiveEnd(ReceiveEnd), .MAC(MAC), .DlyCrcEn(DlyCrcEn), .TxDoneIn(TxDoneIn),
.TxAbortIn(TxAbortIn), .TxStartFrmOut(TxStartFrmOut), .ReceivedLengthOK(ReceivedLengthOK),
.ReceivedPacketGood(ReceivedPacketGood), .TxUsedDataOutDetected(TxUsedDataOutDetected),
.Pause(Pause), .ReceivedPauseFrm(ReceivedPauseFrm), .AddressOK(ControlFrmAddressOK),
.LoadRxStatus(LoadRxStatus), .SetPauseTimer(SetPauseTimer)
);
 
 
eth_transmitcontrol transmitcontrol1
(
.MTxClk(MTxClk), .TxReset(TxReset), .TxUsedDataIn(TxUsedDataIn), .TxUsedDataOut(TxUsedDataOut),
.TxDoneIn(TxDoneIn), .TxAbortIn(TxAbortIn), .TxStartFrmIn(TxStartFrmIn), .TPauseRq(TPauseRq),
.TxUsedDataOutDetected(TxUsedDataOutDetected), .TxFlow(TxFlow), .DlyCrcEn(DlyCrcEn), .TxPauseTV(TxPauseTV),
.MAC(MAC), .TxCtrlStartFrm(TxCtrlStartFrm), .TxCtrlEndFrm(TxCtrlEndFrm), .SendingCtrlFrm(SendingCtrlFrm),
.CtrlMux(CtrlMux), .ControlData(ControlData), .WillSendControlFrame(WillSendControlFrame), .BlockTxDone(BlockTxDone)
);
 
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_top.v
0,0 → 1,911
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_top.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.42 2002/11/21 00:09:19 mohor
// TPauseRq synchronized to tx_clk.
//
// Revision 1.41 2002/11/19 18:13:49 mohor
// r_MiiMRst is not used for resetting the MIIM module. wb_rst used instead.
//
// Revision 1.40 2002/11/19 17:34:25 mohor
// AddressMiss status is connecting to the Rx BD. AddressMiss is identifying
// that a frame was received because of the promiscous mode.
//
// Revision 1.39 2002/11/18 17:31:55 mohor
// wb_rst_i is used for MIIM reset.
//
// Revision 1.38 2002/11/14 18:37:20 mohor
// r_Rst signal does not reset any module any more and is removed from the design.
//
// Revision 1.37 2002/11/13 22:25:36 tadejm
// All modules are reset with wb_rst instead of the r_Rst. Exception is MII module.
//
// Revision 1.36 2002/10/18 17:04:20 tadejm
// Changed BIST scan signals.
//
// Revision 1.35 2002/10/11 13:36:58 mohor
// Typo error fixed. (When using Bist)
//
// Revision 1.34 2002/10/10 16:49:50 mohor
// Signals for WISHBONE B3 compliant interface added.
//
// Revision 1.33 2002/10/10 16:29:30 mohor
// BIST added.
//
// Revision 1.32 2002/09/20 17:12:58 mohor
// CsMiss added. When address between 0x800 and 0xfff is accessed within
// Ethernet Core, error acknowledge is generated.
//
// Revision 1.31 2002/09/12 14:50:17 mohor
// CarrierSenseLost bug fixed when operating in full duplex mode.
//
// Revision 1.30 2002/09/10 10:35:23 mohor
// Ethernet debug registers removed.
//
// Revision 1.29 2002/09/09 13:03:13 mohor
// Error acknowledge is generated when accessing BDs and RST bit in the
// MODER register (r_Rst) is set.
//
// Revision 1.28 2002/09/04 18:44:10 mohor
// Signals related to the control frames connected. Debug registers reg1, 2, 3, 4
// connected.
//
// Revision 1.27 2002/07/25 18:15:37 mohor
// RxAbort changed. Packets received with MRxErr (from PHY) are also
// aborted.
//
// Revision 1.26 2002/07/17 18:51:50 mohor
// EXTERNAL_DMA removed. External DMA not supported.
//
// Revision 1.25 2002/05/03 10:15:50 mohor
// Outputs registered. Reset changed for eth_wishbone module.
//
// Revision 1.24 2002/04/22 14:15:42 mohor
// Wishbone signals are registered when ETH_REGISTERED_OUTPUTS is
// selected in eth_defines.v
//
// Revision 1.23 2002/03/25 13:33:53 mohor
// md_padoen_o changed to md_padoe_o. Signal was always active high, just
// name was incorrect.
//
// Revision 1.22 2002/02/26 16:59:54 mohor
// Small fixes for external/internal DMA missmatches.
//
// Revision 1.21 2002/02/26 16:21:00 mohor
// Interrupts changed in the top file
//
// Revision 1.20 2002/02/18 10:40:17 mohor
// Small fixes.
//
// Revision 1.19 2002/02/16 14:03:44 mohor
// Registered trimmed. Unused registers removed.
//
// Revision 1.18 2002/02/16 13:06:33 mohor
// EXTERNAL_DMA used instead of WISHBONE_DMA.
//
// Revision 1.17 2002/02/16 07:15:27 mohor
// Testbench fixed, code simplified, unused signals removed.
//
// Revision 1.16 2002/02/15 13:49:39 mohor
// RxAbort is connected differently.
//
// Revision 1.15 2002/02/15 11:38:26 mohor
// Changes that were lost when updating from 1.11 to 1.14 fixed.
//
// Revision 1.14 2002/02/14 20:19:11 billditt
// Modified for Address Checking,
// addition of eth_addrcheck.v
//
// Revision 1.13 2002/02/12 17:03:03 mohor
// HASH0 and HASH1 registers added. Registers address width was
// changed to 8 bits.
//
// Revision 1.12 2002/02/11 09:18:22 mohor
// Tx status is written back to the BD.
//
// Revision 1.11 2002/02/08 16:21:54 mohor
// Rx status is written back to the BD.
//
// Revision 1.10 2002/02/06 14:10:21 mohor
// non-DMA host interface added. Select the right configutation in eth_defines.
//
// Revision 1.9 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.8 2001/12/05 15:00:16 mohor
// RX_BD_NUM changed to TX_BD_NUM (holds number of TX descriptors
// instead of the number of RX descriptors).
//
// Revision 1.7 2001/12/05 10:45:59 mohor
// ETH_RX_BD_ADR register deleted. ETH_RX_BD_NUM is used instead.
//
// Revision 1.6 2001/10/19 11:24:29 mohor
// Number of addresses (wb_adr_i) minimized.
//
// Revision 1.5 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.4 2001/10/18 12:07:11 mohor
// Status signals changed, Adress decoding changed, interrupt controller
// added.
//
// Revision 1.3 2001/09/24 15:02:56 mohor
// Defines changed (All precede with ETH_). Small changes because some
// tools generate warnings when two operands are together. Synchronization
// between two clocks domains in eth_wishbonedma.v is changed (due to ASIC
// demands).
//
// Revision 1.2 2001/08/15 14:03:59 mohor
// Signal names changed on the top level for easier pad insertion (ASIC).
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.2 2001/08/02 09:25:31 mohor
// Unconnected signals are now connected.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
//
//
//
 
 
`include "eth_defines.v"
`include "timescale.v"
 
 
module eth_top
(
// WISHBONE common
wb_clk_i, wb_rst_i, wb_dat_i, wb_dat_o,
 
// WISHBONE slave
wb_adr_i, wb_sel_i, wb_we_i, wb_cyc_i, wb_stb_i, wb_ack_o, wb_err_o,
 
// WISHBONE master
m_wb_adr_o, m_wb_sel_o, m_wb_we_o,
m_wb_dat_o, m_wb_dat_i, m_wb_cyc_o,
m_wb_stb_o, m_wb_ack_i, m_wb_err_i,
 
`ifdef ETH_WISHBONE_B3
m_wb_cti_o, m_wb_bte_o,
`endif
 
//TX
mtx_clk_pad_i, mtxd_pad_o, mtxen_pad_o, mtxerr_pad_o,
 
//RX
mrx_clk_pad_i, mrxd_pad_i, mrxdv_pad_i, mrxerr_pad_i, mcoll_pad_i, mcrs_pad_i,
// MIIM
mdc_pad_o, md_pad_i, md_pad_o, md_padoe_o,
 
int_o
 
// Bist
`ifdef ETH_BIST
,
// debug chain signals
scanb_rst, // bist scan reset
scanb_clk, // bist scan clock
scanb_si, // bist scan serial in
scanb_so, // bist scan serial out
scanb_en // bist scan shift enable
`endif
 
);
 
 
parameter Tp = 1;
 
 
// WISHBONE common
input wb_clk_i; // WISHBONE clock
input wb_rst_i; // WISHBONE reset
input [31:0] wb_dat_i; // WISHBONE data input
output [31:0] wb_dat_o; // WISHBONE data output
output wb_err_o; // WISHBONE error output
 
// WISHBONE slave
input [11:2] wb_adr_i; // WISHBONE address input
input [3:0] wb_sel_i; // WISHBONE byte select input
input wb_we_i; // WISHBONE write enable input
input wb_cyc_i; // WISHBONE cycle input
input wb_stb_i; // WISHBONE strobe input
output wb_ack_o; // WISHBONE acknowledge output
 
// WISHBONE master
output [31:0] m_wb_adr_o;
output [3:0] m_wb_sel_o;
output m_wb_we_o;
input [31:0] m_wb_dat_i;
output [31:0] m_wb_dat_o;
output m_wb_cyc_o;
output m_wb_stb_o;
input m_wb_ack_i;
input m_wb_err_i;
 
`ifdef ETH_WISHBONE_B3
output [2:0] m_wb_cti_o; // Cycle Type Identifier
output [1:0] m_wb_bte_o; // Burst Type Extension
`endif
 
// Tx
input mtx_clk_pad_i; // Transmit clock (from PHY)
output [3:0] mtxd_pad_o; // Transmit nibble (to PHY)
output mtxen_pad_o; // Transmit enable (to PHY)
output mtxerr_pad_o; // Transmit error (to PHY)
 
// Rx
input mrx_clk_pad_i; // Receive clock (from PHY)
input [3:0] mrxd_pad_i; // Receive nibble (from PHY)
input mrxdv_pad_i; // Receive data valid (from PHY)
input mrxerr_pad_i; // Receive data error (from PHY)
 
// Common Tx and Rx
input mcoll_pad_i; // Collision (from PHY)
input mcrs_pad_i; // Carrier sense (from PHY)
 
// MII Management interface
input md_pad_i; // MII data input (from I/O cell)
output mdc_pad_o; // MII Management data clock (to PHY)
output md_pad_o; // MII data output (to I/O cell)
output md_padoe_o; // MII data output enable (to I/O cell)
 
output int_o; // Interrupt output
 
// Bist
`ifdef ETH_BIST
input scanb_rst; // bist scan reset
input scanb_clk; // bist scan clock
input scanb_si; // bist scan serial in
output scanb_so; // bist scan serial out
input scanb_en; // bist scan shift enable
`endif
 
wire [7:0] r_ClkDiv;
wire r_MiiNoPre;
wire [15:0] r_CtrlData;
wire [4:0] r_FIAD;
wire [4:0] r_RGAD;
wire r_WCtrlData;
wire r_RStat;
wire r_ScanStat;
wire NValid_stat;
wire Busy_stat;
wire LinkFail;
wire [15:0] Prsd; // Read Status Data (data read from the PHY)
wire WCtrlDataStart;
wire RStatStart;
wire UpdateMIIRX_DATAReg;
 
wire TxStartFrm;
wire TxEndFrm;
wire TxUsedData;
wire [7:0] TxData;
wire TxRetry;
wire TxAbort;
wire TxUnderRun;
wire TxDone;
wire [5:0] CollValid;
 
 
reg WillSendControlFrame_sync1;
reg WillSendControlFrame_sync2;
reg WillSendControlFrame_sync3;
reg RstTxPauseRq;
 
reg TxPauseRq_sync1;
reg TxPauseRq_sync2;
reg TxPauseRq_sync3;
reg TPauseRq;
 
 
// Connecting Miim module
eth_miim miim1
(
.Clk(wb_clk_i), .Reset(wb_rst_i), .Divider(r_ClkDiv),
.NoPre(r_MiiNoPre), .CtrlData(r_CtrlData), .Rgad(r_RGAD),
.Fiad(r_FIAD), .WCtrlData(r_WCtrlData), .RStat(r_RStat),
.ScanStat(r_ScanStat), .Mdi(md_pad_i), .Mdo(md_pad_o),
.MdoEn(md_padoe_o), .Mdc(mdc_pad_o), .Busy(Busy_stat),
.Prsd(Prsd), .LinkFail(LinkFail), .Nvalid(NValid_stat),
.WCtrlDataStart(WCtrlDataStart), .RStatStart(RStatStart), .UpdateMIIRX_DATAReg(UpdateMIIRX_DATAReg)
);
 
 
 
 
wire RegCs; // Connected to registers
wire [31:0] RegDataOut; // Multiplexed to wb_dat_o
wire r_RecSmall; // Receive small frames
wire r_LoopBck; // Loopback
wire r_TxEn; // Tx Enable
wire r_RxEn; // Rx Enable
 
wire MRxDV_Lb; // Muxed MII receive data valid
wire MRxErr_Lb; // Muxed MII Receive Error
wire [3:0] MRxD_Lb; // Muxed MII Receive Data
wire Transmitting; // Indication that TxEthMAC is transmitting
wire r_HugEn; // Huge packet enable
wire r_DlyCrcEn; // Delayed CRC enabled
wire [15:0] r_MaxFL; // Maximum frame length
 
wire [15:0] r_MinFL; // Minimum frame length
wire ShortFrame;
wire DribbleNibble; // Extra nibble received
wire ReceivedPacketTooBig; // Received packet is too big
wire [47:0] r_MAC; // MAC address
wire LoadRxStatus; // Rx status was loaded
wire [31:0] r_HASH0; // HASH table, lower 4 bytes
wire [31:0] r_HASH1; // HASH table, upper 4 bytes
wire [7:0] r_TxBDNum; // Receive buffer descriptor number
wire [6:0] r_IPGT; //
wire [6:0] r_IPGR1; //
wire [6:0] r_IPGR2; //
wire [5:0] r_CollValid; //
wire [15:0] r_TxPauseTV; // Transmit PAUSE value
wire r_TxPauseRq; // Transmit PAUSE request
 
wire [3:0] r_MaxRet; //
wire r_NoBckof; //
wire r_ExDfrEn; //
wire TX_BD_NUM_Wr; // Write enable that writes RX_BD_NUM to the registers.
wire r_TxFlow; // Tx flow control enable
wire r_IFG; // Minimum interframe gap for incoming packets
 
wire TxB_IRQ; // Interrupt Tx Buffer
wire TxE_IRQ; // Interrupt Tx Error
wire RxB_IRQ; // Interrupt Rx Buffer
wire RxE_IRQ; // Interrupt Rx Error
wire Busy_IRQ; // Interrupt Busy (lack of buffers)
 
wire DWord;
wire BDAck;
wire [31:0] BD_WB_DAT_O; // wb_dat_o that comes from the Wishbone module (for buffer descriptors read/write)
wire BDCs; // Buffer descriptor CS
wire CsMiss; // When access to the address between 0x800 and 0xfff occurs, acknowledge is set
// but data is not valid.
 
wire temp_wb_ack_o;
wire [31:0] temp_wb_dat_o;
wire temp_wb_err_o;
 
`ifdef ETH_REGISTERED_OUTPUTS
reg temp_wb_ack_o_reg;
reg [31:0] temp_wb_dat_o_reg;
reg temp_wb_err_o_reg;
`endif
 
assign DWord = &wb_sel_i;
assign RegCs = wb_stb_i & wb_cyc_i & DWord & ~wb_adr_i[11] & ~wb_adr_i[10]; // 0x0 - 0x3FF
assign BDCs = wb_stb_i & wb_cyc_i & DWord & ~wb_adr_i[11] & wb_adr_i[10]; // 0x400 - 0x7FF
assign CsMiss = wb_stb_i & wb_cyc_i & DWord & wb_adr_i[11]; // 0x800 - 0xfFF
assign temp_wb_ack_o = RegCs | BDAck;
assign temp_wb_dat_o = (RegCs & ~wb_we_i)? RegDataOut : BD_WB_DAT_O;
assign temp_wb_err_o = wb_stb_i & wb_cyc_i & (~DWord | CsMiss);
 
`ifdef ETH_REGISTERED_OUTPUTS
assign wb_ack_o = temp_wb_ack_o_reg;
assign wb_dat_o[31:0] = temp_wb_dat_o_reg;
assign wb_err_o = temp_wb_err_o_reg;
`else
assign wb_ack_o = temp_wb_ack_o;
assign wb_dat_o[31:0] = temp_wb_dat_o;
assign wb_err_o = temp_wb_err_o;
`endif
 
 
 
`ifdef ETH_REGISTERED_OUTPUTS
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
temp_wb_ack_o_reg <=#Tp 1'b0;
temp_wb_dat_o_reg <=#Tp 32'h0;
temp_wb_err_o_reg <=#Tp 1'b0;
end
else
begin
temp_wb_ack_o_reg <=#Tp temp_wb_ack_o & ~temp_wb_ack_o_reg;
temp_wb_dat_o_reg <=#Tp temp_wb_dat_o;
temp_wb_err_o_reg <=#Tp temp_wb_err_o & ~temp_wb_err_o_reg;
end
end
`endif
 
 
// Connecting Ethernet registers
eth_registers ethreg1
(
.DataIn(wb_dat_i), .Address(wb_adr_i[9:2]), .Rw(wb_we_i),
.Cs(RegCs), .Clk(wb_clk_i), .Reset(wb_rst_i),
.DataOut(RegDataOut), .r_RecSmall(r_RecSmall),
.r_Pad(r_Pad), .r_HugEn(r_HugEn), .r_CrcEn(r_CrcEn),
.r_DlyCrcEn(r_DlyCrcEn), .r_FullD(r_FullD),
.r_ExDfrEn(r_ExDfrEn), .r_NoBckof(r_NoBckof), .r_LoopBck(r_LoopBck),
.r_IFG(r_IFG), .r_Pro(r_Pro), .r_Iam(),
.r_Bro(r_Bro), .r_NoPre(r_NoPre), .r_TxEn(r_TxEn),
.r_RxEn(r_RxEn), .Busy_IRQ(Busy_IRQ), .RxE_IRQ(RxE_IRQ),
.RxB_IRQ(RxB_IRQ), .TxE_IRQ(TxE_IRQ), .TxB_IRQ(TxB_IRQ),
.r_IPGT(r_IPGT),
.r_IPGR1(r_IPGR1), .r_IPGR2(r_IPGR2), .r_MinFL(r_MinFL),
.r_MaxFL(r_MaxFL), .r_MaxRet(r_MaxRet), .r_CollValid(r_CollValid),
.r_TxFlow(r_TxFlow), .r_RxFlow(r_RxFlow), .r_PassAll(r_PassAll),
.r_MiiNoPre(r_MiiNoPre), .r_ClkDiv(r_ClkDiv),
.r_WCtrlData(r_WCtrlData), .r_RStat(r_RStat), .r_ScanStat(r_ScanStat),
.r_RGAD(r_RGAD), .r_FIAD(r_FIAD), .r_CtrlData(r_CtrlData),
.NValid_stat(NValid_stat), .Busy_stat(Busy_stat),
.LinkFail(LinkFail), .r_MAC(r_MAC), .WCtrlDataStart(WCtrlDataStart),
.RStatStart(RStatStart), .UpdateMIIRX_DATAReg(UpdateMIIRX_DATAReg), .Prsd(Prsd),
.r_TxBDNum(r_TxBDNum), .TX_BD_NUM_Wr(TX_BD_NUM_Wr), .int_o(int_o),
.r_HASH0(r_HASH0), .r_HASH1(r_HASH1), .r_TxPauseRq(r_TxPauseRq),
.r_TxPauseTV(r_TxPauseTV), .RstTxPauseRq(RstTxPauseRq), .TxCtrlEndFrm(TxCtrlEndFrm),
.StartTxDone(StartTxDone), .TxClk(mtx_clk_pad_i), .RxClk(mrx_clk_pad_i),
.SetPauseTimer(SetPauseTimer)
);
 
 
 
wire [7:0] RxData;
wire RxValid;
wire RxStartFrm;
wire RxEndFrm;
wire RxAbort;
 
wire WillTransmit; // Will transmit (to RxEthMAC)
wire ResetCollision; // Reset Collision (for synchronizing collision)
wire [7:0] TxDataOut; // Transmit Packet Data (to TxEthMAC)
wire WillSendControlFrame;
wire ReceiveEnd;
wire ReceivedPacketGood;
wire ReceivedLengthOK;
wire InvalidSymbol;
wire LatchedCrcError;
wire RxLateCollision;
wire [3:0] RetryCntLatched;
wire [3:0] RetryCnt;
wire StartTxAbort;
wire MaxCollisionOccured;
wire RetryLimit;
wire StatePreamble;
wire [1:0] StateData;
 
// Connecting MACControl
eth_maccontrol maccontrol1
(
.MTxClk(mtx_clk_pad_i), .TPauseRq(TPauseRq),
.TxPauseTV(r_TxPauseTV), .TxDataIn(TxData),
.TxStartFrmIn(TxStartFrm), .TxEndFrmIn(TxEndFrm),
.TxUsedDataIn(TxUsedDataIn), .TxDoneIn(TxDoneIn),
.TxAbortIn(TxAbortIn), .MRxClk(mrx_clk_pad_i),
.RxData(RxData), .RxValid(RxValid),
.RxStartFrm(RxStartFrm), .RxEndFrm(RxEndFrm),
.ReceiveEnd(ReceiveEnd), .ReceivedPacketGood(ReceivedPacketGood),
.TxFlow(r_TxFlow),
.RxFlow(r_RxFlow), .DlyCrcEn(r_DlyCrcEn),
.MAC(r_MAC), .PadIn(r_Pad | PerPacketPad),
.PadOut(PadOut), .CrcEnIn(r_CrcEn | PerPacketCrcEn),
.CrcEnOut(CrcEnOut), .TxReset(wb_rst_i),
.RxReset(wb_rst_i), .ReceivedLengthOK(ReceivedLengthOK),
.TxDataOut(TxDataOut), .TxStartFrmOut(TxStartFrmOut),
.TxEndFrmOut(TxEndFrmOut), .TxUsedDataOut(TxUsedData),
.TxDoneOut(TxDone), .TxAbortOut(TxAbort),
.WillSendControlFrame(WillSendControlFrame), .TxCtrlEndFrm(TxCtrlEndFrm),
.ReceivedPauseFrm(ReceivedPauseFrm), .ControlFrmAddressOK(ControlFrmAddressOK),
.LoadRxStatus(LoadRxStatus), .SetPauseTimer(SetPauseTimer)
);
 
 
 
wire TxCarrierSense; // Synchronized CarrierSense (to Tx clock)
wire Collision; // Synchronized Collision
 
reg CarrierSense_Tx1;
reg CarrierSense_Tx2;
reg Collision_Tx1;
reg Collision_Tx2;
 
reg RxEnSync; // Synchronized Receive Enable
reg CarrierSense_Rx1;
reg RxCarrierSense; // Synchronized CarrierSense (to Rx clock)
reg WillTransmit_q;
reg WillTransmit_q2;
 
 
 
// Muxed MII receive data valid
assign MRxDV_Lb = r_LoopBck? mtxen_pad_o : mrxdv_pad_i & RxEnSync;
 
// Muxed MII Receive Error
assign MRxErr_Lb = r_LoopBck? mtxerr_pad_o : mrxerr_pad_i & RxEnSync;
 
// Muxed MII Receive Data
assign MRxD_Lb[3:0] = r_LoopBck? mtxd_pad_o[3:0] : mrxd_pad_i[3:0];
 
 
 
// Connecting TxEthMAC
eth_txethmac txethmac1
(
.MTxClk(mtx_clk_pad_i), .Reset(wb_rst_i), .CarrierSense(TxCarrierSense),
.Collision(Collision), .TxData(TxDataOut), .TxStartFrm(TxStartFrmOut),
.TxUnderRun(TxUnderRun), .TxEndFrm(TxEndFrmOut), .Pad(PadOut),
.MinFL(r_MinFL), .CrcEn(CrcEnOut), .FullD(r_FullD),
.HugEn(r_HugEn), .DlyCrcEn(r_DlyCrcEn), .IPGT(r_IPGT),
.IPGR1(r_IPGR1), .IPGR2(r_IPGR2), .CollValid(r_CollValid),
.MaxRet(r_MaxRet), .NoBckof(r_NoBckof), .ExDfrEn(r_ExDfrEn),
.MaxFL(r_MaxFL), .MTxEn(mtxen_pad_o), .MTxD(mtxd_pad_o),
.MTxErr(mtxerr_pad_o), .TxUsedData(TxUsedDataIn), .TxDone(TxDoneIn),
.TxRetry(TxRetry), .TxAbort(TxAbortIn), .WillTransmit(WillTransmit),
.ResetCollision(ResetCollision), .RetryCnt(RetryCnt), .StartTxDone(StartTxDone),
.StartTxAbort(StartTxAbort), .MaxCollisionOccured(MaxCollisionOccured), .LateCollision(LateCollision),
.StartDefer(StartDefer), .StatePreamble(StatePreamble), .StateData(StateData)
);
 
 
 
 
wire [15:0] RxByteCnt;
wire RxByteCntEq0;
wire RxByteCntGreat2;
wire RxByteCntMaxFrame;
wire RxCrcError;
wire RxStateIdle;
wire RxStatePreamble;
wire RxStateSFD;
wire [1:0] RxStateData;
wire AddressMiss;
 
 
 
// Connecting RxEthMAC
eth_rxethmac rxethmac1
(
.MRxClk(mrx_clk_pad_i), .MRxDV(MRxDV_Lb), .MRxD(MRxD_Lb),
.Transmitting(Transmitting), .HugEn(r_HugEn), .DlyCrcEn(r_DlyCrcEn),
.MaxFL(r_MaxFL), .r_IFG(r_IFG), .Reset(wb_rst_i),
.RxData(RxData), .RxValid(RxValid), .RxStartFrm(RxStartFrm),
.RxEndFrm(RxEndFrm), .ByteCnt(RxByteCnt),
.ByteCntEq0(RxByteCntEq0), .ByteCntGreat2(RxByteCntGreat2), .ByteCntMaxFrame(RxByteCntMaxFrame),
.CrcError(RxCrcError), .StateIdle(RxStateIdle), .StatePreamble(RxStatePreamble),
.StateSFD(RxStateSFD), .StateData(RxStateData),
.MAC(r_MAC), .r_Pro(r_Pro), .r_Bro(r_Bro),
.r_HASH0(r_HASH0), .r_HASH1(r_HASH1), .RxAbort(RxAbort),
.AddressMiss(AddressMiss), .PassAll(r_PassAll), .ControlFrmAddressOK(ControlFrmAddressOK)
);
 
 
// MII Carrier Sense Synchronization
always @ (posedge mtx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
CarrierSense_Tx1 <= #Tp 1'b0;
CarrierSense_Tx2 <= #Tp 1'b0;
end
else
begin
CarrierSense_Tx1 <= #Tp mcrs_pad_i;
CarrierSense_Tx2 <= #Tp CarrierSense_Tx1;
end
end
 
assign TxCarrierSense = ~r_FullD & CarrierSense_Tx2;
 
 
// MII Collision Synchronization
always @ (posedge mtx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
Collision_Tx1 <= #Tp 1'b0;
Collision_Tx2 <= #Tp 1'b0;
end
else
begin
Collision_Tx1 <= #Tp mcoll_pad_i;
if(ResetCollision)
Collision_Tx2 <= #Tp 1'b0;
else
if(Collision_Tx1)
Collision_Tx2 <= #Tp 1'b1;
end
end
 
 
// Synchronized Collision
assign Collision = ~r_FullD & Collision_Tx2;
 
 
 
// Carrier sense is synchronized to receive clock.
always @ (posedge mrx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
CarrierSense_Rx1 <= #Tp 1'h0;
RxCarrierSense <= #Tp 1'h0;
end
else
begin
CarrierSense_Rx1 <= #Tp mcrs_pad_i;
RxCarrierSense <= #Tp CarrierSense_Rx1;
end
end
 
 
// Delayed WillTransmit
always @ (posedge mrx_clk_pad_i)
begin
WillTransmit_q <= #Tp WillTransmit;
WillTransmit_q2 <= #Tp WillTransmit_q;
end
 
 
assign Transmitting = ~r_FullD & WillTransmit_q2;
 
 
 
// Synchronized Receive Enable
always @ (posedge mrx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
RxEnSync <= #Tp 1'b0;
else
if(~RxCarrierSense | RxCarrierSense & Transmitting)
RxEnSync <= #Tp r_RxEn;
end
 
 
 
// Synchronizing WillSendControlFrame to WB_CLK;
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
WillSendControlFrame_sync1 <= 1'b0;
else
WillSendControlFrame_sync1 <=#Tp WillSendControlFrame;
end
 
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
WillSendControlFrame_sync2 <= 1'b0;
else
WillSendControlFrame_sync2 <=#Tp WillSendControlFrame_sync1;
end
 
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
WillSendControlFrame_sync3 <= 1'b0;
else
WillSendControlFrame_sync3 <=#Tp WillSendControlFrame_sync2;
end
 
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
RstTxPauseRq <= 1'b0;
else
RstTxPauseRq <=#Tp WillSendControlFrame_sync2 & ~WillSendControlFrame_sync3;
end
 
 
 
 
// TX Pause request Synchronization
always @ (posedge mtx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
TxPauseRq_sync1 <= #Tp 1'b0;
TxPauseRq_sync2 <= #Tp 1'b0;
TxPauseRq_sync3 <= #Tp 1'b0;
end
else
begin
TxPauseRq_sync1 <= #Tp (r_TxPauseRq & r_TxFlow);
TxPauseRq_sync2 <= #Tp TxPauseRq_sync1;
TxPauseRq_sync3 <= #Tp TxPauseRq_sync2;
end
end
 
 
always @ (posedge mtx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
TPauseRq <= #Tp 1'b0;
else
TPauseRq <= #Tp TxPauseRq_sync2 & (~TxPauseRq_sync3);
end
 
 
wire LatchedMRxErr;
reg RxAbort_latch;
reg RxAbort_sync1;
reg RxAbort_sync2;
reg RxAbort_wb;
reg RxAbortRst_sync1;
reg RxAbortRst;
 
// Synchronizing RxAbort to the WISHBONE clock
always @ (posedge mrx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
RxAbort_latch <= #Tp 1'b0;
else if(RxAbort | (ShortFrame & ~r_RecSmall) | LatchedMRxErr & ~InvalidSymbol | (ReceivedPauseFrm & (~r_PassAll)))
RxAbort_latch <= #Tp 1'b1;
else if(RxAbortRst)
RxAbort_latch <= #Tp 1'b0;
end
 
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
RxAbort_sync1 <= #Tp 1'b0;
RxAbort_wb <= #Tp 1'b0;
RxAbort_wb <= #Tp 1'b0;
end
else
begin
RxAbort_sync1 <= #Tp RxAbort_latch;
RxAbort_wb <= #Tp RxAbort_sync1;
end
end
 
always @ (posedge mrx_clk_pad_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
RxAbortRst_sync1 <= #Tp 1'b0;
RxAbortRst <= #Tp 1'b0;
end
else
begin
RxAbortRst_sync1 <= #Tp RxAbort_wb;
RxAbortRst <= #Tp RxAbortRst_sync1;
end
end
 
 
 
// Connecting Wishbone module
eth_wishbone wishbone
(
.WB_CLK_I(wb_clk_i), .WB_DAT_I(wb_dat_i),
.WB_DAT_O(BD_WB_DAT_O),
 
// WISHBONE slave
.WB_ADR_I(wb_adr_i[9:2]), .WB_WE_I(wb_we_i),
.BDCs(BDCs), .WB_ACK_O(BDAck),
 
.Reset(wb_rst_i),
 
// WISHBONE master
.m_wb_adr_o(m_wb_adr_o), .m_wb_sel_o(m_wb_sel_o), .m_wb_we_o(m_wb_we_o),
.m_wb_dat_i(m_wb_dat_i), .m_wb_dat_o(m_wb_dat_o), .m_wb_cyc_o(m_wb_cyc_o),
.m_wb_stb_o(m_wb_stb_o), .m_wb_ack_i(m_wb_ack_i), .m_wb_err_i(m_wb_err_i),
`ifdef ETH_WISHBONE_B3
.m_wb_cti_o(m_wb_cti_o), .m_wb_bte_o(m_wb_bte_o),
`endif
 
//TX
.MTxClk(mtx_clk_pad_i), .TxStartFrm(TxStartFrm), .TxEndFrm(TxEndFrm),
.TxUsedData(TxUsedData), .TxData(TxData),
.TxRetry(TxRetry), .TxAbort(TxAbort), .TxUnderRun(TxUnderRun),
.TxDone(TxDone),
.PerPacketCrcEn(PerPacketCrcEn), .PerPacketPad(PerPacketPad),
 
// Register
.r_TxEn(r_TxEn), .r_RxEn(r_RxEn), .r_TxBDNum(r_TxBDNum),
.TX_BD_NUM_Wr(TX_BD_NUM_Wr), .r_RxFlow(r_RxFlow),
 
//RX
.MRxClk(mrx_clk_pad_i), .RxData(RxData), .RxValid(RxValid),
.RxStartFrm(RxStartFrm), .RxEndFrm(RxEndFrm),
.Busy_IRQ(Busy_IRQ), .RxE_IRQ(RxE_IRQ), .RxB_IRQ(RxB_IRQ),
.TxE_IRQ(TxE_IRQ), .TxB_IRQ(TxB_IRQ),
 
.RxAbort(RxAbort_wb),
 
.InvalidSymbol(InvalidSymbol), .LatchedCrcError(LatchedCrcError), .RxLength(RxByteCnt),
.RxLateCollision(RxLateCollision), .ShortFrame(ShortFrame), .DribbleNibble(DribbleNibble),
.ReceivedPacketTooBig(ReceivedPacketTooBig), .LoadRxStatus(LoadRxStatus), .RetryCntLatched(RetryCntLatched),
.RetryLimit(RetryLimit), .LateCollLatched(LateCollLatched), .DeferLatched(DeferLatched),
.CarrierSenseLost(CarrierSenseLost),.ReceivedPacketGood(ReceivedPacketGood), .AddressMiss(AddressMiss),
.ReceivedPauseFrm(ReceivedPauseFrm)
`ifdef ETH_BIST
,
.scanb_rst (scanb_rst),
.scanb_clk (scanb_clk),
.scanb_si (scanb_si),
.scanb_so (scanb_so),
.scanb_en (scanb_en)
`endif
);
 
 
 
// Connecting MacStatus module
eth_macstatus macstatus1
(
.MRxClk(mrx_clk_pad_i), .Reset(wb_rst_i),
.ReceiveEnd(ReceiveEnd), .ReceivedPacketGood(ReceivedPacketGood), .ReceivedLengthOK(ReceivedLengthOK),
.RxCrcError(RxCrcError), .MRxErr(MRxErr_Lb), .MRxDV(MRxDV_Lb),
.RxStateSFD(RxStateSFD), .RxStateData(RxStateData), .RxStatePreamble(RxStatePreamble),
.RxStateIdle(RxStateIdle), .Transmitting(Transmitting), .RxByteCnt(RxByteCnt),
.RxByteCntEq0(RxByteCntEq0), .RxByteCntGreat2(RxByteCntGreat2), .RxByteCntMaxFrame(RxByteCntMaxFrame),
.InvalidSymbol(InvalidSymbol),
.MRxD(MRxD_Lb), .LatchedCrcError(LatchedCrcError), .Collision(mcoll_pad_i),
.CollValid(r_CollValid), .RxLateCollision(RxLateCollision), .r_RecSmall(r_RecSmall),
.r_MinFL(r_MinFL), .r_MaxFL(r_MaxFL), .ShortFrame(ShortFrame),
.DribbleNibble(DribbleNibble), .ReceivedPacketTooBig(ReceivedPacketTooBig), .r_HugEn(r_HugEn),
.LoadRxStatus(LoadRxStatus), .RetryCnt(RetryCnt), .StartTxDone(StartTxDone),
.StartTxAbort(StartTxAbort), .RetryCntLatched(RetryCntLatched), .MTxClk(mtx_clk_pad_i),
.MaxCollisionOccured(MaxCollisionOccured), .RetryLimit(RetryLimit), .LateCollision(LateCollision),
.LateCollLatched(LateCollLatched), .StartDefer(StartDefer), .DeferLatched(DeferLatched),
.TxStartFrm(TxStartFrmOut), .StatePreamble(StatePreamble), .StateData(StateData),
.CarrierSense(CarrierSense_Tx2), .CarrierSenseLost(CarrierSenseLost), .TxUsedData(TxUsedDataIn),
.LatchedMRxErr(LatchedMRxErr), .Loopback(r_LoopBck), .r_FullD(r_FullD)
);
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_macstatus.v
0,0 → 1,414
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_macstatus.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.13 2002/11/13 22:30:58 tadejm
// Late collision is reported only when not in the full duplex.
// Sample is taken (for status) as soon as MRxDV is not valid (regardless
// of the received byte cnt).
//
// Revision 1.12 2002/09/12 14:50:16 mohor
// CarrierSenseLost bug fixed when operating in full duplex mode.
//
// Revision 1.11 2002/09/04 18:38:03 mohor
// CarrierSenseLost status is not set when working in loopback mode.
//
// Revision 1.10 2002/07/25 18:17:46 mohor
// InvalidSymbol generation changed.
//
// Revision 1.9 2002/04/22 13:51:44 mohor
// Short frame and ReceivedLengthOK were not detected correctly.
//
// Revision 1.8 2002/02/18 10:40:17 mohor
// Small fixes.
//
// Revision 1.7 2002/02/15 17:07:39 mohor
// Status was not written correctly when frames were discarted because of
// address mismatch.
//
// Revision 1.6 2002/02/11 09:18:21 mohor
// Tx status is written back to the BD.
//
// Revision 1.5 2002/02/08 16:21:54 mohor
// Rx status is written back to the BD.
//
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
//
//
//
//
 
`include "timescale.v"
 
 
module eth_macstatus(
MRxClk, Reset, ReceivedLengthOK, ReceiveEnd, ReceivedPacketGood, RxCrcError,
MRxErr, MRxDV, RxStateSFD, RxStateData, RxStatePreamble, RxStateIdle, Transmitting,
RxByteCnt, RxByteCntEq0, RxByteCntGreat2, RxByteCntMaxFrame,
InvalidSymbol, MRxD, LatchedCrcError, Collision, CollValid, RxLateCollision,
r_RecSmall, r_MinFL, r_MaxFL, ShortFrame, DribbleNibble, ReceivedPacketTooBig, r_HugEn,
LoadRxStatus, StartTxDone, StartTxAbort, RetryCnt, RetryCntLatched, MTxClk, MaxCollisionOccured,
RetryLimit, LateCollision, LateCollLatched, StartDefer, DeferLatched, TxStartFrm,
StatePreamble, StateData, CarrierSense, CarrierSenseLost, TxUsedData, LatchedMRxErr, Loopback,
r_FullD
);
 
 
 
parameter Tp = 1;
 
 
input MRxClk;
input Reset;
input RxCrcError;
input MRxErr;
input MRxDV;
 
input RxStateSFD;
input [1:0] RxStateData;
input RxStatePreamble;
input RxStateIdle;
input Transmitting;
input [15:0] RxByteCnt;
input RxByteCntEq0;
input RxByteCntGreat2;
input RxByteCntMaxFrame;
input [3:0] MRxD;
input Collision;
input [5:0] CollValid;
input r_RecSmall;
input [15:0] r_MinFL;
input [15:0] r_MaxFL;
input r_HugEn;
input StartTxDone;
input StartTxAbort;
input [3:0] RetryCnt;
input MTxClk;
input MaxCollisionOccured;
input LateCollision;
input StartDefer;
input TxStartFrm;
input StatePreamble;
input [1:0] StateData;
input CarrierSense;
input TxUsedData;
input Loopback;
input r_FullD;
 
 
output ReceivedLengthOK;
output ReceiveEnd;
output ReceivedPacketGood;
output InvalidSymbol;
output LatchedCrcError;
output RxLateCollision;
output ShortFrame;
output DribbleNibble;
output ReceivedPacketTooBig;
output LoadRxStatus;
output [3:0] RetryCntLatched;
output RetryLimit;
output LateCollLatched;
output DeferLatched;
output CarrierSenseLost;
output LatchedMRxErr;
 
 
reg ReceiveEnd;
 
reg LatchedCrcError;
reg LatchedMRxErr;
reg LoadRxStatus;
reg InvalidSymbol;
reg [3:0] RetryCntLatched;
reg RetryLimit;
reg LateCollLatched;
reg DeferLatched;
reg CarrierSenseLost;
 
wire TakeSample;
wire SetInvalidSymbol; // Invalid symbol was received during reception in 100Mbps
 
// Crc error
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LatchedCrcError <=#Tp 1'b0;
else
if(RxStateSFD)
LatchedCrcError <=#Tp 1'b0;
else
if(RxStateData[0])
LatchedCrcError <=#Tp RxCrcError & ~RxByteCntEq0;
end
 
 
// LatchedMRxErr
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LatchedMRxErr <=#Tp 1'b0;
else
if(MRxErr & MRxDV & (RxStatePreamble | RxStateSFD | (|RxStateData) | RxStateIdle & ~Transmitting))
LatchedMRxErr <=#Tp 1'b1;
else
LatchedMRxErr <=#Tp 1'b0;
end
 
 
// ReceivedPacketGood
assign ReceivedPacketGood = ~LatchedCrcError;
 
 
// ReceivedLengthOK
assign ReceivedLengthOK = RxByteCnt[15:0] >= r_MinFL[15:0] & RxByteCnt[15:0] <= r_MaxFL[15:0];
 
 
 
 
 
// Time to take a sample
//assign TakeSample = |RxStateData & ~MRxDV & RxByteCntGreat2 |
assign TakeSample = (|RxStateData) & (~MRxDV) |
RxStateData[0] & MRxDV & RxByteCntMaxFrame;
 
 
// LoadRxStatus
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
LoadRxStatus <=#Tp 1'b0;
else
LoadRxStatus <=#Tp TakeSample;
end
 
 
 
// ReceiveEnd
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ReceiveEnd <=#Tp 1'b0;
else
ReceiveEnd <=#Tp LoadRxStatus;
end
 
 
// Invalid Symbol received during 100Mbps mode
assign SetInvalidSymbol = MRxDV & MRxErr & MRxD[3:0] == 4'he;
 
 
// InvalidSymbol
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
InvalidSymbol <=#Tp 1'b0;
else
if(LoadRxStatus & ~SetInvalidSymbol)
InvalidSymbol <=#Tp 1'b0;
else
if(SetInvalidSymbol)
InvalidSymbol <=#Tp 1'b1;
end
 
 
// Late Collision
 
reg RxLateCollision;
reg RxColWindow;
// Collision Window
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxLateCollision <=#Tp 1'b0;
else
if(LoadRxStatus)
RxLateCollision <=#Tp 1'b0;
else
if(Collision & (~r_FullD) & (~RxColWindow | r_RecSmall))
RxLateCollision <=#Tp 1'b1;
end
 
// Collision Window
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
RxColWindow <=#Tp 1'b1;
else
if(~Collision & RxByteCnt[5:0] == CollValid[5:0] & RxStateData[1])
RxColWindow <=#Tp 1'b0;
else
if(RxStateIdle)
RxColWindow <=#Tp 1'b1;
end
 
 
// ShortFrame
reg ShortFrame;
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ShortFrame <=#Tp 1'b0;
else
if(LoadRxStatus)
ShortFrame <=#Tp 1'b0;
else
if(TakeSample)
ShortFrame <=#Tp RxByteCnt[15:0] < r_MinFL[15:0];
end
 
 
// DribbleNibble
reg DribbleNibble;
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
DribbleNibble <=#Tp 1'b0;
else
if(RxStateSFD)
DribbleNibble <=#Tp 1'b0;
else
if(~MRxDV & RxStateData[1])
DribbleNibble <=#Tp 1'b1;
end
 
 
reg ReceivedPacketTooBig;
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
ReceivedPacketTooBig <=#Tp 1'b0;
else
if(LoadRxStatus)
ReceivedPacketTooBig <=#Tp 1'b0;
else
if(TakeSample)
ReceivedPacketTooBig <=#Tp ~r_HugEn & RxByteCnt[15:0] > r_MaxFL[15:0];
end
 
 
 
// Latched Retry counter for tx status
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
RetryCntLatched <=#Tp 4'h0;
else
if(StartTxDone | StartTxAbort)
RetryCntLatched <=#Tp RetryCnt;
end
 
 
// Latched Retransmission limit
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
RetryLimit <=#Tp 4'h0;
else
if(StartTxDone | StartTxAbort)
RetryLimit <=#Tp MaxCollisionOccured;
end
 
 
// Latched Late Collision
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
LateCollLatched <=#Tp 1'b0;
else
if(StartTxDone | StartTxAbort)
LateCollLatched <=#Tp LateCollision;
end
 
 
 
// Latched Defer state
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
DeferLatched <=#Tp 1'b0;
else
if(StartDefer & TxUsedData)
DeferLatched <=#Tp 1'b1;
else
if(TxStartFrm)
DeferLatched <=#Tp 1'b0;
end
 
 
// CarrierSenseLost
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
CarrierSenseLost <=#Tp 1'b0;
else
if((StatePreamble | (|StateData)) & ~CarrierSense & ~Loopback & ~Collision & ~r_FullD)
CarrierSenseLost <=#Tp 1'b1;
else
if(TxStartFrm)
CarrierSenseLost <=#Tp 1'b0;
end
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_registers.v
0,0 → 1,954
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_registers.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.23 2002/11/19 18:13:49 mohor
// r_MiiMRst is not used for resetting the MIIM module. wb_rst used instead.
//
// Revision 1.22 2002/11/14 18:37:20 mohor
// r_Rst signal does not reset any module any more and is removed from the design.
//
// Revision 1.21 2002/09/10 10:35:23 mohor
// Ethernet debug registers removed.
//
// Revision 1.20 2002/09/04 18:40:25 mohor
// ETH_TXCTRL and ETH_RXCTRL registers added. Interrupts related to
// the control frames connected.
//
// Revision 1.19 2002/08/19 16:01:40 mohor
// Only values smaller or equal to 0x80 can be written to TX_BD_NUM register.
// r_TxEn and r_RxEn depend on the limit values of the TX_BD_NUMOut.
//
// Revision 1.18 2002/08/16 22:28:23 mohor
// Syntax error fixed.
//
// Revision 1.17 2002/08/16 22:23:03 mohor
// Syntax error fixed.
//
// Revision 1.16 2002/08/16 22:14:22 mohor
// Synchronous reset added to all registers. Defines used for width. r_MiiMRst
// changed from bit position 10 to 9.
//
// Revision 1.15 2002/08/14 18:26:37 mohor
// LinkFailRegister is reflecting the status of the PHY's link fail status bit.
//
// Revision 1.14 2002/04/22 14:03:44 mohor
// Interrupts are visible in the ETH_INT_SOURCE regardless if they are enabled
// or not.
//
// Revision 1.13 2002/02/26 16:18:09 mohor
// Reset values are passed to registers through parameters
//
// Revision 1.12 2002/02/17 13:23:42 mohor
// Define missmatch fixed.
//
// Revision 1.11 2002/02/16 14:03:44 mohor
// Registered trimmed. Unused registers removed.
//
// Revision 1.10 2002/02/15 11:08:25 mohor
// File format fixed a bit.
//
// Revision 1.9 2002/02/14 20:19:41 billditt
// Modified for Address Checking,
// addition of eth_addrcheck.v
//
// Revision 1.8 2002/02/12 17:01:19 mohor
// HASH0 and HASH1 registers added.
 
// Revision 1.7 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.6 2001/12/05 15:00:16 mohor
// RX_BD_NUM changed to TX_BD_NUM (holds number of TX descriptors
// instead of the number of RX descriptors).
//
// Revision 1.5 2001/12/05 10:22:19 mohor
// ETH_RX_BD_ADR register deleted. ETH_RX_BD_NUM is used instead.
//
// Revision 1.4 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.3 2001/10/18 12:07:11 mohor
// Status signals changed, Adress decoding changed, interrupt controller
// added.
//
// Revision 1.2 2001/09/24 15:02:56 mohor
// Defines changed (All precede with ETH_). Small changes because some
// tools generate warnings when two operands are together. Synchronization
// between two clocks domains in eth_wishbonedma.v is changed (due to ASIC
// demands).
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.2 2001/08/02 09:25:31 mohor
// Unconnected signals are now connected.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
//
//
//
//
//
 
`include "eth_defines.v"
`include "timescale.v"
 
 
module eth_registers( DataIn, Address, Rw, Cs, Clk, Reset, DataOut,
r_RecSmall, r_Pad, r_HugEn, r_CrcEn, r_DlyCrcEn,
r_FullD, r_ExDfrEn, r_NoBckof, r_LoopBck, r_IFG,
r_Pro, r_Iam, r_Bro, r_NoPre, r_TxEn, r_RxEn,
TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ,
r_IPGT, r_IPGR1, r_IPGR2, r_MinFL, r_MaxFL, r_MaxRet,
r_CollValid, r_TxFlow, r_RxFlow, r_PassAll,
r_MiiNoPre, r_ClkDiv, r_WCtrlData, r_RStat, r_ScanStat,
r_RGAD, r_FIAD, r_CtrlData, NValid_stat, Busy_stat,
LinkFail, r_MAC, WCtrlDataStart, RStatStart,
UpdateMIIRX_DATAReg, Prsd, r_TxBDNum, TX_BD_NUM_Wr, int_o,
r_HASH0, r_HASH1, r_TxPauseTV, r_TxPauseRq, RstTxPauseRq, TxCtrlEndFrm,
StartTxDone, TxClk, RxClk, SetPauseTimer
);
 
parameter Tp = 1;
 
input [31:0] DataIn;
input [7:0] Address;
 
input Rw;
input Cs;
input Clk;
input Reset;
 
input WCtrlDataStart;
input RStatStart;
 
input UpdateMIIRX_DATAReg;
input [15:0] Prsd;
 
output [31:0] DataOut;
reg [31:0] DataOut;
 
output r_RecSmall;
output r_Pad;
output r_HugEn;
output r_CrcEn;
output r_DlyCrcEn;
output r_FullD;
output r_ExDfrEn;
output r_NoBckof;
output r_LoopBck;
output r_IFG;
output r_Pro;
output r_Iam;
output r_Bro;
output r_NoPre;
output r_TxEn;
output r_RxEn;
output [31:0] r_HASH0;
output [31:0] r_HASH1;
 
input TxB_IRQ;
input TxE_IRQ;
input RxB_IRQ;
input RxE_IRQ;
input Busy_IRQ;
 
output [6:0] r_IPGT;
 
output [6:0] r_IPGR1;
 
output [6:0] r_IPGR2;
 
output [15:0] r_MinFL;
output [15:0] r_MaxFL;
 
output [3:0] r_MaxRet;
output [5:0] r_CollValid;
 
output r_TxFlow;
output r_RxFlow;
output r_PassAll;
 
output r_MiiNoPre;
output [7:0] r_ClkDiv;
 
output r_WCtrlData;
output r_RStat;
output r_ScanStat;
 
output [4:0] r_RGAD;
output [4:0] r_FIAD;
 
output [15:0]r_CtrlData;
 
 
input NValid_stat;
input Busy_stat;
input LinkFail;
 
output [47:0]r_MAC;
output [7:0] r_TxBDNum;
output TX_BD_NUM_Wr;
output int_o;
output [15:0]r_TxPauseTV;
output r_TxPauseRq;
input RstTxPauseRq;
input TxCtrlEndFrm;
input StartTxDone;
input TxClk;
input RxClk;
input SetPauseTimer;
 
reg irq_txb;
reg irq_txe;
reg irq_rxb;
reg irq_rxe;
reg irq_busy;
reg irq_txc;
reg irq_rxc;
 
reg SetTxCIrq_txclk;
reg SetTxCIrq_sync1, SetTxCIrq_sync2, SetTxCIrq_sync3;
reg SetTxCIrq;
reg ResetTxCIrq_sync1, ResetTxCIrq_sync2;
 
reg SetRxCIrq_rxclk;
reg SetRxCIrq_sync1, SetRxCIrq_sync2, SetRxCIrq_sync3;
reg SetRxCIrq;
reg ResetRxCIrq_sync1;
reg ResetRxCIrq_sync2;
reg ResetRxCIrq_sync3;
 
wire Write = Cs & Rw;
wire Read = Cs & ~Rw;
 
wire MODER_Wr = (Address == `ETH_MODER_ADR ) & Write;
wire INT_SOURCE_Wr = (Address == `ETH_INT_SOURCE_ADR ) & Write;
wire INT_MASK_Wr = (Address == `ETH_INT_MASK_ADR ) & Write;
wire IPGT_Wr = (Address == `ETH_IPGT_ADR ) & Write;
wire IPGR1_Wr = (Address == `ETH_IPGR1_ADR ) & Write;
wire IPGR2_Wr = (Address == `ETH_IPGR2_ADR ) & Write;
wire PACKETLEN_Wr = (Address == `ETH_PACKETLEN_ADR ) & Write;
wire COLLCONF_Wr = (Address == `ETH_COLLCONF_ADR ) & Write;
wire CTRLMODER_Wr = (Address == `ETH_CTRLMODER_ADR ) & Write;
wire MIIMODER_Wr = (Address == `ETH_MIIMODER_ADR ) & Write;
wire MIICOMMAND_Wr = (Address == `ETH_MIICOMMAND_ADR ) & Write;
wire MIIADDRESS_Wr = (Address == `ETH_MIIADDRESS_ADR ) & Write;
wire MIITX_DATA_Wr = (Address == `ETH_MIITX_DATA_ADR ) & Write;
wire MIIRX_DATA_Wr = UpdateMIIRX_DATAReg;
wire MAC_ADDR0_Wr = (Address == `ETH_MAC_ADDR0_ADR ) & Write;
wire MAC_ADDR1_Wr = (Address == `ETH_MAC_ADDR1_ADR ) & Write;
wire HASH0_Wr = (Address == `ETH_HASH0_ADR ) & Write;
wire HASH1_Wr = (Address == `ETH_HASH1_ADR ) & Write;
wire TXCTRL_Wr = (Address == `ETH_TX_CTRL_ADR ) & Write;
wire RXCTRL_Wr = (Address == `ETH_RX_CTRL_ADR ) & Write;
assign TX_BD_NUM_Wr = (Address == `ETH_TX_BD_NUM_ADR ) & Write;
 
 
 
wire [31:0] MODEROut;
wire [31:0] INT_SOURCEOut;
wire [31:0] INT_MASKOut;
wire [31:0] IPGTOut;
wire [31:0] IPGR1Out;
wire [31:0] IPGR2Out;
wire [31:0] PACKETLENOut;
wire [31:0] COLLCONFOut;
wire [31:0] CTRLMODEROut;
wire [31:0] MIIMODEROut;
wire [31:0] MIICOMMANDOut;
wire [31:0] MIIADDRESSOut;
wire [31:0] MIITX_DATAOut;
wire [31:0] MIIRX_DATAOut;
wire [31:0] MIISTATUSOut;
wire [31:0] MAC_ADDR0Out;
wire [31:0] MAC_ADDR1Out;
wire [31:0] TX_BD_NUMOut;
wire [31:0] HASH0Out;
wire [31:0] HASH1Out;
wire [31:0] TXCTRLOut;
wire [31:0] RXCTRLOut;
 
 
// MODER Register
eth_register #(`ETH_MODER_WIDTH, `ETH_MODER_DEF) MODER
(
.DataIn (DataIn[`ETH_MODER_WIDTH-1:0]),
.DataOut (MODEROut[`ETH_MODER_WIDTH-1:0]),
.Write (MODER_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MODEROut[31:`ETH_MODER_WIDTH] = 0;
 
// INT_MASK Register
eth_register #(`ETH_INT_MASK_WIDTH, `ETH_INT_MASK_DEF) INT_MASK
(
.DataIn (DataIn[`ETH_INT_MASK_WIDTH-1:0]),
.DataOut (INT_MASKOut[`ETH_INT_MASK_WIDTH-1:0]),
.Write (INT_MASK_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign INT_MASKOut[31:`ETH_INT_MASK_WIDTH] = 0;
 
// IPGT Register
eth_register #(`ETH_IPGT_WIDTH, `ETH_IPGT_DEF) IPGT
(
.DataIn (DataIn[`ETH_IPGT_WIDTH-1:0]),
.DataOut (IPGTOut[`ETH_IPGT_WIDTH-1:0]),
.Write (IPGT_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign IPGTOut[31:`ETH_IPGT_WIDTH] = 0;
 
// IPGR1 Register
eth_register #(`ETH_IPGR1_WIDTH, `ETH_IPGR1_DEF) IPGR1
(
.DataIn (DataIn[`ETH_IPGR1_WIDTH-1:0]),
.DataOut (IPGR1Out[`ETH_IPGR1_WIDTH-1:0]),
.Write (IPGR1_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign IPGR1Out[31:`ETH_IPGR1_WIDTH] = 0;
 
// IPGR2 Register
eth_register #(`ETH_IPGR2_WIDTH, `ETH_IPGR2_DEF) IPGR2
(
.DataIn (DataIn[`ETH_IPGR2_WIDTH-1:0]),
.DataOut (IPGR2Out[`ETH_IPGR2_WIDTH-1:0]),
.Write (IPGR2_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign IPGR2Out[31:`ETH_IPGR2_WIDTH] = 0;
 
// PACKETLEN Register
eth_register #(`ETH_PACKETLEN_WIDTH, `ETH_PACKETLEN_DEF) PACKETLEN
(
.DataIn (DataIn),
.DataOut (PACKETLENOut),
.Write (PACKETLEN_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
// COLLCONF Register
eth_register #(6, `ETH_COLLCONF0_DEF) COLLCONF0
(
.DataIn (DataIn[5:0]),
.DataOut (COLLCONFOut[5:0]),
.Write (COLLCONF_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign COLLCONFOut[15:6] = 0;
 
eth_register #(4, `ETH_COLLCONF1_DEF) COLLCONF1
(
.DataIn (DataIn[19:16]),
.DataOut (COLLCONFOut[19:16]),
.Write (COLLCONF_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign COLLCONFOut[31:20] = 0;
 
// TX_BD_NUM Register
eth_register #(`ETH_TX_BD_NUM_WIDTH, `ETH_TX_BD_NUM_DEF) TX_BD_NUM
(
.DataIn (DataIn[`ETH_TX_BD_NUM_WIDTH-1:0]),
.DataOut (TX_BD_NUMOut[`ETH_TX_BD_NUM_WIDTH-1:0]),
.Write (TX_BD_NUM_Wr & (DataIn<='h80)),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign TX_BD_NUMOut[31:`ETH_TX_BD_NUM_WIDTH] = 0;
 
// CTRLMODER Register
eth_register #(`ETH_CTRLMODER_WIDTH, `ETH_CTRLMODER_DEF) CTRLMODER2
(
.DataIn (DataIn[`ETH_CTRLMODER_WIDTH-1:0]),
.DataOut (CTRLMODEROut[`ETH_CTRLMODER_WIDTH-1:0]),
.Write (CTRLMODER_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign CTRLMODEROut[31:`ETH_CTRLMODER_WIDTH] = 0;
 
// MIIMODER Register
eth_register #(`ETH_MIIMODER_WIDTH, `ETH_MIIMODER_DEF) MIIMODER
(
.DataIn (DataIn[`ETH_MIIMODER_WIDTH-1:0]),
.DataOut (MIIMODEROut[`ETH_MIIMODER_WIDTH-1:0]),
.Write (MIIMODER_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MIIMODEROut[31:`ETH_MIIMODER_WIDTH] = 0;
 
// MIICOMMAND Register
eth_register #(1, 0) MIICOMMAND0
(
.DataIn (DataIn[0]),
.DataOut (MIICOMMANDOut[0]),
.Write (MIICOMMAND_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
eth_register #(1, 0) MIICOMMAND1
(
.DataIn (DataIn[1]),
.DataOut (MIICOMMANDOut[1]),
.Write (MIICOMMAND_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (RStatStart)
);
 
eth_register #(1, 0) MIICOMMAND2
(
.DataIn (DataIn[2]),
.DataOut (MIICOMMANDOut[2]),
.Write (MIICOMMAND_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (WCtrlDataStart)
);
assign MIICOMMANDOut[31:3] = 29'h0;
 
// MIIADDRESSRegister
eth_register #(5, `ETH_MIIADDRESS0_DEF) MIIADDRESS0
(
.DataIn (DataIn[4:0]),
.DataOut (MIIADDRESSOut[4:0]),
.Write (MIIADDRESS_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MIIADDRESSOut[7:5] = 0;
 
eth_register #(5, `ETH_MIIADDRESS1_DEF) MIIADDRESS1
(
.DataIn (DataIn[12:8]),
.DataOut (MIIADDRESSOut[12:8]),
.Write (MIIADDRESS_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MIIADDRESSOut[31:13] = 0;
 
// MIITX_DATA Register
eth_register #(`ETH_MIITX_DATA_WIDTH, `ETH_MIITX_DATA_DEF) MIITX_DATA
(
.DataIn (DataIn[`ETH_MIITX_DATA_WIDTH-1:0]),
.DataOut (MIITX_DATAOut[`ETH_MIITX_DATA_WIDTH-1:0]),
.Write (MIITX_DATA_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MIITX_DATAOut[31:`ETH_MIITX_DATA_WIDTH] = 0;
 
// MIIRX_DATA Register
eth_register #(`ETH_MIIRX_DATA_WIDTH, `ETH_MIIRX_DATA_DEF) MIIRX_DATA
(
.DataIn (Prsd[`ETH_MIIRX_DATA_WIDTH-1:0]),
.DataOut (MIIRX_DATAOut[`ETH_MIIRX_DATA_WIDTH-1:0]),
.Write (MIIRX_DATA_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MIIRX_DATAOut[31:`ETH_MIIRX_DATA_WIDTH] = 0;
 
// MAC_ADDR0 Register
eth_register #(`ETH_MAC_ADDR0_WIDTH, `ETH_MAC_ADDR0_DEF) MAC_ADDR0
(
.DataIn (DataIn),
.DataOut (MAC_ADDR0Out),
.Write (MAC_ADDR0_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
// MAC_ADDR1 Register
eth_register #(`ETH_MAC_ADDR1_WIDTH, `ETH_MAC_ADDR1_DEF) MAC_ADDR1
(
.DataIn (DataIn[`ETH_MAC_ADDR1_WIDTH-1:0]),
.DataOut (MAC_ADDR1Out[`ETH_MAC_ADDR1_WIDTH-1:0]),
.Write (MAC_ADDR1_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign MAC_ADDR1Out[31:`ETH_MAC_ADDR1_WIDTH] = 0;
 
// RXHASH0 Register
eth_register #(`ETH_HASH0_WIDTH, `ETH_HASH0_DEF) RXHASH0
(
.DataIn (DataIn),
.DataOut (HASH0Out),
.Write (HASH0_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
// RXHASH1 Register
eth_register #(`ETH_HASH1_WIDTH, `ETH_HASH1_DEF) RXHASH1
(
.DataIn (DataIn),
.DataOut (HASH1Out),
.Write (HASH1_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
 
// TXCTRL Register
eth_register #((`ETH_TX_CTRL_WIDTH-1), {(`ETH_TX_CTRL_WIDTH-1){1'b0}}) TXCTRL0
(
.DataIn (DataIn[`ETH_TX_CTRL_WIDTH-2:0]),
.DataOut (TXCTRLOut[`ETH_TX_CTRL_WIDTH-2:0]),
.Write (TXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
 
eth_register #(1, 1'b0) TXCTRL1 // Request bit is synchronously reset
(
.DataIn (DataIn[16]),
.DataOut (TXCTRLOut[16]),
.Write (TXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (RstTxPauseRq)
);
assign TXCTRLOut[31:`ETH_TX_CTRL_WIDTH] = 0;
 
 
// RXCTRL Register
eth_register #(`ETH_RX_CTRL_WIDTH, `ETH_RX_CTRL_DEF) RXCTRL
(
.DataIn (DataIn[`ETH_RX_CTRL_WIDTH-1:0]),
.DataOut (RXCTRLOut[`ETH_RX_CTRL_WIDTH-1:0]),
.Write (RXCTRL_Wr),
.Clk (Clk),
.Reset (Reset),
.SyncReset (1'b0)
);
assign RXCTRLOut[31:`ETH_RX_CTRL_WIDTH] = 0;
 
 
// Reading data from registers
always @ (Address or Read or MODEROut or INT_SOURCEOut or
INT_MASKOut or IPGTOut or IPGR1Out or IPGR2Out or
PACKETLENOut or COLLCONFOut or CTRLMODEROut or MIIMODEROut or
MIICOMMANDOut or MIIADDRESSOut or MIITX_DATAOut or MIIRX_DATAOut or
MIISTATUSOut or MAC_ADDR0Out or MAC_ADDR1Out or TX_BD_NUMOut or
HASH0Out or HASH1Out or TXCTRLOut or RXCTRLOut
)
begin
if(Read) // read
begin
case(Address)
`ETH_MODER_ADR : DataOut<=MODEROut;
`ETH_INT_SOURCE_ADR : DataOut<=INT_SOURCEOut;
`ETH_INT_MASK_ADR : DataOut<=INT_MASKOut;
`ETH_IPGT_ADR : DataOut<=IPGTOut;
`ETH_IPGR1_ADR : DataOut<=IPGR1Out;
`ETH_IPGR2_ADR : DataOut<=IPGR2Out;
`ETH_PACKETLEN_ADR : DataOut<=PACKETLENOut;
`ETH_COLLCONF_ADR : DataOut<=COLLCONFOut;
`ETH_CTRLMODER_ADR : DataOut<=CTRLMODEROut;
`ETH_MIIMODER_ADR : DataOut<=MIIMODEROut;
`ETH_MIICOMMAND_ADR : DataOut<=MIICOMMANDOut;
`ETH_MIIADDRESS_ADR : DataOut<=MIIADDRESSOut;
`ETH_MIITX_DATA_ADR : DataOut<=MIITX_DATAOut;
`ETH_MIIRX_DATA_ADR : DataOut<=MIIRX_DATAOut;
`ETH_MIISTATUS_ADR : DataOut<=MIISTATUSOut;
`ETH_MAC_ADDR0_ADR : DataOut<=MAC_ADDR0Out;
`ETH_MAC_ADDR1_ADR : DataOut<=MAC_ADDR1Out;
`ETH_TX_BD_NUM_ADR : DataOut<=TX_BD_NUMOut;
`ETH_HASH0_ADR : DataOut<=HASH0Out;
`ETH_HASH1_ADR : DataOut<=HASH1Out;
`ETH_TX_CTRL_ADR : DataOut<=TXCTRLOut;
`ETH_RX_CTRL_ADR : DataOut<=RXCTRLOut;
 
default: DataOut<=32'h0;
endcase
end
else
DataOut<=32'h0;
end
 
 
assign r_RecSmall = MODEROut[16];
assign r_Pad = MODEROut[15];
assign r_HugEn = MODEROut[14];
assign r_CrcEn = MODEROut[13];
assign r_DlyCrcEn = MODEROut[12];
// assign r_Rst = MODEROut[11]; This signal is not used any more
assign r_FullD = MODEROut[10];
assign r_ExDfrEn = MODEROut[9];
assign r_NoBckof = MODEROut[8];
assign r_LoopBck = MODEROut[7];
assign r_IFG = MODEROut[6];
assign r_Pro = MODEROut[5];
assign r_Iam = MODEROut[4];
assign r_Bro = MODEROut[3];
assign r_NoPre = MODEROut[2];
assign r_TxEn = MODEROut[1] & (TX_BD_NUMOut>0); // Transmission is enabled when there is at least one TxBD.
assign r_RxEn = MODEROut[0] & (TX_BD_NUMOut<'h80); // Reception is enabled when there is at least one RxBD.
 
assign r_IPGT[6:0] = IPGTOut[6:0];
 
assign r_IPGR1[6:0] = IPGR1Out[6:0];
 
assign r_IPGR2[6:0] = IPGR2Out[6:0];
 
assign r_MinFL[15:0] = PACKETLENOut[31:16];
assign r_MaxFL[15:0] = PACKETLENOut[15:0];
 
assign r_MaxRet[3:0] = COLLCONFOut[19:16];
assign r_CollValid[5:0] = COLLCONFOut[5:0];
 
assign r_TxFlow = CTRLMODEROut[2];
assign r_RxFlow = CTRLMODEROut[1];
assign r_PassAll = CTRLMODEROut[0];
 
assign r_MiiNoPre = MIIMODEROut[8];
assign r_ClkDiv[7:0] = MIIMODEROut[7:0];
 
assign r_WCtrlData = MIICOMMANDOut[2];
assign r_RStat = MIICOMMANDOut[1];
assign r_ScanStat = MIICOMMANDOut[0];
 
assign r_RGAD[4:0] = MIIADDRESSOut[12:8];
assign r_FIAD[4:0] = MIIADDRESSOut[4:0];
 
assign r_CtrlData[15:0] = MIITX_DATAOut[15:0];
 
assign MIISTATUSOut[31:`ETH_MIISTATUS_WIDTH] = 0;
assign MIISTATUSOut[2] = NValid_stat ;
assign MIISTATUSOut[1] = Busy_stat ;
assign MIISTATUSOut[0] = LinkFail ;
 
assign r_MAC[31:0] = MAC_ADDR0Out[31:0];
assign r_MAC[47:32] = MAC_ADDR1Out[15:0];
assign r_HASH1[31:0] = HASH1Out;
assign r_HASH0[31:0] = HASH0Out;
 
assign r_TxBDNum[7:0] = TX_BD_NUMOut[7:0];
 
assign r_TxPauseTV[15:0] = TXCTRLOut[15:0];
assign r_TxPauseRq = TXCTRLOut[16];
 
 
// Synchronizing TxC Interrupt
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
SetTxCIrq_txclk <=#Tp 1'b0;
else
if(TxCtrlEndFrm & StartTxDone & r_TxFlow)
SetTxCIrq_txclk <=#Tp 1'b1;
else
if(ResetTxCIrq_sync2)
SetTxCIrq_txclk <=#Tp 1'b0;
end
 
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync1 <=#Tp 1'b0;
else
SetTxCIrq_sync1 <=#Tp SetTxCIrq_txclk;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync2 <=#Tp 1'b0;
else
SetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq_sync3 <=#Tp 1'b0;
else
SetTxCIrq_sync3 <=#Tp SetTxCIrq_sync2;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetTxCIrq <=#Tp 1'b0;
else
SetTxCIrq <=#Tp SetTxCIrq_sync2 & ~SetTxCIrq_sync3;
end
 
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
ResetTxCIrq_sync1 <=#Tp 1'b0;
else
ResetTxCIrq_sync1 <=#Tp SetTxCIrq_sync2;
end
 
always @ (posedge TxClk or posedge Reset)
begin
if(Reset)
ResetTxCIrq_sync2 <=#Tp 1'b0;
else
ResetTxCIrq_sync2 <=#Tp SetTxCIrq_sync1;
end
 
 
// Synchronizing RxC Interrupt
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
SetRxCIrq_rxclk <=#Tp 1'b0;
else
if(SetPauseTimer & r_RxFlow)
SetRxCIrq_rxclk <=#Tp 1'b1;
else
if(ResetRxCIrq_sync2 & (~ResetRxCIrq_sync3))
SetRxCIrq_rxclk <=#Tp 1'b0;
end
 
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync1 <=#Tp 1'b0;
else
SetRxCIrq_sync1 <=#Tp SetRxCIrq_rxclk;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync2 <=#Tp 1'b0;
else
SetRxCIrq_sync2 <=#Tp SetRxCIrq_sync1;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq_sync3 <=#Tp 1'b0;
else
SetRxCIrq_sync3 <=#Tp SetRxCIrq_sync2;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
SetRxCIrq <=#Tp 1'b0;
else
SetRxCIrq <=#Tp SetRxCIrq_sync2 & ~SetRxCIrq_sync3;
end
 
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync1 <=#Tp 1'b0;
else
ResetRxCIrq_sync1 <=#Tp SetRxCIrq_sync2;
end
 
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync2 <=#Tp 1'b0;
else
ResetRxCIrq_sync2 <=#Tp ResetRxCIrq_sync1;
end
 
always @ (posedge RxClk or posedge Reset)
begin
if(Reset)
ResetRxCIrq_sync3 <=#Tp 1'b0;
else
ResetRxCIrq_sync3 <=#Tp ResetRxCIrq_sync2;
end
 
 
 
// Interrupt generation
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txb <= 1'b0;
else
if(TxB_IRQ)
irq_txb <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[0])
irq_txb <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txe <= 1'b0;
else
if(TxE_IRQ)
irq_txe <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[1])
irq_txe <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxb <= 1'b0;
else
if(RxB_IRQ)
irq_rxb <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[2])
irq_rxb <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxe <= 1'b0;
else
if(RxE_IRQ)
irq_rxe <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[3])
irq_rxe <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_busy <= 1'b0;
else
if(Busy_IRQ)
irq_busy <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[4])
irq_busy <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_txc <= 1'b0;
else
if(SetTxCIrq)
irq_txc <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[5])
irq_txc <= #Tp 1'b0;
end
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
irq_rxc <= 1'b0;
else
if(SetRxCIrq)
irq_rxc <= #Tp 1'b1;
else
if(INT_SOURCE_Wr & DataIn[6])
irq_rxc <= #Tp 1'b0;
end
 
// Generating interrupt signal
assign int_o = irq_txb & INT_MASKOut[0] |
irq_txe & INT_MASKOut[1] |
irq_rxb & INT_MASKOut[2] |
irq_rxe & INT_MASKOut[3] |
irq_busy & INT_MASKOut[4] |
irq_txc & INT_MASKOut[5] |
irq_rxc & INT_MASKOut[6] ;
 
// For reading interrupt status
assign INT_SOURCEOut = {{(32-`ETH_INT_SOURCE_WIDTH){1'b0}}, irq_rxc, irq_txc, irq_busy, irq_rxe, irq_rxb, irq_txe, irq_txb};
 
 
 
endmodule
/tags/rel_13/rtl/verilog/TODO
0,0 → 1,57
//////////////////////////////////////////////////////////////////////
//// ////
//// TODO ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.1 2002/09/10 10:42:06 mohor
// HASH improvement needed.
//
 
 
- Add logic for easier use of the HASH table: First write MAC address to some
register. Then issue a command. CRC is calculated from this MAC and appropriate
bit written to the HASH register.
- In loopback rx_clk is not looped back. Possible CRC error. Consider if usage of
additional logic is necessery (FIFO for looping the data).
 
 
 
/tags/rel_13/rtl/verilog/eth_transmitcontrol.v
0,0 → 1,326
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_transmitcontrol.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5 2002/11/19 17:37:32 mohor
// When control frame (PAUSE) was sent, status was written in the
// eth_wishbone module and both TXB and TXC interrupts were set. Fixed.
// Only TXC interrupt is set.
//
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.1 2001/07/03 12:51:54 mohor
// Initial release of the MAC Control module.
//
//
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_transmitcontrol (MTxClk, TxReset, TxUsedDataIn, TxUsedDataOut, TxDoneIn, TxAbortIn,
TxStartFrmIn, TPauseRq, TxUsedDataOutDetected, TxFlow, DlyCrcEn,
TxPauseTV, MAC, TxCtrlStartFrm, TxCtrlEndFrm, SendingCtrlFrm, CtrlMux,
ControlData, WillSendControlFrame, BlockTxDone
);
 
parameter Tp = 1;
 
 
input MTxClk;
input TxReset;
input TxUsedDataIn;
input TxUsedDataOut;
input TxDoneIn;
input TxAbortIn;
input TxStartFrmIn;
input TPauseRq;
input TxUsedDataOutDetected;
input TxFlow;
input DlyCrcEn;
input [15:0] TxPauseTV;
input [47:0] MAC;
 
output TxCtrlStartFrm;
output TxCtrlEndFrm;
output SendingCtrlFrm;
output CtrlMux;
output [7:0] ControlData;
output WillSendControlFrame;
output BlockTxDone;
 
reg SendingCtrlFrm;
reg CtrlMux;
reg WillSendControlFrame;
reg [3:0] DlyCrcCnt;
reg [5:0] ByteCnt;
reg ControlEnd_q;
reg [7:0] MuxedCtrlData;
reg TxCtrlStartFrm;
reg TxCtrlStartFrm_q;
reg TxCtrlEndFrm;
reg [7:0] ControlData;
reg TxUsedDataIn_q;
reg BlockTxDone;
 
wire IncrementDlyCrcCnt;
wire ResetByteCnt;
wire IncrementByteCnt;
wire ControlEnd;
wire IncrementByteCntBy2;
wire EnableCnt;
 
 
// A command for Sending the control frame is active (latched)
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
WillSendControlFrame <= #Tp 1'b0;
else
if(TxCtrlEndFrm & CtrlMux)
WillSendControlFrame <= #Tp 1'b0;
else
if(TPauseRq & TxFlow)
WillSendControlFrame <= #Tp 1'b1;
end
 
 
// Generation of the transmit control packet start frame
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
TxCtrlStartFrm <= #Tp 1'b0;
else
if(TxUsedDataIn_q & CtrlMux)
TxCtrlStartFrm <= #Tp 1'b0;
else
if(WillSendControlFrame & ~TxUsedDataOut & (TxDoneIn | TxAbortIn | TxStartFrmIn | (~TxUsedDataOutDetected)))
TxCtrlStartFrm <= #Tp 1'b1;
end
 
 
 
// Generation of the transmit control packet end frame
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
TxCtrlEndFrm <= #Tp 1'b0;
else
if(ControlEnd | ControlEnd_q)
TxCtrlEndFrm <= #Tp 1'b1;
else
TxCtrlEndFrm <= #Tp 1'b0;
end
 
 
// Generation of the multiplexer signal (controls muxes for switching between
// normal and control packets)
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
CtrlMux <= #Tp 1'b0;
else
if(WillSendControlFrame & ~TxUsedDataOut)
CtrlMux <= #Tp 1'b1;
else
if(TxDoneIn)
CtrlMux <= #Tp 1'b0;
end
 
 
 
// Generation of the Sending Control Frame signal (enables padding and CRC)
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
SendingCtrlFrm <= #Tp 1'b0;
else
if(WillSendControlFrame & TxCtrlStartFrm)
SendingCtrlFrm <= #Tp 1'b1;
else
if(TxDoneIn)
SendingCtrlFrm <= #Tp 1'b0;
end
 
 
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
TxUsedDataIn_q <= #Tp 1'b0;
else
TxUsedDataIn_q <= #Tp TxUsedDataIn;
end
 
 
 
// Generation of the signal that will block sending the Done signal to the eth_wishbone module
// While sending the control frame
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
BlockTxDone <= #Tp 1'b0;
else
if(TxCtrlStartFrm)
BlockTxDone <= #Tp 1'b1;
else
if(TxStartFrmIn)
BlockTxDone <= #Tp 1'b0;
end
 
 
always @ (posedge MTxClk)
begin
ControlEnd_q <= #Tp ControlEnd;
TxCtrlStartFrm_q <= #Tp TxCtrlStartFrm;
end
 
 
assign IncrementDlyCrcCnt = CtrlMux & TxUsedDataIn & ~DlyCrcCnt[2];
 
 
// Delayed CRC counter
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
DlyCrcCnt <= #Tp 4'h0;
else
if(ResetByteCnt)
DlyCrcCnt <= #Tp 4'h0;
else
if(IncrementDlyCrcCnt)
DlyCrcCnt <= #Tp DlyCrcCnt + 1'b1;
end
 
assign ResetByteCnt = TxReset | (~TxCtrlStartFrm & (TxDoneIn | TxAbortIn));
assign IncrementByteCnt = CtrlMux & (TxCtrlStartFrm & ~TxCtrlStartFrm_q & ~TxUsedDataIn | TxUsedDataIn & ~ControlEnd);
assign IncrementByteCntBy2 = CtrlMux & TxCtrlStartFrm & (~TxCtrlStartFrm_q) & TxUsedDataIn; // When TxUsedDataIn and CtrlMux are set at the same time
 
assign EnableCnt = (~DlyCrcEn | DlyCrcEn & (&DlyCrcCnt[1:0]));
// Byte counter
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
ByteCnt <= #Tp 6'h0;
else
if(ResetByteCnt)
ByteCnt <= #Tp 6'h0;
else
if(IncrementByteCntBy2 & EnableCnt)
ByteCnt <= #Tp (ByteCnt[5:0] ) + 2'h2;
else
if(IncrementByteCnt & EnableCnt)
ByteCnt <= #Tp (ByteCnt[5:0] ) + 1'b1;
end
 
 
assign ControlEnd = ByteCnt[5:0] == 6'h22;
 
 
// Control data generation (goes to the TxEthMAC module)
always @ (ByteCnt or DlyCrcEn or MAC or TxPauseTV or DlyCrcCnt)
begin
case(ByteCnt)
6'h0: if(~DlyCrcEn | DlyCrcEn & (&DlyCrcCnt[1:0]))
MuxedCtrlData[7:0] = 8'h01; // Reserved Multicast Address
else
MuxedCtrlData[7:0] = 8'h0;
6'h2: MuxedCtrlData[7:0] = 8'h80;
6'h4: MuxedCtrlData[7:0] = 8'hC2;
6'h6: MuxedCtrlData[7:0] = 8'h00;
6'h8: MuxedCtrlData[7:0] = 8'h00;
6'hA: MuxedCtrlData[7:0] = 8'h01;
6'hC: MuxedCtrlData[7:0] = MAC[47:40];
6'hE: MuxedCtrlData[7:0] = MAC[39:32];
6'h10: MuxedCtrlData[7:0] = MAC[31:24];
6'h12: MuxedCtrlData[7:0] = MAC[23:16];
6'h14: MuxedCtrlData[7:0] = MAC[15:8];
6'h16: MuxedCtrlData[7:0] = MAC[7:0];
6'h18: MuxedCtrlData[7:0] = 8'h88; // Type/Length
6'h1A: MuxedCtrlData[7:0] = 8'h08;
6'h1C: MuxedCtrlData[7:0] = 8'h00; // Opcode
6'h1E: MuxedCtrlData[7:0] = 8'h01;
6'h20: MuxedCtrlData[7:0] = TxPauseTV[15:8]; // Pause timer value
6'h22: MuxedCtrlData[7:0] = TxPauseTV[7:0];
default: MuxedCtrlData[7:0] = 8'h0;
endcase
end
 
 
// Latched Control data
always @ (posedge MTxClk or posedge TxReset)
begin
if(TxReset)
ControlData[7:0] <= #Tp 8'h0;
else
if(~ByteCnt[0])
ControlData[7:0] <= #Tp MuxedCtrlData[7:0];
end
 
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_defines.v
0,0 → 1,261
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_defines.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.28 2002/11/15 14:27:15 mohor
// Since r_Rst bit is not used any more, default value is changed to 0xa000.
//
// Revision 1.27 2002/11/01 18:19:34 mohor
// Defines fixed to use generic RAM by default.
//
// Revision 1.26 2002/10/24 18:53:03 mohor
// fpga define added.
//
// Revision 1.3 2002/10/11 16:57:54 igorm
// eth_defines.v tagged with rel_5 used.
//
// Revision 1.25 2002/10/10 16:47:44 mohor
// Defines changed to have ETH_ prolog.
// ETH_WISHBONE_B# define added.
//
// Revision 1.24 2002/10/10 16:33:11 mohor
// Bist added.
//
// Revision 1.23 2002/09/23 18:22:48 mohor
// Virtual Silicon RAM might be used in the ASIC implementation of the ethernet
// core.
//
// Revision 1.22 2002/09/04 18:36:49 mohor
// Defines for control registers added (ETH_TXCTRL and ETH_RXCTRL).
//
// Revision 1.21 2002/08/16 22:09:47 mohor
// Defines for register width added. mii_rst signal in MIIMODER register
// changed.
//
// Revision 1.20 2002/08/14 19:31:48 mohor
// Register TX_BD_NUM is changed so it contains value of the Tx buffer descriptors. No
// need to multiply or devide any more.
//
// Revision 1.19 2002/07/23 15:28:31 mohor
// Ram , used for BDs changed from generic_spram to eth_spram_256x32.
//
// Revision 1.18 2002/05/03 10:15:50 mohor
// Outputs registered. Reset changed for eth_wishbone module.
//
// Revision 1.17 2002/04/24 08:52:19 mohor
// Compiler directives added. Tx and Rx fifo size incremented. A "late collision"
// bug fixed.
//
// Revision 1.16 2002/03/19 12:53:29 mohor
// Some defines that are used in testbench only were moved to tb_eth_defines.v
// file.
//
// Revision 1.15 2002/02/26 16:11:32 mohor
// Number of interrupts changed
//
// Revision 1.14 2002/02/16 14:03:44 mohor
// Registered trimmed. Unused registers removed.
//
// Revision 1.13 2002/02/16 13:06:33 mohor
// EXTERNAL_DMA used instead of WISHBONE_DMA.
//
// Revision 1.12 2002/02/15 10:58:31 mohor
// Changed that were lost with last update put back to the file.
//
// Revision 1.11 2002/02/14 20:19:41 billditt
// Modified for Address Checking,
// addition of eth_addrcheck.v
//
// Revision 1.10 2002/02/12 17:01:19 mohor
// HASH0 and HASH1 registers added.
 
// Revision 1.9 2002/02/08 16:21:54 mohor
// Rx status is written back to the BD.
//
// Revision 1.8 2002/02/05 16:44:38 mohor
// Both rx and tx part are finished. Tested with wb_clk_i between 10 and 200
// MHz. Statuses, overrun, control frame transmission and reception still need
// to be fixed.
//
// Revision 1.7 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.6 2001/12/05 15:00:16 mohor
// RX_BD_NUM changed to TX_BD_NUM (holds number of TX descriptors
// instead of the number of RX descriptors).
//
// Revision 1.5 2001/12/05 10:21:37 mohor
// ETH_RX_BD_ADR register deleted. ETH_RX_BD_NUM is used instead.
//
// Revision 1.4 2001/11/13 14:23:56 mohor
// Generic memory model is used. Defines are changed for the same reason.
//
// Revision 1.3 2001/10/18 12:07:11 mohor
// Status signals changed, Adress decoding changed, interrupt controller
// added.
//
// Revision 1.2 2001/09/24 15:02:56 mohor
// Defines changed (All precede with ETH_). Small changes because some
// tools generate warnings when two operands are together. Synchronization
// between two clocks domains in eth_wishbonedma.v is changed (due to ASIC
// demands).
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
//
//
//
//
 
 
 
//`define ETH_BIST // Bist for usage with Virtual Silicon RAMS
 
 
// Ethernet implemented in Xilinx Chips
// `define ETH_FIFO_XILINX // Use Xilinx distributed ram for tx and rx fifo
// `define ETH_XILINX_RAMB4 // Selection of the used memory for Buffer descriptors
// Core is going to be implemented in Virtex FPGA and contains Virtex
// specific elements.
 
// Ethernet implemented in ASIC with Virtual Silicon RAMs
// `define ETH_VIRTUAL_SILICON_RAM // Virtual Silicon RAMS used storing buffer decriptors (ASIC implementation)
 
`define ETH_MODER_ADR 8'h0 // 0x0
`define ETH_INT_SOURCE_ADR 8'h1 // 0x4
`define ETH_INT_MASK_ADR 8'h2 // 0x8
`define ETH_IPGT_ADR 8'h3 // 0xC
`define ETH_IPGR1_ADR 8'h4 // 0x10
`define ETH_IPGR2_ADR 8'h5 // 0x14
`define ETH_PACKETLEN_ADR 8'h6 // 0x18
`define ETH_COLLCONF_ADR 8'h7 // 0x1C
`define ETH_TX_BD_NUM_ADR 8'h8 // 0x20
`define ETH_CTRLMODER_ADR 8'h9 // 0x24
`define ETH_MIIMODER_ADR 8'hA // 0x28
`define ETH_MIICOMMAND_ADR 8'hB // 0x2C
`define ETH_MIIADDRESS_ADR 8'hC // 0x30
`define ETH_MIITX_DATA_ADR 8'hD // 0x34
`define ETH_MIIRX_DATA_ADR 8'hE // 0x38
`define ETH_MIISTATUS_ADR 8'hF // 0x3C
`define ETH_MAC_ADDR0_ADR 8'h10 // 0x40
`define ETH_MAC_ADDR1_ADR 8'h11 // 0x44
`define ETH_HASH0_ADR 8'h12 // 0x48
`define ETH_HASH1_ADR 8'h13 // 0x4C
`define ETH_TX_CTRL_ADR 8'h14 // 0x50
`define ETH_RX_CTRL_ADR 8'h15 // 0x54
 
 
`define ETH_MODER_DEF 17'h0A000
`define ETH_INT_MASK_DEF 7'h0
`define ETH_IPGT_DEF 7'h12
`define ETH_IPGR1_DEF 7'h0C
`define ETH_IPGR2_DEF 7'h12
`define ETH_PACKETLEN_DEF 32'h00400600
`define ETH_COLLCONF0_DEF 6'h3f
`define ETH_COLLCONF1_DEF 4'hF
`define ETH_TX_BD_NUM_DEF 8'h40
`define ETH_CTRLMODER_DEF 3'h0
`define ETH_MIIMODER_DEF 10'h064
`define ETH_MIIADDRESS0_DEF 5'h00
`define ETH_MIIADDRESS1_DEF 5'h00
`define ETH_MIITX_DATA_DEF 16'h0000
`define ETH_MIIRX_DATA_DEF 16'h0000
`define ETH_MIISTATUS_DEF 32'h00000000
`define ETH_MAC_ADDR0_DEF 32'h00000000
`define ETH_MAC_ADDR1_DEF 16'h0000
`define ETH_HASH0_DEF 32'h00000000
`define ETH_HASH1_DEF 32'h00000000
`define ETH_RX_CTRL_DEF 16'h0
 
 
`define ETH_MODER_WIDTH 17
`define ETH_INT_SOURCE_WIDTH 7
`define ETH_INT_MASK_WIDTH 7
`define ETH_IPGT_WIDTH 7
`define ETH_IPGR1_WIDTH 7
`define ETH_IPGR2_WIDTH 7
`define ETH_PACKETLEN_WIDTH 32
`define ETH_TX_BD_NUM_WIDTH 8
`define ETH_CTRLMODER_WIDTH 3
`define ETH_MIIMODER_WIDTH 9
`define ETH_MIITX_DATA_WIDTH 16
`define ETH_MIIRX_DATA_WIDTH 16
`define ETH_MIISTATUS_WIDTH 3
`define ETH_MAC_ADDR0_WIDTH 32
`define ETH_MAC_ADDR1_WIDTH 16
`define ETH_HASH0_WIDTH 32
`define ETH_HASH1_WIDTH 32
`define ETH_TX_CTRL_WIDTH 17
`define ETH_RX_CTRL_WIDTH 16
 
 
// Outputs are registered (uncomment when needed)
`define ETH_REGISTERED_OUTPUTS
 
// Settings for TX FIFO
`define ETH_TX_FIFO_CNT_WIDTH 5
`define ETH_TX_FIFO_DEPTH 16
`define ETH_TX_FIFO_DATA_WIDTH 32
 
// Settings for RX FIFO
`define ETH_RX_FIFO_CNT_WIDTH 5
`define ETH_RX_FIFO_DEPTH 16
`define ETH_RX_FIFO_DATA_WIDTH 32
 
// Burst length
`define ETH_BURST_LENGTH 4 // Change also ETH_BURST_CNT_WIDTH
`define ETH_BURST_CNT_WIDTH 3 // The counter must be width enough to count to ETH_BURST_LENGTH
 
// WISHBONE interface is Revision B3 compliant (uncomment when needed)
//`define ETH_WISHBONE_B3
 
/tags/rel_13/rtl/verilog/eth_rxstatem.v
0,0 → 1,196
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_rxstatem.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// - Novan Hartadi (novan@vlsi.itb.ac.id) ////
//// - Mahmud Galela (mgalela@vlsi.itb.ac.id) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.4 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.3 2001/10/18 12:07:11 mohor
// Status signals changed, Adress decoding changed, interrupt controller
// added.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.2 2001/07/03 12:55:41 mohor
// Minor changes because of the synthesys warnings.
//
//
// Revision 1.1 2001/06/27 21:26:19 mohor
// Initial release of the RxEthMAC module.
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_rxstatem (MRxClk, Reset, MRxDV, ByteCntEq0, ByteCntGreat2, Transmitting, MRxDEq5, MRxDEqD,
IFGCounterEq24, ByteCntMaxFrame, StateData, StateIdle, StatePreamble, StateSFD,
StateDrop
);
 
parameter Tp = 1;
 
input MRxClk;
input Reset;
input MRxDV;
input ByteCntEq0;
input ByteCntGreat2;
input MRxDEq5;
input Transmitting;
input MRxDEqD;
input IFGCounterEq24;
input ByteCntMaxFrame;
 
output [1:0] StateData;
output StateIdle;
output StateDrop;
output StatePreamble;
output StateSFD;
 
reg StateData0;
reg StateData1;
reg StateIdle;
reg StateDrop;
reg StatePreamble;
reg StateSFD;
 
wire StartIdle;
wire StartDrop;
wire StartData0;
wire StartData1;
wire StartPreamble;
wire StartSFD;
 
 
// Defining the next state
assign StartIdle = ~MRxDV & (StateDrop | StatePreamble | StateSFD | (|StateData));
 
assign StartPreamble = MRxDV & ~MRxDEq5 & (StateIdle & ~Transmitting);
 
assign StartSFD = MRxDV & MRxDEq5 & (StateIdle & ~Transmitting | StatePreamble);
 
assign StartData0 = MRxDV & (StateSFD & MRxDEqD & IFGCounterEq24 | StateData1);
 
assign StartData1 = MRxDV & StateData0 & (~ByteCntMaxFrame);
 
assign StartDrop = MRxDV & (StateIdle & Transmitting | StateSFD & ~IFGCounterEq24 & MRxDEqD
| StateData0 & ByteCntMaxFrame
);
 
// Rx State Machine
always @ (posedge MRxClk or posedge Reset)
begin
if(Reset)
begin
StateIdle <= #Tp 1'b0;
StateDrop <= #Tp 1'b1;
StatePreamble <= #Tp 1'b0;
StateSFD <= #Tp 1'b0;
StateData0 <= #Tp 1'b0;
StateData1 <= #Tp 1'b0;
end
else
begin
if(StartPreamble | StartSFD | StartDrop)
StateIdle <= #Tp 1'b0;
else
if(StartIdle)
StateIdle <= #Tp 1'b1;
 
if(StartIdle)
StateDrop <= #Tp 1'b0;
else
if(StartDrop)
StateDrop <= #Tp 1'b1;
 
if(StartSFD | StartIdle | StartDrop)
StatePreamble <= #Tp 1'b0;
else
if(StartPreamble)
StatePreamble <= #Tp 1'b1;
 
if(StartPreamble | StartIdle | StartData0 | StartDrop)
StateSFD <= #Tp 1'b0;
else
if(StartSFD)
StateSFD <= #Tp 1'b1;
 
if(StartIdle | StartData1 | StartDrop)
StateData0 <= #Tp 1'b0;
else
if(StartData0)
StateData0 <= #Tp 1'b1;
 
if(StartIdle | StartData0 | StartDrop)
StateData1 <= #Tp 1'b0;
else
if(StartData1)
StateData1 <= #Tp 1'b1;
end
end
 
assign StateData[1:0] = {StateData1, StateData0};
 
endmodule
/tags/rel_13/rtl/verilog/eth_txstatem.v
0,0 → 1,280
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_txstatem.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// - Novan Hartadi (novan@vlsi.itb.ac.id) ////
//// - Mahmud Galela (mgalela@vlsi.itb.ac.id) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.3 2001/06/19 18:16:40 mohor
// TxClk changed to MTxClk (as discribed in the documentation).
// Crc changed so only one file can be used instead of two.
//
// Revision 1.2 2001/06/19 10:38:07 mohor
// Minor changes in header.
//
// Revision 1.1 2001/06/19 10:27:57 mohor
// TxEthMAC initial release.
//
//
//
//
 
 
`include "timescale.v"
 
 
module eth_txstatem (MTxClk, Reset, ExcessiveDefer, CarrierSense, NibCnt, IPGT, IPGR1,
IPGR2, FullD, TxStartFrm, TxEndFrm, TxUnderRun, Collision, UnderRun,
StartTxDone, TooBig, NibCntEq7, NibCntEq15, MaxFrame, Pad, CrcEn,
NibbleMinFl, RandomEq0, ColWindow, RetryMax, NoBckof, RandomEqByteCnt,
StateIdle, StateIPG, StatePreamble, StateData, StatePAD, StateFCS,
StateJam, StateJam_q, StateBackOff, StateDefer, StartFCS, StartJam,
StartBackoff, StartDefer, StartPreamble, StartData, StartIPG
);
 
parameter Tp = 1;
 
input MTxClk;
input Reset;
input ExcessiveDefer;
input CarrierSense;
input [6:0] NibCnt;
input [6:0] IPGT;
input [6:0] IPGR1;
input [6:0] IPGR2;
input FullD;
input TxStartFrm;
input TxEndFrm;
input TxUnderRun;
input Collision;
input UnderRun;
input StartTxDone;
input TooBig;
input NibCntEq7;
input NibCntEq15;
input MaxFrame;
input Pad;
input CrcEn;
input NibbleMinFl;
input RandomEq0;
input ColWindow;
input RetryMax;
input NoBckof;
input RandomEqByteCnt;
 
 
output StateIdle; // Idle state
output StateIPG; // IPG state
output StatePreamble; // Preamble state
output [1:0] StateData; // Data state
output StatePAD; // PAD state
output StateFCS; // FCS state
output StateJam; // Jam state
output StateJam_q; // Delayed Jam state
output StateBackOff; // Backoff state
output StateDefer; // Defer state
 
output StartFCS; // FCS state will be activated in next clock
output StartJam; // Jam state will be activated in next clock
output StartBackoff; // Backoff state will be activated in next clock
output StartDefer; // Defer state will be activated in next clock
output StartPreamble; // Preamble state will be activated in next clock
output [1:0] StartData; // Data state will be activated in next clock
output StartIPG; // IPG state will be activated in next clock
 
wire StartIdle; // Idle state will be activated in next clock
wire StartPAD; // PAD state will be activated in next clock
 
 
reg StateIdle;
reg StateIPG;
reg StatePreamble;
reg [1:0] StateData;
reg StatePAD;
reg StateFCS;
reg StateJam;
reg StateJam_q;
reg StateBackOff;
reg StateDefer;
reg Rule1;
 
 
// Defining the next state
assign StartIPG = StateDefer & ~ExcessiveDefer & ~CarrierSense;
 
assign StartIdle = StateIPG & (Rule1 & NibCnt[6:0] >= IPGT | ~Rule1 & NibCnt[6:0] >= IPGR2);
 
assign StartPreamble = StateIdle & TxStartFrm & ~CarrierSense;
 
assign StartData[0] = ~Collision & (StatePreamble & NibCntEq15 | StateData[1] & ~TxEndFrm);
 
assign StartData[1] = ~Collision & StateData[0] & ~TxUnderRun & ~MaxFrame;
 
assign StartPAD = ~Collision & StateData[1] & TxEndFrm & Pad & ~NibbleMinFl;
 
assign StartFCS = ~Collision & StateData[1] & TxEndFrm & (~Pad | Pad & NibbleMinFl) & CrcEn
| ~Collision & StatePAD & NibbleMinFl & CrcEn;
 
assign StartJam = (Collision | UnderRun) & ((StatePreamble & NibCntEq15) | (|StateData[1:0]) | StatePAD | StateFCS);
 
assign StartBackoff = StateJam & ~RandomEq0 & ColWindow & ~RetryMax & NibCntEq7 & ~NoBckof;
 
assign StartDefer = StateIPG & ~Rule1 & CarrierSense & NibCnt[6:0] <= IPGR1 & NibCnt[6:0] != IPGR2
| StateIdle & CarrierSense
| StateJam & NibCntEq7 & (NoBckof | RandomEq0 | ~ColWindow | RetryMax)
| StateBackOff & (TxUnderRun | RandomEqByteCnt)
| StartTxDone | TooBig;
 
 
 
// Tx State Machine
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
begin
StateIPG <= #Tp 1'b0;
StateIdle <= #Tp 1'b0;
StatePreamble <= #Tp 1'b0;
StateData[1:0] <= #Tp 2'b0;
StatePAD <= #Tp 1'b0;
StateFCS <= #Tp 1'b0;
StateJam <= #Tp 1'b0;
StateJam_q <= #Tp 1'b0;
StateBackOff <= #Tp 1'b0;
StateDefer <= #Tp 1'b1;
end
else
begin
StateData[1:0] <= #Tp StartData[1:0];
StateJam_q <= #Tp StateJam;
 
if(StartDefer | StartIdle)
StateIPG <= #Tp 1'b0;
else
if(StartIPG)
StateIPG <= #Tp 1'b1;
 
if(StartDefer | StartPreamble)
StateIdle <= #Tp 1'b0;
else
if(StartIdle)
StateIdle <= #Tp 1'b1;
 
if(StartData[0] | StartJam)
StatePreamble <= #Tp 1'b0;
else
if(StartPreamble)
StatePreamble <= #Tp 1'b1;
 
if(StartFCS | StartJam)
StatePAD <= #Tp 1'b0;
else
if(StartPAD)
StatePAD <= #Tp 1'b1;
 
if(StartJam | StartDefer)
StateFCS <= #Tp 1'b0;
else
if(StartFCS)
StateFCS <= #Tp 1'b1;
 
if(StartBackoff | StartDefer)
StateJam <= #Tp 1'b0;
else
if(StartJam)
StateJam <= #Tp 1'b1;
 
if(StartDefer)
StateBackOff <= #Tp 1'b0;
else
if(StartBackoff)
StateBackOff <= #Tp 1'b1;
 
if(StartIPG)
StateDefer <= #Tp 1'b0;
else
if(StartDefer)
StateDefer <= #Tp 1'b1;
end
end
 
 
// This sections defines which interpack gap rule to use
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
Rule1 <= #Tp 1'b0;
else
begin
if(StateIdle | StateBackOff)
Rule1 <= #Tp 1'b0;
else
if(StatePreamble | FullD)
Rule1 <= #Tp 1'b1;
end
end
 
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_spram_256x32.v
0,0 → 1,197
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_spram_256x32.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.3 2002/10/10 16:29:30 mohor
// BIST added.
//
// Revision 1.2 2002/09/23 18:24:31 mohor
// ETH_VIRTUAL_SILICON_RAM supported (for ASIC implementation).
//
// Revision 1.1 2002/07/23 16:36:09 mohor
// ethernet spram added. So far a generic ram and xilinx RAMB4 are used.
//
//
//
 
`include "eth_defines.v"
`include "timescale.v"
 
module eth_spram_256x32(
// Generic synchronous single-port RAM interface
clk, rst, ce, we, oe, addr, di, do
 
`ifdef ETH_BIST
,
// debug chain signals
scanb_rst, // bist scan reset
scanb_clk, // bist scan clock
scanb_si, // bist scan serial in
scanb_so, // bist scan serial out
scanb_en // bist scan shift enable
`endif
 
 
 
);
 
//
// Generic synchronous single-port RAM interface
//
input clk; // Clock, rising edge
input rst; // Reset, active high
input ce; // Chip enable input, active high
input we; // Write enable input, active high
input oe; // Output enable input, active high
input [7:0] addr; // address bus inputs
input [31:0] di; // input data bus
output [31:0] do; // output data bus
 
 
`ifdef ETH_BIST
input scanb_rst; // bist scan reset
input scanb_clk; // bist scan clock
input scanb_si; // bist scan serial in
output scanb_so; // bist scan serial out
input scanb_en; // bist scan shift enable
`endif
 
`ifdef ETH_XILINX_RAMB4
 
RAMB4_S16 ram0
(
.DO (do[15:0]),
.ADDR (addr),
.DI (di[15:0]),
.EN (ce),
.CLK (clk),
.WE (we),
.RST (rst)
);
 
RAMB4_S16 ram1
(
.DO (do[31:16]),
.ADDR (addr),
.DI (di[31:16]),
.EN (ce),
.CLK (clk),
.WE (we),
.RST (rst)
);
 
`else // !ETH_XILINX_RAMB4
`ifdef ETH_VIRTUAL_SILICON_RAM
`ifdef ETH_BIST
vs_hdsp_256x32_bist ram0_bist
`else
vs_hdsp_256x32 ram0
`endif
(
.CK (clk),
.CEN (!ce),
.WEN (!we),
.OEN (!oe),
.ADR (addr),
.DI (di),
.DOUT (do)
 
`ifdef ETH_BIST
,
// debug chain signals
.scanb_rst (scanb_rst),
.scanb_clk (scanb_clk),
.scanb_si (scanb_si),
.scanb_so (scanb_so),
.scanb_en (scanb_en)
`endif
);
 
`else // !ETH_VIRTUAL_SILICON_RAM
 
//
// Generic single-port synchronous RAM model
//
 
//
// Generic RAM's registers and wires
//
reg [31:0] mem [255:0]; // RAM content
wire [31:0] q; // RAM output
reg [7:0] raddr; // RAM read address
//
// Data output drivers
//
assign do = (oe & ce) ? q : {32{1'bz}};
 
//
// RAM read and write
//
 
// read operation
always@(posedge clk)
if (ce) // && !we)
raddr <= #1 addr; // read address needs to be registered to read clock
 
assign #1 q = rst ? {32{1'b0}} : mem[raddr];
 
// write operation
always@(posedge clk)
if (ce && we)
mem[addr] <= #1 di;
 
// Task prints range of memory
// *** Remember that tasks are non reentrant, don't call this task in parallel for multiple instantiations.
task print_ram;
input [7:0] start;
input [7:0] finish;
integer rnum;
begin
for (rnum=start;rnum<=finish;rnum=rnum+1)
$display("Addr %h = %h",rnum,mem[rnum]);
end
endtask
 
`endif // !ETH_VIRTUAL_SILICON_RAM
`endif // !ETH_XILINX_RAMB4
 
endmodule
/tags/rel_13/rtl/verilog/eth_cop.v
0,0 → 1,385
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_cop.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.2 2002/09/09 12:54:13 mohor
// error acknowledge cycle termination added to display.
//
// Revision 1.1 2002/08/14 17:16:07 mohor
// Traffic cop with 2 wishbone master interfaces and 2 wishbona slave
// interfaces:
// - Host connects to the master interface
// - Ethernet master (DMA) connects to the second master interface
// - Memory interface connects to the slave interface
// - Ethernet slave interface (access to registers and BDs) connects to second
// slave interface
//
//
//
//
//
 
`include "tb_eth_defines.v"
`include "timescale.v"
 
module eth_cop
(
// WISHBONE common
wb_clk_i, wb_rst_i,
// WISHBONE MASTER 1
m1_wb_adr_i, m1_wb_sel_i, m1_wb_we_i, m1_wb_dat_o,
m1_wb_dat_i, m1_wb_cyc_i, m1_wb_stb_i, m1_wb_ack_o,
m1_wb_err_o,
 
// WISHBONE MASTER 2
m2_wb_adr_i, m2_wb_sel_i, m2_wb_we_i, m2_wb_dat_o,
m2_wb_dat_i, m2_wb_cyc_i, m2_wb_stb_i, m2_wb_ack_o,
m2_wb_err_o,
 
// WISHBONE slave 1
s1_wb_adr_o, s1_wb_sel_o, s1_wb_we_o, s1_wb_cyc_o,
s1_wb_stb_o, s1_wb_ack_i, s1_wb_err_i, s1_wb_dat_i,
s1_wb_dat_o,
// WISHBONE slave 2
s2_wb_adr_o, s2_wb_sel_o, s2_wb_we_o, s2_wb_cyc_o,
s2_wb_stb_o, s2_wb_ack_i, s2_wb_err_i, s2_wb_dat_i,
s2_wb_dat_o
);
 
parameter Tp=1;
 
// WISHBONE common
input wb_clk_i, wb_rst_i;
// WISHBONE MASTER 1
input [31:0] m1_wb_adr_i, m1_wb_dat_i;
input [3:0] m1_wb_sel_i;
input m1_wb_cyc_i, m1_wb_stb_i, m1_wb_we_i;
output [31:0] m1_wb_dat_o;
output m1_wb_ack_o, m1_wb_err_o;
 
// WISHBONE MASTER 2
input [31:0] m2_wb_adr_i, m2_wb_dat_i;
input [3:0] m2_wb_sel_i;
input m2_wb_cyc_i, m2_wb_stb_i, m2_wb_we_i;
output [31:0] m2_wb_dat_o;
output m2_wb_ack_o, m2_wb_err_o;
 
// WISHBONE slave 1
input [31:0] s1_wb_dat_i;
input s1_wb_ack_i, s1_wb_err_i;
output [31:0] s1_wb_adr_o, s1_wb_dat_o;
output [3:0] s1_wb_sel_o;
output s1_wb_we_o, s1_wb_cyc_o, s1_wb_stb_o;
// WISHBONE slave 2
input [31:0] s2_wb_dat_i;
input s2_wb_ack_i, s2_wb_err_i;
output [31:0] s2_wb_adr_o, s2_wb_dat_o;
output [3:0] s2_wb_sel_o;
output s2_wb_we_o, s2_wb_cyc_o, s2_wb_stb_o;
 
reg m1_in_progress;
reg m2_in_progress;
reg [31:0] s1_wb_adr_o;
reg [3:0] s1_wb_sel_o;
reg s1_wb_we_o;
reg [31:0] s1_wb_dat_o;
reg s1_wb_cyc_o;
reg s1_wb_stb_o;
reg [31:0] s2_wb_adr_o;
reg [3:0] s2_wb_sel_o;
reg s2_wb_we_o;
reg [31:0] s2_wb_dat_o;
reg s2_wb_cyc_o;
reg s2_wb_stb_o;
 
reg m1_wb_ack_o;
reg [31:0] m1_wb_dat_o;
reg m2_wb_ack_o;
reg [31:0] m2_wb_dat_o;
 
reg m1_wb_err_o;
reg m2_wb_err_o;
 
wire m_wb_access_finished;
wire m1_req = m1_wb_cyc_i & m1_wb_stb_i & (`M1_ADDRESSED_S1 | `M1_ADDRESSED_S2);
wire m2_req = m2_wb_cyc_i & m2_wb_stb_i & (`M2_ADDRESSED_S1 | `M2_ADDRESSED_S2);
 
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
begin
m1_in_progress <=#Tp 0;
m2_in_progress <=#Tp 0;
s1_wb_adr_o <=#Tp 0;
s1_wb_sel_o <=#Tp 0;
s1_wb_we_o <=#Tp 0;
s1_wb_dat_o <=#Tp 0;
s1_wb_cyc_o <=#Tp 0;
s1_wb_stb_o <=#Tp 0;
s2_wb_adr_o <=#Tp 0;
s2_wb_sel_o <=#Tp 0;
s2_wb_we_o <=#Tp 0;
s2_wb_dat_o <=#Tp 0;
s2_wb_cyc_o <=#Tp 0;
s2_wb_stb_o <=#Tp 0;
end
else
begin
case({m1_in_progress, m2_in_progress, m1_req, m2_req, m_wb_access_finished}) // synopsys_full_case synopsys_paralel_case
5'b00_10_0, 5'b00_11_0 :
begin
m1_in_progress <=#Tp 1'b1; // idle: m1 or (m1 & m2) want access: m1 -> m
if(`M1_ADDRESSED_S1)
begin
s1_wb_adr_o <=#Tp m1_wb_adr_i;
s1_wb_sel_o <=#Tp m1_wb_sel_i;
s1_wb_we_o <=#Tp m1_wb_we_i;
s1_wb_dat_o <=#Tp m1_wb_dat_i;
s1_wb_cyc_o <=#Tp 1'b1;
s1_wb_stb_o <=#Tp 1'b1;
end
else if(`M1_ADDRESSED_S2)
begin
s2_wb_adr_o <=#Tp m1_wb_adr_i;
s2_wb_sel_o <=#Tp m1_wb_sel_i;
s2_wb_we_o <=#Tp m1_wb_we_i;
s2_wb_dat_o <=#Tp m1_wb_dat_i;
s2_wb_cyc_o <=#Tp 1'b1;
s2_wb_stb_o <=#Tp 1'b1;
end
else
$display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time);
end
5'b00_01_0 :
begin
m2_in_progress <=#Tp 1'b1; // idle: m2 wants access: m2 -> m
if(`M2_ADDRESSED_S1)
begin
s1_wb_adr_o <=#Tp m2_wb_adr_i;
s1_wb_sel_o <=#Tp m2_wb_sel_i;
s1_wb_we_o <=#Tp m2_wb_we_i;
s1_wb_dat_o <=#Tp m2_wb_dat_i;
s1_wb_cyc_o <=#Tp 1'b1;
s1_wb_stb_o <=#Tp 1'b1;
end
else if(`M2_ADDRESSED_S2)
begin
s2_wb_adr_o <=#Tp m2_wb_adr_i;
s2_wb_sel_o <=#Tp m2_wb_sel_i;
s2_wb_we_o <=#Tp m2_wb_we_i;
s2_wb_dat_o <=#Tp m2_wb_dat_i;
s2_wb_cyc_o <=#Tp 1'b1;
s2_wb_stb_o <=#Tp 1'b1;
end
else
$display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time);
end
5'b10_10_1, 5'b10_11_1 :
begin
m1_in_progress <=#Tp 1'b0; // m1 in progress. Cycle is finished. Send ack or err to m1.
if(`M1_ADDRESSED_S1)
begin
s1_wb_cyc_o <=#Tp 1'b0;
s1_wb_stb_o <=#Tp 1'b0;
end
else if(`M1_ADDRESSED_S2)
begin
s2_wb_cyc_o <=#Tp 1'b0;
s2_wb_stb_o <=#Tp 1'b0;
end
end
5'b01_01_1, 5'b01_11_1 :
begin
m2_in_progress <=#Tp 1'b0; // m2 in progress. Cycle is finished. Send ack or err to m2.
if(`M2_ADDRESSED_S1)
begin
s1_wb_cyc_o <=#Tp 1'b0;
s1_wb_stb_o <=#Tp 1'b0;
end
else if(`M2_ADDRESSED_S2)
begin
s2_wb_cyc_o <=#Tp 1'b0;
s2_wb_stb_o <=#Tp 1'b0;
end
end
endcase
end
end
 
// Generating Ack for master 1
always @ (m1_in_progress or m1_wb_adr_i or s1_wb_ack_i or s2_wb_ack_i or s1_wb_dat_i or s2_wb_dat_i or `M1_ADDRESSED_S1 or `M1_ADDRESSED_S2)
begin
if(m1_in_progress)
begin
if(`M1_ADDRESSED_S1) begin
m1_wb_ack_o <= s1_wb_ack_i;
m1_wb_dat_o <= s1_wb_dat_i;
end
else if(`M1_ADDRESSED_S2) begin
m1_wb_ack_o <= s2_wb_ack_i;
m1_wb_dat_o <= s2_wb_dat_i;
end
end
else
m1_wb_ack_o <= 0;
end
 
 
// Generating Ack for master 2
always @ (m2_in_progress or m2_wb_adr_i or s1_wb_ack_i or s2_wb_ack_i or s1_wb_dat_i or s2_wb_dat_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2)
begin
if(m2_in_progress)
begin
if(`M2_ADDRESSED_S1) begin
m2_wb_ack_o <= s1_wb_ack_i;
m2_wb_dat_o <= s1_wb_dat_i;
end
else if(`M2_ADDRESSED_S2) begin
m2_wb_ack_o <= s2_wb_ack_i;
m2_wb_dat_o <= s2_wb_dat_i;
end
end
else
m2_wb_ack_o <= 0;
end
 
 
// Generating Err for master 1
always @ (m1_in_progress or m1_wb_adr_i or s1_wb_err_i or s2_wb_err_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2 or
m1_wb_cyc_i or m1_wb_stb_i)
begin
if(m1_in_progress) begin
if(`M1_ADDRESSED_S1)
m1_wb_err_o <= s1_wb_err_i;
else if(`M1_ADDRESSED_S2)
m1_wb_err_o <= s2_wb_err_i;
end
else if(m1_wb_cyc_i & m1_wb_stb_i & ~`M1_ADDRESSED_S1 & ~`M1_ADDRESSED_S2)
m1_wb_err_o <= 1'b1;
else
m1_wb_err_o <= 1'b0;
end
 
 
// Generating Err for master 2
always @ (m2_in_progress or m2_wb_adr_i or s1_wb_err_i or s2_wb_err_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2 or
m2_wb_cyc_i or m2_wb_stb_i)
begin
if(m2_in_progress) begin
if(`M2_ADDRESSED_S1)
m2_wb_err_o <= s1_wb_err_i;
else if(`M2_ADDRESSED_S2)
m2_wb_err_o <= s2_wb_err_i;
end
else if(m2_wb_cyc_i & m2_wb_stb_i & ~`M2_ADDRESSED_S1 & ~`M2_ADDRESSED_S2)
m2_wb_err_o <= 1'b1;
else
m2_wb_err_o <= 1'b0;
end
 
 
assign m_wb_access_finished = m1_wb_ack_o | m1_wb_err_o | m2_wb_ack_o | m2_wb_err_o;
 
 
// Activity monitor
integer cnt;
always @ (posedge wb_clk_i or posedge wb_rst_i)
begin
if(wb_rst_i)
cnt <=#Tp 0;
else
if(s1_wb_ack_i | s1_wb_err_i | s2_wb_ack_i | s2_wb_err_i)
cnt <=#Tp 0;
else
if(s1_wb_cyc_o | s2_wb_cyc_o)
cnt <=#Tp cnt+1;
end
 
always @ (posedge wb_clk_i)
begin
if(cnt==1000) begin
$display("(%0t)(%m) ERROR: WB activity ??? ", $time);
if(s1_wb_cyc_o) begin
$display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o);
$display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o);
$display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o);
$display("s1_wb_we_o = 0x%0x", s1_wb_we_o);
end
else if(s2_wb_cyc_o) begin
$display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o);
$display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o);
$display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o);
$display("s2_wb_we_o = 0x%0x", s2_wb_we_o);
end
 
$stop;
end
end
 
 
always @ (posedge wb_clk_i)
begin
if(s1_wb_err_i & s1_wb_cyc_o) begin
$display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time);
$display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o);
$display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o);
$display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o);
$display("s1_wb_we_o = 0x%0x", s1_wb_we_o);
$stop;
end
if(s2_wb_err_i & s2_wb_cyc_o) begin
$display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time);
$display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o);
$display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o);
$display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o);
$display("s2_wb_we_o = 0x%0x", s2_wb_we_o);
$stop;
end
end
 
 
 
endmodule
/tags/rel_13/rtl/verilog/BUGS
0,0 → 1,55
//////////////////////////////////////////////////////////////////////
//// ////
//// BUGS ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is available in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
 
 
FIXED BUGS:
 
- Bug CarrierSenseLost when operating in Full duplex fixed.
 
 
 
 
KNOWN BUGS:
 
-
/tags/rel_13/rtl/verilog/eth_register.v
0,0 → 1,108
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_register.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001, 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.5 2002/08/16 12:33:27 mohor
// Parameter ResetValue changed to capital letters.
//
// Revision 1.4 2002/02/26 16:18:08 mohor
// Reset values are passed to registers through parameters
//
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
//
//
//
//
//
//
 
`include "timescale.v"
 
 
module eth_register(DataIn, DataOut, Write, Clk, Reset, SyncReset);
 
parameter WIDTH = 8; // default parameter of the register width
parameter RESET_VALUE = 0;
 
input [WIDTH-1:0] DataIn;
 
input Write;
input Clk;
input Reset;
input SyncReset;
 
output [WIDTH-1:0] DataOut;
reg [WIDTH-1:0] DataOut;
 
 
 
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
DataOut<=#1 RESET_VALUE;
else
if(SyncReset)
DataOut<=#1 RESET_VALUE;
else
if(Write) // write
DataOut<=#1 DataIn;
end
 
 
 
endmodule // Register
/tags/rel_13/rtl/verilog/eth_miim.v
0,0 → 1,438
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_miim.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.2 2001/08/02 09:25:31 mohor
// Unconnected signals are now connected.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.3 2001/06/01 22:28:56 mohor
// This files (MIIM) are fully working. They were thoroughly tested. The testbench is not updated.
//
//
 
`include "timescale.v"
 
 
module eth_miim
(
Clk,
Reset,
Divider,
NoPre,
CtrlData,
Rgad,
Fiad,
WCtrlData,
RStat,
ScanStat,
Mdi,
Mdo,
MdoEn,
Mdc,
Busy,
Prsd,
LinkFail,
Nvalid,
WCtrlDataStart,
RStatStart,
UpdateMIIRX_DATAReg
);
 
 
 
input Clk; // Host Clock
input Reset; // General Reset
input [7:0] Divider; // Divider for the host clock
input [15:0] CtrlData; // Control Data (to be written to the PHY reg.)
input [4:0] Rgad; // Register Address (within the PHY)
input [4:0] Fiad; // PHY Address
input NoPre; // No Preamble (no 32-bit preamble)
input WCtrlData; // Write Control Data operation
input RStat; // Read Status operation
input ScanStat; // Scan Status operation
input Mdi; // MII Management Data In
 
output Mdc; // MII Management Data Clock
output Mdo; // MII Management Data Output
output MdoEn; // MII Management Data Output Enable
output Busy; // Busy Signal
output LinkFail; // Link Integrity Signal
output Nvalid; // Invalid Status (qualifier for the valid scan result)
 
output [15:0] Prsd; // Read Status Data (data read from the PHY)
 
output WCtrlDataStart; // This signals resets the WCTRLDATA bit in the MIIM Command register
output RStatStart; // This signal resets the RSTAT BIT in the MIIM Command register
output UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data
 
parameter Tp = 1;
 
 
reg Nvalid;
reg EndBusy_d; // Pre-end Busy signal
reg EndBusy; // End Busy signal (stops the operation in progress)
 
reg WCtrlData_q1; // Write Control Data operation delayed 1 Clk cycle
reg WCtrlData_q2; // Write Control Data operation delayed 2 Clk cycles
reg WCtrlData_q3; // Write Control Data operation delayed 3 Clk cycles
reg WCtrlDataStart; // Start Write Control Data Command (positive edge detected)
reg WCtrlDataStart_q;
reg WCtrlDataStart_q1; // Start Write Control Data Command delayed 1 Mdc cycle
reg WCtrlDataStart_q2; // Start Write Control Data Command delayed 2 Mdc cycles
 
reg RStat_q1; // Read Status operation delayed 1 Clk cycle
reg RStat_q2; // Read Status operation delayed 2 Clk cycles
reg RStat_q3; // Read Status operation delayed 3 Clk cycles
reg RStatStart; // Start Read Status Command (positive edge detected)
reg RStatStart_q1; // Start Read Status Command delayed 1 Mdc cycle
reg RStatStart_q2; // Start Read Status Command delayed 2 Mdc cycles
 
reg ScanStat_q1; // Scan Status operation delayed 1 cycle
reg ScanStat_q2; // Scan Status operation delayed 2 cycles
reg SyncStatMdcEn; // Scan Status operation delayed at least cycles and synchronized to MdcEn
 
wire WriteDataOp; // Write Data Operation (positive edge detected)
wire ReadStatusOp; // Read Status Operation (positive edge detected)
wire ScanStatusOp; // Scan Status Operation (positive edge detected)
wire StartOp; // Start Operation (start of any of the preceding operations)
wire EndOp; // End of Operation
 
reg InProgress; // Operation in progress
reg InProgress_q1; // Operation in progress delayed 1 Mdc cycle
reg InProgress_q2; // Operation in progress delayed 2 Mdc cycles
reg InProgress_q3; // Operation in progress delayed 3 Mdc cycles
 
reg WriteOp; // Write Operation Latch (When asserted, write operation is in progress)
reg [6:0] BitCounter; // Bit Counter
 
 
wire MdcFrame; // Frame window for limiting the Mdc
wire [3:0] ByteSelect; // Byte Select defines which byte (preamble, data, operation, etc.) is loaded and shifted through the shift register.
wire MdcEn; // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc rises.
wire ShiftedBit; // This bit is output of the shift register and is connected to the Mdo signal
 
 
wire LatchByte1_d2;
wire LatchByte0_d2;
reg LatchByte1_d;
reg LatchByte0_d;
reg [1:0] LatchByte; // Latch Byte selects which part of Read Status Data is updated from the shift register
 
reg UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data
 
 
 
 
 
// Generation of the EndBusy signal. It is used for ending the MII Management operation.
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
EndBusy_d <= #Tp 1'b0;
EndBusy <= #Tp 1'b0;
end
else
begin
EndBusy_d <= #Tp ~InProgress_q2 & InProgress_q3;
EndBusy <= #Tp EndBusy_d;
end
end
 
 
// Update MII RX_DATA register
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
UpdateMIIRX_DATAReg <= #Tp 0;
else
if(EndBusy & ~WCtrlDataStart_q)
UpdateMIIRX_DATAReg <= #Tp 1;
else
UpdateMIIRX_DATAReg <= #Tp 0;
end
 
 
 
// Generation of the delayed signals used for positive edge triggering.
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
WCtrlData_q1 <= #Tp 1'b0;
WCtrlData_q2 <= #Tp 1'b0;
WCtrlData_q3 <= #Tp 1'b0;
RStat_q1 <= #Tp 1'b0;
RStat_q2 <= #Tp 1'b0;
RStat_q3 <= #Tp 1'b0;
 
ScanStat_q1 <= #Tp 1'b0;
ScanStat_q2 <= #Tp 1'b0;
SyncStatMdcEn <= #Tp 1'b0;
end
else
begin
WCtrlData_q1 <= #Tp WCtrlData;
WCtrlData_q2 <= #Tp WCtrlData_q1;
WCtrlData_q3 <= #Tp WCtrlData_q2;
 
RStat_q1 <= #Tp RStat;
RStat_q2 <= #Tp RStat_q1;
RStat_q3 <= #Tp RStat_q2;
 
ScanStat_q1 <= #Tp ScanStat;
ScanStat_q2 <= #Tp ScanStat_q1;
if(MdcEn)
SyncStatMdcEn <= #Tp ScanStat_q2;
end
end
 
 
// Generation of the Start Commands (Write Control Data or Read Status)
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
WCtrlDataStart <= #Tp 1'b0;
WCtrlDataStart_q <= #Tp 1'b0;
RStatStart <= #Tp 1'b0;
end
else
begin
if(EndBusy)
begin
WCtrlDataStart <= #Tp 1'b0;
RStatStart <= #Tp 1'b0;
end
else
begin
if(WCtrlData_q2 & ~WCtrlData_q3)
WCtrlDataStart <= #Tp 1'b1;
if(RStat_q2 & ~RStat_q3)
RStatStart <= #Tp 1'b1;
WCtrlDataStart_q <= #Tp WCtrlDataStart;
end
end
end
 
 
// Generation of the Nvalid signal (indicates when the status is invalid)
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
Nvalid <= #Tp 1'b0;
else
begin
if(~InProgress_q2 & InProgress_q3)
begin
Nvalid <= #Tp 1'b0;
end
else
begin
if(ScanStat_q2 & ~SyncStatMdcEn)
Nvalid <= #Tp 1'b1;
end
end
end
 
// Signals used for the generation of the Operation signals (positive edge)
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
WCtrlDataStart_q1 <= #Tp 1'b0;
WCtrlDataStart_q2 <= #Tp 1'b0;
 
RStatStart_q1 <= #Tp 1'b0;
RStatStart_q2 <= #Tp 1'b0;
 
InProgress_q1 <= #Tp 1'b0;
InProgress_q2 <= #Tp 1'b0;
InProgress_q3 <= #Tp 1'b0;
 
LatchByte0_d <= #Tp 1'b0;
LatchByte1_d <= #Tp 1'b0;
 
LatchByte <= #Tp 2'b00;
end
else
begin
if(MdcEn)
begin
WCtrlDataStart_q1 <= #Tp WCtrlDataStart;
WCtrlDataStart_q2 <= #Tp WCtrlDataStart_q1;
 
RStatStart_q1 <= #Tp RStatStart;
RStatStart_q2 <= #Tp RStatStart_q1;
 
LatchByte[0] <= #Tp LatchByte0_d;
LatchByte[1] <= #Tp LatchByte1_d;
 
LatchByte0_d <= #Tp LatchByte0_d2;
LatchByte1_d <= #Tp LatchByte1_d2;
 
InProgress_q1 <= #Tp InProgress;
InProgress_q2 <= #Tp InProgress_q1;
InProgress_q3 <= #Tp InProgress_q2;
end
end
end
 
 
// Generation of the Operation signals
assign WriteDataOp = WCtrlDataStart_q1 & ~WCtrlDataStart_q2;
assign ReadStatusOp = RStatStart_q1 & ~RStatStart_q2;
assign ScanStatusOp = SyncStatMdcEn & ~InProgress & ~InProgress_q1 & ~InProgress_q2;
assign StartOp = WriteDataOp | ReadStatusOp | ScanStatusOp;
 
// Busy
assign Busy = WCtrlDataStart | RStatStart | SyncStatMdcEn | EndBusy | InProgress | InProgress_q3 | Nvalid;
 
 
// Generation of the InProgress signal (indicates when an operation is in progress)
// Generation of the WriteOp signal (indicates when a write is in progress)
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
InProgress <= #Tp 1'b0;
WriteOp <= #Tp 1'b0;
end
else
begin
if(MdcEn)
begin
if(StartOp)
begin
if(~InProgress)
WriteOp <= #Tp WriteDataOp;
InProgress <= #Tp 1'b1;
end
else
begin
if(EndOp)
begin
InProgress <= #Tp 1'b0;
WriteOp <= #Tp 1'b0;
end
end
end
end
end
 
 
 
// Bit Counter counts from 0 to 63 (from 32 to 63 when NoPre is asserted)
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
BitCounter[6:0] <= #Tp 7'h0;
else
begin
if(MdcEn)
begin
if(InProgress)
begin
if(NoPre & ( BitCounter == 7'h0 ))
BitCounter[6:0] <= #Tp 7'h21;
else
BitCounter[6:0] <= #Tp BitCounter[6:0] + 1'b1;
end
else
BitCounter[6:0] <= #Tp 7'h0;
end
end
end
 
 
// Operation ends when the Bit Counter reaches 63
assign EndOp = BitCounter==63;
 
assign ByteSelect[0] = InProgress & ((NoPre & (BitCounter == 7'h0)) | (~NoPre & (BitCounter == 7'h20)));
assign ByteSelect[1] = InProgress & (BitCounter == 7'h28);
assign ByteSelect[2] = InProgress & WriteOp & (BitCounter == 7'h30);
assign ByteSelect[3] = InProgress & WriteOp & (BitCounter == 7'h38);
 
 
// Latch Byte selects which part of Read Status Data is updated from the shift register
assign LatchByte1_d2 = InProgress & ~WriteOp & BitCounter == 7'h37;
assign LatchByte0_d2 = InProgress & ~WriteOp & BitCounter == 7'h3F;
 
 
// Connecting the Clock Generator Module
eth_clockgen clkgen(.Clk(Clk), .Reset(Reset), .Divider(Divider[7:0]), .MdcEn(MdcEn), .MdcEn_n(MdcEn_n), .Mdc(Mdc)
);
 
// Connecting the Shift Register Module
eth_shiftreg shftrg(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .Mdi(Mdi), .Fiad(Fiad), .Rgad(Rgad),
.CtrlData(CtrlData), .WriteOp(WriteOp), .ByteSelect(ByteSelect), .LatchByte(LatchByte),
.ShiftedBit(ShiftedBit), .Prsd(Prsd), .LinkFail(LinkFail)
);
 
// Connecting the Output Control Module
eth_outputcontrol outctrl(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .InProgress(InProgress),
.ShiftedBit(ShiftedBit), .BitCounter(BitCounter), .WriteOp(WriteOp), .NoPre(NoPre),
.Mdo(Mdo), .MdoEn(MdoEn)
);
 
endmodule
/tags/rel_13/rtl/verilog/eth_shiftreg.v
0,0 → 1,149
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_shiftreg.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.4 2002/03/02 21:06:01 mohor
// LinkFail signal was not latching appropriate bit.
//
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.3 2001/06/01 22:28:56 mohor
// This files (MIIM) are fully working. They were thoroughly tested. The testbench is not updated.
//
//
 
`include "timescale.v"
 
 
module eth_shiftreg(Clk, Reset, MdcEn_n, Mdi, Fiad, Rgad, CtrlData, WriteOp, ByteSelect,
LatchByte, ShiftedBit, Prsd, LinkFail);
 
 
parameter Tp=1;
 
input Clk; // Input clock (Host clock)
input Reset; // Reset signal
input MdcEn_n; // Enable signal is asserted for one Clk period before Mdc falls.
input Mdi; // MII input data
input [4:0] Fiad; // PHY address
input [4:0] Rgad; // Register address (within the selected PHY)
input [15:0]CtrlData; // Control data (data to be written to the PHY)
input WriteOp; // The current operation is a PHY register write operation
input [3:0] ByteSelect; // Byte select
input [1:0] LatchByte; // Byte select for latching (read operation)
 
output ShiftedBit; // Bit shifted out of the shift register
output[15:0]Prsd; // Read Status Data (data read from the PHY)
output LinkFail; // Link Integrity Signal
 
reg [7:0] ShiftReg; // Shift register for shifting the data in and out
reg [15:0]Prsd;
reg LinkFail;
 
 
 
 
// ShiftReg[7:0] :: Shift Register Data
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
ShiftReg[7:0] <= #Tp 8'h0;
Prsd[15:0] <= #Tp 16'h0;
LinkFail <= #Tp 1'b0;
end
else
begin
if(MdcEn_n)
begin
if(|ByteSelect)
begin
case (ByteSelect[3:0])
4'h1 : ShiftReg[7:0] <= #Tp {2'b01, ~WriteOp, WriteOp, Fiad[4:1]};
4'h2 : ShiftReg[7:0] <= #Tp {Fiad[0], Rgad[4:0], 2'b10};
4'h4 : ShiftReg[7:0] <= #Tp CtrlData[15:8];
4'h8 : ShiftReg[7:0] <= #Tp CtrlData[7:0];
default : ShiftReg[7:0] <= #Tp 8'h0;
endcase
end
else
begin
ShiftReg[7:0] <= #Tp {ShiftReg[6:0], Mdi};
if(LatchByte[0])
begin
Prsd[7:0] <= #Tp {ShiftReg[6:0], Mdi};
if(Rgad == 5'h01)
LinkFail <= #Tp ~ShiftReg[1]; // this is bit [2], because it is not shifted yet
end
else
begin
if(LatchByte[1])
Prsd[15:8] <= #Tp {ShiftReg[6:0], Mdi};
end
end
end
end
end
 
 
assign ShiftedBit = ShiftReg[7];
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_outputcontrol.v
0,0 → 1,147
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_outputcontrol.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.3 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.2 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.3 2001/06/01 22:28:56 mohor
// This files (MIIM) are fully working. They were thoroughly tested. The testbench is not updated.
//
//
 
`include "timescale.v"
 
module eth_outputcontrol(Clk, Reset, InProgress, ShiftedBit, BitCounter, WriteOp, NoPre, MdcEn_n, Mdo, MdoEn);
 
parameter Tp = 1;
 
input Clk; // Host Clock
input Reset; // General Reset
input WriteOp; // Write Operation Latch (When asserted, write operation is in progress)
input NoPre; // No Preamble (no 32-bit preamble)
input InProgress; // Operation in progress
input ShiftedBit; // This bit is output of the shift register and is connected to the Mdo signal
input [6:0] BitCounter; // Bit Counter
input MdcEn_n; // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc falls.
 
output Mdo; // MII Management Data Output
output MdoEn; // MII Management Data Output Enable
 
wire SerialEn;
 
reg MdoEn_2d;
reg MdoEn_d;
reg MdoEn;
 
reg Mdo_2d;
reg Mdo_d;
reg Mdo; // MII Management Data Output
 
 
 
// Generation of the Serial Enable signal (enables the serialization of the data)
assign SerialEn = WriteOp & InProgress & ( BitCounter>31 | ( ( BitCounter == 0 ) & NoPre ) )
| ~WriteOp & InProgress & (( BitCounter>31 & BitCounter<46 ) | ( ( BitCounter == 0 ) & NoPre ));
 
 
// Generation of the MdoEn signal
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
MdoEn_2d <= #Tp 1'b0;
MdoEn_d <= #Tp 1'b0;
MdoEn <= #Tp 1'b0;
end
else
begin
if(MdcEn_n)
begin
MdoEn_2d <= #Tp SerialEn | InProgress & BitCounter<32;
MdoEn_d <= #Tp MdoEn_2d;
MdoEn <= #Tp MdoEn_d;
end
end
end
 
 
// Generation of the Mdo signal.
always @ (posedge Clk or posedge Reset)
begin
if(Reset)
begin
Mdo_2d <= #Tp 1'b0;
Mdo_d <= #Tp 1'b0;
Mdo <= #Tp 1'b0;
end
else
begin
if(MdcEn_n)
begin
Mdo_2d <= #Tp ~SerialEn & BitCounter<32;
Mdo_d <= #Tp ShiftedBit | Mdo_2d;
Mdo <= #Tp Mdo_d;
end
end
end
 
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_txcounters.v
0,0 → 1,218
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_txcounters.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// - Novan Hartadi (novan@vlsi.itb.ac.id) ////
//// - Mahmud Galela (mgalela@vlsi.itb.ac.id) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.4 2001/06/27 21:27:45 mohor
// Few typos fixed.
//
// Revision 1.2 2001/06/19 10:38:07 mohor
// Minor changes in header.
//
// Revision 1.1 2001/06/19 10:27:57 mohor
// TxEthMAC initial release.
//
//
//
 
 
`include "timescale.v"
 
 
module eth_txcounters (StatePreamble, StateIPG, StateData, StatePAD, StateFCS, StateJam,
StateBackOff, StateDefer, StateIdle, StartDefer, StartIPG, StartFCS,
StartJam, StartBackoff, TxStartFrm, MTxClk, Reset, MinFL, MaxFL, HugEn,
ExDfrEn, PacketFinished_q, DlyCrcEn, StateSFD, ByteCnt, NibCnt,
ExcessiveDefer, NibCntEq7, NibCntEq15, MaxFrame, NibbleMinFl, DlyCrcCnt
);
 
parameter Tp = 1;
 
input MTxClk; // Tx clock
input Reset; // Reset
input StatePreamble; // Preamble state
input StateIPG; // IPG state
input [1:0] StateData; // Data state
input StatePAD; // PAD state
input StateFCS; // FCS state
input StateJam; // Jam state
input StateBackOff; // Backoff state
input StateDefer; // Defer state
input StateIdle; // Idle state
input StateSFD; // SFD state
input StartDefer; // Defer state will be activated in next clock
input StartIPG; // IPG state will be activated in next clock
input StartFCS; // FCS state will be activated in next clock
input StartJam; // Jam state will be activated in next clock
input StartBackoff; // Backoff state will be activated in next clock
input TxStartFrm; // Tx start frame
input [15:0] MinFL; // Minimum frame length (in bytes)
input [15:0] MaxFL; // Miximum frame length (in bytes)
input HugEn; // Pakets bigger then MaxFL enabled
input ExDfrEn; // Excessive deferral enabled
input PacketFinished_q;
input DlyCrcEn; // Delayed CRC enabled
 
output [15:0] ByteCnt; // Byte counter
output [15:0] NibCnt; // Nibble counter
output ExcessiveDefer; // Excessive Deferral occuring
output NibCntEq7; // Nibble counter is equal to 7
output NibCntEq15; // Nibble counter is equal to 15
output MaxFrame; // Maximum frame occured
output NibbleMinFl; // Nibble counter is greater than the minimum frame length
output [2:0] DlyCrcCnt; // Delayed CRC Count
 
wire ExcessiveDeferCnt;
wire ResetNibCnt;
wire IncrementNibCnt;
wire ResetByteCnt;
wire IncrementByteCnt;
wire ByteCntMax;
 
reg [15:0] NibCnt;
reg [15:0] ByteCnt;
reg [2:0] DlyCrcCnt;
 
 
 
assign IncrementNibCnt = StateIPG | StatePreamble | (|StateData) & ~|DlyCrcCnt[2:0] | StatePAD
| StateFCS | StateJam | StateBackOff | StateDefer & ~ExcessiveDefer & TxStartFrm;
 
 
assign ResetNibCnt = StateDefer & ExcessiveDefer & ~TxStartFrm | StatePreamble & NibCntEq15
| StateJam & NibCntEq7 | StateIdle | StartDefer | StartIPG | StartFCS | StartJam;
 
// Nibble Counter
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
NibCnt <= #Tp 16'h0;
else
begin
if(ResetNibCnt)
NibCnt <= #Tp 16'h0;
else
if(IncrementNibCnt)
NibCnt <= #Tp NibCnt + 1'b1;
end
end
 
 
assign NibCntEq7 = &NibCnt[2:0];
assign NibCntEq15 = &NibCnt[3:0];
 
assign NibbleMinFl = NibCnt >= (((MinFL-3'h4)<<1) -1); // FCS should not be included in NibbleMinFl
 
assign ExcessiveDeferCnt = NibCnt[13:0] == 16'h17b7;
 
assign ExcessiveDefer = NibCnt[13:0] == 16'h17b7 & ~ExDfrEn; // 6071 nibbles
 
assign IncrementByteCnt = StateData[1] & ~ByteCntMax & ~|DlyCrcCnt[2:0]
| StateBackOff & (&NibCnt[6:0])
| (StatePAD | StateFCS) & NibCnt[0] & ~ByteCntMax;
 
assign ResetByteCnt = StartBackoff | StateIdle & TxStartFrm | PacketFinished_q;
 
 
// Transmit Byte Counter
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ByteCnt[15:0] <= #Tp 16'h0;
else
begin
if(ResetByteCnt)
ByteCnt[15:0] <= #Tp 16'h0;
else
if(IncrementByteCnt)
ByteCnt[15:0] <= #Tp ByteCnt[15:0] + 1'b1;
end
end
 
 
assign MaxFrame = ByteCnt[15:0] == MaxFL[15:0] & ~HugEn;
 
assign ByteCntMax = &ByteCnt[15:0];
 
 
// Delayed CRC counter
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
DlyCrcCnt <= #Tp 3'h0;
else
begin
if(StateData[1] & DlyCrcCnt == 3'h4 | StartJam | PacketFinished_q)
DlyCrcCnt <= #Tp 3'h0;
else
if(DlyCrcEn & (StateSFD | StateData[1] & (|DlyCrcCnt[2:0])))
DlyCrcCnt <= #Tp DlyCrcCnt + 1'b1;
end
end
 
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_fifo.v
0,0 → 1,159
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_fifo.v ////
//// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.2 2002/03/25 13:33:04 mohor
// When clear and read/write are active at the same time, cnt and pointers are
// set to 1.
//
// Revision 1.1 2002/02/05 16:44:39 mohor
// Both rx and tx part are finished. Tested with wb_clk_i between 10 and 200
// MHz. Statuses, overrun, control frame transmission and reception still need
// to be fixed.
//
//
 
`include "eth_defines.v"
`include "timescale.v"
 
module eth_fifo (data_in, data_out, clk, reset, write, read, clear, almost_full, full, almost_empty, empty, cnt);
 
parameter DATA_WIDTH = 32;
parameter DEPTH = 8;
parameter CNT_WIDTH = 4;
 
parameter Tp = 1;
 
input clk;
input reset;
input write;
input read;
input clear;
input [DATA_WIDTH-1:0] data_in;
 
output [DATA_WIDTH-1:0] data_out;
output almost_full;
output full;
output almost_empty;
output empty;
output [CNT_WIDTH-1:0] cnt;
 
`ifdef ETH_FIFO_XILINX
`else
reg [DATA_WIDTH-1:0] fifo [0:DEPTH-1];
`endif
 
reg [CNT_WIDTH-1:0] cnt;
reg [CNT_WIDTH-2:0] read_pointer;
reg [CNT_WIDTH-2:0] write_pointer;
 
 
always @ (posedge clk or posedge reset)
begin
if(reset)
cnt <=#Tp 0;
else
if(clear)
cnt <=#Tp { {(CNT_WIDTH-1){1'b0}}, read^write};
else
if(read ^ write)
if(read)
cnt <=#Tp cnt - 1'b1;
else
cnt <=#Tp cnt + 1'b1;
end
 
always @ (posedge clk or posedge reset)
begin
if(reset)
read_pointer <=#Tp 0;
else
if(clear)
read_pointer <=#Tp { {(CNT_WIDTH-2){1'b0}}, read};
else
if(read & ~empty)
read_pointer <=#Tp read_pointer + 1'b1;
end
 
always @ (posedge clk or posedge reset)
begin
if(reset)
write_pointer <=#Tp 0;
else
if(clear)
write_pointer <=#Tp { {(CNT_WIDTH-2){1'b0}}, write};
else
if(write & ~full)
write_pointer <=#Tp write_pointer + 1'b1;
end
 
assign empty = ~(|cnt);
assign almost_empty = cnt == 1;
assign full = cnt == DEPTH;
assign almost_full = &cnt[CNT_WIDTH-2:0];
 
 
 
`ifdef ETH_FIFO_XILINX
xilinx_dist_ram_16x32 fifo
( .data_out(data_out),
.we(write & ~full),
.data_in(data_in),
.read_address( clear ? {CNT_WIDTH-1{1'b0}} : read_pointer),
.write_address(clear ? {CNT_WIDTH-1{1'b0}} : write_pointer),
.wclk(clk)
);
`else
always @ (posedge clk)
begin
if(write & clear)
fifo[0] <=#Tp data_in;
else
if(write & ~full)
fifo[write_pointer] <=#Tp data_in;
end
assign data_out = clear ? fifo[0] : fifo[read_pointer];
`endif
 
 
endmodule
/tags/rel_13/rtl/verilog/eth_txethmac.v
0,0 → 1,484
//////////////////////////////////////////////////////////////////////
//// ////
//// eth_txethmac.v ////
/// ////
//// This file is part of the Ethernet IP core project ////
//// http://www.opencores.org/projects/ethmac/ ////
//// ////
//// Author(s): ////
//// - Igor Mohor (igorM@opencores.org) ////
//// - Novan Hartadi (novan@vlsi.itb.ac.id) ////
//// - Mahmud Galela (mgalela@vlsi.itb.ac.id) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: not supported by cvs2svn $
// Revision 1.6 2002/02/22 12:56:35 mohor
// Retry is not activated when a Tx Underrun occured
//
// Revision 1.5 2002/02/11 09:18:22 mohor
// Tx status is written back to the BD.
//
// Revision 1.4 2002/01/23 10:28:16 mohor
// Link in the header changed.
//
// Revision 1.3 2001/10/19 08:43:51 mohor
// eth_timescale.v changed to timescale.v This is done because of the
// simulation of the few cores in a one joined project.
//
// Revision 1.2 2001/09/11 14:17:00 mohor
// Few little NCSIM warnings fixed.
//
// Revision 1.1 2001/08/06 14:44:29 mohor
// A define FPGA added to select between Artisan RAM (for ASIC) and Block Ram (For Virtex).
// Include files fixed to contain no path.
// File names and module names changed ta have a eth_ prologue in the name.
// File eth_timescale.v is used to define timescale
// All pin names on the top module are changed to contain _I, _O or _OE at the end.
// Bidirectional signal MDIO is changed to three signals (Mdc_O, Mdi_I, Mdo_O
// and Mdo_OE. The bidirectional signal must be created on the top level. This
// is done due to the ASIC tools.
//
// Revision 1.1 2001/07/30 21:23:42 mohor
// Directory structure changed. Files checked and joind together.
//
// Revision 1.3 2001/06/19 18:16:40 mohor
// TxClk changed to MTxClk (as discribed in the documentation).
// Crc changed so only one file can be used instead of two.
//
// Revision 1.2 2001/06/19 10:38:08 mohor
// Minor changes in header.
//
// Revision 1.1 2001/06/19 10:27:58 mohor
// TxEthMAC initial release.
//
//
//
 
`include "timescale.v"
 
 
module eth_txethmac (MTxClk, Reset, TxStartFrm, TxEndFrm, TxUnderRun, TxData, CarrierSense,
Collision, Pad, CrcEn, FullD, HugEn, DlyCrcEn, MinFL, MaxFL, IPGT,
IPGR1, IPGR2, CollValid, MaxRet, NoBckof, ExDfrEn,
MTxD, MTxEn, MTxErr, TxDone, TxRetry, TxAbort, TxUsedData, WillTransmit,
ResetCollision, RetryCnt, StartTxDone, StartTxAbort, MaxCollisionOccured,
LateCollision, StartDefer, StatePreamble, StateData
 
);
 
parameter Tp = 1;
 
 
input MTxClk; // Transmit clock (from PHY)
input Reset; // Reset
input TxStartFrm; // Transmit packet start frame
input TxEndFrm; // Transmit packet end frame
input TxUnderRun; // Transmit packet under-run
input [7:0] TxData; // Transmit packet data byte
input CarrierSense; // Carrier sense (synchronized)
input Collision; // Collision (synchronized)
input Pad; // Pad enable (from register)
input CrcEn; // Crc enable (from register)
input FullD; // Full duplex (from register)
input HugEn; // Huge packets enable (from register)
input DlyCrcEn; // Delayed Crc enabled (from register)
input [15:0] MinFL; // Minimum frame length (from register)
input [15:0] MaxFL; // Maximum frame length (from register)
input [6:0] IPGT; // Back to back transmit inter packet gap parameter (from register)
input [6:0] IPGR1; // Non back to back transmit inter packet gap parameter IPGR1 (from register)
input [6:0] IPGR2; // Non back to back transmit inter packet gap parameter IPGR2 (from register)
input [5:0] CollValid; // Valid collision window (from register)
input [3:0] MaxRet; // Maximum retry number (from register)
input NoBckof; // No backoff (from register)
input ExDfrEn; // Excessive defferal enable (from register)
 
output [3:0] MTxD; // Transmit nibble (to PHY)
output MTxEn; // Transmit enable (to PHY)
output MTxErr; // Transmit error (to PHY)
output TxDone; // Transmit packet done (to RISC)
output TxRetry; // Transmit packet retry (to RISC)
output TxAbort; // Transmit packet abort (to RISC)
output TxUsedData; // Transmit packet used data (to RISC)
output WillTransmit; // Will transmit (to RxEthMAC)
output ResetCollision; // Reset Collision (for synchronizing collision)
output [3:0] RetryCnt; // Latched Retry Counter for tx status purposes
output StartTxDone;
output StartTxAbort;
output MaxCollisionOccured;
output LateCollision;
output StartDefer;
output StatePreamble;
output [1:0] StateData;
 
reg [3:0] MTxD;
reg MTxEn;
reg MTxErr;
reg TxDone;
reg TxRetry;
reg TxAbort;
reg TxUsedData;
reg WillTransmit;
reg ColWindow;
reg StopExcessiveDeferOccured;
reg [3:0] RetryCnt;
reg [3:0] MTxD_d;
reg StatusLatch;
reg PacketFinished_q;
reg PacketFinished;
 
 
wire ExcessiveDeferOccured;
wire StartIPG;
wire StartPreamble;
wire [1:0] StartData;
wire StartFCS;
wire StartJam;
wire StartBackoff;
wire StateDefer;
wire StateIPG;
wire StateIdle;
wire StatePAD;
wire StateFCS;
wire StateJam;
wire StateBackOff;
wire StateSFD;
wire StartTxRetry;
wire UnderRun;
wire TooBig;
wire [31:0] Crc;
wire CrcError;
wire [2:0] DlyCrcCnt;
wire [15:0] NibCnt;
wire NibCntEq7;
wire NibCntEq15;
wire NibbleMinFl;
wire ExcessiveDefer;
wire [15:0] ByteCnt;
wire MaxFrame;
wire RetryMax;
wire RandomEq0;
wire RandomEqByteCnt;
wire PacketFinished_d;
 
 
 
assign ResetCollision = ~(StatePreamble | (|StateData) | StatePAD | StateFCS);
 
assign ExcessiveDeferOccured = TxStartFrm & StateDefer & ExcessiveDefer & ~StopExcessiveDeferOccured;
 
assign StartTxDone = ~Collision & (StateFCS & NibCntEq7 | StateData[1] & TxEndFrm & ~Pad & ~CrcEn);
 
assign UnderRun = StateData[0] & TxUnderRun & ~Collision;
 
assign TooBig = ~Collision & MaxFrame & (StateData[0] & ~TxUnderRun | StateFCS);
 
// assign StartTxRetry = StartJam & (ColWindow & ~RetryMax);
assign StartTxRetry = StartJam & (ColWindow & ~RetryMax) & ~UnderRun;
 
assign LateCollision = StartJam & ~ColWindow & ~UnderRun;
 
assign MaxCollisionOccured = StartJam & ColWindow & RetryMax;
 
assign StateSFD = StatePreamble & NibCntEq15;
 
assign StartTxAbort = TooBig | UnderRun | ExcessiveDeferOccured | LateCollision | MaxCollisionOccured;
 
 
// StopExcessiveDeferOccured
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
StopExcessiveDeferOccured <= #Tp 1'b0;
else
begin
if(~TxStartFrm)
StopExcessiveDeferOccured <= #Tp 1'b0;
else
if(ExcessiveDeferOccured)
StopExcessiveDeferOccured <= #Tp 1'b1;
end
end
 
 
// Collision Window
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
ColWindow <= #Tp 1'b1;
else
begin
if(~Collision & ByteCnt[5:0] == CollValid[5:0] & (StateData[1] | StatePAD & NibCnt[0] | StateFCS & NibCnt[0]))
ColWindow <= #Tp 1'b0;
else
if(StateIdle | StateIPG)
ColWindow <= #Tp 1'b1;
end
end
 
 
// Start Window
always @ (posedge MTxClk or posedge Reset)
begin
if(Reset)
StatusLatch <= #Tp 1'b0;
else
begin
if(~TxStartFrm)
StatusLatch <= #Tp 1'b0;</