URL
https://opencores.org/ocsvn/mod_sim_exp/mod_sim_exp/trunk
Subversion Repositories mod_sim_exp
Compare Revisions
- This comparison shows the changes necessary to convert path
/
- from Rev 18 to Rev 19
- ↔ Reverse comparison
Rev 18 → Rev 19
/mod_sim_exp/trunk/rtl/vhdl/core/mod_sim_exp_pkg.vhd
340,7 → 340,47
); |
end component last_stage; |
|
-------------------------------------------------------------------- |
-- counter_sync |
-------------------------------------------------------------------- |
-- counter with synchronous count enable. It generates an |
-- overflow when max_value is reached |
-- |
component counter_sync is |
generic( |
max_value : integer := 1024 -- maximum value (constraints the nr bits for counter) |
); |
port( |
reset_value : in integer; -- value the counter counts to |
core_clk : in std_logic; -- clock input |
ce : in std_logic; -- count enable |
reset : in std_logic; -- reset input |
overflow : out std_logic -- gets high when counter reaches reset_value |
); |
end component counter_sync; |
|
-------------------------------------------------------------------- |
-- stepping_logic |
-------------------------------------------------------------------- |
-- stepping logic for the pipeline, generates the start pulses for the |
-- first stage and keeps track of when the last stages are done |
-- |
component stepping_logic is |
generic( |
n : integer := 1536; -- max nr of steps required to complete a multiplication |
t : integer := 192 -- total nr of steps in the pipeline |
); |
port( |
core_clk : in std_logic; -- clock input |
start : in std_logic; -- start signal for pipeline (one multiplication) |
reset : in std_logic; -- reset signal |
t_sel : in integer range 0 to t; -- nr of stages in the pipeline piece |
n_sel : in integer range 0 to n; -- nr of steps(bits in operands) required for a complete multiplication |
start_first_stage : out std_logic; -- start pulse output for first stage |
stepping_done : out std_logic -- done signal |
); |
end component stepping_logic; |
|
component autorun_cntrl is |
port ( |
clk : in std_logic; |
356,19 → 396,6
); |
end component autorun_cntrl; |
|
component counter_sync is |
generic( |
max_value : integer := 1024 |
); |
port( |
reset_value : in integer; |
core_clk : in std_logic; |
ce : in std_logic; |
reset : in std_logic; |
overflow : out std_logic |
); |
end component counter_sync; |
|
component fifo_primitive is |
port ( |
clk : in std_logic; |
540,22 → 567,6
); |
end component operands_sp; |
|
component stepping_logic is |
generic( |
n : integer := 1536; -- max nr of steps required to complete a multiplication |
t : integer := 192 -- total nr of steps in the pipeline |
); |
port( |
core_clk : in std_logic; |
start : in std_logic; |
reset : in std_logic; |
t_sel : in integer range 0 to t; -- nr of stages in the pipeline piece |
n_sel : in integer range 0 to n; -- nr of steps required for a complete multiplication |
start_first_stage : out std_logic; |
stepping_done : out std_logic |
); |
end component stepping_logic; |
|
component systolic_pipeline is |
generic( |
n : integer := 1536; -- width of the operands (# bits) |
/mod_sim_exp/trunk/rtl/vhdl/core/stepping_logic.vhd
6,7 → 6,8
---- http://www.opencores.org/cores/mod_sim_exp/ ---- |
---- ---- |
---- Description ---- |
---- stepping logic for the pipelined montgomery multiplier ---- |
---- stepping logic to control the pipeline for one ---- |
---- montgommery multiplication ---- |
---- ---- |
---- Dependencies: ---- |
---- - d_flip_flop ---- |
52,70 → 53,77
use mod_sim_exp.mod_sim_exp_pkg.all; |
|
|
-- stepping logic for the pipeline, generates the start pulses for the |
-- first stage and keeps track of when the last stages are done |
entity stepping_logic is |
generic( |
n : integer := 1536; -- max nr of steps required to complete a multiplication |
t : integer := 192 -- total nr of steps in the pipeline |
n : integer := 1536; -- max nr of steps required to complete a multiplication |
t : integer := 192 -- total nr of steps in the pipeline |
); |
port( |
core_clk : in std_logic; |
start : in std_logic; |
reset : in std_logic; |
core_clk : in std_logic; -- clock input |
start : in std_logic; -- start signal for pipeline (one multiplication) |
reset : in std_logic; -- reset signal |
t_sel : in integer range 0 to t; -- nr of stages in the pipeline piece |
n_sel : in integer range 0 to n; -- nr of steps required for a complete multiplication |
start_first_stage : out std_logic; |
stepping_done : out std_logic |
n_sel : in integer range 0 to n; -- nr of steps(bits in operands) required for a complete multiplication |
start_first_stage : out std_logic; -- start pulse output for first stage |
stepping_done : out std_logic -- done signal |
); |
end stepping_logic; |
|
|
architecture Behavioral of stepping_logic is |
signal laststeps_in_i : std_logic := '0'; |
signal laststeps_out_i : std_logic := '0'; |
signal start_stop_in_i : std_logic := '0'; |
signal start_stop_out_i : std_logic := '0'; |
signal steps_in_i : std_logic := '0'; |
signal steps_out_i : std_logic := '0'; |
signal substeps_in_i : std_logic := '0'; |
signal substeps_out_i : std_logic := '0'; |
signal done_reg_in_i : std_logic := '0'; |
signal done_reg_out_i : std_logic := '0'; |
signal start_first_stage_i : std_logic := '0'; |
signal start_i : std_logic := '0'; |
|
-- signals for the first stage control, pulses and counters |
signal first_stage_done : std_logic; -- indicates the first stage is done running for this multiplication |
signal first_stage_active : std_logic; -- indicates the first stage is active |
signal first_stage_active_d : std_logic; -- delayed version of first_stage_active |
signal start_first_stage_i : std_logic; -- internal version of start_first_stage output |
|
-- signals for the last stages control and counter |
signal last_stages_done : std_logic; -- indicates the last stages are done running for this multiplication |
signal last_stages_active : std_logic; -- indicates the last stages are active |
signal last_stages_active_d : std_logic; -- delayed version of last_stages_active |
|
begin |
start_i <= start; |
|
-- map outputs |
start_first_stage <= start_first_stage_i; |
stepping_done <= laststeps_out_i; |
stepping_done <= last_stages_done; |
|
-- internal signals |
start_stop_in_i <= start_i or (start_stop_out_i and not steps_out_i); |
substeps_in_i <= start_stop_in_i; |
steps_in_i <= substeps_out_i; |
done_reg_in_i <= steps_out_i or (done_reg_out_i and not laststeps_out_i); |
laststeps_in_i <= done_reg_in_i; |
start_first_stage_i <= start_i or steps_in_i; |
--start_first_stage_i <= steps_in_i; |
-------------------- |
-- first_stage_active signal gets active from a start pulse |
-- inactive from first_stage_done pulse |
first_stage_active <= start or (first_stage_active_d and not first_stage_done); |
|
done_reg : d_flip_flop |
-- done signal gets active from a first_stage_done pulse |
-- inactive from last_stages_done pulse |
last_stages_active <= first_stage_done or (last_stages_active_d and not last_stages_done); |
|
-- map start_first_stage_i to output, but also use the initial start pulse |
start_first_stage <= start or start_first_stage_i; |
|
last_stages_active_delay : d_flip_flop |
port map( |
core_clk => core_clk, |
reset => reset, |
din => done_reg_in_i, |
dout => done_reg_out_i |
din => last_stages_active, |
dout => last_stages_active_d |
); |
|
start_stop_reg : d_flip_flop |
first_stage_active_delay : d_flip_flop |
port map( |
core_clk => core_clk, |
reset => reset, |
din => start_stop_in_i, |
dout => start_stop_out_i |
din => first_stage_active, |
dout => first_stage_active_d |
); |
|
-- for counting the last steps |
|
-- the counters |
---------------- |
|
-- for counting the last steps (waiting for the other stages to stop) |
-- counter for keeping track of how many stages are done |
laststeps_counter : counter_sync |
generic map( |
max_value => t |
123,12 → 131,13
port map( |
reset_value => t_sel, |
core_clk => core_clk, |
ce => laststeps_in_i, |
ce => last_stages_active, |
reset => reset, |
overflow => laststeps_out_i |
overflow => last_stages_done |
); |
|
-- counter for keeping track of the steps |
-- counter for keeping track of how many times the first stage is started |
-- counts bits in operand x till operand width then generates pulse on first_stage_done |
steps_counter : counter_sync |
generic map( |
max_value => n |
136,12 → 145,12
port map( |
reset_value => (n_sel), |
core_clk => core_clk, |
ce => steps_in_i, |
ce => start_first_stage_i, |
reset => reset, |
overflow => steps_out_i |
overflow => first_stage_done |
); |
|
-- makes sure we don't start too early with a new step |
-- the output (overflow) of this counter starts the first stage every 2 clock cycles |
substeps_counter : counter_sync |
generic map( |
max_value => 2 |
149,9 → 158,9
port map( |
reset_value => 2, |
core_clk => core_clk, |
ce => substeps_in_i, |
ce => first_stage_active, |
reset => reset, |
overflow => substeps_out_i |
overflow => start_first_stage_i |
); |
|
end Behavioral; |
/mod_sim_exp/trunk/rtl/vhdl/core/counter_sync.vhd
47,48 → 47,48
use ieee.std_logic_arith.all; |
use ieee.std_logic_unsigned.all; |
|
|
-- counter with synchronous count enable. It generates an |
-- overflow when max_value is reached |
entity counter_sync is |
generic( |
max_value : integer := 1024 |
max_value : integer := 1024 -- maximum value (constraints the nr bits for counter) |
); |
port( |
reset_value : in integer; |
core_clk : in std_logic; |
ce : in std_logic; |
reset : in std_logic; |
overflow : out std_logic |
reset_value : in integer; -- value the counter counts to |
core_clk : in std_logic; -- clock input |
ce : in std_logic; -- count enable |
reset : in std_logic; -- reset input |
overflow : out std_logic -- gets high when counter reaches reset_value |
); |
end counter_sync; |
|
|
architecture Behavioral of counter_sync is |
|
signal overflow_i : std_logic := '0'; |
begin |
|
overflow <= overflow_i; |
|
COUNT_PROC: process(core_clk, ce, reset) |
variable steps_counter : integer range 0 to max_value-1 := 0; |
-- counter process with asynchronous active high reset |
count_proc: process(core_clk, ce, reset) |
variable steps_counter : integer range 0 to max_value-1; |
begin |
if reset = '1' then -- reset counter |
steps_counter := 0; |
overflow_i <= '0'; |
overflow <= '0'; |
elsif rising_edge(core_clk) then |
if ce = '1' then -- count |
-- counter is enabled, count till reset_value |
if ce = '1' then |
if steps_counter = (reset_value-1) then -- generate overflow and reset counter |
steps_counter := 0; |
overflow_i <= '1'; |
overflow <= '1'; |
else -- just count |
steps_counter := steps_counter + 1; |
overflow_i <= '0'; |
overflow <= '0'; |
end if; |
else |
overflow_i <= '0'; |
--counter disabled, halt counter |
overflow <= '0'; |
steps_counter := steps_counter; |
end if; |
end if; |
end process; |
|
end Behavioral; |
end Behavioral; |