URL
https://opencores.org/ocsvn/ft816float/ft816float/trunk
Subversion Repositories ft816float
Compare Revisions
- This comparison shows the changes necessary to convert path
/ft816float/trunk/rtl
- from Rev 21 to Rev 22
- ↔ Reverse comparison
Rev 21 → Rev 22
/verilog/fpFMA.v
0,0 → 1,761
`timescale 1ns / 1ps |
// ============================================================================ |
// __ |
// \\__/ o\ (C) 2019 Robert Finch, Waterloo |
// \ __ / All rights reserved. |
// \/_// robfinch<remove>@finitron.ca |
// || |
// |
// fpFMA.v |
// - floating point fused multiplier + adder |
// - can issue every clock cycle |
// - parameterized width |
// - IEEE 754 representation |
// |
// |
// This source file is free software: you can redistribute it and/or modify |
// it under the terms of the GNU Lesser General Public License as published |
// by the Free Software Foundation, either version 3 of the License, or |
// (at your option) any later version. |
// |
// This source file is distributed in the hope that it will be useful, |
// but WITHOUT ANY WARRANTY; without even the implied warranty of |
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
// GNU General Public License for more details. |
// |
// You should have received a copy of the GNU General Public License |
// along with this program. If not, see <http://www.gnu.org/licenses/>. |
// |
// Floating Point Multiplier / Divider |
// |
// This multiplier/divider handles denormalized numbers. |
// The output format is of an internal expanded representation |
// in preparation to be fed into a normalization unit, then |
// rounding. Basically, it's the same as the regular format |
// except the mantissa is doubled in size, the leading two |
// bits of which are assumed to be whole bits. |
// |
// |
// Floating Point Multiplier |
// |
// Properties: |
// +-inf * +-inf = -+inf (this is handled by exOver) |
// +-inf * 0 = QNaN |
// |
// ============================================================================ |
|
module fpFMA (clk, ce, op, rm, a, b, c, o, inf, overflow, underflow); |
parameter WID = 32; |
localparam MSB = WID-1; |
localparam EMSB = WID==128 ? 14 : |
WID==96 ? 14 : |
WID==80 ? 14 : |
WID==64 ? 10 : |
WID==52 ? 10 : |
WID==48 ? 11 : |
WID==44 ? 10 : |
WID==42 ? 10 : |
WID==40 ? 9 : |
WID==32 ? 7 : |
WID==24 ? 6 : 4; |
localparam FMSB = WID==128 ? 111 : |
WID==96 ? 79 : |
WID==80 ? 63 : |
WID==64 ? 51 : |
WID==52 ? 39 : |
WID==48 ? 34 : |
WID==44 ? 31 : |
WID==42 ? 29 : |
WID==40 ? 28 : |
WID==32 ? 22 : |
WID==24 ? 15 : 9; |
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction |
localparam EX = FX + 1 + EMSB + 1 + 1 - 1; |
|
input clk; |
input ce; |
input op; // operation 0 = add, 1 = subtract |
input [2:0] rm; |
input [WID:1] a, b, c; |
output [EX:0] o; |
output inf; |
output overflow; |
output underflow; |
|
// constants |
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones |
// The following is the value for an exponent of zero, with the offset |
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc. |
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent |
// The following is a template for a quiet nan. (MSB=1) |
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}}; |
|
// ----------------------------------------------------------- |
// Clock #1 |
// - decode the input operands |
// - derive basic information |
// ----------------------------------------------------------- |
|
wire sa1, sb1, sc1; // sign bit |
wire [EMSB:0] xa1, xb1, xc1; // exponent bits |
wire [FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bit |
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized |
wire aNan1, bNan1, cNan1; |
wire az1, bz1, cz1; |
wire aInf1, bInf1, cInf1; |
reg op1; |
wire xcInf1; |
|
fpDecompReg #(WID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) ); |
fpDecompReg #(WID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) ); |
fpDecompReg #(WID) u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) ); |
|
always @(posedge clk) |
if (ce) op1 <= op; |
assign xcInf1 = &xc1; |
|
// ----------------------------------------------------------- |
// Clock #2 |
// Compute the sum of the exponents. |
// correct the exponent for denormalized operands |
// adjust the sum by the exponent offset (subtract 127) |
// mul: ex1 = xa + xb, result should always be < 1ffh |
// Form partial products (clocks 2 to 5) |
// ----------------------------------------------------------- |
|
reg abz2; |
reg [EMSB+2:0] ex2; |
reg [EMSB:0] xc2; |
reg realOp2; |
|
always @(posedge clk) |
if (ce) abz2 <= az1|bz1; |
always @(posedge clk) |
if (ce) ex2 <= (xa1|a_dn1) + (xb1|b_dn1) - bias; |
always @(posedge clk) |
if (ce) xc2 <= (xc1|c_dn1); |
|
// Figure out which operation is really needed an add or |
// subtract ? |
// If the signs are the same, use the orignal op, |
// otherwise flip the operation |
// a + b = add,+ |
// a + -b = sub, so of larger |
// -a + b = sub, so of larger |
// -a + -b = add,- |
// a - b = sub, so of larger |
// a - -b = add,+ |
// -a - b = add,- |
// -a - -b = sub, so of larger |
always @(posedge clk) |
if (ce) realOp2 <= op1 ^ (sa1 ^ sb1) ^ sc1; |
|
|
reg [FX:0] fract5; |
generate |
if (WID==80) begin |
reg [31:0] p00,p01,p02,p03; |
reg [31:0] p10,p11,p12,p13; |
reg [31:0] p20,p21,p22,p23; |
reg [31:0] p30,p31,p32,p33; |
reg [127:0] fract3a; |
reg [127:0] fract3b; |
reg [127:0] fract3c; |
reg [127:0] fract3d; |
reg [127:0] fract4a; |
reg [127:0] fract4b; |
|
always @(posedge clk) |
if (ce) begin |
p00 <= fracta1[15: 0] * fractb1[15: 0]; |
p01 <= fracta1[31:16] * fractb1[15: 0]; |
p02 <= fracta1[47:32] * fractb1[15: 0]; |
p03 <= fracta1[63:48] * fractb1[15: 0]; |
|
p10 <= fracta1[15: 0] * fractb1[31:16]; |
p11 <= fracta1[31:16] * fractb1[31:16]; |
p12 <= fracta1[47:32] * fractb1[31:16]; |
p13 <= fracta1[63:48] * fractb1[31:16]; |
|
p20 <= fracta1[15: 0] * fractb1[47:32]; |
p21 <= fracta1[31:16] * fractb1[47:32]; |
p22 <= fracta1[47:32] * fractb1[47:32]; |
p23 <= fracta1[63:48] * fractb1[47:32]; |
|
p30 <= fracta1[15: 0] * fractb1[63:48]; |
p31 <= fracta1[31:16] * fractb1[63:48]; |
p32 <= fracta1[47:32] * fractb1[63:48]; |
p33 <= fracta1[63:48] * fractb1[63:48]; |
end |
always @(posedge clk) |
if (ce) begin |
fract3a <= {p33,p31,p20,p00}; |
fract3b <= {p32,p12,p10,16'b0} + {p23,p03,p01,16'b0}; |
fract3c <= {p22,p11,32'b0} + {p13,p02,32'b0}; |
fract3d <= {p12,48'b0} + {p03,48'b0}; |
end |
always @(posedge clk) |
if (ce) begin |
fract4a <= fract3a + fract3b; |
fract4b <= fract3c + fract3d; |
end |
always @(posedge clk) |
if (ce) begin |
fract5 <= fract4a + fract4b; |
end |
end |
else if (WID==64) begin |
reg [35:0] p00,p01,p02; |
reg [35:0] p10,p11,p12; |
reg [35:0] p20,p21,p22; |
reg [71:0] fract3a; |
reg [89:0] fract3b; |
reg [107:0] fract3c; |
reg [108:0] fract4a; |
reg [108:0] fract4b; |
|
always @(posedge clk) |
if (ce) begin |
p00 <= fracta1[17: 0] * fractb1[17: 0]; |
p01 <= fracta1[35:18] * fractb1[17: 0]; |
p02 <= fracta1[52:36] * fractb1[17: 0]; |
p10 <= fracta1[17: 0] * fractb1[35:18]; |
p11 <= fracta1[35:18] * fractb1[35:18]; |
p12 <= fracta1[52:36] * fractb1[35:18]; |
p20 <= fracta1[17: 0] * fractb1[52:36]; |
p21 <= fracta1[35:18] * fractb1[52:36]; |
p22 <= fracta1[52:36] * fractb1[52:36]; |
end |
always @(posedge clk) |
if (ce) begin |
fract3a <= {p02,p00}; |
fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0}; |
fract3c <= {p22,p20,36'b0} + {p11,36'b0}; |
end |
always @(posedge clk) |
if (ce) begin |
fract4a <= fract3a + fract3b; |
fract4b <= fract3c; |
end |
always @(posedge clk) |
if (ce) begin |
fract5 <= fract4a + fract4b; |
end |
end |
else if (WID==40) begin |
reg [27:0] p00,p01,p02; |
reg [27:0] p10,p11,p12; |
reg [27:0] p20,p21,p22; |
reg [79:0] fract3a; |
reg [79:0] fract3b; |
reg [79:0] fract3c; |
reg [79:0] fract4a; |
reg [79:0] fract4b; |
always @(posedge clk) |
if (ce) begin |
p00 <= fracta1[13: 0] * fractb1[13: 0]; |
p01 <= fracta1[27:14] * fractb1[13: 0]; |
p02 <= fracta1[39:28] * fractb1[13: 0]; |
p10 <= fracta1[13: 0] * fractb1[27:14]; |
p11 <= fracta1[27:14] * fractb1[27:14]; |
p12 <= fracta1[39:28] * fractb1[27:14]; |
p20 <= fracta1[13: 0] * fractb1[39:28]; |
p21 <= fracta1[27:14] * fractb1[39:28]; |
p22 <= fracta1[39:28] * fractb1[39:28]; |
end |
always @(posedge clk) |
if (ce) begin |
fract3a <= {p02,p00}; |
fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0}; |
fract3c <= {p22,p20,36'b0} + {p11,36'b0}; |
end |
always @(posedge clk) |
if (ce) begin |
fract4a <= fract3a + fract3b; |
fract4b <= fract3c; |
end |
always @(posedge clk) |
if (ce) begin |
fract5 <= fract4a + fract4b; |
end |
end |
else if (WID==32) begin |
reg [23:0] p00,p01,p02; |
reg [23:0] p10,p11,p12; |
reg [23:0] p20,p21,p22; |
reg [63:0] fract3a; |
reg [63:0] fract3b; |
reg [63:0] fract4; |
|
always @(posedge clk) |
if (ce) begin |
p00 <= fracta1[11: 0] * fractb1[11: 0]; |
p01 <= fracta1[23:12] * fractb1[11: 0]; |
p10 <= fracta1[11: 0] * fractb1[23:12]; |
p11 <= fracta1[23:12] * fractb1[23:12]; |
end |
always @(posedge clk) |
if (ce) begin |
fract3a <= {p11,p00}; |
fract3b <= {p01,12'b0} + {p10,12'b0}; |
end |
always @(posedge clk) |
if (ce) begin |
fract4 <= fract3a + fract3b; |
end |
always @(posedge clk) |
if (ce) begin |
fract5 <= fract4; |
end |
end |
else begin |
reg [FX:0] p00; |
reg [FX:0] fract3; |
reg [FX:0] fract4; |
always @(posedge clk) |
if (ce) begin |
p00 <= fracta1 * fractb1; |
end |
always @(posedge clk) |
if (ce) |
fract3 <= p00; |
always @(posedge clk) |
if (ce) |
fract4 <= fract3; |
always @(posedge clk) |
if (ce) |
fract5 <= fract4; |
end |
endgenerate |
|
// ----------------------------------------------------------- |
// Clock #3 |
// Select zero exponent |
// ----------------------------------------------------------- |
|
reg [EMSB+2:0] ex3; |
reg [EMSB:0] xc3; |
always @(posedge clk) |
if (ce) ex3 <= abz2 ? 1'd0 : ex2; |
always @(posedge clk) |
if (ce) xc3 <= xc2; |
|
// ----------------------------------------------------------- |
// Clock #4 |
// Generate partial products. |
// ----------------------------------------------------------- |
|
reg [EMSB+2:0] ex4; |
reg [EMSB:0] xc4; |
|
always @(posedge clk) |
if (ce) ex4 <= ex3; |
always @(posedge clk) |
if (ce) xc4 <= xc3; |
|
// ----------------------------------------------------------- |
// Clock #5 |
// Sum partial products (above) |
// compute multiplier overflow and underflow |
// ----------------------------------------------------------- |
|
// Status |
reg under5; |
reg over5; |
reg [EMSB:0] ex5; |
reg [EMSB:0] xc5; |
wire aInf5, bInf5; |
wire aNan5, bNan5; |
wire qNaNOut5; |
|
always @(posedge clk) |
if (ce) under5 <= ex4[EMSB+2]; |
always @(posedge clk) |
if (ce) over5 <= (&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2]; |
always @(posedge clk) |
if (ce) ex5 <= ex4[EMSB:0]; |
always @(posedge clk) |
if (ce) xc5 <= xc4; |
|
delay4 u2a (.clk(clk), .ce(ce), .i(aInf1), .o(aInf5) ); |
delay4 u2b (.clk(clk), .ce(ce), .i(bInf1), .o(bInf5) ); |
|
// determine when a NaN is output |
wire [WID-1:0] a5,b5; |
delay4 u5 (.clk(clk), .ce(ce), .i((aInf1&bz1)|(bInf1&az1)), .o(qNaNOut5) ); |
delay4 u14 (.clk(clk), .ce(ce), .i(aNan1), .o(aNan5) ); |
delay4 u15 (.clk(clk), .ce(ce), .i(bNan1), .o(bNan5) ); |
delay5 #(WID) u16 (.clk(clk), .ce(ce), .i(a), .o(a5) ); |
delay5 #(WID) u17 (.clk(clk), .ce(ce), .i(b), .o(b5) ); |
|
// ----------------------------------------------------------- |
// Clock #6 |
// - figure multiplier mantissa output |
// - figure multiplier exponent output |
// - correct xponent and mantissa for exceptional conditions |
// ----------------------------------------------------------- |
|
reg [FX:0] mo6; |
reg [EMSB:0] ex6; |
reg [EMSB:0] xc6; |
reg exinf6; |
wire [FMSB+1:0] fractc6; |
delay5 #(FMSB+2) u61 (.clk(clk), .ce(ce), .i(fractc1), .o(fractc6) ); |
always @(posedge clk) |
if (ce) xc6 <= xc5; |
|
always @(posedge clk) |
if (ce) |
casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5}) |
6'b1?????: mo6 <= {1'b1,a5[FMSB:0],{FMSB+1{1'b0}}}; |
6'b01????: mo6 <= {1'b1,b5[FMSB:0],{FMSB+1{1'b0}}}; |
6'b001???: mo6 <= {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero |
6'b0001??: mo6 <= 0; // mul inf's |
6'b00001?: mo6 <= 0; // mul inf's |
6'b000001: mo6 <= 0; // mul overflow |
default: mo6 <= fract5; |
endcase |
|
always @(posedge clk) |
if (ce) |
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5}) |
5'b1????: ex6 <= infXp; // qNaN - infinity * zero |
5'b01???: ex6 <= infXp; // 'a' infinite |
5'b001??: ex6 <= infXp; // 'b' infinite |
5'b0001?: ex6 <= infXp; // result overflow |
5'b00001: ex6 <= ex5[EMSB:0];//0; // underflow |
default: ex6 <= ex5[EMSB:0]; // situation normal |
endcase |
|
always @(posedge clk) |
if (ce) |
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5}) |
5'b1????: exinf6 <= 1'b1; // qNaN - infinity * zero |
5'b01???: exinf6 <= 1'b1; // 'a' infinite |
5'b001??: exinf6 <= 1'b1; // 'b' infinite |
5'b0001?: exinf6 <= 1'b1; // result overflow |
5'b00001: exinf6 <= |ex5[EMSB:0];//0; // underflow |
default: exinf6 <= |ex5[EMSB:0]; // situation normal |
endcase |
|
// ----------------------------------------------------------- |
// Clock #7 |
// - prep for addition, determine greater operand |
// ----------------------------------------------------------- |
reg ex_gt_xc7; |
reg xeq7; |
reg ma_gt_mc7; |
reg meq7; |
reg exinf7; |
wire az7, bz7, cz7; |
wire realOp7; |
|
always @(posedge clk) |
if (ce) exinf7 <= exinf6; |
// which has greater magnitude ? Used for sign calc |
always @(posedge clk) |
if (ce) ex_gt_xc7 <= ex6 > xc6; |
always @(posedge clk) |
if (ce) xeq7 <= ex6==xc6; |
always @(posedge clk) |
if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}}; |
always @(posedge clk) |
if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}}; |
vtdl u71 (.clk(clk), .ce(ce), .a(4'd5), .d(az1), .q(az7)); |
vtdl u72 (.clk(clk), .ce(ce), .a(4'd5), .d(bz1), .q(bz7)); |
vtdl u73 (.clk(clk), .ce(ce), .a(4'd5), .d(cz1), .q(cz7)); |
vtdl u74 (.clk(clk), .ce(ce), .a(4'd4), .d(realOp2), .q(realOp7)); |
|
// ----------------------------------------------------------- |
// Clock #8 |
// - prep for addition, determine greater operand |
// - determine if result will be zero |
// ----------------------------------------------------------- |
|
reg a_gt_b8; |
reg resZero8; |
reg ex_gt_xc8; |
wire [EMSB:0] ex8; |
wire [EMSB:0] xc8; |
reg exinf8; |
wire xcInf8; |
wire [2:0] rm8; |
wire op8; |
wire sa8, sb8, sc8; |
|
delay2 #(EMSB+1) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8)); |
delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8)); |
vtdl u83 (.clk(clk), .ce(ce), .a(4'd6), .d(xcInf1), .q(xcInf8)); |
vtdl #(3) u84 (.clk(clk), .ce(ce), .a(4'd7), .d(rm), .q(rm8)); |
vtdl u85 (.clk(clk), .ce(ce), .a(4'd6), .d(op1), .q(op8)); |
vtdl u86 (.clk(clk), .ce(ce), .a(4'd7), .d(sa1 ^ sb1), .q(sa8)); |
vtdl u87 (.clk(clk), .ce(ce), .a(4'd7), .d(sc1), .q(sc8)); |
|
always @(posedge clk) |
if (ce) exinf8 <= exinf7; |
always @(posedge clk) |
if (ce) ex_gt_xc8 <= ex_gt_xc7; |
always @(posedge clk) |
if (ce) |
a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7); |
|
// Find out if the result will be zero. |
always @(posedge clk) |
if (ce) |
resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude |
(az7 | bz7) & cz7; // a or b zero and c zero |
|
// ----------------------------------------------------------- |
// CLock #9 |
// Compute output exponent and sign |
// |
// The output exponent is the larger of the two exponents, |
// unless a subtract operation is in progress and the two |
// numbers are equal, in which case the exponent should be |
// zero. |
// ----------------------------------------------------------- |
|
reg so9; |
reg [EMSB:0] ex9; |
reg [EMSB:0] ex9a; |
reg ex_gt_xc9; |
reg [EMSB:0] xc9; |
wire [FX:0] mo9; |
wire [FMSB+1:0] fractc9; |
|
always @(posedge clk) |
if (ce) ex_gt_xc9 <= ex_gt_xc8; |
always @(posedge clk) |
if (ce) xc9 <= xc8; |
always @(posedge clk) |
if (ce) ex9a <= ex8; |
|
delay3 #(FX+1) u93 (.clk(clk), .ce(ce), .i(mo6), .o(mo9)); |
delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9)); |
|
always @(posedge clk) |
if (ce) ex9 <= (exinf8&xcInf8) ? ex8 : resZero8 ? 0 : ex_gt_xc8 ? ex8 : xc8; |
|
// Compute output sign |
always @* |
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case |
4'b0000: so9 <= 0; // + + + = + |
4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger |
4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger |
4'b0011: so9 <= 0; // + - - = + |
4'b0100: so9 <= a_gt_b8; // - + + = sign of larger |
4'b0101: so9 <= 1; // - + - = - |
4'b0110: so9 <= 1; // - - + = - |
4'b0111: so9 <= a_gt_b8; // - - - = sign of larger |
4'b1000: so9 <= 0; // A + B, sign = + |
4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down |
4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down |
4'b1011: so9 <= 0; // +A - -B, sign = + |
4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down |
4'b1101: so9 <= 1; // -A + -B, sign = - |
4'b1110: so9 <= 1; // -A - +B, sign = - |
4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding down |
endcase |
|
// ----------------------------------------------------------- |
// Clock #10 |
// Compute the difference in exponents, provides shift amount |
// ----------------------------------------------------------- |
reg [EMSB:0] xdiff10; |
reg [FX:0] mfs; |
|
always @(posedge clk) |
if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9 : xc9 - ex9a; |
|
// determine which fraction to denormalize |
always @(posedge clk) |
if (ce) mfs <= ex_gt_xc9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9; |
|
// ----------------------------------------------------------- |
// Clock #11 |
// ----------------------------------------------------------- |
reg [6:0] xdif11; |
|
always @(posedge clk) |
if (ce) xdif11 <= xdiff10 > FMSB+3 ? FMSB+3 : xdiff10; |
|
// ----------------------------------------------------------- |
// Clock #12 |
// Determine the sticky bit |
// ----------------------------------------------------------- |
|
wire sticky, sticky12; |
wire [FX:0] mfs12; |
wire [6:0] xdif12; |
|
generate |
begin |
if (WID==128) |
redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); |
else if (WID==96) |
redor96 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); |
else if (WID==80) |
redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); |
else if (WID==64) |
redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); |
else if (WID==32) |
redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) ); |
end |
endgenerate |
|
// register inputs to shifter and shift |
delay1 #(1) u122(.clk(clk), .ce(ce), .i(sticky), .o(sticky12) ); |
delay1 #(7) u123(.clk(clk), .ce(ce), .i(xdif11), .o(xdif12) ); |
delay2 #(FX+1) u124(.clk(clk), .ce(ce), .i(mfs), .o(mfs12) ); |
|
// ----------------------------------------------------------- |
// Clock #13 |
// - denormalize operand |
// ----------------------------------------------------------- |
reg [FX+2:0] mfs13; |
wire [FX:0] mo13; |
wire ex_gt_xc13; |
wire [FMSB+1:0] fractc13; |
|
delay4 #(FX+1) u131 (.clk(clk), .ce(ce), .i(mo9), .o(mo13)); |
delay4 u132 (.clk(clk), .ce(ce), .i(ex_gt_xc9), .o(ex_gt_xc13)); |
vtdl #(FMSB+2) u133 (.clk(clk), .ce(ce), .a(4'd3), .d(fractc9), .q(fractc13)); |
|
always @(posedge clk) |
if (ce) mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12; |
|
// ----------------------------------------------------------- |
// Clock #14 |
// Sort operands |
// ----------------------------------------------------------- |
reg [FX+2:0] oa, ob; |
wire a_gt_b14; |
|
vtdl u141 (.clk(clk), .ce(ce), .a(4'd5), .d(a_gt_b8), .q(a_gt_b14)); |
|
always @(posedge clk) |
if (ce) oa <= ex_gt_xc13 ? {mo13,2'b00} : mfs13; |
always @(posedge clk) |
if (ce) ob <= ex_gt_xc13 ? mfs13 : {fractc13,{FMSB+1{1'b0}},2'b00}; |
|
// ----------------------------------------------------------- |
// Clock #15 |
// - Sort operands |
// ----------------------------------------------------------- |
reg [FX+2:0] oaa, obb; |
wire realOp15; |
|
vtdl u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15)); |
|
always @(posedge clk) |
if (ce) oaa <= a_gt_b14 ? oa : ob; |
always @(posedge clk) |
if (ce) obb <= a_gt_b14 ? ob : oa; |
|
// ----------------------------------------------------------- |
// Clock #16 |
// - perform add/subtract |
// - addition can generate an extra bit, subtract can't go negative |
// ----------------------------------------------------------- |
reg [FX+3:0] mab; |
wire [FX:0] mo16; |
wire [FMSB+1:0] fractc16; |
wire Nan16; |
wire cNan16; |
wire aInf16, cInf16; |
wire op16; |
|
vtdl u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNanOut5|aNan5|bNan5), .q(Nan16)); |
vtdl u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16)); |
vtdl u163 (.clk(clk), .ce(ce), .a(4'd9), .d(exinf6), .q(aInf16)); |
vtdl u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16)); |
vtdl u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16)); |
delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16)); |
vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16)); |
|
always @(posedge clk) |
if (ce) mab = realOp15 ? oaa - obb : oaa + obb; |
|
// ----------------------------------------------------------- |
// Clock #17 |
// - adjust for Nans |
// ----------------------------------------------------------- |
wire [EMSB:0] ex17; |
reg [FX:0] mo17; |
wire so17; |
|
vtdl u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17)); |
vtdl #(EMSB+1) u172 (.clk(clk), .ce(ce), .a(4'd7), .d(ex9), .q(ex17)); |
|
always @* |
casez({aInf16&cInf16,Nan16,cNan16}) |
3'b1??: mo17 = {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add |
3'b01?: mo17 = {1'b0,mo16}; |
3'b001: mo17 = {1'b0,fractc16[FMSB+1:0],{FMSB{1'b0}}}; |
default: mo17 = mab[FX+3:2]; // mab has an extra lead bit and two trailing bits |
endcase |
|
assign o = {so17,ex17,mo17}; |
|
vtdl u173 (.clk(clk), .ce(ce), .a(4'd11), .d(over5), .q(overflow) ); |
vtdl u174 (.clk(clk), .ce(ce), .a(4'd11), .d(over5), .q(inf) ); |
vtdl u175 (.clk(clk), .ce(ce), .a(4'd11), .d(under5), .q(underflow) ); |
|
endmodule |
|
|
// Multiplier with normalization and rounding. |
|
module fpFMAnr(clk, ce, op, rm, a, b, c, o, sign_exe, inf, overflow, underflow); |
parameter WID=32; |
localparam MSB = WID-1; |
localparam EMSB = WID==128 ? 14 : |
WID==96 ? 14 : |
WID==80 ? 14 : |
WID==64 ? 10 : |
WID==52 ? 10 : |
WID==48 ? 11 : |
WID==44 ? 10 : |
WID==42 ? 10 : |
WID==40 ? 9 : |
WID==32 ? 7 : |
WID==24 ? 6 : 4; |
localparam FMSB = WID==128 ? 111 : |
WID==96 ? 79 : |
WID==80 ? 63 : |
WID==64 ? 51 : |
WID==52 ? 39 : |
WID==48 ? 34 : |
WID==44 ? 31 : |
WID==42 ? 29 : |
WID==40 ? 28 : |
WID==32 ? 22 : |
WID==24 ? 15 : 9; |
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction |
localparam EX = FX + 1 + EMSB + 1 + 1 - 1; |
input clk; |
input ce; |
input op; |
input [2:0] rm; |
input [MSB:0] a, b, c; |
output [MSB:0] o; |
output sign_exe; |
output inf; |
output overflow; |
output underflow; |
|
wire [EX:0] o1; |
wire sign_exe1, inf1, overflow1, underflow1; |
wire [MSB+3:0] fpn0; |
|
fpFMA #(WID) u1 (clk, ce, op, rm, a, b, c, o1, inf1, overflow1, underflow1); |
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) ); |
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) ); |
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe)); |
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf)); |
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow)); |
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow)); |
endmodule |
|