OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /open8_urisc/trunk
    from Rev 150 to Rev 151
    Reverse comparison

Rev 150 → Rev 151

/VHDL/Open8.vhd
1,1499 → 1,1513
-- Copyright (c)2006, Jeremy Seth Henry
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
-- * Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution,
-- where applicable (as part of a user interface, debugging port, etc.)
--
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-- VHDL Units : Open8_CPU
-- Description: VHDL model of the V8 uRISC 8-bit processor core
-- Notes : Generic definitions
-- : Stack_Start_Address - determines the initial (reset) value of
-- : the stack pointer. Also used for the RSP instruction if
-- : Allow_Stack_Address_Move is 0.
-- :
-- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be
-- : programmed via thet RSP instruction. If enabled, the contents
-- : of R1:R0 are used to initialize the stack pointer.
-- :
-- : ISR_Start_Addr - determines the location of the interrupt
-- : service vector table. There are 8 service vectors, or 16
-- : bytes, which must be allocated to either ROM or RAM.
-- :
-- : Program_Start_Addr - Determines the initial value of the
-- : program counter.
-- :
-- : Default_Interrupt_Mask - Determines the intial value of the
-- : interrupt mask. To remain true to the original core, which
-- : had no interrupt mask, this should be set to x"FF". Otherwise
-- : it can be initialized to any value.
-- :
-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is
-- : connected or not. This signal is typically used to halt the
-- : processor for a few cycles when accessing slower peripherals,
-- : but may also be used to single step the processor. If this
-- : feature isn't used, it can be disabled to increase Fmax.
-- :
-- : The CPU_Halt signal can be used to access slower peripherals
-- : by allowing the device to "pause" the CPU. This can be used,
-- : for example, to write to a standard LCD panel, which requires
-- : a 4MHz interface, by halting on writes. Alternately, devices
-- : such as SDRAM controllers, can pause the processor until the
-- : data is ready to be presented.
-- :
-- : The Enable_Auto_Increment generic can be used to modify the
-- : indexed instructions such that specifying an odd register
-- : will use the next lower register pair, post-incrementing the
-- : value in that pair. IOW, specifying STX R1 will instead
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1
-- :
-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL
-- : respectively. DBNZ decrements the specified register, and will
-- : branch if the result is non-zero (Zero flag is not set). MUL
-- : places the result of R0 * Rn into R1:R0, and executes in two
-- : cycles. (R1:R0 = R0 * Rn)
-- :
-- Revision History
-- Author Date Change
------------------ -------- ---------------------------------------------------
-- Seth Henry 07/19/06 Design Start
-- Seth Henry 01/18/11 Fixed BTT instruction to match V8
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
 
library work;
use work.Open8_pkg.all;
 
entity Open8_CPU is
generic(
Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack
Allow_Stack_Address_Move : std_logic := '0'; -- Use Normal v8 RSP
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location
Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints
Enable_CPU_Halt : std_logic := '0'; -- Disable HALT pin
Enable_Auto_Increment : std_logic := '0' ); -- Modify indexed instr
port(
Clock : in std_logic;
Reset : in std_logic;
CPU_Halt : in std_logic;
Interrupts : in INTERRUPT_BUNDLE;
--
Address : out ADDRESS_TYPE;
Rd_Data : in DATA_TYPE;
Rd_Enable : out std_logic;
Wr_Data : out DATA_TYPE;
Wr_Enable : out std_logic );
end entity;
 
architecture rtl of Open8_CPU is
subtype OPCODE_TYPE is std_logic_vector(4 downto 0);
subtype SUBOP_TYPE is std_logic_vector(2 downto 0);
 
-- Most of the ALU instructions are the same as their Opcode equivalents with
-- three exceptions (for IDLE, UPP2, and MUL2)
constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00"
constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01"
constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02"
constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03"
constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04"
constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05"
constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06"
constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07"
constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08"
constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09"
constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A"
constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B"
constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C"
constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D"
constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E"
constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F"
constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11"
constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16"
constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18"
constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C"
constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E"
 
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10"
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"12"
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"13"
 
constant FL_ZERO : integer := 0;
constant FL_CARRY : integer := 1;
constant FL_NEG : integer := 2;
constant FL_INT_EN : integer := 3;
constant FL_GP1 : integer := 4;
constant FL_GP2 : integer := 5;
constant FL_GP3 : integer := 6;
constant FL_GP4 : integer := 7;
 
type ALU_CTRL_TYPE is record
Oper : OPCODE_TYPE;
Reg : SUBOP_TYPE;
Data : DATA_TYPE;
end record;
 
constant ACCUM : SUBOP_TYPE := "000";
constant INT_FLAG : SUBOP_TYPE := "011";
 
-- There are only 8 byte-wide registers - and the write register is always 0,
-- so there is little point in making a RAM out of this
type REGFILE_TYPE is array (0 to 7) of DATA_TYPE;
 
subtype FLAG_TYPE is DATA_TYPE;
 
type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD );
 
type PC_CTRL_TYPE is record
Oper : PC_MODES;
Offset : DATA_TYPE;
Addr : ADDRESS_TYPE;
end record;
 
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH );
 
type SP_CTRL_TYPE is record
Oper : SP_MODES;
Addr : ADDRESS_TYPE;
end record;
 
type INT_CTRL_TYPE is record
Mask_Set : std_logic;
Mask_Data : DATA_TYPE;
Soft_Ints : INTERRUPT_BUNDLE;
Incr_ISR : std_logic;
end record;
 
type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR);
 
type ADDR_CTRL_TYPE is record
Src : AS_MODES;
end record;
 
type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC );
 
type DATA_CTRL_TYPE is record
Src : DP_MODES;
Reg : SUBOP_TYPE;
end record;
 
signal Halt : std_logic;
signal ALU_Ctrl : ALU_CTRL_TYPE;
signal ALU_Regs : REGFILE_TYPE;
signal ALU_Flags : FLAG_TYPE;
signal PC_Ctrl : PC_CTRL_TYPE;
signal SP_Ctrl : SP_CTRL_TYPE;
signal AS_Ctrl : ADDR_CTRL_TYPE;
signal DP_Ctrl : DATA_CTRL_TYPE;
signal INT_Ctrl : INT_CTRL_TYPE;
signal Int_Req, Int_Ack : std_logic;
signal Int_RTI : std_logic;
signal Int_Mask : DATA_TYPE;
signal PC : ADDRESS_TYPE;
signal SP : ADDRESS_TYPE;
signal ISR : ADDRESS_TYPE;
signal IMM : ADDRESS_TYPE;
begin
 
Halt_Disabled_fn: if( Enable_CPU_Halt = '0' )generate
Halt <= '0';
end generate;
 
Halt_Enabled_fn: if( Enable_CPU_Halt = '1' )generate
Halt <= CPU_Halt;
end generate;
 
-------------------------------------------------------------------------------
-- ALU (Arithmetic / Logic Unit
-- Notes:
-- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others
-------------------------------------------------------------------------------
 
Open8_ALU : block is
 
-- Preinitialization is for simulation only - check actual reset conditions
signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') );
signal Flags_D, Flags : FLAG_TYPE := (others => '0');
signal Mult : ADDRESS_TYPE := (others => '0');
 
signal Sum : std_logic_vector(8 downto 0) := (others => '0');
signal Addend_A, Addend_B : DATA_TYPE := (others => '0');
signal Carry : std_logic := '0';
 
begin
 
ALU_Regs <= Regfile;
ALU_Flags <= Flags;
 
ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum )
variable Index : integer range 0 to 7 := 0;
variable Temp : std_logic_vector(8 downto 0);
begin
Regfile_D <= Regfile;
Flags_D <= Flags;
Addend_A <= x"00";
Addend_B <= x"00";
Carry <= '0';
 
Temp := (others => '0');
Index := conv_integer(ALU_Ctrl.Reg);
 
case ALU_Ctrl.Oper is
when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z
Addend_A <= x"01";
Addend_B <= Regfile(Index);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(Index) <= Sum(7 downto 0);
-- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP
-- doesn't set the N or Z flags. Note that the MSB can be used to
-- distinguish between the two ALU modes.
if( ALU_Ctrl.Oper(4) = '0' )then
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Sum(7);
end if;
 
when ALU_UPP2 => -- Rn = Rn + C
Addend_A <= x"00";
Addend_B <= Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(Index) <= Sum(7 downto 0);
 
when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(0) <= Sum(7 downto 0);
 
when ALU_TX0 => -- R0 = Rn : Flags N,Z
Temp := "0" & Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) or Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) and Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) xor Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z
Temp := Regfile(Index) & Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Temp(8);
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z
Temp := Regfile(Index)(0) & Flags(FL_CARRY) &
Regfile(Index)(7 downto 1);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Temp(8);
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z
Addend_A <= Regfile(Index);
Addend_B <= x"FF";
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(Index) <= Sum(7 downto 0);
 
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= not Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(0) <= Sum(7 downto 0);
 
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= Regfile(Index);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(0) <= Sum(7 downto 0);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Sum(7);
 
when ALU_STP => -- Sets bit(n) in the Flags register
Flags_D(Index) <= '1';
 
when ALU_BTT => -- Z = !R0(N), N = R0(7)
Flags_D(FL_ZERO) <= not Regfile(0)(Index);
Flags_D(FL_NEG) <= Regfile(0)(7);
-- Temp := "0" & Regfile(Index);
-- Flags_D(FL_ZERO) <= '0';
-- if( Temp(7 downto 0) = 0 )then
-- Flags_D(FL_ZERO) <= '1';
-- end if;
-- Flags_D(FL_NEG) <= Temp(7);
 
when ALU_CLP => -- Clears bit(n) in the Flags register
Flags_D(Index) <= '0';
 
when ALU_T0X => -- Rn = R0 : Flags N,Z
Temp := "0" & Regfile(0);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= not Regfile(Index);
Carry <= '1';
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
 
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags Z
Regfile_D(0) <= Mult(7 downto 0);
Regfile_D(1) <= Mult(15 downto 8);
Flags_D(FL_ZERO) <= '0';
if( Mult = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
 
when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z
-- The POP instruction doesn't alter the flags, so we need to check
if( ALU_Ctrl.Oper = ALU_LDI )then
Flags_D(FL_ZERO) <= '0';
if( ALU_Ctrl.Data = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
end if;
Regfile_D(Index) <= ALU_Ctrl.Data;
 
when ALU_LDX => -- R0 <= Data : Flags N,Z
Flags_D(FL_ZERO) <= '0';
if( ALU_Ctrl.Data = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
Regfile_D(0) <= ALU_Ctrl.Data;
 
when ALU_RFLG =>
Flags_D <= ALU_Ctrl.Data;
 
when others => null;
end case;
end process;
 
-- 8-bit Adder with carry
Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry;
 
-- We need to infer a hardware multipler, so we create a special clocked
-- process with no reset or clock enable
M_Reg: process( Clock )
begin
if( rising_edge(Clock) )then
Mult <= Regfile(0) *
Regfile(conv_integer(ALU_Ctrl.Reg));
end if;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = '1' )then
for i in 0 to 7 loop
Regfile(i) <= (others => '0');
end loop;
Flags <= x"00";
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Regfile <= Regfile_D;
Flags <= Flags_D;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Program Counter
-------------------------------------------------------------------------------
 
Open8_PC : block is
-- Preinitialization is for simulation only - check actual reset conditions
signal PC_Q : ADDRESS_TYPE := (others => '0');
signal Rewind_1_2n : std_logic := '0';
begin
 
PC <= PC_Q;
 
-- This sets the carry input on the "rewind" adder. If the rewind command is
-- PC_REV2, then we clear the carry. Otherwise, we leave it high.
Rewind_PC_Calc: process( PC_Ctrl )
begin
Rewind_1_2n <= '1';
if( PC_Ctrl.Oper = PC_REV2 )then
Rewind_1_2n <= '0';
end if;
end process;
 
Program_Counter: process( Reset, Clock, Halt, PC_Ctrl, PC_Q, Rewind_1_2n )
variable PC_Offset_SX : ADDRESS_TYPE := x"0000";
begin
PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7));
PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset;
if( Reset = '1' )then
PC_Q <= Program_Start_Addr;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
case PC_Ctrl.Oper is
when PC_IDLE =>
null;
when PC_REV1 | PC_REV2 =>
PC_Q <= PC_Q - 2 + Rewind_1_2n;
when PC_INCR =>
PC_Q <= PC_Q + PC_Offset_SX - 2;
when PC_LOAD =>
PC_Q <= PC_Ctrl.Addr;
end case;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Stack Pointer
-------------------------------------------------------------------------------
 
Open8_SP : block is
-- Preinitialization is for simulation only - check actual reset conditions
signal SP_Q : ADDRESS_TYPE := (others => '0');
begin
 
SP <= SP_Q;
 
Stack_Pointer: process( Reset, Clock )
begin
if( Reset = '1' )then
SP_Q <= Stack_Start_Addr;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
case SP_Ctrl.Oper is
when SP_IDLE => null;
when SP_RSET => SP_Q <= SP_Ctrl.Addr;
when SP_POP => SP_Q <= SP_Q + 1;
when SP_PUSH => SP_Q <= SP_Q - 1;
end case;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Interrupt Controller
-------------------------------------------------------------------------------
 
Open8_INT : block is
 
-- Preinitialization is for simulation only - check actual reset conditions
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr;
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2;
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4;
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6;
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8;
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10;
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12;
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14;
 
signal i_Ints : INTERRUPT_BUNDLE := (others => '0');
signal Pending_D : INTERRUPT_BUNDLE := (others => '0');
signal Pending : INTERRUPT_BUNDLE := (others => '0');
signal Wait_for_FSM : std_logic := '0';
signal Mask : std_logic_vector(6 downto 0) := (others => '0');
signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0');
 
type INT_HIST is array (0 to 8) of integer range 0 to 7;
signal History : INT_HIST := (others => 0);
signal Int_Trig : std_logic := '0';
signal Hist_Level : integer range 0 to 7 := 0;
signal Hist_Ptr : integer range 0 to 8 := 0;
 
begin
Int_Mask <= Mask & '1';
ISR <= ISR_Q;
 
Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl )
variable S_Mask : std_logic_vector(7 downto 0);
begin
S_Mask := Mask & '1';
for i in 0 to 7 loop
i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i))
and S_Mask(i);
end loop;
end process;
 
Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl,
History, Hist_Ptr )
begin
ISR_D <= ISR_Q;
Pending_D <= Pending;
Int_Trig <= '0';
Hist_Level <= 0;
 
-- Record any incoming interrupts to the pending buffer
if( i_Ints > 0 )then
Pending_D <= i_Ints;
end if;
 
-- Incr_ISR allows the CPU Core to advance the vector address to pop the
-- lower half of the address.
if( INT_Ctrl.Incr_ISR = '1' )then
ISR_D <= ISR_Q + 1;
end if;
 
-- Only mess with interrupt signals while the CPU core is not currently
-- working with the ISR address (ie, not loading a new service vector)
if( Wait_for_FSM = '0' and Pending > 0 )then
if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then
ISR_D <= INT_VECTOR_0;
Pending_D(0) <= '0';
Hist_Level <= 0;
Int_Trig <= '1';
elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then
ISR_D <= INT_VECTOR_1;
Pending_D(1) <= '0';
Hist_Level <= 1;
Int_Trig <= '1';
elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then
ISR_D <= INT_VECTOR_2;
Pending_D(2) <= '0';
Hist_Level <= 2;
Int_Trig <= '1';
elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then
ISR_D <= INT_VECTOR_3;
Pending_D(3) <= '0';
Hist_Level <= 3;
Int_Trig <= '1';
elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then
ISR_D <= INT_VECTOR_4;
Pending_D(4) <= '0';
Hist_Level <= 4;
Int_Trig <= '1';
elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then
ISR_D <= INT_VECTOR_5;
Pending_D(5) <= '0';
Hist_Level <= 5;
Int_Trig <= '1';
elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then
ISR_D <= INT_VECTOR_6;
Pending_D(6) <= '0';
Hist_Level <= 6;
Int_Trig <= '1';
elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then
ISR_D <= INT_VECTOR_7;
Pending_D(7) <= '0';
Hist_Level <= 7;
Int_Trig <= '1';
end if;
end if;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = '1' )then
Int_Req <= '0';
Pending <= x"00";
Wait_for_FSM <= '0';
Mask <= Default_Interrupt_Mask(7 downto 1);
ISR_Q <= INT_VECTOR_0;
for i in 0 to 8 loop
History(i) <= 0;
end loop;
Hist_Ptr <= 0;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Int_Req <= Wait_for_FSM and (not Int_Ack);
Pending <= Pending_D;
-- Reset the Wait_for_FSM flag on Int_Ack
if( Int_Ack = '1' )then
Wait_for_FSM <= '0';
-- Set the Wait_for_FSM flag on Int_Trig
elsif( Int_Trig = '1' )then
Wait_for_FSM <= '1';
end if;
if( INT_Ctrl.Mask_Set = '1' )then
Mask <= INT_Ctrl.Mask_Data(7 downto 1);
end if;
ISR_Q <= ISR_D;
if( Int_Trig = '1' )then
History(Hist_Ptr+1) <= Hist_Level;
Hist_Ptr <= Hist_Ptr + 1;
elsif( Int_RTI = '1' and Hist_Ptr > 0 )then
Hist_Ptr <= Hist_Ptr - 1;
end if;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- State Logic / Instruction Decoding & Execution
-------------------------------------------------------------------------------
 
Open8_FSM : block is
 
-- These are all the primary instructions/op-codes (upper 5-bits)
constant OP_INC : OPCODE_TYPE := "00000";
constant OP_ADC : OPCODE_TYPE := "00001";
constant OP_TX0 : OPCODE_TYPE := "00010";
constant OP_OR : OPCODE_TYPE := "00011";
constant OP_AND : OPCODE_TYPE := "00100";
constant OP_XOR : OPCODE_TYPE := "00101";
constant OP_ROL : OPCODE_TYPE := "00110";
constant OP_ROR : OPCODE_TYPE := "00111";
constant OP_DEC : OPCODE_TYPE := "01000";
constant OP_SBC : OPCODE_TYPE := "01001";
constant OP_ADD : OPCODE_TYPE := "01010";
constant OP_STP : OPCODE_TYPE := "01011";
constant OP_BTT : OPCODE_TYPE := "01100";
constant OP_CLP : OPCODE_TYPE := "01101";
constant OP_T0X : OPCODE_TYPE := "01110";
constant OP_CMP : OPCODE_TYPE := "01111";
constant OP_PSH : OPCODE_TYPE := "10000";
constant OP_POP : OPCODE_TYPE := "10001";
constant OP_BR0 : OPCODE_TYPE := "10010";
constant OP_BR1 : OPCODE_TYPE := "10011";
constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR
constant OP_INT : OPCODE_TYPE := "10101";
constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2
constant OP_STK : OPCODE_TYPE := "10111";
constant OP_UPP : OPCODE_TYPE := "11000";
constant OP_STA : OPCODE_TYPE := "11001";
constant OP_STX : OPCODE_TYPE := "11010";
constant OP_STO : OPCODE_TYPE := "11011";
constant OP_LDI : OPCODE_TYPE := "11100";
constant OP_LDA : OPCODE_TYPE := "11101";
constant OP_LDX : OPCODE_TYPE := "11110";
constant OP_LDO : OPCODE_TYPE := "11111";
 
-- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits)
constant SOP_RSP : SUBOP_TYPE := "000";
constant SOP_RTS : SUBOP_TYPE := "001";
constant SOP_RTI : SUBOP_TYPE := "010";
constant SOP_BRK : SUBOP_TYPE := "011";
constant SOP_JMP : SUBOP_TYPE := "100";
constant SOP_SMSK : SUBOP_TYPE := "101";
constant SOP_GMSK : SUBOP_TYPE := "110";
constant SOP_JSR : SUBOP_TYPE := "111";
 
-- Preinitialization is for simulation only - check actual reset conditions
type CPU_STATES is (
-- Instruction fetch & Decode
PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE,
-- Branching
BRN_C1, DBNZ_C1, JMP_C1, JMP_C2,
-- Loads
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3,
-- Stores
STA_C1, STA_C2, STA_C3, STO_C1, STX_C1, STX_C2,
-- 2-cycle math
MUL_C1, UPP_C1,
-- Stack
PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4,
-- Subroutines & Interrupts
WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2,
RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6,
-- Debugging
BRK_C1 );
 
signal CPU_Next_State : CPU_STATES := PIPE_FILL_0;
signal CPU_State : CPU_STATES := PIPE_FILL_0;
 
type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2,
CACHE_PREFETCH );
signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE;
 
signal Opcode : OPCODE_TYPE := (others => '0');
signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0');
-- synthesis translate_off
signal Instruction : DATA_TYPE := (others => '0');
-- synthesis translate_on
signal Prefetch : DATA_TYPE := (others => '0');
signal Operand1, Operand2 : DATA_TYPE := (others => '0');
 
signal Instr_Prefetch : std_logic := '0';
 
signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0';
signal Int_RTI_D : std_logic := '0';
 
begin
 
-- synthesis translate_off
Instruction <= Opcode & SubOp;
-- synthesis translate_on
 
State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode,
SubOp , SubOp_p1, Operand1, Operand2, Int_Req )
variable Reg, Reg_1 : integer range 0 to 7 := 0;
variable Offset_SX : ADDRESS_TYPE;
begin
CPU_Next_State <= CPU_State;
Cache_Ctrl <= CACHE_IDLE;
--
ALU_Ctrl.Oper <= ALU_IDLE;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data <= x"00";
--
PC_Ctrl.Oper <= PC_IDLE;
 
PC_Ctrl.Offset <= x"03";
PC_Ctrl.Addr <= x"0000";
--
SP_Ctrl.Oper <= SP_IDLE;
--
AS_Ctrl.Src <= ADDR_PC;
IMM <= x"0000";
--
DP_Ctrl.Src <= DATA_IDLE;
DP_Ctrl.Reg <= ACCUM;
--
INT_Ctrl.Mask_Set <= '0';
INT_Ctrl.Soft_Ints <= x"00";
INT_Ctrl.Incr_ISR <= '0';
Ack_D <= '0';
Int_RTI_D <= '0';
 
-- Assign the most common value of Reg and Reg1 outside the case structure
-- to simplify things.
Reg := conv_integer(SubOp);
Reg_1 := conv_integer(SubOp_p1);
Offset_SX(15 downto 0) := (others => Operand1(7));
Offset_SX(7 downto 0) := Operand1;
 
case CPU_State is
-------------------------------------------------------------------------------
-- Initial Instruction fetch & decode
-------------------------------------------------------------------------------
when PIPE_FILL_0 =>
CPU_Next_State <= PIPE_FILL_1;
PC_Ctrl.Oper <= PC_INCR;
 
when PIPE_FILL_1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
 
when PIPE_FILL_2 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
 
when INSTR_DECODE =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
 
case Opcode is
when OP_PSH =>
CPU_Next_State <= PSH_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV1;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= SubOp;
 
when OP_POP =>
CPU_Next_State <= POP_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV2;
SP_Ctrl.Oper <= SP_POP;
 
when OP_BR0 | OP_BR1 =>
CPU_Next_State <= BRN_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when OP_DBNZ =>
CPU_Next_State <= DBNZ_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_DEC;
ALU_Ctrl.Reg <= SubOp;
 
when OP_INT =>
PC_Ctrl.Oper <= PC_INCR;
if( Int_Mask(Reg) = '1' )then
CPU_Next_State <= WAIT_FOR_INT;
INT_Ctrl.Soft_Ints(Reg) <= '1';
end if;
 
when OP_STK =>
case SubOp is
when SOP_RSP =>
PC_Ctrl.Oper <= PC_INCR;
SP_Ctrl.Oper <= SP_RSET;
 
when SOP_RTS | SOP_RTI =>
CPU_Next_State <= RTS_C1;
Cache_Ctrl <= CACHE_IDLE;
SP_Ctrl.Oper <= SP_POP;
 
when SOP_BRK =>
CPU_Next_State <= BRK_C1;
PC_Ctrl.Oper <= PC_REV2;
 
when SOP_JMP =>
CPU_Next_State <= JMP_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when SOP_SMSK =>
PC_Ctrl.Oper <= PC_INCR;
INT_Ctrl.Mask_Set <= '1';
 
when SOP_GMSK =>
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper<= ALU_LDI;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data<= Int_Mask;
 
when SOP_JSR =>
CPU_Next_State <= JSR_C1;
Cache_Ctrl <= CACHE_OPER1;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM+1;
 
when others => null;
end case;
 
when OP_MUL =>
CPU_Next_State <= MUL_C1;
Cache_Ctrl <= CACHE_PREFETCH;
 
-- We need to back the PC up by 1, and all it to refill. An
-- unfortunate consequence of the pipelining. We can get away with
-- only 1 extra clock by pre-fetching the next instruction, though
PC_Ctrl.Oper <= PC_REV1;
-- Multiplication is automatic, but requires a single clock cycle.
-- We need to specify the register for Rn (R1:R0 = R0 * Rn) now,
-- but will issue the multiply command on the next clock to copy
-- the results to the specified register.
ALU_Ctrl.Oper <= ALU_IDLE;
ALU_Ctrl.Reg <= SubOp; -- Rn
 
when OP_UPP =>
CPU_Next_State <= UPP_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV1;
ALU_Ctrl.Oper <= Opcode;
ALU_Ctrl.Reg <= SubOp;
 
when OP_LDA =>
CPU_Next_State <= LDA_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when OP_LDI =>
CPU_Next_State <= LDI_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when OP_LDO =>
CPU_Next_State <= LDO_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_REV2;
 
when OP_LDX =>
CPU_Next_State <= LDX_C1;
PC_Ctrl.Oper <= PC_REV2;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, use the specified register pair,
-- otherwise, for an odd:even pair, and issue the first half of
-- a UPP instruction to the ALU
if( Enable_Auto_Increment = '0' )then
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
else
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper<= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when OP_STA =>
CPU_Next_State <= STA_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when OP_STO =>
CPU_Next_State <= STO_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_REV2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= ACCUM;
 
when OP_STX =>
CPU_Next_State <= STX_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= ACCUM;
 
when others =>
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= Opcode;
ALU_Ctrl.Reg <= SubOp;
 
end case;
 
-------------------------------------------------------------------------------
-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP )
-------------------------------------------------------------------------------
 
when BRN_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
if( ALU_Flags(Reg) = Opcode(0) )then
CPU_Next_State <= PIPE_FILL_0;
Cache_Ctrl <= CACHE_IDLE;
PC_Ctrl.Offset <= Operand1;
end if;
 
when DBNZ_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
if( ALU_Flags(FL_ZERO) = '0' )then
CPU_Next_State <= PIPE_FILL_0;
Cache_Ctrl <= CACHE_IDLE;
PC_Ctrl.Offset <= Operand1;
end if;
 
when JMP_C1 =>
CPU_Next_State <= JMP_C2;
Cache_Ctrl <= CACHE_OPER2;
 
when JMP_C2 =>
CPU_Next_State <= PIPE_FILL_0;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
 
-------------------------------------------------------------------------------
-- Data Storage - Load from memory (LDA, LDI, LDO, LDX)
-------------------------------------------------------------------------------
 
when LDA_C1 =>
CPU_Next_State <= LDA_C2;
Cache_Ctrl <= CACHE_OPER2;
 
when LDA_C2 =>
CPU_Next_State <= LDA_C3;
AS_Ctrl.Src <= ADDR_IMM;
IMM <= Operand2 & Operand1;
 
when LDA_C3 =>
CPU_Next_State <= LDA_C4;
PC_Ctrl.Oper <= PC_INCR;
 
when LDA_C4 =>
CPU_Next_State <= LDI_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when LDI_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_LDI;
ALU_Ctrl.Reg <= SubOp;
ALU_Ctrl.Data <= Operand1;
 
when LDO_C1 =>
CPU_Next_State <= LDX_C1;
AS_Ctrl.Src <= ADDR_IMM;
PC_Ctrl.Oper <= PC_INCR;
if( Enable_Auto_Increment = '1' )then
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper<= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
else
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
end if;
 
when LDX_C1 =>
CPU_Next_State <= LDX_C2;
PC_Ctrl.Oper <= PC_INCR;
 
when LDX_C2 =>
CPU_Next_State <= LDX_C3;
PC_Ctrl.Oper <= PC_INCR;
Cache_Ctrl <= CACHE_OPER1;
 
when LDX_C3 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_LDX;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data <= Operand1;
 
-------------------------------------------------------------------------------
-- Data Storage - Load from memory (STA, STO, STX)
-------------------------------------------------------------------------------
when STA_C1 =>
CPU_Next_State <= STA_C2;
Cache_Ctrl <= CACHE_OPER2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= SubOp;
 
when STA_C2 =>
CPU_Next_State <= STA_C3;
AS_Ctrl.Src <= ADDR_IMM;
IMM <= Operand2 & Operand1;
PC_Ctrl.Oper <= PC_INCR;
 
when STA_C3 =>
CPU_Next_State <= PIPE_FILL_2;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_INCR;
 
when STO_C1 =>
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_INCR;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, just load the registers normally
if( Enable_Auto_Increment = '0' )then
CPU_Next_State <= PIPE_FILL_1;
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
-- Otherwise, enforce the even register rule, and check the LSB to see
-- if we should perform the auto-increment on the register pair
else
CPU_Next_State <= STX_C2;
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper <= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when STX_C1 =>
PC_Ctrl.Oper <= PC_INCR;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, just load the registers normally
if( Enable_Auto_Increment = '0' )then
CPU_Next_State <= PIPE_FILL_1;
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
-- Otherwise, enforce the even register rule, and check the LSB to see
-- if we should perform the auto-increment on the register pair
else
CPU_Next_State <= STX_C2;
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper <= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when STX_C2 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_UPP2;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1';
 
-------------------------------------------------------------------------------
-- Multi-Cycle Math Operations (UPP, MUL)
-------------------------------------------------------------------------------
-- Because we have to backup the pipeline by 1 to refetch the 2nd
-- instruction/first operand, we have to return through PF2
 
when MUL_C1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_MUL;
 
when UPP_C1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_UPP2;
ALU_Ctrl.Reg <= SubOp_p1;
 
-------------------------------------------------------------------------------
-- Basic Stack Manipulation (PSH, POP, RSP)
-------------------------------------------------------------------------------
when PSH_C1 =>
CPU_Next_State <= PIPE_FILL_1;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
 
when POP_C1 =>
CPU_Next_State <= POP_C2;
AS_Ctrl.Src <= ADDR_SP;
 
when POP_C2 =>
CPU_Next_State <= POP_C3;
PC_Ctrl.Oper <= PC_INCR;
 
when POP_C3 =>
CPU_Next_State <= POP_C4;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when POP_C4 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_POP;
ALU_Ctrl.Reg <= SubOp;
ALU_Ctrl.Data <= Operand1;
-------------------------------------------------------------------------------
-- Subroutines & Interrupts (RTS, JSR)
-------------------------------------------------------------------------------
when WAIT_FOR_INT => -- For soft interrupts only, halt the PC
CPU_Next_State <= WAIT_FOR_INT;
 
when ISR_C1 =>
CPU_Next_State <= ISR_C2;
AS_Ctrl.Src <= ADDR_ISR;
INT_Ctrl.Incr_ISR <= '1';
PC_Ctrl.Oper <= PC_INCR;
-- Rewind the PC by 3 to compensate for the pipeline registers
PC_Ctrl.Offset <= x"FF";
 
when ISR_C2 =>
CPU_Next_State <= ISR_C3;
AS_Ctrl.Src <= ADDR_ISR;
DP_Ctrl.Src <= DATA_FLAG;
 
when ISR_C3 =>
CPU_Next_State <= JSR_C1;
Cache_Ctrl <= CACHE_OPER1;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM+1;
ALU_Ctrl.Oper <= ALU_STP;
ALU_Ctrl.Reg <= INT_FLAG;
Ack_D <= '1';
 
when JSR_C1 =>
CPU_Next_State <= JSR_C2;
Cache_Ctrl <= CACHE_OPER2;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM;
 
when JSR_C2 =>
CPU_Next_State <= PIPE_FILL_0;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
 
when RTS_C1 =>
CPU_Next_State <= RTS_C2;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_POP;
 
when RTS_C2 =>
CPU_Next_State <= RTS_C3;
AS_Ctrl.Src <= ADDR_SP;
-- if this is an RTI, then we need to POP the flags
if( SubOp = SOP_RTI )then
SP_Ctrl.Oper <= SP_POP;
end if;
 
when RTS_C3 =>
CPU_Next_State <= RTS_C4;
Cache_Ctrl <= CACHE_OPER1;
-- It doesn't really matter what is on the address bus for RTS, while
-- it does for RTI, so we make this the default
AS_Ctrl.Src <= ADDR_SP;
 
when RTS_C4 =>
CPU_Next_State <= RTS_C5;
Cache_Ctrl <= CACHE_OPER2;
 
when RTS_C5 =>
CPU_Next_State <= PIPE_FILL_0;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
if( SubOp = SOP_RTI )then
CPU_Next_State <= RTI_C6;
Cache_Ctrl <= CACHE_OPER1;
end if;
 
when RTI_C6 =>
CPU_Next_State <= PIPE_FILL_1;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_RFLG;
ALU_Ctrl.Data <= Operand1;
PC_Ctrl.Oper <= PC_INCR;
Int_RTI_D <= '1';
 
-------------------------------------------------------------------------------
-- Debugging (BRK) Performs a 5-clock NOP
-------------------------------------------------------------------------------
when BRK_C1 =>
CPU_Next_State <= PIPE_FILL_0;
 
when others => null;
end case;
 
-- Interrupt service routines can only begin during the decode and wait
-- states to avoid corruption due to incomplete instruction execution
if( Int_Req = '1' )then
if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then
CPU_Next_State <= ISR_C1;
end if;
end if;
 
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = '1' )then
CPU_State <= PIPE_FILL_0;
Opcode <= OP_INC;
SubOp <= ACCUM;
SubOp_p1 <= ACCUM;
Operand1 <= x"00";
Operand2 <= x"00";
Instr_Prefetch <= '0';
Prefetch <= x"00";
 
Ack_Q <= '0';
Ack_Q1 <= '0';
Int_Ack <= '0';
Int_RTI <= '0';
 
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
CPU_State <= CPU_Next_State;
case Cache_Ctrl is
when CACHE_INSTR =>
Opcode <= Rd_Data(7 downto 3);
SubOp <= Rd_Data(2 downto 0);
SubOp_p1 <= Rd_Data(2 downto 0) + 1;
if( Instr_Prefetch = '1' )then
Opcode <= Prefetch(7 downto 3);
SubOp <= Prefetch(2 downto 0);
SubOp_p1 <= Prefetch(2 downto 0) + 1;
Instr_Prefetch <= '0';
end if;
when CACHE_OPER1 =>
Operand1 <= Rd_Data;
when CACHE_OPER2 =>
Operand2 <= Rd_Data;
when CACHE_PREFETCH =>
Prefetch <= Rd_Data;
Instr_Prefetch <= '1';
when CACHE_IDLE =>
null;
end case;
 
-- Interrupt signalling registers
Ack_Q <= Ack_D;
Ack_Q1 <= Ack_Q;
Int_Ack <= Ack_Q1;
Int_RTI <= Int_RTI_D;
end if;
end if;
end process;
 
-------------------------------------------------------------------------------
-- Fixed in-line statements for the interrupt mask, and stack pointer address
-------------------------------------------------------------------------------
 
-- The interrupt control mask is always sourced out of R0
INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM));
 
-- The original RSP instruction simply reset the stack pointer to the preset
-- address set at compile time. However, with little extra effort, we can
-- modify the instruction to allow the stack pointer to be moved anywhere in
-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as
-- a fixed source
 
Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move = '1' )generate
SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0);
end generate;
 
Normal_Stack_Reset_fn: if( Allow_Stack_Address_Move = '0' )generate
SP_Ctrl.Addr <= Stack_Start_Addr;
end generate;
 
end block;
 
-------------------------------------------------------------------------------
-- Address Source Mux
-------------------------------------------------------------------------------
 
Open8_AS : block is
begin
 
Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR )
variable PC_Mux, SP_Mux : ADDRESS_TYPE;
variable IMM_Mux, ISR_Mux: ADDRESS_TYPE;
begin
PC_Mux := (others => '0');
SP_Mux := (others => '0');
IMM_Mux := (others => '0');
ISR_Mux := (others => '0');
 
case AS_Ctrl.Src is
when ADDR_PC =>
PC_Mux := PC;
when ADDR_SP =>
SP_Mux := SP;
when ADDR_IMM =>
IMM_Mux := IMM;
when ADDR_ISR =>
ISR_Mux := ISR;
end case;
 
for i in 0 to 15 loop
Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or
ISR_Mux(i);
end loop;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- (Write) Data Path
-------------------------------------------------------------------------------
 
Open8_DP : block is
signal Wr_Data_D : DATA_TYPE := (others => '0');
signal Wr_Enable_D : std_logic := '0';
begin
 
Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC )
variable Reg_Mux, PC_Mux : DATA_TYPE;
variable Flag_Mux : DATA_TYPE;
begin
Reg_Mux := (others => '0');
Flag_Mux := (others => '0');
PC_Mux := (others => '0');
Wr_Enable_D <= '0';
 
case DP_Ctrl.Src is
when DATA_IDLE =>
null;
when DATA_REG =>
Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg));
Wr_Enable_D <= '1';
when DATA_FLAG =>
Flag_Mux := ALU_Flags;
Wr_Enable_D <= '1';
when DATA_PC =>
Wr_Enable_D <= '1';
if( DP_Ctrl.Reg = ACCUM )then
PC_Mux := PC(7 downto 0);
else
PC_Mux := PC(15 downto 8);
end if;
end case;
 
for i in 0 to 7 loop
Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i);
end loop;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = '1' )then
Wr_Data <= (others => '0');
Wr_Enable <= '0';
Rd_Enable <= '1';
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Wr_Data <= Wr_Data_D;
Wr_Enable <= Wr_Enable_D;
Rd_Enable <= not Wr_Enable_D;
end if;
end if;
end process;
 
end block;
 
end rtl;
 
-- Copyright (c)2006, Jeremy Seth Henry
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
-- * Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution,
-- where applicable (as part of a user interface, debugging port, etc.)
--
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-- VHDL Units : Open8_CPU
-- Description: VHDL model of the V8 uRISC 8-bit processor core
-- Notes : Generic definitions
-- : Stack_Start_Address - determines the initial (reset) value of
-- : the stack pointer. Also used for the RSP instruction if
-- : Allow_Stack_Address_Move is 0.
-- :
-- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be
-- : programmed via thet RSP instruction. If enabled, the contents
-- : of R1:R0 are used to initialize the stack pointer.
-- :
-- : ISR_Start_Addr - determines the location of the interrupt
-- : service vector table. There are 8 service vectors, or 16
-- : bytes, which must be allocated to either ROM or RAM.
-- :
-- : Program_Start_Addr - Determines the initial value of the
-- : program counter.
-- :
-- : Default_Interrupt_Mask - Determines the intial value of the
-- : interrupt mask. To remain true to the original core, which
-- : had no interrupt mask, this should be set to x"FF". Otherwise
-- : it can be initialized to any value.
-- :
-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is
-- : connected or not. This signal is typically used to halt the
-- : processor for a few cycles when accessing slower peripherals,
-- : but may also be used to single step the processor. If this
-- : feature isn't used, it can be disabled to increase Fmax.
-- :
-- : The CPU_Halt signal can be used to access slower peripherals
-- : by allowing the device to "pause" the CPU. This can be used,
-- : for example, to write to a standard LCD panel, which requires
-- : a 4MHz interface, by halting on writes. Alternately, devices
-- : such as SDRAM controllers, can pause the processor until the
-- : data is ready to be presented.
-- :
-- : The Enable_Auto_Increment generic can be used to modify the
-- : indexed instructions such that specifying an odd register
-- : will use the next lower register pair, post-incrementing the
-- : value in that pair. IOW, specifying STX R1 will instead
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1
-- :
-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL
-- : respectively. DBNZ decrements the specified register, and will
-- : branch if the result is non-zero (Zero flag is not set). MUL
-- : places the result of R0 * Rn into R1:R0, and executes in two
-- : cycles. (R1:R0 = R0 * Rn)
-- :
-- Revision History
-- Author Date Change
------------------ -------- ---------------------------------------------------
-- Seth Henry 07/19/06 Design Start
-- Seth Henry 01/18/11 Fixed BTT instruction to match V8
-- Seth Henry 06/14/11 Fixed STO instruction to avoid register corruption
-- Fixed interrupt logic to avoid address corruption
-- when interrupt coincides with branch instruction
 
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
 
library work;
use work.Open8_pkg.all;
 
entity Open8_CPU is
generic(
Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack
Allow_Stack_Address_Move : boolean := false; -- Use Normal v8 RSP
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location
Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints
Enable_CPU_Halt : boolean := false; -- Disable HALT pin
Enable_Auto_Increment : boolean := false; -- Modify indexed instr
Reset_Level : std_logic := '0' ); -- Active reset level
port(
Clock : in std_logic;
Reset : in std_logic;
CPU_Halt : in std_logic := '0';
Interrupts : in INTERRUPT_BUNDLE;
--
Address : out ADDRESS_TYPE;
Rd_Data : in DATA_TYPE;
Rd_Enable : out std_logic;
Wr_Data : out DATA_TYPE;
Wr_Enable : out std_logic );
end entity;
 
architecture rtl of Open8_CPU is
subtype OPCODE_TYPE is std_logic_vector(4 downto 0);
subtype SUBOP_TYPE is std_logic_vector(2 downto 0);
 
-- Most of the ALU instructions are the same as their Opcode equivalents with
-- three exceptions (for IDLE, UPP2, and MUL2)
constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00"
constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01"
constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02"
constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03"
constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04"
constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05"
constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06"
constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07"
constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08"
constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09"
constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A"
constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B"
constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C"
constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D"
constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E"
constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F"
constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11"
constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16"
constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18"
constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C"
constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E"
 
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10"
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"12"
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"13"
 
constant FL_ZERO : integer := 0;
constant FL_CARRY : integer := 1;
constant FL_NEG : integer := 2;
constant FL_INT_EN : integer := 3;
constant FL_GP1 : integer := 4;
constant FL_GP2 : integer := 5;
constant FL_GP3 : integer := 6;
constant FL_GP4 : integer := 7;
 
type ALU_CTRL_TYPE is record
Oper : OPCODE_TYPE;
Reg : SUBOP_TYPE;
Data : DATA_TYPE;
end record;
 
constant ACCUM : SUBOP_TYPE := "000";
constant INT_FLAG : SUBOP_TYPE := "011";
 
-- There are only 8 byte-wide registers - and the write register is always 0,
-- so there is little point in making a RAM out of this
type REGFILE_TYPE is array (0 to 7) of DATA_TYPE;
 
subtype FLAG_TYPE is DATA_TYPE;
 
type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD );
 
type PC_CTRL_TYPE is record
Oper : PC_MODES;
Offset : DATA_TYPE;
Addr : ADDRESS_TYPE;
end record;
 
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH );
 
type SP_CTRL_TYPE is record
Oper : SP_MODES;
Addr : ADDRESS_TYPE;
end record;
 
type INT_CTRL_TYPE is record
Mask_Set : std_logic;
Mask_Data : DATA_TYPE;
Soft_Ints : INTERRUPT_BUNDLE;
Incr_ISR : std_logic;
end record;
 
type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR);
 
type ADDR_CTRL_TYPE is record
Src : AS_MODES;
end record;
 
type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC );
 
type DATA_CTRL_TYPE is record
Src : DP_MODES;
Reg : SUBOP_TYPE;
end record;
 
signal Halt : std_logic;
signal ALU_Ctrl : ALU_CTRL_TYPE;
signal ALU_Regs : REGFILE_TYPE;
signal ALU_Flags : FLAG_TYPE;
signal PC_Ctrl : PC_CTRL_TYPE;
signal SP_Ctrl : SP_CTRL_TYPE;
signal AS_Ctrl : ADDR_CTRL_TYPE;
signal DP_Ctrl : DATA_CTRL_TYPE;
signal INT_Ctrl : INT_CTRL_TYPE;
signal Int_Req, Int_Ack : std_logic;
signal Int_RTI : std_logic;
signal Int_Mask : DATA_TYPE;
signal PC : ADDRESS_TYPE;
signal SP : ADDRESS_TYPE;
signal ISR : ADDRESS_TYPE;
signal IMM : ADDRESS_TYPE;
begin
 
Halt_Disabled_fn: if( not Enable_CPU_Halt )generate
Halt <= '0';
end generate;
 
Halt_Enabled_fn: if( Enable_CPU_Halt )generate
Halt <= CPU_Halt;
end generate;
 
-------------------------------------------------------------------------------
-- ALU (Arithmetic / Logic Unit
-- Notes:
-- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others
-------------------------------------------------------------------------------
 
Open8_ALU : block is
 
-- Preinitialization is for simulation only - check actual reset conditions
signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') );
signal Flags_D, Flags : FLAG_TYPE := (others => '0');
signal Mult : ADDRESS_TYPE := (others => '0');
 
signal Sum : std_logic_vector(8 downto 0) := (others => '0');
signal Addend_A, Addend_B : DATA_TYPE := (others => '0');
signal Carry : std_logic := '0';
 
begin
 
ALU_Regs <= Regfile;
ALU_Flags <= Flags;
 
ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum )
variable Index : integer range 0 to 7 := 0;
variable Temp : std_logic_vector(8 downto 0);
begin
Regfile_D <= Regfile;
Flags_D <= Flags;
Addend_A <= x"00";
Addend_B <= x"00";
Carry <= '0';
 
Temp := (others => '0');
Index := conv_integer(ALU_Ctrl.Reg);
 
case ALU_Ctrl.Oper is
when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z
Addend_A <= x"01";
Addend_B <= Regfile(Index);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(Index) <= Sum(7 downto 0);
-- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP
-- doesn't set the N or Z flags. Note that the MSB can be used to
-- distinguish between the two ALU modes.
if( ALU_Ctrl.Oper(4) = '0' )then
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Sum(7);
end if;
 
when ALU_UPP2 => -- Rn = Rn + C
Addend_A <= x"00";
Addend_B <= Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(Index) <= Sum(7 downto 0);
 
when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(0) <= Sum(7 downto 0);
 
when ALU_TX0 => -- R0 = Rn : Flags N,Z
Temp := "0" & Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) or Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) and Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z
Temp(7 downto 0) := Regfile(0) xor Regfile(Index);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(0) <= Temp(7 downto 0);
 
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z
Temp := Regfile(Index) & Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Temp(8);
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z
Temp := Regfile(Index)(0) & Flags(FL_CARRY) &
Regfile(Index)(7 downto 1);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Temp(8);
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z
Addend_A <= Regfile(Index);
Addend_B <= x"FF";
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(Index) <= Sum(7 downto 0);
 
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= not Regfile(Index);
Carry <= Flags(FL_CARRY);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
Regfile_D(0) <= Sum(7 downto 0);
 
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= Regfile(Index);
Flags_D(FL_CARRY) <= Sum(8);
Regfile_D(0) <= Sum(7 downto 0);
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Sum(7);
 
when ALU_STP => -- Sets bit(n) in the Flags register
Flags_D(Index) <= '1';
 
when ALU_BTT => -- Z = !R0(N), N = R0(7)
Flags_D(FL_ZERO) <= not Regfile(0)(Index);
Flags_D(FL_NEG) <= Regfile(0)(7);
-- Temp := "0" & Regfile(Index);
-- Flags_D(FL_ZERO) <= '0';
-- if( Temp(7 downto 0) = 0 )then
-- Flags_D(FL_ZERO) <= '1';
-- end if;
-- Flags_D(FL_NEG) <= Temp(7);
 
when ALU_CLP => -- Clears bit(n) in the Flags register
Flags_D(Index) <= '0';
 
when ALU_T0X => -- Rn = R0 : Flags N,Z
Temp := "0" & Regfile(0);
Flags_D(FL_ZERO) <= '0';
if( Temp(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= Temp(7);
Regfile_D(Index) <= Temp(7 downto 0);
 
when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z
Addend_A <= Regfile(0);
Addend_B <= not Regfile(Index);
Carry <= '1';
Flags_D(FL_ZERO) <= '0';
if( Sum(7 downto 0) = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_CARRY) <= Sum(8);
Flags_D(FL_NEG) <= Sum(7);
 
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags Z
Regfile_D(0) <= Mult(7 downto 0);
Regfile_D(1) <= Mult(15 downto 8);
Flags_D(FL_ZERO) <= '0';
if( Mult = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
 
when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z
-- The POP instruction doesn't alter the flags, so we need to check
if( ALU_Ctrl.Oper = ALU_LDI )then
Flags_D(FL_ZERO) <= '0';
if( ALU_Ctrl.Data = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
end if;
Regfile_D(Index) <= ALU_Ctrl.Data;
 
when ALU_LDX => -- R0 <= Data : Flags N,Z
Flags_D(FL_ZERO) <= '0';
if( ALU_Ctrl.Data = 0 )then
Flags_D(FL_ZERO) <= '1';
end if;
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
Regfile_D(0) <= ALU_Ctrl.Data;
 
when ALU_RFLG =>
Flags_D <= ALU_Ctrl.Data;
 
when others => null;
end case;
end process;
 
-- 8-bit Adder with carry
Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry;
 
-- We need to infer a hardware multipler, so we create a special clocked
-- process with no reset or clock enable
M_Reg: process( Clock )
begin
if( rising_edge(Clock) )then
Mult <= Regfile(0) *
Regfile(conv_integer(ALU_Ctrl.Reg));
end if;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = Reset_Level )then
for i in 0 to 7 loop
Regfile(i) <= (others => '0');
end loop;
Flags <= x"00";
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Regfile <= Regfile_D;
Flags <= Flags_D;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Program Counter
-------------------------------------------------------------------------------
 
Open8_PC : block is
-- Preinitialization is for simulation only - check actual reset conditions
signal PC_Q : ADDRESS_TYPE := (others => '0');
signal Rewind_1_2n : std_logic := '0';
begin
 
PC <= PC_Q;
 
-- This sets the carry input on the "rewind" adder. If the rewind command is
-- PC_REV2, then we clear the carry. Otherwise, we leave it high.
Rewind_PC_Calc: process( PC_Ctrl )
begin
Rewind_1_2n <= '1';
if( PC_Ctrl.Oper = PC_REV2 )then
Rewind_1_2n <= '0';
end if;
end process;
 
Program_Counter: process( Reset, Clock, PC_Ctrl )
variable PC_Offset_SX : ADDRESS_TYPE := x"0000";
begin
PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7));
PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset;
if( Reset = Reset_Level )then
PC_Q <= Program_Start_Addr;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
case PC_Ctrl.Oper is
when PC_IDLE =>
null;
when PC_REV1 | PC_REV2 =>
PC_Q <= PC_Q - 2 + Rewind_1_2n;
when PC_INCR =>
PC_Q <= PC_Q + PC_Offset_SX - 2;
when PC_LOAD =>
PC_Q <= PC_Ctrl.Addr;
end case;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Stack Pointer
-------------------------------------------------------------------------------
 
Open8_SP : block is
-- Preinitialization is for simulation only - check actual reset conditions
signal SP_Q : ADDRESS_TYPE := (others => '0');
begin
 
SP <= SP_Q;
 
Stack_Pointer: process( Reset, Clock )
begin
if( Reset = Reset_Level )then
SP_Q <= Stack_Start_Addr;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
case SP_Ctrl.Oper is
when SP_IDLE => null;
when SP_RSET => SP_Q <= SP_Ctrl.Addr;
when SP_POP => SP_Q <= SP_Q + 1;
when SP_PUSH => SP_Q <= SP_Q - 1;
end case;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- Interrupt Controller
-------------------------------------------------------------------------------
 
Open8_INT : block is
 
-- Preinitialization is for simulation only - check actual reset conditions
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr;
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2;
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4;
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6;
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8;
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10;
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12;
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14;
 
signal i_Ints : INTERRUPT_BUNDLE := (others => '0');
signal Pending_D : INTERRUPT_BUNDLE := (others => '0');
signal Pending : INTERRUPT_BUNDLE := (others => '0');
signal Wait_for_FSM : std_logic := '0';
signal Mask : std_logic_vector(6 downto 0) := (others => '0');
signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0');
 
type INT_HIST is array (0 to 8) of integer range 0 to 7;
signal History : INT_HIST := (others => 0);
signal Int_Trig : std_logic := '0';
signal Hist_Level : integer range 0 to 7 := 0;
signal Hist_Ptr : integer range 0 to 8 := 0;
 
begin
Int_Mask <= Mask & '1';
ISR <= ISR_Q;
 
Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl )
variable S_Mask : std_logic_vector(7 downto 0);
begin
S_Mask := Mask & '1';
for i in 0 to 7 loop
i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i))
and S_Mask(i);
end loop;
end process;
 
Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl,
History, Hist_Ptr )
begin
ISR_D <= ISR_Q;
Pending_D <= Pending;
Int_Trig <= '0';
Hist_Level <= 0;
 
-- Record any incoming interrupts to the pending buffer
if( i_Ints > 0 )then
Pending_D <= i_Ints;
end if;
 
-- Incr_ISR allows the CPU Core to advance the vector address to pop the
-- lower half of the address.
if( INT_Ctrl.Incr_ISR = '1' )then
ISR_D <= ISR_Q + 1;
end if;
 
-- Only mess with interrupt signals while the CPU core is not currently
-- working with the ISR address (ie, not loading a new service vector)
if( Wait_for_FSM = '0' and Pending > 0 )then
if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then
ISR_D <= INT_VECTOR_0;
Pending_D(0) <= '0';
Hist_Level <= 0;
Int_Trig <= '1';
elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then
ISR_D <= INT_VECTOR_1;
Pending_D(1) <= '0';
Hist_Level <= 1;
Int_Trig <= '1';
elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then
ISR_D <= INT_VECTOR_2;
Pending_D(2) <= '0';
Hist_Level <= 2;
Int_Trig <= '1';
elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then
ISR_D <= INT_VECTOR_3;
Pending_D(3) <= '0';
Hist_Level <= 3;
Int_Trig <= '1';
elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then
ISR_D <= INT_VECTOR_4;
Pending_D(4) <= '0';
Hist_Level <= 4;
Int_Trig <= '1';
elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then
ISR_D <= INT_VECTOR_5;
Pending_D(5) <= '0';
Hist_Level <= 5;
Int_Trig <= '1';
elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then
ISR_D <= INT_VECTOR_6;
Pending_D(6) <= '0';
Hist_Level <= 6;
Int_Trig <= '1';
elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then
ISR_D <= INT_VECTOR_7;
Pending_D(7) <= '0';
Hist_Level <= 7;
Int_Trig <= '1';
end if;
end if;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = Reset_Level )then
Int_Req <= '0';
Pending <= x"00";
Wait_for_FSM <= '0';
Mask <= Default_Interrupt_Mask(7 downto 1);
ISR_Q <= INT_VECTOR_0;
for i in 0 to 8 loop
History(i) <= 0;
end loop;
Hist_Ptr <= 0;
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Int_Req <= Wait_for_FSM and (not Int_Ack);
Pending <= Pending_D;
-- Reset the Wait_for_FSM flag on Int_Ack
if( Int_Ack = '1' )then
Wait_for_FSM <= '0';
-- Set the Wait_for_FSM flag on Int_Trig
elsif( Int_Trig = '1' )then
Wait_for_FSM <= '1';
end if;
if( INT_Ctrl.Mask_Set = '1' )then
Mask <= INT_Ctrl.Mask_Data(7 downto 1);
end if;
ISR_Q <= ISR_D;
if( Int_Trig = '1' )then
History(Hist_Ptr+1) <= Hist_Level;
Hist_Ptr <= Hist_Ptr + 1;
elsif( Int_RTI = '1' and Hist_Ptr > 0 )then
Hist_Ptr <= Hist_Ptr - 1;
end if;
end if;
end if;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- State Logic / Instruction Decoding & Execution
-------------------------------------------------------------------------------
 
Open8_FSM : block is
 
-- These are all the primary instructions/op-codes (upper 5-bits)
constant OP_INC : OPCODE_TYPE := "00000";
constant OP_ADC : OPCODE_TYPE := "00001";
constant OP_TX0 : OPCODE_TYPE := "00010";
constant OP_OR : OPCODE_TYPE := "00011";
constant OP_AND : OPCODE_TYPE := "00100";
constant OP_XOR : OPCODE_TYPE := "00101";
constant OP_ROL : OPCODE_TYPE := "00110";
constant OP_ROR : OPCODE_TYPE := "00111";
constant OP_DEC : OPCODE_TYPE := "01000";
constant OP_SBC : OPCODE_TYPE := "01001";
constant OP_ADD : OPCODE_TYPE := "01010";
constant OP_STP : OPCODE_TYPE := "01011";
constant OP_BTT : OPCODE_TYPE := "01100";
constant OP_CLP : OPCODE_TYPE := "01101";
constant OP_T0X : OPCODE_TYPE := "01110";
constant OP_CMP : OPCODE_TYPE := "01111";
constant OP_PSH : OPCODE_TYPE := "10000";
constant OP_POP : OPCODE_TYPE := "10001";
constant OP_BR0 : OPCODE_TYPE := "10010";
constant OP_BR1 : OPCODE_TYPE := "10011";
constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR
constant OP_INT : OPCODE_TYPE := "10101";
constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2
constant OP_STK : OPCODE_TYPE := "10111";
constant OP_UPP : OPCODE_TYPE := "11000";
constant OP_STA : OPCODE_TYPE := "11001";
constant OP_STX : OPCODE_TYPE := "11010";
constant OP_STO : OPCODE_TYPE := "11011";
constant OP_LDI : OPCODE_TYPE := "11100";
constant OP_LDA : OPCODE_TYPE := "11101";
constant OP_LDX : OPCODE_TYPE := "11110";
constant OP_LDO : OPCODE_TYPE := "11111";
 
-- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits)
constant SOP_RSP : SUBOP_TYPE := "000";
constant SOP_RTS : SUBOP_TYPE := "001";
constant SOP_RTI : SUBOP_TYPE := "010";
constant SOP_BRK : SUBOP_TYPE := "011";
constant SOP_JMP : SUBOP_TYPE := "100";
constant SOP_SMSK : SUBOP_TYPE := "101";
constant SOP_GMSK : SUBOP_TYPE := "110";
constant SOP_JSR : SUBOP_TYPE := "111";
 
-- Preinitialization is for simulation only - check actual reset conditions
type CPU_STATES is (
-- Instruction fetch & Decode
PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE,
-- Branching
BRN_C1, DBNZ_C1, JMP_C1, JMP_C2,
-- Loads
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3,
-- Stores
STA_C1, STA_C2, STA_C3, STO_C1, STO_C2, STX_C1, STX_C2,
-- 2-cycle math
MUL_C1, UPP_C1,
-- Stack
PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4,
-- Subroutines & Interrupts
WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2,
RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6,
-- Debugging
BRK_C1 );
 
signal CPU_Next_State : CPU_STATES := PIPE_FILL_0;
signal CPU_State : CPU_STATES := PIPE_FILL_0;
 
type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2,
CACHE_PREFETCH );
signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE;
 
signal Opcode : OPCODE_TYPE := (others => '0');
signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0');
-- synthesis translate_off
signal Instruction : DATA_TYPE := (others => '0');
-- synthesis translate_on
signal Prefetch : DATA_TYPE := (others => '0');
signal Operand1, Operand2 : DATA_TYPE := (others => '0');
 
signal Instr_Prefetch : std_logic := '0';
 
signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0';
signal Int_RTI_D : std_logic := '0';
 
begin
 
-- synthesis translate_off
Instruction <= Opcode & SubOp;
-- synthesis translate_on
 
State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode,
SubOp , SubOp_p1, Operand1, Operand2, Int_Req )
variable Reg, Reg_1 : integer range 0 to 7 := 0;
variable Offset_SX : ADDRESS_TYPE;
begin
CPU_Next_State <= CPU_State;
Cache_Ctrl <= CACHE_IDLE;
--
ALU_Ctrl.Oper <= ALU_IDLE;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data <= x"00";
--
PC_Ctrl.Oper <= PC_IDLE;
 
PC_Ctrl.Offset <= x"03";
PC_Ctrl.Addr <= x"0000";
--
SP_Ctrl.Oper <= SP_IDLE;
--
AS_Ctrl.Src <= ADDR_PC;
IMM <= x"0000";
--
DP_Ctrl.Src <= DATA_IDLE;
DP_Ctrl.Reg <= ACCUM;
--
INT_Ctrl.Mask_Set <= '0';
INT_Ctrl.Soft_Ints <= x"00";
INT_Ctrl.Incr_ISR <= '0';
Ack_D <= '0';
Int_RTI_D <= '0';
 
-- Assign the most common value of Reg and Reg1 outside the case structure
-- to simplify things.
Reg := conv_integer(SubOp);
Reg_1 := conv_integer(SubOp_p1);
Offset_SX(15 downto 0) := (others => Operand1(7));
Offset_SX(7 downto 0) := Operand1;
 
case CPU_State is
-------------------------------------------------------------------------------
-- Initial Instruction fetch & decode
-------------------------------------------------------------------------------
when PIPE_FILL_0 =>
CPU_Next_State <= PIPE_FILL_1;
PC_Ctrl.Oper <= PC_INCR;
 
when PIPE_FILL_1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
 
when PIPE_FILL_2 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
 
when INSTR_DECODE =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
 
case Opcode is
when OP_PSH =>
CPU_Next_State <= PSH_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV1;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= SubOp;
 
when OP_POP =>
CPU_Next_State <= POP_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV2;
SP_Ctrl.Oper <= SP_POP;
 
when OP_BR0 | OP_BR1 =>
CPU_Next_State <= BRN_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when OP_DBNZ =>
CPU_Next_State <= DBNZ_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_DEC;
ALU_Ctrl.Reg <= SubOp;
 
when OP_INT =>
PC_Ctrl.Oper <= PC_INCR;
if( Int_Mask(Reg) = '1' )then
CPU_Next_State <= WAIT_FOR_INT;
INT_Ctrl.Soft_Ints(Reg) <= '1';
end if;
 
when OP_STK =>
case SubOp is
when SOP_RSP =>
PC_Ctrl.Oper <= PC_INCR;
SP_Ctrl.Oper <= SP_RSET;
 
when SOP_RTS | SOP_RTI =>
CPU_Next_State <= RTS_C1;
Cache_Ctrl <= CACHE_IDLE;
SP_Ctrl.Oper <= SP_POP;
 
when SOP_BRK =>
CPU_Next_State <= BRK_C1;
PC_Ctrl.Oper <= PC_REV2;
 
when SOP_JMP =>
CPU_Next_State <= JMP_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when SOP_SMSK =>
PC_Ctrl.Oper <= PC_INCR;
INT_Ctrl.Mask_Set <= '1';
 
when SOP_GMSK =>
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper<= ALU_LDI;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data<= Int_Mask;
 
when SOP_JSR =>
CPU_Next_State <= JSR_C1;
Cache_Ctrl <= CACHE_OPER1;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM+1;
 
when others => null;
end case;
 
when OP_MUL =>
CPU_Next_State <= MUL_C1;
Cache_Ctrl <= CACHE_PREFETCH;
 
-- We need to back the PC up by 1, and allow it to refill. An
-- unfortunate consequence of the pipelining. We can get away with
-- only 1 extra clock by pre-fetching the next instruction, though
PC_Ctrl.Oper <= PC_REV1;
-- Multiplication is automatic, but requires a single clock cycle.
-- We need to specify the register for Rn (R1:R0 = R0 * Rn) now,
-- but will issue the multiply command on the next clock to copy
-- the results to the specified register.
ALU_Ctrl.Oper <= ALU_IDLE;
ALU_Ctrl.Reg <= SubOp; -- Rn
 
when OP_UPP =>
CPU_Next_State <= UPP_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV1;
ALU_Ctrl.Oper <= Opcode;
ALU_Ctrl.Reg <= SubOp;
 
when OP_LDA =>
CPU_Next_State <= LDA_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when OP_LDI =>
CPU_Next_State <= LDI_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when OP_LDO =>
CPU_Next_State <= LDO_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_REV2;
 
when OP_LDX =>
CPU_Next_State <= LDX_C1;
PC_Ctrl.Oper <= PC_REV2;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, use the specified register pair,
-- otherwise, for an odd:even pair, and issue the first half of
-- a UPP instruction to the ALU
if( not Enable_Auto_Increment )then
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
else
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper<= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when OP_STA =>
CPU_Next_State <= STA_C1;
Cache_Ctrl <= CACHE_OPER1;
 
when OP_STO =>
CPU_Next_State <= STO_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_REV2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= ACCUM;
 
when OP_STX =>
CPU_Next_State <= STX_C1;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_REV2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= ACCUM;
 
when others =>
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= Opcode;
ALU_Ctrl.Reg <= SubOp;
 
end case;
 
-------------------------------------------------------------------------------
-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP )
-------------------------------------------------------------------------------
 
when BRN_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
if( ALU_Flags(Reg) = Opcode(0) )then
CPU_Next_State <= PIPE_FILL_0;
Cache_Ctrl <= CACHE_IDLE;
PC_Ctrl.Offset <= Operand1;
end if;
 
when DBNZ_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
if( ALU_Flags(FL_ZERO) = '0' )then
CPU_Next_State <= PIPE_FILL_0;
Cache_Ctrl <= CACHE_IDLE;
PC_Ctrl.Offset <= Operand1;
end if;
 
when JMP_C1 =>
CPU_Next_State <= JMP_C2;
Cache_Ctrl <= CACHE_OPER2;
 
when JMP_C2 =>
CPU_Next_State <= PIPE_FILL_0;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
 
-------------------------------------------------------------------------------
-- Data Storage - Load from memory (LDA, LDI, LDO, LDX)
-------------------------------------------------------------------------------
 
when LDA_C1 =>
CPU_Next_State <= LDA_C2;
Cache_Ctrl <= CACHE_OPER2;
 
when LDA_C2 =>
CPU_Next_State <= LDA_C3;
AS_Ctrl.Src <= ADDR_IMM;
IMM <= Operand2 & Operand1;
 
when LDA_C3 =>
CPU_Next_State <= LDA_C4;
PC_Ctrl.Oper <= PC_INCR;
 
when LDA_C4 =>
CPU_Next_State <= LDI_C1;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when LDI_C1 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_LDI;
ALU_Ctrl.Reg <= SubOp;
ALU_Ctrl.Data <= Operand1;
 
when LDO_C1 =>
CPU_Next_State <= LDX_C1;
AS_Ctrl.Src <= ADDR_IMM;
PC_Ctrl.Oper <= PC_INCR;
if( Enable_Auto_Increment )then
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
if( SubOp(0) = '1' )then
ALU_Ctrl.Oper<= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
else
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
end if;
 
when LDX_C1 =>
CPU_Next_State <= LDX_C2;
PC_Ctrl.Oper <= PC_INCR;
 
when LDX_C2 =>
CPU_Next_State <= LDX_C3;
PC_Ctrl.Oper <= PC_INCR;
Cache_Ctrl <= CACHE_OPER1;
 
when LDX_C3 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_LDX;
ALU_Ctrl.Reg <= ACCUM;
ALU_Ctrl.Data <= Operand1;
 
-------------------------------------------------------------------------------
-- Data Storage - Store to memory (STA, STO, STX)
-------------------------------------------------------------------------------
when STA_C1 =>
CPU_Next_State <= STA_C2;
Cache_Ctrl <= CACHE_OPER2;
DP_Ctrl.Src <= DATA_REG;
DP_Ctrl.Reg <= SubOp;
 
when STA_C2 =>
CPU_Next_State <= STA_C3;
AS_Ctrl.Src <= ADDR_IMM;
IMM <= Operand2 & Operand1;
PC_Ctrl.Oper <= PC_INCR;
 
when STA_C3 =>
CPU_Next_State <= PIPE_FILL_2;
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_INCR;
 
when STO_C1 =>
Cache_Ctrl <= CACHE_PREFETCH;
PC_Ctrl.Oper <= PC_INCR;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, just load the registers normally
if( not Enable_Auto_Increment )then
CPU_Next_State <= PIPE_FILL_1;
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
-- Otherwise, enforce the even register rule, and check the LSB to see
-- if we should perform the auto-increment on the register pair
else
CPU_Next_State <= PIPE_FILL_0;
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
if( SubOp(0) = '1' )then
CPU_Next_State <= STO_C2;
ALU_Ctrl.Oper <= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when STO_C2 =>
CPU_Next_State <= PIPE_FILL_1;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_UPP2;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1';
 
when STX_C1 =>
PC_Ctrl.Oper <= PC_INCR;
AS_Ctrl.Src <= ADDR_IMM;
-- If auto-increment is disabled, just load the registers normally
if( not Enable_Auto_Increment )then
CPU_Next_State <= PIPE_FILL_1;
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
-- Otherwise, enforce the even register rule, and check the LSB to see
-- if we should perform the auto-increment on the register pair
else
CPU_Next_State <= PIPE_FILL_1;
Reg := conv_integer(SubOp(2 downto 1) & '0');
Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
if( SubOp(0) = '1' )then
CPU_Next_State <= STX_C2;
ALU_Ctrl.Oper <= ALU_UPP;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
end if;
end if;
 
when STX_C2 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_UPP2;
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1';
 
-------------------------------------------------------------------------------
-- Multi-Cycle Math Operations (UPP, MUL)
-------------------------------------------------------------------------------
-- Because we have to backup the pipeline by 1 to refetch the 2nd
-- instruction/first operand, we have to return through PF2
 
when MUL_C1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_MUL;
 
when UPP_C1 =>
CPU_Next_State <= PIPE_FILL_2;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_UPP2;
ALU_Ctrl.Reg <= SubOp_p1;
 
-------------------------------------------------------------------------------
-- Basic Stack Manipulation (PSH, POP, RSP)
-------------------------------------------------------------------------------
when PSH_C1 =>
CPU_Next_State <= PIPE_FILL_1;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
 
when POP_C1 =>
CPU_Next_State <= POP_C2;
AS_Ctrl.Src <= ADDR_SP;
 
when POP_C2 =>
CPU_Next_State <= POP_C3;
PC_Ctrl.Oper <= PC_INCR;
 
when POP_C3 =>
CPU_Next_State <= POP_C4;
Cache_Ctrl <= CACHE_OPER1;
PC_Ctrl.Oper <= PC_INCR;
 
when POP_C4 =>
CPU_Next_State <= INSTR_DECODE;
Cache_Ctrl <= CACHE_INSTR;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_POP;
ALU_Ctrl.Reg <= SubOp;
ALU_Ctrl.Data <= Operand1;
-------------------------------------------------------------------------------
-- Subroutines & Interrupts (RTS, JSR)
-------------------------------------------------------------------------------
when WAIT_FOR_INT => -- For soft interrupts only, halt the PC
CPU_Next_State <= WAIT_FOR_INT;
 
when ISR_C1 =>
CPU_Next_State <= ISR_C2;
AS_Ctrl.Src <= ADDR_ISR;
INT_Ctrl.Incr_ISR <= '1';
-- PC_Ctrl.Oper <= PC_INCR;
-- Rewind the PC by 3 to compensate for the pipeline registers
-- PC_Ctrl.Offset <= x"FF";
 
when ISR_C2 =>
CPU_Next_State <= ISR_C3;
AS_Ctrl.Src <= ADDR_ISR;
DP_Ctrl.Src <= DATA_FLAG;
 
when ISR_C3 =>
CPU_Next_State <= JSR_C1;
Cache_Ctrl <= CACHE_OPER1;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM+1;
ALU_Ctrl.Oper <= ALU_STP;
ALU_Ctrl.Reg <= INT_FLAG;
Ack_D <= '1';
 
when JSR_C1 =>
CPU_Next_State <= JSR_C2;
Cache_Ctrl <= CACHE_OPER2;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
DP_Ctrl.Src <= DATA_PC;
DP_Ctrl.Reg <= ACCUM;
 
when JSR_C2 =>
CPU_Next_State <= PIPE_FILL_0;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_PUSH;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
 
when RTS_C1 =>
CPU_Next_State <= RTS_C2;
AS_Ctrl.Src <= ADDR_SP;
SP_Ctrl.Oper <= SP_POP;
 
when RTS_C2 =>
CPU_Next_State <= RTS_C3;
AS_Ctrl.Src <= ADDR_SP;
-- if this is an RTI, then we need to POP the flags
if( SubOp = SOP_RTI )then
SP_Ctrl.Oper <= SP_POP;
end if;
 
when RTS_C3 =>
CPU_Next_State <= RTS_C4;
Cache_Ctrl <= CACHE_OPER1;
-- It doesn't really matter what is on the address bus for RTS, while
-- it does for RTI, so we make this the default
AS_Ctrl.Src <= ADDR_SP;
 
when RTS_C4 =>
CPU_Next_State <= RTS_C5;
Cache_Ctrl <= CACHE_OPER2;
 
when RTS_C5 =>
CPU_Next_State <= PIPE_FILL_0;
PC_Ctrl.Oper <= PC_LOAD;
PC_Ctrl.Addr <= Operand2 & Operand1;
if( SubOp = SOP_RTI )then
CPU_Next_State <= RTI_C6;
Cache_Ctrl <= CACHE_OPER1;
end if;
 
when RTI_C6 =>
CPU_Next_State <= PIPE_FILL_1;
PC_Ctrl.Oper <= PC_INCR;
ALU_Ctrl.Oper <= ALU_RFLG;
ALU_Ctrl.Data <= Operand1;
PC_Ctrl.Oper <= PC_INCR;
Int_RTI_D <= '1';
 
-------------------------------------------------------------------------------
-- Debugging (BRK) Performs a 5-clock NOP
-------------------------------------------------------------------------------
when BRK_C1 =>
CPU_Next_State <= PIPE_FILL_0;
 
when others => null;
end case;
 
-- Interrupt service routines can only begin during the decode and wait
-- states to avoid corruption due to incomplete instruction execution
if( Int_Req = '1' )then
if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then
CPU_Next_State <= ISR_C1;
PC_Ctrl.Oper <= PC_INCR;
-- Rewind the PC by 3 to compensate for the pipeline registers
PC_Ctrl.Offset <= x"FF";
end if;
end if;
 
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = Reset_Level )then
CPU_State <= PIPE_FILL_0;
Opcode <= OP_INC;
SubOp <= ACCUM;
SubOp_p1 <= ACCUM;
Operand1 <= x"00";
Operand2 <= x"00";
Instr_Prefetch <= '0';
Prefetch <= x"00";
 
Ack_Q <= '0';
Ack_Q1 <= '0';
Int_Ack <= '0';
Int_RTI <= '0';
 
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
CPU_State <= CPU_Next_State;
case Cache_Ctrl is
when CACHE_INSTR =>
Opcode <= Rd_Data(7 downto 3);
SubOp <= Rd_Data(2 downto 0);
SubOp_p1 <= Rd_Data(2 downto 0) + 1;
if( Instr_Prefetch = '1' )then
Opcode <= Prefetch(7 downto 3);
SubOp <= Prefetch(2 downto 0);
SubOp_p1 <= Prefetch(2 downto 0) + 1;
Instr_Prefetch <= '0';
end if;
when CACHE_OPER1 =>
Operand1 <= Rd_Data;
when CACHE_OPER2 =>
Operand2 <= Rd_Data;
when CACHE_PREFETCH =>
Prefetch <= Rd_Data;
Instr_Prefetch <= '1';
when CACHE_IDLE =>
null;
end case;
 
-- Interrupt signalling registers
Ack_Q <= Ack_D;
Ack_Q1 <= Ack_Q;
Int_Ack <= Ack_Q1;
Int_RTI <= Int_RTI_D;
end if;
end if;
end process;
 
-------------------------------------------------------------------------------
-- Fixed in-line statements for the interrupt mask, and stack pointer address
-------------------------------------------------------------------------------
 
-- The interrupt control mask is always sourced out of R0
INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM));
 
-- The original RSP instruction simply reset the stack pointer to the preset
-- address set at compile time. However, with little extra effort, we can
-- modify the instruction to allow the stack pointer to be moved anywhere in
-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as
-- a fixed source
 
Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move )generate
SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0);
end generate;
 
Normal_Stack_Reset_fn: if( not Allow_Stack_Address_Move )generate
SP_Ctrl.Addr <= Stack_Start_Addr;
end generate;
 
end block;
 
-------------------------------------------------------------------------------
-- Address Source Mux
-------------------------------------------------------------------------------
 
Open8_AS : block is
begin
 
Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR )
variable PC_Mux, SP_Mux : ADDRESS_TYPE;
variable IMM_Mux, ISR_Mux: ADDRESS_TYPE;
begin
PC_Mux := (others => '0');
SP_Mux := (others => '0');
IMM_Mux := (others => '0');
ISR_Mux := (others => '0');
 
case AS_Ctrl.Src is
when ADDR_PC =>
PC_Mux := PC;
when ADDR_SP =>
SP_Mux := SP;
when ADDR_IMM =>
IMM_Mux := IMM;
when ADDR_ISR =>
ISR_Mux := ISR;
end case;
 
for i in 0 to 15 loop
Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or
ISR_Mux(i);
end loop;
end process;
 
end block;
 
-------------------------------------------------------------------------------
-- (Write) Data Path
-------------------------------------------------------------------------------
 
Open8_DP : block is
signal Wr_Data_D : DATA_TYPE := (others => '0');
signal Wr_Enable_D : std_logic := '0';
begin
 
Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC )
variable Reg_Mux, PC_Mux : DATA_TYPE;
variable Flag_Mux : DATA_TYPE;
begin
Reg_Mux := (others => '0');
Flag_Mux := (others => '0');
PC_Mux := (others => '0');
Wr_Enable_D <= '0';
 
case DP_Ctrl.Src is
when DATA_IDLE =>
null;
when DATA_REG =>
Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg));
Wr_Enable_D <= '1';
when DATA_FLAG =>
Flag_Mux := ALU_Flags;
Wr_Enable_D <= '1';
when DATA_PC =>
Wr_Enable_D <= '1';
if( DP_Ctrl.Reg = ACCUM )then
PC_Mux := PC(7 downto 0);
else
PC_Mux := PC(15 downto 8);
end if;
end case;
 
for i in 0 to 7 loop
Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i);
end loop;
end process;
 
S_Regs: process( Reset, Clock )
begin
if( Reset = Reset_Level )then
Wr_Data <= (others => '0');
Wr_Enable <= '0';
Rd_Enable <= '1';
elsif( rising_edge(Clock) )then
if( Halt = '0' )then
Wr_Data <= Wr_Data_D;
Wr_Enable <= Wr_Enable_D;
Rd_Enable <= not Wr_Enable_D;
end if;
end if;
end process;
 
end block;
 
end rtl;
/VHDL/Open8_pkg.vhd
1,68 → 1,68
-- Copyright (c)2006, Jeremy Seth Henry
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
-- * Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution,
-- where applicable (as part of a user interface, debugging port, etc.)
--
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-- VHDL Units : Open8_pkg
-- Description: Contains constant definitions for the Open8 processor
-- Revision History
-- Author Date Change
------------------ -------- ---------------------------------------------------
-- Seth Henry 07/22/06 Design Start
 
library ieee;
use ieee.std_logic_1164.all;
 
package Open8_pkg is
 
-- These subtypes can be used with external peripherals to simplify
-- connection to the core.
subtype ADDRESS_TYPE is std_logic_vector(15 downto 0);
subtype DATA_TYPE is std_logic_vector(7 downto 0);
-- Note: INTERRUPT_BUNDLE must be exactly the same width as DATA_TYPE
subtype INTERRUPT_BUNDLE is DATA_TYPE;
 
-- Component declaration
component Open8_CPU is
generic(
Stack_Start_Addr : ADDRESS_TYPE;
Allow_Stack_Address_Move : std_logic := '0';
ISR_Start_Addr : ADDRESS_TYPE;
Program_Start_Addr : ADDRESS_TYPE;
Default_Interrupt_Mask : DATA_TYPE;
Enable_CPU_Halt : std_logic := '0';
Enable_Auto_Increment : std_logic := '0' );
port(
Clock : in std_logic;
Reset_n : in std_logic;
CPU_Halt : in std_logic;
Interrupts : in INTERRUPT_BUNDLE;
Address : out ADDRESS_TYPE;
Rd_Data : in DATA_TYPE;
Rd_Enable : out std_logic;
Wr_Data : out DATA_TYPE;
Wr_Enable : out std_logic );
end component;
 
end Open8_pkg;
 
package body Open8_pkg is
end package body;
-- Copyright (c)2006, Jeremy Seth Henry
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
-- * Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution,
-- where applicable (as part of a user interface, debugging port, etc.)
--
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
-- VHDL Units : Open8_pkg
-- Description: Contains constant definitions for the Open8 processor
-- Revision History
-- Author Date Change
------------------ -------- ---------------------------------------------------
-- Seth Henry 07/22/06 Design Start
 
library ieee;
use ieee.std_logic_1164.all;
 
package Open8_pkg is
 
-- These subtypes can be used with external peripherals to simplify
-- connection to the core.
subtype ADDRESS_TYPE is std_logic_vector(15 downto 0);
subtype DATA_TYPE is std_logic_vector(7 downto 0);
-- Note: INTERRUPT_BUNDLE must be exactly the same width as DATA_TYPE
subtype INTERRUPT_BUNDLE is DATA_TYPE;
 
-- Component declaration
component Open8_CPU is
generic(
Stack_Start_Addr : ADDRESS_TYPE;
Allow_Stack_Address_Move : std_logic := '0';
ISR_Start_Addr : ADDRESS_TYPE;
Program_Start_Addr : ADDRESS_TYPE;
Default_Interrupt_Mask : DATA_TYPE;
Enable_CPU_Halt : std_logic := '0';
Enable_Auto_Increment : std_logic := '0' );
port(
Clock : in std_logic;
Reset : in std_logic;
CPU_Halt : in std_logic;
Interrupts : in INTERRUPT_BUNDLE;
Address : out ADDRESS_TYPE;
Rd_Data : in DATA_TYPE;
Rd_Enable : out std_logic;
Wr_Data : out DATA_TYPE;
Wr_Enable : out std_logic );
end component;
 
end Open8_pkg;
 
package body Open8_pkg is
end package body;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.