URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
Compare Revisions
- This comparison shows the changes necessary to convert path
/open8_urisc
- from Rev 167 to Rev 166
- ↔ Reverse comparison
Rev 167 → Rev 166
/trunk/VHDL/o8_alu16.vhd
File deleted
/trunk/VHDL/o8_rtc.vhd
File deleted
/trunk/VHDL/o8_gpin.vhd
File deleted
/trunk/VHDL/o8_gpio.vhd
File deleted
/trunk/VHDL/o8_gpout.vhd
File deleted
/trunk/VHDL/o8_pit.vhd
File deleted
/trunk/VHDL/o8_vdsm8.vhd
File deleted
/trunk/VHDL/Open8.vhd
1,4 → 1,4
-- Copyright (c)2006,2013 Jeremy Seth Henry |
-- Copyright (c)2006, Jeremy Seth Henry |
-- All rights reserved. |
-- |
-- Redistribution and use in source and binary forms, with or without |
20,20 → 20,10
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
-- |
|
-- VHDL Units : Open8_CPU |
-- Description: VHDL model of a RISC 8-bit processor core loosely based on the |
-- : V8/ARC uRISC instruction set. Requires Open8_pkg.vhd |
-- : |
-- Description: VHDL model of the V8 uRISC 8-bit processor core |
-- Notes : Generic definitions |
-- : |
-- : Program_Start_Addr - Determines the initial value of the |
-- : program counter. |
-- : |
-- : ISR_Start_Addr - determines the location of the interrupt |
-- : service vector table. There are 8 service vectors, or 16 |
-- : bytes, which must be allocated to either ROM or RAM. |
-- : |
-- : Stack_Start_Address - determines the initial (reset) value of |
-- : the stack pointer. Also used for the RSP instruction if |
-- : Allow_Stack_Address_Move is 0. |
42,94 → 32,68
-- : programmed via thet RSP instruction. If enabled, the contents |
-- : of R1:R0 are used to initialize the stack pointer. |
-- : |
-- : The Enable_Auto_Increment generic can be used to modify the |
-- : indexed instructions such that specifying an odd register |
-- : will use the next lower register pair, post-incrementing the |
-- : value in that pair. IOW, specifying STX R1 will instead |
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1 |
-- : ISR_Start_Addr - determines the location of the interrupt |
-- : service vector table. There are 8 service vectors, or 16 |
-- : bytes, which must be allocated to either ROM or RAM. |
-- : |
-- : BRK_Implements_WAI modifies the BRK instruction such that it |
-- : triggers the wait for interrupt state, but without triggering |
-- : a soft interrupt in lieu of its normal behavior, which is to |
-- : insert several dead clock cycles - essentially a long NOP |
-- : Program_Start_Addr - Determines the initial value of the |
-- : program counter. |
-- : |
-- : Enable_NMI overrides the mask bit for interrupt 0, creating a |
-- : non-maskable interrupt at the highest priority. |
-- : |
-- : Default_Interrupt_Mask - Determines the intial value of the |
-- : interrupt mask. To remain true to the original core, which |
-- : had no interrupt mask, this should be set to x"FF". Otherwise |
-- : it can be initialized to any value. Enable_NMI will logically |
-- : force the LSB high. |
-- : |
-- : Reset_Level - Determines whether the processor registers reset |
-- : on a high or low level from higher logic. |
-- : it can be initialized to any value. |
-- : |
-- : Architecture notes |
-- : This model deviates from the original ISA in a few important |
-- : ways. |
-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is |
-- : connected or not. This signal is typically used to halt the |
-- : processor for a few cycles when accessing slower peripherals, |
-- : but may also be used to single step the processor. If this |
-- : feature isn't used, it can be disabled to increase Fmax. |
-- : |
-- : First, there is only one set of registers. Interrupt service |
-- : routines must explicitely preserve context since the the |
-- : hardware doesn't. This was done to decrease size and code |
-- : complexity. Older code that assumes this behavior will not |
-- : execute correctly on this processor model. |
-- : The CPU_Halt signal can be used to access slower peripherals |
-- : by allowing the device to "pause" the CPU. This can be used, |
-- : for example, to write to a standard LCD panel, which requires |
-- : a 4MHz interface, by halting on writes. Alternately, devices |
-- : such as SDRAM controllers, can pause the processor until the |
-- : data is ready to be presented. |
-- : |
-- : Second, this model adds an additional pipeline stage between |
-- : the instruction decoder and the ALU. Unfortunately, this |
-- : means that the instruction stream has to be restarted after |
-- : any math instruction is executed, implying that any ALU |
-- : instruction now has a latency of 2 instead of 0. The |
-- : advantage is that the maximum frequency has gone up |
-- : significantly, as the ALU code is vastly more efficient. |
-- : As an aside, this now means that all math instructions, |
-- : including MUL (see below) and UPP have the same instruction |
-- : latency. |
-- : The Enable_Auto_Increment generic can be used to modify the |
-- : indexed instructions such that specifying an odd register |
-- : will use the next lower register pair, post-incrementing the |
-- : value in that pair. IOW, specifying STX R1 will instead |
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1 |
-- : |
-- : Third, the original ISA, also a soft core, had two reserved |
-- : instructions, USR and USR2. These have been implemented as |
-- : DBNZ, and MUL respectively. |
-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL |
-- : respectively. DBNZ decrements the specified register, and will |
-- : branch if the result is non-zero (Zero flag is not set). MUL |
-- : places the result of R0 * Rn into R1:R0, and executes in two |
-- : cycles. (R1:R0 = R0 * Rn) |
-- : |
-- : DBNZ decrements the specified register and branches if the |
-- : result is non-zero. The instruction effectively executes a |
-- : DEC Rn instruction prior to branching, so the same flags will |
-- : be set. |
-- : |
-- : MUL places the result of R0 * Rn into R1:R0. Instruction |
-- : latency is identical to other ALU instructions. Only the Z |
-- : flag is set, since there is no defined overflow or "negative |
-- : 16-bit values" |
-- : |
-- : Fourth, indexed load/store instructions now have an (optional) |
-- : ability to post-increment their index registers. If enabled, |
-- : using an odd operand for LDO,LDX, STO, STX will cause the |
-- : register pair to be incremented after the storage access. |
-- : |
-- : Fifth, the RSP instruction has been (optionally) altered to |
-- : allow the stack pointer to be sourced from R1:R0. |
-- : |
-- : Sixth, the BRK instruction can optionally implement a WAI, |
-- : which is the same as the INT instruction without the soft |
-- : interrupt, as a way to put the processor to "sleep" until the |
-- : next interrupt. |
-- : |
-- : Seventh, the original CPU model had 8 non-maskable interrupts |
-- : with priority. This model has the same 8 interrupts, but |
-- : allows software to mask them (with an additional option to |
-- : override the highest priority interrupt, making it the NMI.) |
-- : The interrupt code will retain memory of lower priority |
-- : interrupts, and execute them as it can. |
-- : |
-- : Lastly, previous unmapped instructions in the OP_STK opcode |
-- : were repurposed to support a new interrupt mask. |
-- : SMSK and GMSK transfer the contents of R0 (accumulator) |
-- : to/from the interrupt mask register. SMSK is immediate, while |
-- : GMSK has the same overhead as a math instruction. |
-- : BRK_Implements_WAI modifies the BRK instruction such that it |
-- : triggers the wait for interrupt state, but without triggering |
-- : a soft interrupt in lieu of its normal behavior, which is to |
-- : insert several dead clock cycles - essentially a long NOP |
-- Revision History |
-- Author Date Change |
------------------ -------- --------------------------------------------------- |
-- Seth Henry 07/19/06 Design Start |
-- Seth Henry 01/18/11 Fixed BTT instruction to match V8 |
-- Seth Henry 07/22/11 Fixed interrupt transition logic to avoid data |
-- corruption issues. |
-- Seth Henry 07/26/11 Optimized logic in ALU, stack pointer, and data |
-- path sections. |
-- Seth Henry 07/27/11 Optimized logic for timing, merged blocks into |
-- single entity. |
-- Seth Henry 09/20/11 Added BRK_Implements_WAI option, allowing the |
-- processor to wait for an interrupt instead of the |
-- normal BRK behavior. |
-- Seth Henry 12/20/11 Modified core to allow WAIT_FOR_INT state to idle |
-- the bus entirely (Rd_Enable is low) |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_unsigned.all; |
use ieee.std_logic_misc.all; |
use ieee.std_logic_arith.all; |
|
library work; |
use work.Open8_pkg.all; |
136,18 → 100,19
|
entity Open8_CPU is |
generic( |
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location |
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's |
Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack |
Allow_Stack_Address_Move : boolean := false; -- Use Normal v8 RSP |
Enable_Auto_Increment : boolean := false; -- Modify indexed instr |
BRK_Implements_WAI : boolean := false; -- BRK -> Wait for Int |
Enable_NMI : boolean := true; -- force mask for int 0 |
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's |
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location |
Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints |
Enable_CPU_Halt : boolean := false; -- Disable HALT pin |
Enable_Auto_Increment : boolean := false; -- Modify indexed instr |
Reset_Level : std_logic := '0' ); -- Active reset level |
port( |
Clock : in std_logic; |
Reset : in std_logic; |
CPU_Halt : in std_logic := '0'; |
Interrupts : in INTERRUPT_BUNDLE; |
-- |
Address : out ADDRESS_TYPE; |
162,8 → 127,7
subtype OPCODE_TYPE is std_logic_vector(4 downto 0); |
subtype SUBOP_TYPE is std_logic_vector(2 downto 0); |
|
-- All opcodes should be identical to the opcode used by the assembler |
-- In this case, they match the original V8/ARC uRISC ISA |
-- These are all the primary instructions/op-codes (upper 5-bits) |
constant OP_INC : OPCODE_TYPE := "00000"; |
constant OP_ADC : OPCODE_TYPE := "00001"; |
constant OP_TX0 : OPCODE_TYPE := "00010"; |
184,9 → 148,9
constant OP_POP : OPCODE_TYPE := "10001"; |
constant OP_BR0 : OPCODE_TYPE := "10010"; |
constant OP_BR1 : OPCODE_TYPE := "10011"; |
constant OP_DBNZ : OPCODE_TYPE := "10100"; |
constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR |
constant OP_INT : OPCODE_TYPE := "10101"; |
constant OP_MUL : OPCODE_TYPE := "10110"; |
constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2 |
constant OP_STK : OPCODE_TYPE := "10111"; |
constant OP_UPP : OPCODE_TYPE := "11000"; |
constant OP_STA : OPCODE_TYPE := "11001"; |
197,9 → 161,7
constant OP_LDX : OPCODE_TYPE := "11110"; |
constant OP_LDO : OPCODE_TYPE := "11111"; |
|
-- OP_STK uses the lower 3 bits to further refine the instruction by |
-- repurposing the source register field. These "sub opcodes" are |
-- take the place of the register select for the OP_STK opcode |
-- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits) |
constant SOP_RSP : SUBOP_TYPE := "000"; |
constant SOP_RTS : SUBOP_TYPE := "001"; |
constant SOP_RTI : SUBOP_TYPE := "010"; |
209,18 → 171,18
constant SOP_GMSK : SUBOP_TYPE := "110"; |
constant SOP_JSR : SUBOP_TYPE := "111"; |
|
-- Preinitialization is for simulation only - check actual reset conditions |
type CPU_STATES is ( |
-- Instruction fetch & Decode |
PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE, |
-- Branching |
BRN_C1, DBNZ_C1, DBNZ_C2, JMP_C1, JMP_C2, |
BRN_C1, DBNZ_C1, JMP_C1, JMP_C2, |
-- Loads |
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, |
LDO_C1, LDX_C1, LDX_C2, LDX_C3, LDX_C4, |
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3, |
-- Stores |
STA_C1, STA_C2, STO_C1, STO_C2, STX_C1, STX_C2, |
-- math |
MATH_C1, GMSK_C1, MUL_C1, UPP_C1, |
STA_C1, STA_C2, STA_C3, STO_C1, STO_C2, STX_C1, STX_C2, |
-- 2-cycle math |
MUL_C1, UPP_C1, |
-- Stack |
PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4, |
-- Subroutines & Interrupts |
229,11 → 191,53
-- Debugging |
BRK_C1 ); |
|
-- To simplify the logic, the first 16 of these should exactly match their |
-- corresponding Opcodes. This allows the state logic to simply pass the |
-- opcode field to the ALU for most math operations. |
type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2, |
CACHE_PREFETCH ); |
|
type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD ); |
|
type PC_CTRL_TYPE is record |
Oper : PC_MODES; |
Offset : DATA_TYPE; |
Addr : ADDRESS_TYPE; |
end record; |
|
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH ); |
|
type SP_CTRL_TYPE is record |
Oper : SP_MODES; |
Addr : ADDRESS_TYPE; |
end record; |
|
type DP_MODES is ( DATA_BUS_IDLE, DATA_RD_MEM, |
DATA_WR_REG, DATA_WR_FLAG, DATA_WR_PC ); |
|
type DATA_CTRL_TYPE is record |
Src : DP_MODES; |
Reg : SUBOP_TYPE; |
end record; |
|
-- Preinitialization is for simulation only - check actual reset conditions |
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr; |
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2; |
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4; |
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6; |
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8; |
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10; |
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12; |
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14; |
|
type INT_CTRL_TYPE is record |
Mask_Set : std_logic; |
Soft_Ints : INTERRUPT_BUNDLE; |
Incr_ISR : std_logic; |
end record; |
|
type INT_HIST is array (0 to 8) of integer range 0 to 7; |
|
-- Most of the ALU instructions are the same as their Opcode equivalents with |
-- three exceptions (for IDLE, UPP2, and MUL2) |
constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00" |
constant ALU_UPP1 : OPCODE_TYPE := "00000"; -- Alias of ALU_INC |
constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01" |
constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02" |
constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03" |
249,12 → 253,16
constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D" |
constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E" |
constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F" |
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10" |
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"11" |
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"12" |
constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11" |
constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16" |
constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18" |
constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C" |
constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E" |
|
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10" |
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"12" |
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"13" |
|
constant FL_ZERO : integer := 0; |
constant FL_CARRY : integer := 1; |
constant FL_NEG : integer := 2; |
264,1033 → 272,1082
constant FL_GP3 : integer := 6; |
constant FL_GP4 : integer := 7; |
|
type ALU_CTRL_TYPE is record |
Oper : OPCODE_TYPE; |
Reg : SUBOP_TYPE; |
Data : DATA_TYPE; |
end record; |
|
constant ACCUM : SUBOP_TYPE := "000"; |
constant INT_FLAG : SUBOP_TYPE := "011"; |
|
type REGFILE_TYPE is array (0 to 7) of DATA_TYPE; |
|
subtype FLAG_TYPE is DATA_TYPE; |
|
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr + 0; |
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr + 2; |
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr + 4; |
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr + 6; |
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr + 8; |
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr + 10; |
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr + 12; |
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr + 14; |
signal Halt : std_logic; |
|
type CPU_CTRL_TYPE is record |
State : CPU_STATES; |
LS_Address : ADDRESS_TYPE; |
Program_Ctr : ADDRESS_TYPE; |
Stack_Ptr : ADDRESS_TYPE; |
Opcode : OPCODE_TYPE; |
SubOp_p0 : SUBOP_TYPE; |
SubOp_p1 : SUBOP_TYPE; |
Cache_Valid : std_logic; |
Prefetch : DATA_TYPE; |
Operand1 : DATA_TYPE; |
Operand2 : DATA_TYPE; |
AutoIncr : std_logic; |
A_Oper : OPCODE_TYPE; |
A_Reg : SUBOP_TYPE; |
A_Data : DATA_TYPE; |
A_NoFlags : std_logic; |
M_Reg : SUBOP_TYPE; |
M_Prod : ADDRESS_TYPE; |
Regfile : REGFILE_TYPE; |
Flags : FLAG_TYPE; |
Int_Mask : DATA_TYPE; |
Int_Addr : ADDRESS_TYPE; |
Int_Pending : DATA_TYPE; |
Int_Level : integer range 0 to 7; |
Wait_for_FSM : std_logic; |
end record; |
signal CPU_Next_State : CPU_STATES := PIPE_FILL_0; |
signal CPU_State : CPU_STATES := PIPE_FILL_0; |
|
signal CPU : CPU_CTRL_TYPE; |
signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE; |
|
alias Accumulator is CPU.Regfile(0); |
alias Flags is CPU.Flags; |
signal Opcode : OPCODE_TYPE := (others => '0'); |
signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0'); |
|
signal Ack_Q, Ack_Q1 : std_logic; |
signal Int_Req, Int_Ack : std_logic; |
signal Prefetch : DATA_TYPE := x"00"; |
signal Operand1, Operand2 : DATA_TYPE := x"00"; |
|
type IC_MODES is ( CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2, |
CACHE_PREFETCH, CACHE_PFFLUSH, CACHE_INVALIDATE ); |
signal Instr_Prefetch : std_logic := '0'; |
|
type PC_MODES is ( PC_INCR, PC_IDLE, PC_REV1, PC_REV2, PC_REV3, |
PC_BRANCH, PC_LOAD ); |
signal PC_Ctrl : PC_CTRL_TYPE; |
signal Program_Ctr : ADDRESS_TYPE := x"0000"; |
|
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH ); |
signal SP_Ctrl : SP_CTRL_TYPE; |
signal Stack_Ptr : ADDRESS_TYPE := x"0000"; |
|
type DP_MODES is ( DATA_BUS_IDLE, DATA_RD_MEM, |
DATA_WR_REG, DATA_WR_FLAG, DATA_WR_PC ); |
signal DP_Ctrl : DATA_CTRL_TYPE; |
|
type DP_CTRL_TYPE is record |
Src : DP_MODES; |
Reg : SUBOP_TYPE; |
end record; |
signal INT_Ctrl : INT_CTRL_TYPE; |
signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0'; |
signal Int_RTI_D, Int_RTI : std_logic := '0'; |
signal Int_Req, Int_Ack : std_logic := '0'; |
signal Int_Mask : DATA_TYPE := x"00"; |
signal ISR_Addr : ADDRESS_TYPE := x"0000"; |
signal i_Ints : INTERRUPT_BUNDLE := x"00"; |
signal Pending : INTERRUPT_BUNDLE := x"00"; |
signal Wait_for_FSM : std_logic := '0'; |
signal History : INT_HIST := (others => 0); |
signal Hst_Ptr : integer range 0 to 8 := 0; |
|
type INT_CTRL_TYPE is record |
Mask_Set : std_logic; |
Soft_Ints : INTERRUPT_BUNDLE; |
Incr_ISR : std_logic; |
end record; |
signal ALU_Ctrl : ALU_CTRL_TYPE; |
signal Regfile : REGFILE_TYPE; |
signal Flags : FLAG_TYPE; |
signal Mult : ADDRESS_TYPE := x"0000"; |
|
begin |
|
Address_Sel: process( CPU ) |
variable Offset_SX : ADDRESS_TYPE; |
begin |
Offset_SX(15 downto 8) := (others => CPU.Operand1(7)); |
Offset_SX(7 downto 0) := CPU.Operand1; |
Halt_Disabled_fn: if( not Enable_CPU_Halt )generate |
Halt <= '0'; |
end generate; |
|
case( CPU.State )is |
when LDO_C1 | LDX_C1 | STO_C1 | STX_C1 => |
Address <= CPU.LS_Address + Offset_SX; |
when LDA_C2 | STA_C2 => |
Address <= (CPU.Operand2 & CPU.Operand1); |
when PSH_C1 | POP_C1 | ISR_C3 | JSR_C1 | JSR_C2 | |
RTS_C1 | RTS_C2 | RTS_C3 => |
Address <= CPU.Stack_Ptr; |
when ISR_C1 | ISR_C2 => |
Address <= CPU.Int_Addr; |
when others => |
Address <= CPU.Program_Ctr; |
end case; |
end process; |
Halt_Enabled_fn: if( Enable_CPU_Halt )generate |
Halt <= CPU_Halt; |
end generate; |
|
CPU_Proc: process( Clock, Reset ) |
variable IC : IC_MODES; |
variable PC : PC_MODES; |
variable SP : SP_MODES; |
variable DP : DP_CTRL_TYPE; |
variable INT : INT_CTRL_TYPE; |
variable RegSel : integer range 0 to 7; |
variable Reg_l, Reg_u : integer range 0 to 7; |
variable Ack_D : std_logic; |
------------------------------------------------------------------------------- |
-- State Logic / Instruction Decoding & Execution |
-- Combinatorial portion of CPU finite state machine |
------------------------------------------------------------------------------- |
|
State_Logic: process(CPU_State, Regfile, Flags, Int_Mask, Opcode, |
SubOp , SubOp_p1, Operand1, Operand2, Int_Req, |
Program_Ctr, Stack_Ptr, ISR_Addr ) |
variable Reg, Reg_1 : integer range 0 to 7 := 0; |
variable Offset_SX : ADDRESS_TYPE; |
variable Index : integer range 0 to 7; |
variable Temp : std_logic_vector(8 downto 0); |
begin |
if( Reset = Reset_Level )then |
CPU.State <= PIPE_FILL_0; |
CPU.LS_Address <= (others => '0'); |
CPU.Program_Ctr <= Program_Start_Addr; |
CPU.Stack_Ptr <= Stack_Start_Addr; |
CPU.Opcode <= (others => '0'); |
CPU.SubOp_p0 <= (others => '0'); |
CPU.SubOp_p1 <= (others => '0'); |
CPU.Prefetch <= (others => '0'); |
CPU.Operand1 <= (others => '0'); |
CPU.Operand2 <= (others => '0'); |
CPU.AutoIncr <= '0'; |
CPU.Cache_Valid <= '0'; |
CPU.A_Oper <= ALU_IDLE; |
CPU.A_Reg <= ACCUM; |
CPU.A_Data <= x"00"; |
CPU.A_NoFlags <= '0'; |
CPU.M_Reg <= (others => '0'); |
for i in 0 to 7 loop |
CPU.Regfile(i) <= x"00"; |
end loop; |
CPU.Flags <= (others => '0'); |
if( Enable_NMI )then |
CPU.Int_Mask <= Default_Interrupt_Mask(7 downto 1) & '1'; |
else |
CPU.Int_Mask <= Default_Interrupt_Mask; |
end if; |
CPU.Int_Addr <= (others => '0'); |
CPU.Int_Pending <= (others => '0'); |
CPU.Int_Level <= 7; |
CPU.Wait_for_FSM <= '0'; |
CPU_Next_State <= CPU_State; |
Cache_Ctrl <= CACHE_IDLE; |
-- |
ALU_Ctrl.Oper <= ALU_IDLE; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data <= x"00"; |
-- |
PC_Ctrl.Oper <= PC_IDLE; |
PC_Ctrl.Offset <= x"03"; |
PC_Ctrl.Addr <= x"0000"; |
-- |
SP_Ctrl.Oper <= SP_IDLE; |
-- |
Address <= Program_Ctr; |
-- |
DP_Ctrl.Src <= DATA_RD_MEM; |
DP_Ctrl.Reg <= ACCUM; |
-- |
INT_Ctrl.Mask_Set <= '0'; |
INT_Ctrl.Soft_Ints <= x"00"; |
INT_Ctrl.Incr_ISR <= '0'; |
Ack_D <= '0'; |
Int_RTI_D <= '0'; |
|
Ack_Q <= '0'; |
Ack_Q1 <= '0'; |
Int_Ack <= '0'; |
Int_Req <= '0'; |
-- Assign the most common value of Reg and Reg1 outside the case structure |
-- to simplify things. |
Reg := conv_integer(SubOp); |
Reg_1 := conv_integer(SubOp_p1); |
Offset_SX(15 downto 0) := (others => Operand1(7)); |
Offset_SX(7 downto 0) := Operand1; |
|
Wr_Data <= x"00"; |
Wr_Enable <= '0'; |
Rd_Enable <= '1'; |
elsif( rising_edge(Clock) )then |
case CPU_State is |
------------------------------------------------------------------------------- |
-- Initial Instruction fetch & decode |
------------------------------------------------------------------------------- |
when PIPE_FILL_0 => |
CPU_Next_State <= PIPE_FILL_1; |
PC_Ctrl.Oper <= PC_INCR; |
|
IC := CACHE_IDLE; |
SP := SP_IDLE; |
DP.Src := DATA_RD_MEM; |
DP.Reg := ACCUM; |
Ack_D := '0'; |
INT.Mask_Set := '0'; |
INT.Soft_Ints := x"00"; |
INT.Incr_ISR := '0'; |
RegSel := conv_integer(CPU.SubOp_p0); |
when PIPE_FILL_1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
|
if( Enable_Auto_Increment )then |
Reg_l := conv_integer(CPU.SubOp_p0(2 downto 1) & '0'); |
Reg_u := conv_integer(CPU.SubOp_p0(2 downto 1) & '1'); |
else |
Reg_l := conv_integer(CPU.SubOp_p0); |
Reg_u := conv_integer(CPU.SubOp_p1); |
end if; |
when PIPE_FILL_2 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
|
CPU.LS_Address <= CPU.Regfile(Reg_u) & CPU.Regfile(Reg_l); |
when INSTR_DECODE => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
|
CPU.AutoIncr <= '0'; |
if( Enable_Auto_Increment )then |
CPU.AutoIncr <= CPU.SubOp_p0(0); |
end if; |
case Opcode is |
when OP_PSH => |
CPU_Next_State <= PSH_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV1; |
DP_Ctrl.Src <= DATA_WR_REG; |
DP_Ctrl.Reg <= SubOp; |
|
CPU.A_Oper <= ALU_IDLE; |
CPU.A_Reg <= ACCUM; |
CPU.A_Data <= x"00"; |
CPU.A_NoFlags <= '0'; |
when OP_POP => |
CPU_Next_State <= POP_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV2; |
SP_Ctrl.Oper <= SP_POP; |
|
case( CPU.State )is |
when PIPE_FILL_0 => |
PC := PC_INCR; |
CPU.State <= PIPE_FILL_1; |
when OP_BR0 | OP_BR1 => |
CPU_Next_State <= BRN_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when PIPE_FILL_1 => |
PC := PC_INCR; |
CPU.State <= PIPE_FILL_2; |
when OP_DBNZ => |
CPU_Next_State <= DBNZ_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_DEC; |
ALU_Ctrl.Reg <= SubOp; |
|
when PIPE_FILL_2 => |
IC := CACHE_INSTR; |
PC := PC_INCR; |
CPU.State <= INSTR_DECODE; |
when OP_INT => |
PC_Ctrl.Oper <= PC_INCR; |
-- Make sure the requested interrupt is actually enabled first |
if( Int_Mask(Reg) = '1' )then |
CPU_Next_State <= WAIT_FOR_INT; |
INT_Ctrl.Soft_Ints(Reg) <= '1'; |
end if; |
|
------------------------------------------------------------------------------- |
-- Instruction Decode and dispatch |
------------------------------------------------------------------------------- |
when OP_STK => |
case SubOp is |
when SOP_RSP => |
PC_Ctrl.Oper <= PC_INCR; |
SP_Ctrl.Oper <= SP_RSET; |
|
when INSTR_DECODE => |
IC := CACHE_INSTR; |
PC := PC_INCR; |
case CPU.Opcode is |
when OP_PSH => |
IC := CACHE_PREFETCH; |
PC := PC_IDLE; |
DP.Src := DATA_WR_REG; |
DP.Reg := CPU.SubOp_p0; |
CPU.State <= PSH_C1; |
when SOP_RTS | SOP_RTI => |
CPU_Next_State <= RTS_C1; |
Cache_Ctrl <= CACHE_IDLE; |
SP_Ctrl.Oper <= SP_POP; |
|
when OP_POP => |
IC := CACHE_PREFETCH; |
PC := PC_REV2; |
SP := SP_POP; |
CPU.State <= POP_C1; |
when SOP_BRK => |
CPU_Next_State <= BRK_C1; |
PC_Ctrl.Oper <= PC_REV2; |
-- If Break implements Wait for Interrupt |
-- Replace normal flow with a modified |
-- version of INT instruction |
if( BRK_Implements_WAI )then |
CPU_Next_State <= WAIT_FOR_INT; |
PC_Ctrl.Oper <= PC_INCR; |
end if; |
|
when OP_BR0 | OP_BR1 => |
IC := CACHE_OPER1; |
CPU.State <= BRN_C1; |
when SOP_JMP => |
CPU_Next_State <= JMP_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when OP_DBNZ => |
IC := CACHE_OPER1; |
CPU.A_Oper <= ALU_DEC; |
CPU.A_Reg <= CPU.SubOp_p0; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= DBNZ_C1; |
when SOP_SMSK => |
PC_Ctrl.Oper <= PC_INCR; |
INT_Ctrl.Mask_Set <= '1'; |
|
when OP_INT => |
if( CPU.Int_Mask(RegSel) = '1' )then |
CPU.State <= WAIT_FOR_INT; |
INT.Soft_Ints(RegSel) := '1'; |
end if; |
when SOP_GMSK => |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper<= ALU_LDI; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data<= Int_Mask; |
|
when OP_STK => |
case CPU.SubOp_p0 is |
when SOP_RSP => |
SP := SP_RSET; |
when SOP_JSR => |
CPU_Next_State <= JSR_C1; |
Cache_Ctrl <= CACHE_OPER1; |
DP_Ctrl.Src <= DATA_WR_PC; |
DP_Ctrl.Reg <= ACCUM+1; |
|
when SOP_RTS | SOP_RTI => |
IC := CACHE_IDLE; |
PC := PC_IDLE; |
SP := SP_POP; |
CPU.State <= RTS_C1; |
when others => null; |
end case; |
|
when SOP_BRK => |
if( BRK_Implements_WAI )then |
CPU.State<= WAIT_FOR_INT; |
else |
PC := PC_REV2; |
CPU.State<= BRK_C1; |
end if; |
when OP_MUL => |
CPU_Next_State <= MUL_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
|
when SOP_JMP => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= JMP_C1; |
-- We need to back the PC up by 1, and allow it to refill. An |
-- unfortunate consequence of the pipelining. We can get away with |
-- only 1 extra clock by pre-fetching the next instruction, though |
PC_Ctrl.Oper <= PC_REV1; |
-- Multiplication is automatic, but requires a single clock cycle. |
-- We need to specify the register for Rn (R1:R0 = R0 * Rn) now, |
-- but will issue the multiply command on the next clock to copy |
-- the results to the specified register. |
ALU_Ctrl.Oper <= ALU_IDLE; |
ALU_Ctrl.Reg <= SubOp; -- Rn |
|
when SOP_SMSK => |
INT.Mask_Set := '1'; |
when OP_UPP => |
CPU_Next_State <= UPP_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV1; |
ALU_Ctrl.Oper <= Opcode; |
ALU_Ctrl.Reg <= SubOp; |
|
when SOP_GMSK => |
IC := CACHE_PREFETCH; |
PC := PC_REV1; |
CPU.State <= GMSK_C1; |
when OP_LDA => |
CPU_Next_State <= LDA_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when SOP_JSR => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
DP.Src := DATA_WR_PC; |
DP.Reg := ACCUM+1; |
CPU.State <= JSR_C1; |
when OP_LDI => |
CPU_Next_State <= LDI_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when others => null; |
end case; |
when OP_LDO => |
CPU_Next_State <= LDO_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_REV2; |
|
when OP_MUL => |
IC := CACHE_PREFETCH; |
PC := PC_REV1; |
CPU.M_Reg <= CPU.SubOp_p0; |
CPU.State <= MUL_C1; |
when OP_LDX => |
CPU_Next_State <= LDX_C1; |
PC_Ctrl.Oper <= PC_REV2; |
-- If auto-increment is disabled, use the specified register pair, |
-- otherwise, for an odd:even pair, and issue the first half of |
-- a UPP instruction to the ALU |
if( not Enable_Auto_Increment )then |
Address <= Regfile(Reg_1) & Regfile(Reg); |
else |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
Address <= Regfile(Reg_1) & Regfile(Reg); |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper<= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when OP_UPP => |
IC := CACHE_PREFETCH; |
PC := PC_REV1; |
CPU.A_Oper <= ALU_UPP1; |
CPU.A_NoFlags <= '1'; |
CPU.A_Reg <= CPU.SubOp_p0; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= UPP_C1; |
when OP_STA => |
CPU_Next_State <= STA_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when OP_LDA => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= LDA_C1; |
when OP_STO => |
CPU_Next_State <= STO_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_REV2; |
DP_Ctrl.Src <= DATA_WR_REG; |
DP_Ctrl.Reg <= ACCUM; |
|
when OP_LDI => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= LDI_C1; |
when OP_STX => |
CPU_Next_State <= STX_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV2; |
DP_Ctrl.Src <= DATA_WR_REG; |
DP_Ctrl.Reg <= ACCUM; |
|
when OP_LDO => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= LDO_C1; |
when others => |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= Opcode; |
ALU_Ctrl.Reg <= SubOp; |
|
when OP_LDX => |
IC := CACHE_PFFLUSH; |
PC := PC_REV1; |
CPU.State <= LDX_C1; |
end case; |
|
when OP_STA => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= STA_C1; |
|
when OP_STO => |
IC := CACHE_OPER1; |
PC := PC_REV2; |
DP.Src := DATA_WR_REG; |
DP.Reg := ACCUM; |
CPU.State <= STO_C1; |
|
when OP_STX => |
IC := CACHE_PFFLUSH; |
PC := PC_REV2; |
DP.Src := DATA_WR_REG; |
DP.Reg := ACCUM; |
CPU.State <= STX_C1; |
|
when others => |
IC := CACHE_PREFETCH; |
PC := PC_REV1; |
CPU.State <= MATH_C1; |
|
end case; |
|
------------------------------------------------------------------------------- |
-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP ) |
------------------------------------------------------------------------------- |
|
when BRN_C1 => |
if( Flags(RegSel) = CPU.Opcode(0) )then |
IC := CACHE_IDLE; |
PC := PC_BRANCH; |
CPU.State <= PIPE_FILL_0; |
else |
IC := CACHE_INSTR; |
CPU.State <= INSTR_DECODE; |
end if; |
when BRN_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
if( Flags(Reg) = Opcode(0) )then |
CPU_Next_State <= PIPE_FILL_0; |
Cache_Ctrl <= CACHE_IDLE; |
PC_Ctrl.Offset <= Operand1; |
end if; |
|
when DBNZ_C1 => |
IC := CACHE_PREFETCH; |
PC := PC_IDLE; |
CPU.State <= DBNZ_C2; |
when DBNZ_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
if( Flags(FL_ZERO) = '0' )then |
CPU_Next_State <= PIPE_FILL_0; |
Cache_Ctrl <= CACHE_IDLE; |
PC_Ctrl.Offset <= Operand1; |
end if; |
|
when DBNZ_C2 => |
if( Flags(FL_ZERO) = '0' )then |
IC := CACHE_INVALIDATE; |
PC := PC_BRANCH; |
CPU.State <= PIPE_FILL_0; |
else |
PC := PC_REV1; |
CPU.State <= PIPE_FILL_1; |
end if; |
when JMP_C1 => |
CPU_Next_State <= JMP_C2; |
Cache_Ctrl <= CACHE_OPER2; |
|
when JMP_C1 => |
IC := CACHE_OPER2; |
PC := PC_IDLE; |
CPU.State <= JMP_C2; |
when JMP_C2 => |
CPU_Next_State <= PIPE_FILL_0; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
|
when JMP_C2 => |
PC := PC_LOAD; |
CPU.State <= PIPE_FILL_0; |
|
------------------------------------------------------------------------------- |
-- Data Storage - Load from memory (LDA, LDI, LDO, LDX) |
------------------------------------------------------------------------------- |
|
when LDA_C1 => |
IC := CACHE_OPER2; |
PC := PC_IDLE; |
CPU.State <= LDA_C2; |
when LDA_C1 => |
CPU_Next_State <= LDA_C2; |
Cache_Ctrl <= CACHE_OPER2; |
|
when LDA_C2 => |
PC := PC_IDLE; |
CPU.State <= LDA_C3; |
when LDA_C2 => |
CPU_Next_State <= LDA_C3; |
Address <= Operand2 & Operand1; |
|
when LDA_C3 => |
PC := PC_IDLE; |
CPU.State <= LDA_C4; |
when LDA_C3 => |
CPU_Next_State <= LDA_C4; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDA_C4 => |
IC := CACHE_OPER1; |
PC := PC_INCR; |
CPU.State <= LDI_C1; |
when LDA_C4 => |
CPU_Next_State <= LDI_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDI_C1 => |
IC := CACHE_PREFETCH; |
PC := PC_INCR; |
CPU.A_Oper <= ALU_LDI; |
CPU.A_Reg <= CPU.SubOp_p0; |
CPU.A_Data <= CPU.Operand1; |
CPU.State <= PIPE_FILL_2; |
when LDI_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_LDI; |
ALU_Ctrl.Reg <= SubOp; |
ALU_Ctrl.Data <= Operand1; |
|
when LDO_C1 => |
IC := CACHE_PREFETCH; |
PC := PC_REV2; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '0'); |
if( Enable_Auto_Increment and CPU.AutoIncr = '1' )then |
CPU.A_Oper <= ALU_UPP1; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '0'; |
CPU.A_NoFlags <= '1'; |
CPU.A_Data <= CPU.RegFile(RegSel); |
when LDO_C1 => |
CPU_Next_State <= LDX_C1; |
PC_Ctrl.Oper <= PC_INCR; |
if( Enable_Auto_Increment )then |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
Address <= (Regfile(Reg_1) & Regfile(Reg)) + Offset_SX; |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper<= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
CPU.State <= LDX_C2; |
else |
Address <= (Regfile(Reg_1) & Regfile(Reg)) + Offset_SX; |
end if; |
|
when LDX_C1 => |
PC := PC_REV2; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '0'); |
if( Enable_Auto_Increment and CPU.AutoIncr = '1' )then |
CPU.A_Oper <= ALU_UPP1; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '0'; |
CPU.A_NoFlags <= '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
end if; |
CPU.State <= LDX_C2; |
when LDX_C1 => |
CPU_Next_State <= LDX_C2; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDX_C2 => |
PC := PC_INCR; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '1'); |
if( Enable_Auto_Increment and CPU.AutoIncr = '1' )then |
CPU.A_Oper <= ALU_UPP2; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
end if; |
CPU.State <= LDX_C3; |
when LDX_C2 => |
CPU_Next_State <= LDX_C3; |
PC_Ctrl.Oper <= PC_INCR; |
Cache_Ctrl <= CACHE_OPER1; |
|
when LDX_C3 => |
IC := CACHE_OPER1; |
PC := PC_INCR; |
CPU.State <= LDX_C4; |
when LDX_C3 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_LDX; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data <= Operand1; |
|
when LDX_C4 => |
PC := PC_INCR; |
CPU.A_Oper <= ALU_LDI; |
CPU.A_Reg <= ACCUM; |
CPU.A_Data <= CPU.Operand1; |
CPU.State <= PIPE_FILL_2; |
|
------------------------------------------------------------------------------- |
-- Data Storage - Store to memory (STA, STO, STX) |
------------------------------------------------------------------------------- |
when STA_C1 => |
IC := CACHE_OPER2; |
PC := PC_IDLE; |
DP.Src := DATA_WR_REG; |
DP.Reg := CPU.SubOp_p0; |
CPU.State <= STA_C2; |
when STA_C1 => |
CPU_Next_State <= STA_C2; |
Cache_Ctrl <= CACHE_OPER2; |
DP_Ctrl.Src <= DATA_WR_REG; |
DP_Ctrl.Reg <= SubOp; |
|
when STA_C2 => |
IC := CACHE_PREFETCH; |
PC := PC_INCR; |
CPU.State <= PIPE_FILL_1; |
when STA_C2 => |
CPU_Next_State <= STA_C3; |
Address <= Operand2 & Operand1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when STO_C1 => |
IC := CACHE_PREFETCH; |
PC := PC_INCR; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '0'); |
if( not Enable_Auto_Increment )then |
CPU.State <= PIPE_FILL_1; |
else |
CPU.State <= PIPE_FILL_0; |
if( CPU.AutoIncr = '1' )then |
CPU.A_Oper <= ALU_UPP1; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '0'; |
CPU.A_NoFlags <= '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= STO_C2; |
end if; |
when STA_C3 => |
CPU_Next_State <= PIPE_FILL_2; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_INCR; |
|
when STO_C1 => |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_INCR; |
-- If auto-increment is disabled, just load the registers normally |
if( not Enable_Auto_Increment )then |
CPU_Next_State <= PIPE_FILL_1; |
Address <= (Regfile(Reg_1) & Regfile(Reg)) + Offset_SX; |
-- Otherwise, enforce the even register rule, and check the LSB to see |
-- if we should perform the auto-increment on the register pair |
else |
CPU_Next_State <= PIPE_FILL_0; |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
Address <= (Regfile(Reg_1) & Regfile(Reg)) + Offset_SX; |
if( SubOp(0) = '1' )then |
CPU_Next_State <= STO_C2; |
ALU_Ctrl.Oper <= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when STO_C2 => |
PC := PC_INCR; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '1'); |
CPU.A_Oper <= ALU_UPP2; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= PIPE_FILL_1; |
when STO_C2 => |
CPU_Next_State <= PIPE_FILL_1; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_UPP2; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1'; |
|
when STX_C1 => |
PC := PC_INCR; |
if( not Enable_Auto_Increment )then |
CPU.State <= PIPE_FILL_1; |
else |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '0'); |
CPU.State <= PIPE_FILL_1; |
if( CPU.AutoIncr = '1' )then |
CPU.A_Oper <= ALU_UPP1; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '0'; |
CPU.A_NoFlags <= '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= STX_C2; |
end if; |
when STX_C1 => |
PC_Ctrl.Oper <= PC_INCR; |
-- If auto-increment is disabled, just load the registers normally |
if( not Enable_Auto_Increment )then |
CPU_Next_State <= PIPE_FILL_1; |
Address <= (Regfile(Reg_1) & Regfile(Reg)); |
-- Otherwise, enforce the even register rule, and check the LSB to see |
-- if we should perform the auto-increment on the register pair |
else |
CPU_Next_State <= PIPE_FILL_1; |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
Address <= (Regfile(Reg_1) & Regfile(Reg)); |
if( SubOp(0) = '1' )then |
CPU_Next_State <= STX_C2; |
ALU_Ctrl.Oper <= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when STX_C2 => |
PC := PC_INCR; |
RegSel := conv_integer(CPU.SubOp_p0(2 downto 1) & '1'); |
CPU.A_Oper <= ALU_UPP2; |
CPU.A_Reg <= CPU.SubOp_p0(2 downto 1) & '1'; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= PIPE_FILL_2; |
when STX_C2 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_UPP2; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1'; |
|
------------------------------------------------------------------------------- |
-- Multi-Cycle Math Operations |
-- Multi-Cycle Math Operations (UPP, MUL) |
------------------------------------------------------------------------------- |
-- Because we have to backup the pipeline by 1 to refetch the 2nd |
-- instruction/first operand, we have to return through PF2 |
|
when MATH_C1 => |
PC := PC_INCR; |
CPU.A_Oper <= CPU.Opcode; |
CPU.A_Reg <= CPU.SubOp_p0; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= PIPE_FILL_2; |
when MUL_C1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_MUL; |
|
when GMSK_C1 => |
PC := PC_INCR; |
CPU.A_Oper <= ALU_LDI; |
CPU.A_Data <= CPU.Int_Mask; |
CPU.State <= PIPE_FILL_2; |
when UPP_C1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_UPP2; |
ALU_Ctrl.Reg <= SubOp_p1; |
|
when MUL_C1 => |
PC := PC_INCR; |
CPU.A_Oper <= ALU_MUL; |
CPU.State <= PIPE_FILL_2; |
|
when UPP_C1 => |
PC := PC_INCR; |
RegSel := conv_integer(CPU.SubOp_p1); |
CPU.A_Oper <= ALU_UPP2; |
CPU.A_Reg <= CPU.SubOp_p1; |
CPU.A_Data <= CPU.Regfile(RegSel); |
CPU.State <= PIPE_FILL_2; |
|
------------------------------------------------------------------------------- |
-- Basic Stack Manipulation (PSH, POP, RSP) |
------------------------------------------------------------------------------- |
when PSH_C1 => |
PC := PC_REV1; |
SP := SP_PUSH; |
CPU.State <= PIPE_FILL_1; |
when PSH_C1 => |
CPU_Next_State <= PIPE_FILL_1; |
Address <= Stack_Ptr; |
SP_Ctrl.Oper <= SP_PUSH; |
|
when POP_C1 => |
PC := PC_IDLE; |
CPU.State <= POP_C2; |
when POP_C1 => |
CPU_Next_State <= POP_C2; |
Address <= Stack_Ptr; |
|
when POP_C2 => |
PC := PC_IDLE; |
CPU.State <= POP_C3; |
when POP_C2 => |
CPU_Next_State <= POP_C3; |
PC_Ctrl.Oper <= PC_INCR; |
|
when POP_C3 => |
IC := CACHE_OPER1; |
PC := PC_INCR; |
CPU.State <= POP_C4; |
when POP_C3 => |
CPU_Next_State <= POP_C4; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when POP_C4 => |
PC := PC_INCR; |
CPU.A_Oper <= ALU_LDI; |
CPU.A_Reg <= CPU.SubOp_p0; |
CPU.A_NoFlags <= '1'; |
CPU.A_Data <= CPU.Operand1; |
CPU.State <= PIPE_FILL_2; |
|
when POP_C4 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_POP; |
ALU_Ctrl.Reg <= SubOp; |
ALU_Ctrl.Data <= Operand1; |
|
------------------------------------------------------------------------------- |
-- Subroutines & Interrupts (RTS, JSR) |
------------------------------------------------------------------------------- |
when WAIT_FOR_INT => |
PC := PC_IDLE; |
DP.Src := DATA_BUS_IDLE; |
CPU.State <= WAIT_FOR_INT; |
when WAIT_FOR_INT => -- For soft interrupts only, halt the Program_Ctr |
DP_Ctrl.Src <= DATA_BUS_IDLE; |
CPU_Next_State <= WAIT_FOR_INT; |
|
when ISR_C1 => |
PC := PC_IDLE; |
INT.Incr_ISR := '1'; |
CPU.State <= ISR_C2; |
when ISR_C1 => |
CPU_Next_State <= ISR_C2; |
Address <= ISR_Addr; |
INT_Ctrl.Incr_ISR <= '1'; |
|
when ISR_C2 => |
PC := PC_IDLE; |
DP.Src := DATA_WR_FLAG; |
CPU.State <= ISR_C3; |
when ISR_C2 => |
CPU_Next_State <= ISR_C3; |
Address <= ISR_Addr; |
DP_Ctrl.Src <= DATA_WR_FLAG; |
|
when ISR_C3 => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
SP := SP_PUSH; |
DP.Src := DATA_WR_PC; |
DP.Reg := ACCUM+1; |
Ack_D := '1'; |
CPU.A_Oper <= ALU_STP; |
CPU.A_Reg <= INT_FLAG; |
CPU.State <= JSR_C1; |
when ISR_C3 => |
CPU_Next_State <= JSR_C1; |
Cache_Ctrl <= CACHE_OPER1; |
Address <= Stack_Ptr; |
SP_Ctrl.Oper <= SP_PUSH; |
DP_Ctrl.Src <= DATA_WR_PC; |
DP_Ctrl.Reg <= ACCUM+1; |
ALU_Ctrl.Oper <= ALU_STP; |
ALU_Ctrl.Reg <= INT_FLAG; |
Ack_D <= '1'; |
|
when JSR_C1 => |
IC := CACHE_OPER2; |
PC := PC_IDLE; |
SP := SP_PUSH; |
DP.Src := DATA_WR_PC; |
DP.Reg := ACCUM; |
CPU.State <= JSR_C2; |
when JSR_C1 => |
CPU_Next_State <= JSR_C2; |
Cache_Ctrl <= CACHE_OPER2; |
Address <= Stack_Ptr; |
SP_Ctrl.Oper <= SP_PUSH; |
DP_Ctrl.Src <= DATA_WR_PC; |
DP_Ctrl.Reg <= ACCUM; |
|
when JSR_C2 => |
SP := SP_PUSH; |
PC := PC_LOAD; |
CPU.State <= PIPE_FILL_0; |
when JSR_C2 => |
CPU_Next_State <= PIPE_FILL_0; |
Address <= Stack_Ptr; |
SP_Ctrl.Oper <= SP_PUSH; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
|
when RTS_C1 => |
PC := PC_IDLE; |
SP := SP_POP; |
CPU.State <= RTS_C2; |
when RTS_C1 => |
CPU_Next_State <= RTS_C2; |
Address <= Stack_Ptr; |
SP_Ctrl.Oper <= SP_POP; |
|
when RTS_C2 => |
PC := PC_IDLE; |
if( CPU.SubOp_p0 = SOP_RTI )then |
SP := SP_POP; |
end if; |
CPU.State <= RTS_C3; |
when RTS_C2 => |
CPU_Next_State <= RTS_C3; |
Address <= Stack_Ptr; |
-- if this is an RTI, then we need to POP the flags |
if( SubOp = SOP_RTI )then |
SP_Ctrl.Oper <= SP_POP; |
end if; |
|
when RTS_C3 => |
IC := CACHE_OPER1; |
PC := PC_IDLE; |
CPU.State <= RTS_C4; |
when RTS_C3 => |
CPU_Next_State <= RTS_C4; |
Cache_Ctrl <= CACHE_OPER1; |
-- It doesn't really matter what is on the address bus for RTS, while |
-- it does for RTI, so we make this the default |
Address <= Stack_Ptr; |
|
when RTS_C4 => |
IC := CACHE_OPER2; |
PC := PC_IDLE; |
CPU.State <= RTS_C5; |
when RTS_C4 => |
CPU_Next_State <= RTS_C5; |
Cache_Ctrl <= CACHE_OPER2; |
|
when RTS_C5 => |
PC := PC_LOAD; |
CPU.State <= PIPE_FILL_0; |
if( CPU.SubOp_p0 = SOP_RTI )then |
IC := CACHE_OPER1; |
CPU.State <= RTI_C6; |
end if; |
when RTS_C5 => |
CPU_Next_State <= PIPE_FILL_0; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
if( SubOp = SOP_RTI )then |
CPU_Next_State <= RTI_C6; |
Cache_Ctrl <= CACHE_OPER1; |
end if; |
|
when RTI_C6 => |
PC := PC_INCR; |
CPU.Int_Level <= 7; |
CPU.A_Oper <= ALU_RFLG; |
CPU.A_Data <= CPU.Operand1; |
CPU.State <= PIPE_FILL_1; |
when RTI_C6 => |
CPU_Next_State <= PIPE_FILL_1; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_RFLG; |
ALU_Ctrl.Data <= Operand1; |
Int_RTI_D <= '1'; |
|
------------------------------------------------------------------------------- |
-- Debugging (BRK) Performs a 5-clock NOP |
------------------------------------------------------------------------------- |
when BRK_C1 => |
CPU_Next_State <= PIPE_FILL_0; |
|
when BRK_C1 => |
PC := PC_IDLE; |
CPU.State <= PIPE_FILL_0; |
when others => |
null; |
end case; |
|
when others => |
null; |
|
end case; |
|
------------------------------------------------------------------------------- |
-- Interrupt Override Logic |
------------------------------------------------------------------------------- |
|
-- Interrupt service routines can only begin during the decode and wait |
-- states to avoid corruption due to incomplete instruction execution |
if( Int_Req = '1' )then |
if( CPU.State = INSTR_DECODE or CPU.State = WAIT_FOR_INT )then |
IC := CACHE_IDLE; |
PC := PC_REV3; |
SP := SP_IDLE; |
DP.Src := DATA_RD_MEM; |
INT.Soft_Ints := (others => '0'); |
CPU.A_Oper <= ALU_IDLE; |
CPU.State <= ISR_C1; |
if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then |
-- Reset all of the sub-block controls to IDLE, to avoid unintended |
-- operation due to the current instruction |
ALU_Ctrl.Oper <= ALU_IDLE; |
Cache_Ctrl <= CACHE_IDLE; |
SP_Ctrl.Oper <= SP_IDLE; |
DP_Ctrl.Src <= DATA_RD_MEM; -- JSH 7/20 |
INT_Ctrl.Soft_Ints <= (others => '0'); -- JSH 7/22 |
-- Rewind the PC by 3 to compensate for the pipeline registers |
PC_Ctrl.Oper <= PC_INCR; |
PC_Ctrl.Offset <= x"FF"; |
CPU_Next_State <= ISR_C1; |
|
end if; |
end if; |
|
end process; |
|
-- We need to infer a hardware multipler, so we create a special clocked |
-- process with no reset or clock enable |
Multiplier_proc: process( Clock ) |
begin |
if( rising_edge(Clock) )then |
Mult <= Regfile(0) * |
Regfile(conv_integer(ALU_Ctrl.Reg)); |
end if; |
end process; |
|
------------------------------------------------------------------------------- |
-- Vectored Interrupt Controller |
-- Registered portion of CPU finite state machine |
------------------------------------------------------------------------------- |
CPU_Regs: process( Reset, Clock ) |
variable Offset_SX : ADDRESS_TYPE; |
variable i_Ints : INTERRUPT_BUNDLE := (others => '0'); |
variable Sum : std_logic_vector(8 downto 0) := "000000000"; |
variable Index : integer range 0 to 7 := 0; |
variable Temp : std_logic_vector(8 downto 0); |
begin |
if( Reset = Reset_Level )then |
CPU_State <= PIPE_FILL_0; |
Opcode <= OP_INC; |
SubOp <= ACCUM; |
SubOp_p1 <= ACCUM; |
Operand1 <= x"00"; |
Operand2 <= x"00"; |
Instr_Prefetch <= '0'; |
Prefetch <= x"00"; |
|
CPU.Int_Pending <= ((Interrupts or INT.Soft_Ints) and |
CPU.Int_Mask) or CPU.Int_Pending; |
Wr_Data <= (others => '0'); |
Wr_Enable <= '0'; |
Rd_Enable <= '1'; |
|
if( CPU.Wait_for_FSM = '0' )then |
if( CPU.Int_Pending(0) = '1' )then |
CPU.Int_Addr <= INT_VECTOR_0; |
CPU.Int_Level <= 0; |
CPU.Int_Pending(0) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(1) = '1' and CPU.Int_Level > 0 )then |
CPU.Int_Addr <= INT_VECTOR_1; |
CPU.Int_Level <= 1; |
CPU.Int_Pending(1) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(2) = '1' and CPU.Int_Level > 1 )then |
CPU.Int_Addr <= INT_VECTOR_2; |
CPU.Int_Level <= 2; |
CPU.Int_Pending(2) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(3) = '1' and CPU.Int_Level > 2 )then |
CPU.Int_Addr <= INT_VECTOR_3; |
CPU.Int_Level <= 3; |
CPU.Int_Pending(3) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(4) = '1' and CPU.Int_Level > 3 )then |
CPU.Int_Addr <= INT_VECTOR_4; |
CPU.Int_Level <= 4; |
CPU.Int_Pending(4) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(5) = '1' and CPU.Int_Level > 4 )then |
CPU.Int_Addr <= INT_VECTOR_5; |
CPU.Int_Level <= 5; |
CPU.Int_Pending(5) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(6) = '1' and CPU.Int_Level > 6 )then |
CPU.Int_Addr <= INT_VECTOR_6; |
CPU.Int_Level <= 6; |
CPU.Int_Pending(6) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
elsif( CPU.Int_Pending(7) = '1' )then |
CPU.Int_Addr <= INT_VECTOR_7; |
CPU.Int_Level <= 7; |
CPU.Int_Pending(7) <= '0'; |
CPU.Wait_for_FSM <= '1'; |
end if; |
end if; |
Program_Ctr <= Program_Start_Addr; |
Stack_Ptr <= Stack_Start_Addr; |
|
Ack_Q <= Ack_D; |
Ack_Q1 <= Ack_Q; |
Int_Ack <= Ack_Q1; |
if( Int_Ack = '1' )then |
CPU.Wait_for_FSM <= '0'; |
end if; |
Ack_Q <= '0'; |
Ack_Q1 <= '0'; |
Int_Ack <= '0'; |
Int_RTI <= '0'; |
|
Int_Req <= CPU.Wait_for_FSM and (not Int_Ack); |
Int_Req <= '0'; |
Pending <= x"00"; |
Wait_for_FSM <= '0'; |
Int_Mask <= Default_Interrupt_Mask(7 downto 1) & '1'; |
ISR_Addr <= INT_VECTOR_0; |
for i in 0 to 8 loop |
History(i) <= 0; |
end loop; |
Hst_Ptr <= 0; |
|
if( INT.Mask_Set = '1' )then |
if( Enable_NMI )then |
CPU.Int_Mask <= Accumulator(7 downto 1) & '1'; |
else -- Disable NMI override |
CPU.Int_Mask <= Accumulator; |
end if; |
end if; |
for i in 0 to 7 loop |
Regfile(i) <= (others => '0'); |
end loop; |
Flags <= x"00"; |
|
if( INT.Incr_ISR = '1' )then |
CPU.Int_Addr <= CPU.Int_Addr + 1; |
end if; |
elsif( rising_edge(Clock) )then |
Wr_Enable <= '0'; |
Wr_Data <= x"00"; |
Rd_Enable <= '0'; |
|
if( Halt = '0' )then |
------------------------------------------------------------------------------- |
-- ALU (Arithmetic / Logic Unit) |
-- Instruction/Operand caching for pipelined memory access |
------------------------------------------------------------------------------- |
Index := conv_integer(CPU.A_Reg); |
CPU_State <= CPU_Next_State; |
case Cache_Ctrl is |
when CACHE_INSTR => |
Opcode <= Rd_Data(7 downto 3); |
SubOp <= Rd_Data(2 downto 0); |
SubOp_p1 <= Rd_Data(2 downto 0) + 1; |
if( Instr_Prefetch = '1' )then |
Opcode <= Prefetch(7 downto 3); |
SubOp <= Prefetch(2 downto 0); |
SubOp_p1 <= Prefetch(2 downto 0) + 1; |
Instr_Prefetch <= '0'; |
end if; |
|
CPU.M_Prod <= Accumulator * |
CPU.Regfile(conv_integer(CPU.M_Reg)); |
when CACHE_OPER1 => |
Operand1 <= Rd_Data; |
|
case( CPU.A_Oper )is |
when ALU_INC => -- Rn = Rn + 1 : CPU.Flags N,C,Z |
Temp := ("0" & x"01") + |
("0" & CPU.A_Data); |
Flags(FL_CARRY) <= Temp(8); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
if( CPU.A_NoFlags = '0' )then |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
end if; |
when CACHE_OPER2 => |
Operand2 <= Rd_Data; |
|
when ALU_UPP2 => -- Rn = Rn + C : Flags C |
Temp := ("0" & x"00") + |
("0" & CPU.A_Data) + |
Flags(FL_CARRY); |
Flags(FL_CARRY) <= Temp(8); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
when CACHE_PREFETCH => |
Prefetch <= Rd_Data; |
Instr_Prefetch <= '1'; |
|
when ALU_ADC => -- R0 = R0 + Rn + C : N,C,Z |
Temp := ("0" & Accumulator) + |
("0" & CPU.A_Data) + |
Flags(FL_CARRY); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
when CACHE_IDLE => |
null; |
end case; |
|
when ALU_TX0 => -- R0 = Rn : Flags N,Z |
Temp := "0" & CPU.A_Data; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
------------------------------------------------------------------------------- |
-- Program Counter |
------------------------------------------------------------------------------- |
Offset_SX(15 downto 8) := (others => PC_Ctrl.Offset(7)); |
Offset_SX(7 downto 0) := PC_Ctrl.Offset; |
|
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z |
Temp(7 downto 0) := Accumulator or CPU.A_Data; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
case PC_Ctrl.Oper is |
when PC_IDLE => |
null; |
|
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z |
Temp(7 downto 0) := Accumulator and CPU.A_Data; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
when PC_REV1 => |
Program_Ctr <= Program_Ctr - 1; |
|
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z |
Temp(7 downto 0) := Accumulator xor CPU.A_Data; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
when PC_REV2 => |
Program_Ctr <= Program_Ctr - 2; |
|
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z |
Temp := CPU.A_Data & Flags(FL_CARRY); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
when PC_INCR => |
Program_Ctr <= Program_Ctr + Offset_SX - 2; |
|
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z |
Temp := CPU.A_Data(0) & Flags(FL_CARRY) & |
CPU.A_Data(7 downto 1); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
when PC_LOAD => |
Program_Ctr <= PC_Ctrl.Addr; |
|
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z |
Temp := ("0" & CPU.A_Data) + |
("0" & x"FF"); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
when others => |
null; |
end case; |
|
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z |
Temp := ("0" & Accumulator) + |
("0" & (not CPU.A_Data)) + |
Flags(FL_CARRY); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
Accumulator <= Temp(7 downto 0); |
------------------------------------------------------------------------------- |
-- (Write) Data Path |
------------------------------------------------------------------------------- |
case DP_Ctrl.Src is |
when DATA_BUS_IDLE => |
null; |
|
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z |
Temp := ("0" & Accumulator) + |
("0" & CPU.A_Data); |
Flags(FL_CARRY) <= Temp(8); |
Accumulator <= Temp(7 downto 0); |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
when DATA_RD_MEM => |
Rd_Enable <= '1'; |
|
when ALU_STP => -- Sets bit(n) in the CPU.Flags register |
Flags(Index) <= '1'; |
when DATA_WR_REG => |
Wr_Enable <= '1'; |
Wr_Data <= Regfile(conv_integer(DP_Ctrl.Reg)); |
|
when ALU_BTT => -- Z = !R0(N), N = R0(7) |
Flags(FL_ZERO) <= not Accumulator(Index); |
Flags(FL_NEG) <= Accumulator(7); |
when DATA_WR_FLAG => |
Wr_Enable <= '1'; |
Wr_Data <= Flags; |
|
when ALU_CLP => -- Clears bit(n) in the Flags register |
Flags(Index) <= '0'; |
when DATA_WR_PC => |
Wr_Enable <= '1'; |
Wr_Data <= Program_Ctr(15 downto 8); |
if( DP_Ctrl.Reg = ACCUM )then |
Wr_Data <= Program_Ctr(7 downto 0); |
end if; |
|
when ALU_T0X => -- Rn = R0 : Flags N,Z |
Temp := "0" & Accumulator; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_NEG) <= Temp(7); |
CPU.Regfile(Index) <= Temp(7 downto 0); |
when others => |
null; |
end case; |
|
when ALU_CMP => -- Sets CPU.Flags on R0 - Rn : Flags N,C,Z |
Temp := ("0" & Accumulator) + |
("0" & (not CPU.A_Data)) + |
'1'; |
Flags(FL_ZERO) <= nor_reduce(Temp(7 downto 0)); |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
------------------------------------------------------------------------------- |
-- Stack Pointer |
------------------------------------------------------------------------------- |
case SP_Ctrl.Oper is |
when SP_IDLE => |
null; |
|
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags Z |
CPU.Regfile(0) <= CPU.M_Prod(7 downto 0); |
CPU.Regfile(1) <= CPU.M_Prod(15 downto 8); |
Flags(FL_ZERO) <= nor_reduce(CPU.M_Prod); |
when SP_RSET => |
-- The original RSP instruction simply reset the stack pointer to the preset |
-- address set at compile time. However, with little extra effort, we can |
-- modify the instruction to allow the stack pointer to be moved anywhere in |
-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as |
-- a fixed source |
Stack_Ptr <= Stack_Start_Addr; |
if( Allow_Stack_Address_Move )then |
Stack_Ptr <= Regfile(1) & Regfile(0); |
end if; |
|
when ALU_LDI => -- Rn <= Data : Flags N,Z |
if( CPU.A_NoFlags = '0' )then |
Flags(FL_ZERO) <= nor_reduce(CPU.A_Data); |
Flags(FL_NEG) <= CPU.A_Data(7); |
end if; |
CPU.Regfile(Index) <= CPU.A_Data; |
when SP_POP => |
Stack_Ptr <= Stack_Ptr + 1; |
|
when ALU_RFLG => |
Flags <= CPU.A_Data; |
when SP_PUSH => |
Stack_Ptr <= Stack_Ptr - 1; |
|
when others => |
null; |
end case; |
when others => |
null; |
|
end case; |
|
------------------------------------------------------------------------------- |
-- Instruction/Operand caching for pipelined memory access |
-- Interrupt Controller |
------------------------------------------------------------------------------- |
-- The interrupt control mask is always sourced out of R0 |
if( INT_Ctrl.Mask_Set = '1' )then |
Int_Mask <= Regfile(conv_integer(ACCUM))(7 downto 1) & '1'; |
end if; |
|
case( IC )is |
when CACHE_INSTR => |
CPU.Opcode <= Rd_Data(7 downto 3); |
CPU.SubOp_p0 <= Rd_Data(2 downto 0); |
CPU.SubOp_p1 <= Rd_Data(2 downto 0) + 1; |
if( CPU.Cache_Valid = '1' )then |
CPU.Opcode <= CPU.Prefetch(7 downto 3); |
CPU.SubOp_p0 <= CPU.Prefetch(2 downto 0); |
CPU.SubOp_p1 <= CPU.Prefetch(2 downto 0) + 1; |
CPU.Cache_Valid <= '0'; |
-- Combine external and internal interrupts, and mask the OR or the two |
-- with the mask. Record any incoming interrupts to the pending buffer |
i_Ints := (Interrupts or INT_Ctrl.Soft_Ints) and |
Int_Mask; |
if( i_Ints > 0 )then |
Pending <= i_Ints; |
end if; |
|
-- Only mess with interrupt signals while the CPU core is not currently |
-- working with, or loading, an ISR address |
if( Wait_for_FSM = '0' and Pending > 0 )then |
if( Pending(0) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 0))then |
ISR_Addr <= INT_VECTOR_0; |
Pending(0) <= '0'; |
History(Hst_Ptr+1) <= 0; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(1) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 1))then |
ISR_Addr <= INT_VECTOR_1; |
Pending(1) <= '0'; |
History(Hst_Ptr+1) <= 1; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(2) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 2))then |
ISR_Addr <= INT_VECTOR_2; |
Pending(2) <= '0'; |
History(Hst_Ptr+1) <= 1; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(3) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 3))then |
ISR_Addr <= INT_VECTOR_3; |
Pending(3) <= '0'; |
History(Hst_Ptr+1) <= 3; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(4) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 4))then |
ISR_Addr <= INT_VECTOR_4; |
Pending(4) <= '0'; |
History(Hst_Ptr+1) <= 4; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(5) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 5))then |
ISR_Addr <= INT_VECTOR_5; |
Pending(5) <= '0'; |
History(Hst_Ptr+1) <= 5; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(6) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 6))then |
ISR_Addr <= INT_VECTOR_6; |
Pending(6) <= '0'; |
History(Hst_Ptr+1) <= 6; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
elsif(Pending(7) = '1' and (Hst_Ptr = 0 or History(Hst_Ptr) > 7))then |
ISR_Addr <= INT_VECTOR_7; |
Pending(7) <= '0'; |
History(Hst_Ptr+1) <= 7; |
Hst_Ptr <= Hst_Ptr + 1; |
Wait_for_FSM <= '1'; |
end if; |
end if; |
|
when CACHE_OPER1 => |
CPU.Operand1 <= Rd_Data; |
-- Reset the Wait_for_FSM flag on Int_Ack |
Ack_Q <= Ack_D; |
Ack_Q1 <= Ack_Q; |
Int_Ack <= Ack_Q1; |
if( Int_Ack = '1' )then |
Wait_for_FSM <= '0'; |
end if; |
|
when CACHE_OPER2 => |
CPU.Operand2 <= Rd_Data; |
Int_Req <= Wait_for_FSM and (not Int_Ack); |
|
when CACHE_PREFETCH => |
CPU.Prefetch <= Rd_Data; |
CPU.Cache_Valid <= '1'; |
Int_RTI <= Int_RTI_D; |
if( Int_RTI = '1' and Hst_Ptr > 0 )then |
Hst_Ptr <= Hst_Ptr - 1; |
end if; |
|
when CACHE_PFFLUSH => |
CPU.Prefetch <= Rd_Data; |
CPU.Operand1 <= x"00"; |
CPU.Operand2 <= x"00"; |
CPU.Cache_Valid <= '1'; |
-- Incr_ISR allows the CPU Core to advance the vector address to pop the |
-- lower half of the address. |
if( INT_Ctrl.Incr_ISR = '1' )then |
ISR_Addr <= ISR_Addr + 1; |
end if; |
|
when CACHE_INVALIDATE => |
CPU.Cache_Valid <= '0'; |
|
when CACHE_IDLE => |
null; |
end case; |
|
------------------------------------------------------------------------------- |
-- Program Counter |
-- ALU (Arithmetic / Logic Unit) |
------------------------------------------------------------------------------- |
Temp := (others => '0'); |
Index := conv_integer(ALU_Ctrl.Reg); |
|
Offset_SX(15 downto 8) := (others => CPU.Operand1(7)); |
Offset_SX(7 downto 0) := CPU.Operand1; |
case ALU_Ctrl.Oper is |
when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z |
Sum := ("0" & x"01") + |
("0" & Regfile(Index)); |
Flags(FL_CARRY) <= Sum(8); |
Regfile(Index) <= Sum(7 downto 0); |
-- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP |
-- doesn't set the N or Z flags. Note that the MSB can be used to |
-- distinguish between the two ALU modes. |
if( ALU_Ctrl.Oper(4) = '0' )then |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO)<= '1'; |
end if; |
Flags(FL_NEG) <= Sum(7); |
end if; |
|
case( PC )is |
when ALU_UPP2 => -- Rn = Rn + C |
Sum := ("0" & x"00") + |
("0" & Regfile(Index)) + |
Flags(FL_CARRY); |
Flags(FL_CARRY) <= Sum(8); |
Regfile(Index) <= Sum(7 downto 0); |
|
when PC_INCR => |
CPU.Program_Ctr <= CPU.Program_ctr + 1; |
|
when PC_IDLE => |
--CPU.Program_Ctr <= CPU.Program_Ctr + 0; |
null; |
when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z |
Sum := ("0" & Regfile(0)) + |
("0" & Regfile(Index)) + |
Flags(FL_CARRY); |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Sum(8); |
Flags(FL_NEG) <= Sum(7); |
Regfile(0) <= Sum(7 downto 0); |
|
when PC_REV1 => |
CPU.Program_Ctr <= CPU.Program_Ctr - 1; |
when ALU_TX0 => -- R0 = Rn : Flags N,Z |
Temp := "0" & Regfile(Index); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Temp(7); |
Regfile(0) <= Temp(7 downto 0); |
|
when PC_REV2 => |
CPU.Program_Ctr <= CPU.Program_Ctr - 2; |
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) or Regfile(Index); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Temp(7); |
Regfile(0) <= Temp(7 downto 0); |
|
when PC_REV3 => |
CPU.Program_Ctr <= CPU.Program_Ctr - 3; |
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) and Regfile(Index); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Temp(7); |
Regfile(0) <= Temp(7 downto 0); |
|
when PC_BRANCH => |
CPU.Program_Ctr <= CPU.Program_Ctr + Offset_SX - 2; |
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) xor Regfile(Index); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Temp(7); |
Regfile(0) <= Temp(7 downto 0); |
|
when PC_LOAD => |
CPU.Program_Ctr <= CPU.Operand2 & CPU.Operand1; |
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z |
Temp := Regfile(Index) & Flags(FL_CARRY); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
Regfile(Index) <= Temp(7 downto 0); |
|
when others => |
null; |
end case; |
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z |
Temp := Regfile(Index)(0) & Flags(FL_CARRY) & |
Regfile(Index)(7 downto 1); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Temp(8); |
Flags(FL_NEG) <= Temp(7); |
Regfile(Index) <= Temp(7 downto 0); |
|
------------------------------------------------------------------------------- |
-- (Write) Data Path |
------------------------------------------------------------------------------- |
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z |
Sum := ("0" & Regfile(Index)) + |
("0" & x"FF"); |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Sum(8); |
Flags(FL_NEG) <= Sum(7); |
Regfile(Index) <= Sum(7 downto 0); |
|
Wr_Data <= x"00"; |
Wr_Enable <= '0'; |
Rd_Enable <= '0'; |
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z |
Sum := ("0" & Regfile(0)) + |
("0" & (not Regfile(Index))) + |
Flags(FL_CARRY); |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Sum(8); |
Flags(FL_NEG) <= Sum(7); |
Regfile(0) <= Sum(7 downto 0); |
|
case( DP.Src )is |
when DATA_BUS_IDLE => |
null; |
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z |
Sum := ("0" & Regfile(0)) + |
("0" & Regfile(Index)); |
Flags(FL_CARRY) <= Sum(8); |
Regfile(0) <= Sum(7 downto 0); |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Sum(7); |
|
when DATA_RD_MEM => |
Rd_Enable <= '1'; |
when ALU_STP => -- Sets bit(n) in the Flags register |
Flags(Index) <= '1'; |
|
when DATA_WR_REG => |
Wr_Enable <= '1'; |
Wr_Data <= CPU.Regfile(conv_integer(DP.Reg)); |
when ALU_BTT => -- Z = !R0(N), N = R0(7) |
Flags(FL_ZERO) <= not Regfile(0)(Index); |
Flags(FL_NEG) <= Regfile(0)(7); |
|
when DATA_WR_FLAG => |
Wr_Enable <= '1'; |
Wr_Data <= Flags; |
when ALU_CLP => -- Clears bit(n) in the Flags register |
Flags(Index) <= '0'; |
|
when DATA_WR_PC => |
Wr_Enable <= '1'; |
Wr_Data <= CPU.Program_Ctr(15 downto 8); |
if( DP.Reg = ACCUM )then |
Wr_Data <= CPU.Program_Ctr(7 downto 0); |
end if; |
when ALU_T0X => -- Rn = R0 : Flags N,Z |
Temp := "0" & Regfile(0); |
Flags(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= Temp(7); |
Regfile(Index) <= Temp(7 downto 0); |
|
when others => |
null; |
end case; |
when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z |
Sum := ("0" & Regfile(0)) + |
("0" & (not Regfile(Index))) + |
'1'; |
Flags(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_CARRY) <= Sum(8); |
Flags(FL_NEG) <= Sum(7); |
|
------------------------------------------------------------------------------- |
-- Stack Pointer |
------------------------------------------------------------------------------- |
case( SP )is |
when SP_IDLE => |
null; |
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags Z |
Regfile(0) <= Mult(7 downto 0); |
Regfile(1) <= Mult(15 downto 8); |
Flags(FL_ZERO) <= '0'; |
if( Mult = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
|
when SP_RSET => |
CPU.Stack_Ptr <= Stack_Start_Addr; |
if( Allow_Stack_Address_Move )then |
CPU.Stack_Ptr <= CPU.Regfile(1) & CPU.Regfile(0); |
end if; |
when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z |
-- The POP instruction doesn't alter the flags, so we need to check |
if( ALU_Ctrl.Oper = ALU_LDI )then |
Flags(FL_ZERO) <= '0'; |
if( ALU_Ctrl.Data = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= ALU_Ctrl.Data(7); |
end if; |
Regfile(Index) <= ALU_Ctrl.Data; |
|
when SP_POP => |
CPU.Stack_Ptr <= CPU.Stack_Ptr + 1; |
when ALU_LDX => -- R0 <= Data : Flags N,Z |
Flags(FL_ZERO) <= '0'; |
if( ALU_Ctrl.Data = 0 )then |
Flags(FL_ZERO) <= '1'; |
end if; |
Flags(FL_NEG) <= ALU_Ctrl.Data(7); |
Regfile(0) <= ALU_Ctrl.Data; |
|
when SP_PUSH => |
CPU.Stack_Ptr <= CPU.Stack_Ptr - 1; |
when ALU_RFLG => |
Flags <= ALU_Ctrl.Data; |
|
when others => |
null; |
when others => |
null; |
end case; |
|
end case; |
|
end if; |
end if; |
end process; |
|