URL
https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk
Subversion Repositories open8_urisc
Compare Revisions
- This comparison shows the changes necessary to convert path
/open8_urisc
- from Rev 7 to Rev 8
- ↔ Reverse comparison
Rev 7 → Rev 8
/trunk/VHDL/Open8.vhd
0,0 → 1,1495
-- Copyright (c)2006, Jeremy Seth Henry |
-- All rights reserved. |
-- |
-- Redistribution and use in source and binary forms, with or without |
-- modification, are permitted provided that the following conditions are met: |
-- * Redistributions of source code must retain the above copyright |
-- notice, this list of conditions and the following disclaimer. |
-- * Redistributions in binary form must reproduce the above copyright |
-- notice, this list of conditions and the following disclaimer in the |
-- documentation and/or other materials provided with the distribution, |
-- where applicable (as part of a user interface, debugging port, etc.) |
-- |
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY |
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY |
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
-- VHDL Units : Open8_CPU |
-- Description: VHDL model of the V8 uRISC 8-bit processor core |
-- Notes : Generic definitions |
-- : Stack_Start_Address - determines the initial (reset) value of |
-- : the stack pointer. Also used for the RSP instruction if |
-- : Allow_Stack_Address_Move is 0. |
-- : |
-- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be |
-- : programmed via thet RSP instruction. If enabled, the contents |
-- : of R1:R0 are used to initialize the stack pointer. |
-- : |
-- : ISR_Start_Addr - determines the location of the interrupt |
-- : service vector table. There are 8 service vectors, or 16 |
-- : bytes, which must be allocated to either ROM or RAM. |
-- : |
-- : Program_Start_Addr - Determines the initial value of the |
-- : program counter. |
-- : |
-- : Default_Interrupt_Mask - Determines the intial value of the |
-- : interrupt mask. To remain true to the original core, which |
-- : had no interrupt mask, this should be set to x"FF". Otherwise |
-- : it can be initialized to any value. |
-- : |
-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is |
-- : connected or not. This signal is typically used to halt the |
-- : processor for a few cycles when accessing slower peripherals, |
-- : but may also be used to single step the processor. If this |
-- : feature isn't used, it can be disabled to increase Fmax. |
-- : |
-- : The CPU_Halt signal can be used to access slower peripherals |
-- : by allowing the device to "pause" the CPU. This can be used, |
-- : for example, to write to a standard LCD panel, which requires |
-- : a 4MHz interface, by halting on writes. Alternately, devices |
-- : such as SDRAM controllers, can pause the processor until the |
-- : data is ready to be presented. |
-- : |
-- : The Enable_Auto_Increment generic can be used to modify the |
-- : indexed instructions such that specifying an odd register |
-- : will use the next lower register pair, post-incrementing the |
-- : value in that pair. IOW, specifying STX R1 will instead |
-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1 |
-- : |
-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL |
-- : respectively. DBNZ decrements the specified register, and will |
-- : branch if the result is non-zero (Zero flag is not set). MUL |
-- : places the result of R0 * Rn into R1:R0, and executes in two |
-- : cycles. (R1:R0 = R0 * Rn) |
-- : |
-- Revision History |
-- Author Date Change |
------------------ -------- --------------------------------------------------- |
-- Seth Henry 07/19/06 Design Start |
|
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_unsigned.all; |
use ieee.std_logic_arith.all; |
|
library work; |
use work.Open8_pkg.all; |
|
entity Open8_CPU is |
generic( |
Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack |
Allow_Stack_Address_Move : std_logic := '0'; -- Use Normal v8 RSP |
ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's |
Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location |
Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints |
Enable_CPU_Halt : std_logic := '0'; -- Disable HALT pin |
Enable_Auto_Increment : std_logic := '0' ); -- Modify indexed instr |
port( |
Clock : in std_logic; |
Reset_n : in std_logic; |
CPU_Halt : in std_logic; |
Interrupts : in INTERRUPT_BUNDLE; |
-- |
Address : out ADDRESS_TYPE; |
Rd_Data : in DATA_TYPE; |
Rd_Enable : out std_logic; |
Wr_Data : out DATA_TYPE; |
Wr_Enable : out std_logic ); |
end entity; |
|
architecture rtl of Open8_CPU is |
subtype OPCODE_TYPE is std_logic_vector(4 downto 0); |
subtype SUBOP_TYPE is std_logic_vector(2 downto 0); |
|
-- Most of the ALU instructions are the same as their Opcode equivalents with |
-- three exceptions (for IDLE, UPP2, and MUL2) |
constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00" |
constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01" |
constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02" |
constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03" |
constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04" |
constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05" |
constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06" |
constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07" |
constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08" |
constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09" |
constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A" |
constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B" |
constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C" |
constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D" |
constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E" |
constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F" |
constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11" |
constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16" |
constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18" |
constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C" |
constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E" |
|
constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10" |
constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"11" |
constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"12" |
|
constant FL_ZERO : integer := 0; |
constant FL_CARRY : integer := 1; |
constant FL_NEG : integer := 2; |
constant FL_INT_EN : integer := 3; |
constant FL_GP1 : integer := 4; |
constant FL_GP2 : integer := 5; |
constant FL_GP3 : integer := 6; |
constant FL_GP4 : integer := 7; |
|
type ALU_CTRL_TYPE is record |
Oper : OPCODE_TYPE; |
Reg : SUBOP_TYPE; |
Data : DATA_TYPE; |
end record; |
|
constant ACCUM : SUBOP_TYPE := "000"; |
constant INT_FLAG : SUBOP_TYPE := "011"; |
|
-- There are only 8 byte-wide registers - and the write register is always 0, |
-- so there is little point in making a RAM out of this |
type REGFILE_TYPE is array (0 to 7) of DATA_TYPE; |
|
subtype FLAG_TYPE is DATA_TYPE; |
|
type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD ); |
|
type PC_CTRL_TYPE is record |
Oper : PC_MODES; |
Offset : DATA_TYPE; |
Addr : ADDRESS_TYPE; |
end record; |
|
type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH ); |
|
type SP_CTRL_TYPE is record |
Oper : SP_MODES; |
Addr : ADDRESS_TYPE; |
end record; |
|
type INT_CTRL_TYPE is record |
Mask_Set : std_logic; |
Mask_Data : DATA_TYPE; |
Soft_Ints : INTERRUPT_BUNDLE; |
Incr_ISR : std_logic; |
end record; |
|
type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR); |
|
type ADDR_CTRL_TYPE is record |
Src : AS_MODES; |
end record; |
|
type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC ); |
|
type DATA_CTRL_TYPE is record |
Src : DP_MODES; |
Reg : SUBOP_TYPE; |
end record; |
|
signal Halt : std_logic; |
signal ALU_Ctrl : ALU_CTRL_TYPE; |
signal ALU_Regs : REGFILE_TYPE; |
signal ALU_Flags : FLAG_TYPE; |
signal PC_Ctrl : PC_CTRL_TYPE; |
signal SP_Ctrl : SP_CTRL_TYPE; |
signal AS_Ctrl : ADDR_CTRL_TYPE; |
signal DP_Ctrl : DATA_CTRL_TYPE; |
signal INT_Ctrl : INT_CTRL_TYPE; |
signal Int_Req, Int_Ack : std_logic; |
signal Int_RTI : std_logic; |
signal Int_Mask : DATA_TYPE; |
signal PC : ADDRESS_TYPE; |
signal SP : ADDRESS_TYPE; |
signal ISR : ADDRESS_TYPE; |
signal IMM : ADDRESS_TYPE; |
begin |
|
Halt_Disabled_fn: if( Enable_CPU_Halt = '0' )generate |
Halt <= '0'; |
end generate; |
|
Halt_Enabled_fn: if( Enable_CPU_Halt = '1' )generate |
Halt <= CPU_Halt; |
end generate; |
|
------------------------------------------------------------------------------- |
-- ALU (Arithmetic / Logic Unit |
-- Notes: |
-- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others |
------------------------------------------------------------------------------- |
|
Open8_ALU : block is |
|
-- Preinitialization is for simulation only - check actual reset conditions |
signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') ); |
signal Flags_D, Flags : FLAG_TYPE := (others => '0'); |
signal Mult : ADDRESS_TYPE := (others => '0'); |
|
signal Sum : std_logic_vector(8 downto 0) := (others => '0'); |
signal Addend_A, Addend_B : DATA_TYPE := (others => '0'); |
signal Carry : std_logic := '0'; |
|
begin |
|
ALU_Regs <= Regfile; |
ALU_Flags <= Flags; |
|
ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum ) |
variable Index : integer range 0 to 7 := 0; |
variable Temp : std_logic_vector(8 downto 0); |
begin |
Regfile_D <= Regfile; |
Flags_D <= Flags; |
Addend_A <= x"00"; |
Addend_B <= x"00"; |
Carry <= '0'; |
|
Temp := (others => '0'); |
Index := conv_integer(ALU_Ctrl.Reg); |
|
case ALU_Ctrl.Oper is |
when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z |
Addend_A <= x"01"; |
Addend_B <= Regfile(Index); |
Flags_D(FL_CARRY) <= Sum(8); |
Regfile_D(Index) <= Sum(7 downto 0); |
-- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP |
-- doesn't set the N or Z flags. Note that the MSB can be used to |
-- distinguish between the two ALU modes. |
if( ALU_Ctrl.Oper(4) = '0' )then |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Sum(7); |
end if; |
|
when ALU_UPP2 => -- Rn = Rn + C |
Addend_A <= x"00"; |
Addend_B <= Regfile(Index); |
Carry <= Flags(FL_CARRY); |
Flags_D(FL_CARRY) <= Sum(8); |
Regfile_D(Index) <= Sum(7 downto 0); |
|
when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z |
Addend_A <= Regfile(0); |
Addend_B <= Regfile(Index); |
Carry <= Flags(FL_CARRY); |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Sum(8); |
Flags_D(FL_NEG) <= Sum(7); |
Regfile_D(0) <= Sum(7 downto 0); |
|
when ALU_TX0 => -- R0 = Rn : Flags N,Z |
Temp := "0" & Regfile(Index); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(0) <= Temp(7 downto 0); |
|
when ALU_OR => -- R0 = R0 | Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) or Regfile(Index); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(0) <= Temp(7 downto 0); |
|
when ALU_AND => -- R0 = R0 & Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) and Regfile(Index); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(0) <= Temp(7 downto 0); |
|
when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z |
Temp(7 downto 0) := Regfile(0) xor Regfile(Index); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(0) <= Temp(7 downto 0); |
|
when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z |
Temp := Regfile(Index) & Flags(FL_CARRY); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Temp(8); |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(Index) <= Temp(7 downto 0); |
|
when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z |
Temp := Regfile(Index)(0) & Flags(FL_CARRY) & |
Regfile(Index)(7 downto 1); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Temp(8); |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(Index) <= Temp(7 downto 0); |
|
when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z |
Addend_A <= Regfile(Index); |
Addend_B <= x"FF"; |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Sum(8); |
Flags_D(FL_NEG) <= Sum(7); |
Regfile_D(Index) <= Sum(7 downto 0); |
|
when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z |
Addend_A <= Regfile(0); |
Addend_B <= not Regfile(Index); |
Carry <= Flags(FL_CARRY); |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Sum(8); |
Flags_D(FL_NEG) <= Sum(7); |
Regfile_D(0) <= Sum(7 downto 0); |
|
when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z |
Addend_A <= Regfile(0); |
Addend_B <= Regfile(Index); |
Flags_D(FL_CARRY) <= Sum(8); |
Regfile_D(0) <= Sum(7 downto 0); |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Sum(7); |
|
when ALU_STP => -- Sets bit(n) in the Flags register |
Flags_D(Index) <= '1'; |
|
when ALU_BTT => -- Tests if R0 is negative or zero. No change to R0 |
Temp := "0" & Regfile(Index); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
|
when ALU_CLP => -- Clears bit(n) in the Flags register |
Flags_D(Index) <= '0'; |
|
when ALU_T0X => -- Rn = R0 : Flags N,Z |
Temp := "0" & Regfile(0); |
Flags_D(FL_ZERO) <= '0'; |
if( Temp(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= Temp(7); |
Regfile_D(Index) <= Temp(7 downto 0); |
|
when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z |
Addend_A <= Regfile(0); |
Addend_B <= not Regfile(Index); |
Carry <= '1'; |
Flags_D(FL_ZERO) <= '0'; |
if( Sum(7 downto 0) = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_CARRY) <= Sum(8); |
Flags_D(FL_NEG) <= Sum(7); |
|
when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags N,Z |
Regfile_D(0) <= Mult(7 downto 0); |
Regfile_D(1) <= Mult(15 downto 8); |
Flags_D(FL_ZERO) <= '0'; |
if( Mult = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
|
when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z |
-- The POP instruction doesn't alter the flags, so we need to check |
if( ALU_Ctrl.Oper = ALU_LDI )then |
Flags_D(FL_ZERO) <= '0'; |
if( ALU_Ctrl.Data = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7); |
end if; |
Regfile_D(Index) <= ALU_Ctrl.Data; |
|
when ALU_LDX => -- R0 <= Data : Flags N,Z |
Flags_D(FL_ZERO) <= '0'; |
if( ALU_Ctrl.Data = 0 )then |
Flags_D(FL_ZERO) <= '1'; |
end if; |
Flags_D(FL_NEG) <= ALU_Ctrl.Data(7); |
Regfile_D(0) <= ALU_Ctrl.Data; |
|
when ALU_RFLG => |
Flags_D <= ALU_Ctrl.Data; |
|
when others => null; |
end case; |
end process; |
|
-- 8-bit Adder with carry |
Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry; |
|
-- We need to infer a hardware multipler, so we create a special clocked |
-- process with no reset or clock enable |
M_Reg: process( Clock ) |
begin |
if( rising_edge(Clock) )then |
Mult <= Regfile(0) * |
Regfile(conv_integer(ALU_Ctrl.Reg)); |
end if; |
end process; |
|
S_Regs: process( Reset_n, Clock ) |
begin |
if( Reset_n = '0' )then |
for i in 0 to 7 loop |
Regfile(i) <= (others => '0'); |
end loop; |
Flags <= x"00"; |
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
Regfile <= Regfile_D; |
Flags <= Flags_D; |
end if; |
end if; |
end process; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- Program Counter |
------------------------------------------------------------------------------- |
|
Open8_PC : block is |
-- Preinitialization is for simulation only - check actual reset conditions |
signal PC_Q : ADDRESS_TYPE := (others => '0'); |
signal Rewind_1_2n : std_logic := '0'; |
begin |
|
PC <= PC_Q; |
|
-- This sets the carry input on the "rewind" adder. If the rewind command is |
-- PC_REV2, then we clear the carry. Otherwise, we leave it high. |
Rewind_PC_Calc: process( PC_Ctrl ) |
begin |
Rewind_1_2n <= '1'; |
if( PC_Ctrl.Oper = PC_REV2 )then |
Rewind_1_2n <= '0'; |
end if; |
end process; |
|
Program_Counter: process( Reset_n, Clock, Halt, PC_Ctrl, PC_Q, Rewind_1_2n ) |
variable PC_Offset_SX : ADDRESS_TYPE := x"0000"; |
begin |
PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7)); |
PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset; |
if( Reset_n = '0' )then |
PC_Q <= Program_Start_Addr; |
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
case PC_Ctrl.Oper is |
when PC_IDLE => |
null; |
when PC_REV1 | PC_REV2 => |
PC_Q <= PC_Q - 2 + Rewind_1_2n; |
when PC_INCR => |
PC_Q <= PC_Q + PC_Offset_SX - 2; |
when PC_LOAD => |
PC_Q <= PC_Ctrl.Addr; |
end case; |
end if; |
end if; |
end process; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- Stack Pointer |
------------------------------------------------------------------------------- |
|
Open8_SP : block is |
-- Preinitialization is for simulation only - check actual reset conditions |
signal SP_Q : ADDRESS_TYPE := (others => '0'); |
begin |
|
SP <= SP_Q; |
|
Stack_Pointer: process( Reset_n, Clock ) |
begin |
if( Reset_n = '0' )then |
SP_Q <= Stack_Start_Addr; |
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
case SP_Ctrl.Oper is |
when SP_IDLE => null; |
when SP_RSET => SP_Q <= SP_Ctrl.Addr; |
when SP_POP => SP_Q <= SP_Q + 1; |
when SP_PUSH => SP_Q <= SP_Q - 1; |
end case; |
end if; |
end if; |
end process; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- Interrupt Controller |
------------------------------------------------------------------------------- |
|
Open8_INT : block is |
|
-- Preinitialization is for simulation only - check actual reset conditions |
constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr; |
constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2; |
constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4; |
constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6; |
constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8; |
constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10; |
constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12; |
constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14; |
|
signal i_Ints : INTERRUPT_BUNDLE := (others => '0'); |
signal Pending_D : INTERRUPT_BUNDLE := (others => '0'); |
signal Pending : INTERRUPT_BUNDLE := (others => '0'); |
signal Wait_for_FSM : std_logic := '0'; |
signal Mask : std_logic_vector(6 downto 0) := (others => '0'); |
signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0'); |
|
type INT_HIST is array (0 to 8) of integer range 0 to 7; |
signal History : INT_HIST := (others => 0); |
signal Int_Trig : std_logic := '0'; |
signal Hist_Level : integer range 0 to 7 := 0; |
signal Hist_Ptr : integer range 0 to 8 := 0; |
|
begin |
Int_Mask <= Mask & '1'; |
ISR <= ISR_Q; |
|
Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl ) |
variable S_Mask : std_logic_vector(7 downto 0); |
begin |
S_Mask := Mask & '1'; |
for i in 0 to 7 loop |
i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i)) |
and S_Mask(i); |
end loop; |
end process; |
|
Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl, |
History, Hist_Ptr ) |
begin |
ISR_D <= ISR_Q; |
Pending_D <= Pending; |
Int_Trig <= '0'; |
Hist_Level <= 0; |
|
-- Record any incoming interrupts to the pending buffer |
if( i_Ints > 0 )then |
Pending_D <= i_Ints; |
end if; |
|
-- Incr_ISR allows the CPU Core to advance the vector address to pop the |
-- lower half of the address. |
if( INT_Ctrl.Incr_ISR = '1' )then |
ISR_D <= ISR_Q + 1; |
end if; |
|
-- Only mess with interrupt signals while the CPU core is not currently |
-- working with the ISR address (ie, not loading a new service vector) |
if( Wait_for_FSM = '0' and Pending > 0 )then |
if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then |
ISR_D <= INT_VECTOR_0; |
Pending_D(0) <= '0'; |
Hist_Level <= 0; |
Int_Trig <= '1'; |
elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then |
ISR_D <= INT_VECTOR_1; |
Pending_D(1) <= '0'; |
Hist_Level <= 1; |
Int_Trig <= '1'; |
elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then |
ISR_D <= INT_VECTOR_2; |
Pending_D(2) <= '0'; |
Hist_Level <= 2; |
Int_Trig <= '1'; |
elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then |
ISR_D <= INT_VECTOR_3; |
Pending_D(3) <= '0'; |
Hist_Level <= 3; |
Int_Trig <= '1'; |
elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then |
ISR_D <= INT_VECTOR_4; |
Pending_D(4) <= '0'; |
Hist_Level <= 4; |
Int_Trig <= '1'; |
elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then |
ISR_D <= INT_VECTOR_5; |
Pending_D(5) <= '0'; |
Hist_Level <= 5; |
Int_Trig <= '1'; |
elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then |
ISR_D <= INT_VECTOR_6; |
Pending_D(6) <= '0'; |
Hist_Level <= 6; |
Int_Trig <= '1'; |
elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then |
ISR_D <= INT_VECTOR_7; |
Pending_D(7) <= '0'; |
Hist_Level <= 7; |
Int_Trig <= '1'; |
end if; |
end if; |
end process; |
|
S_Regs: process( Reset_n, Clock ) |
begin |
if( Reset_n = '0' )then |
Int_Req <= '0'; |
Pending <= x"00"; |
Wait_for_FSM <= '0'; |
Mask <= Default_Interrupt_Mask(7 downto 1); |
ISR_Q <= INT_VECTOR_0; |
for i in 0 to 8 loop |
History(i) <= 0; |
end loop; |
Hist_Ptr <= 0; |
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
Int_Req <= Wait_for_FSM and (not Int_Ack); |
Pending <= Pending_D; |
-- Reset the Wait_for_FSM flag on Int_Ack |
if( Int_Ack = '1' )then |
Wait_for_FSM <= '0'; |
-- Set the Wait_for_FSM flag on Int_Trig |
elsif( Int_Trig = '1' )then |
Wait_for_FSM <= '1'; |
end if; |
if( INT_Ctrl.Mask_Set = '1' )then |
Mask <= INT_Ctrl.Mask_Data(7 downto 1); |
end if; |
ISR_Q <= ISR_D; |
if( Int_Trig = '1' )then |
History(Hist_Ptr+1) <= Hist_Level; |
Hist_Ptr <= Hist_Ptr + 1; |
elsif( Int_RTI = '1' and Hist_Ptr > 0 )then |
Hist_Ptr <= Hist_Ptr - 1; |
end if; |
end if; |
end if; |
end process; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- State Logic / Instruction Decoding & Execution |
------------------------------------------------------------------------------- |
|
Open8_FSM : block is |
|
-- These are all the primary instructions/op-codes (upper 5-bits) |
constant OP_INC : OPCODE_TYPE := "00000"; |
constant OP_ADC : OPCODE_TYPE := "00001"; |
constant OP_TX0 : OPCODE_TYPE := "00010"; |
constant OP_OR : OPCODE_TYPE := "00011"; |
constant OP_AND : OPCODE_TYPE := "00100"; |
constant OP_XOR : OPCODE_TYPE := "00101"; |
constant OP_ROL : OPCODE_TYPE := "00110"; |
constant OP_ROR : OPCODE_TYPE := "00111"; |
constant OP_DEC : OPCODE_TYPE := "01000"; |
constant OP_SBC : OPCODE_TYPE := "01001"; |
constant OP_ADD : OPCODE_TYPE := "01010"; |
constant OP_STP : OPCODE_TYPE := "01011"; |
constant OP_BTT : OPCODE_TYPE := "01100"; |
constant OP_CLP : OPCODE_TYPE := "01101"; |
constant OP_T0X : OPCODE_TYPE := "01110"; |
constant OP_CMP : OPCODE_TYPE := "01111"; |
constant OP_PSH : OPCODE_TYPE := "10000"; |
constant OP_POP : OPCODE_TYPE := "10001"; |
constant OP_BR0 : OPCODE_TYPE := "10010"; |
constant OP_BR1 : OPCODE_TYPE := "10011"; |
constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR |
constant OP_INT : OPCODE_TYPE := "10101"; |
constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2 |
constant OP_STK : OPCODE_TYPE := "10111"; |
constant OP_UPP : OPCODE_TYPE := "11000"; |
constant OP_STA : OPCODE_TYPE := "11001"; |
constant OP_STX : OPCODE_TYPE := "11010"; |
constant OP_STO : OPCODE_TYPE := "11011"; |
constant OP_LDI : OPCODE_TYPE := "11100"; |
constant OP_LDA : OPCODE_TYPE := "11101"; |
constant OP_LDX : OPCODE_TYPE := "11110"; |
constant OP_LDO : OPCODE_TYPE := "11111"; |
|
-- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits) |
constant SOP_RSP : SUBOP_TYPE := "000"; |
constant SOP_RTS : SUBOP_TYPE := "001"; |
constant SOP_RTI : SUBOP_TYPE := "010"; |
constant SOP_BRK : SUBOP_TYPE := "011"; |
constant SOP_JMP : SUBOP_TYPE := "100"; |
constant SOP_SMSK : SUBOP_TYPE := "101"; |
constant SOP_GMSK : SUBOP_TYPE := "110"; |
constant SOP_JSR : SUBOP_TYPE := "111"; |
|
-- Preinitialization is for simulation only - check actual reset conditions |
type CPU_STATES is ( |
-- Instruction fetch & Decode |
PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE, |
-- Branching |
BRN_C1, DBNZ_C1, JMP_C1, JMP_C2, |
-- Loads |
LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3, |
-- Stores |
STA_C1, STA_C2, STA_C3, STO_C1, STX_C1, STX_C2, |
-- 2-cycle math |
MUL_C1, UPP_C1, |
-- Stack |
PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4, |
-- Subroutines & Interrupts |
WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2, |
RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6, |
-- Debugging |
BRK_C1 ); |
|
signal CPU_Next_State : CPU_STATES := PIPE_FILL_0; |
signal CPU_State : CPU_STATES := PIPE_FILL_0; |
|
type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2, |
CACHE_PREFETCH ); |
signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE; |
|
signal Opcode : OPCODE_TYPE := (others => '0'); |
signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0'); |
-- synthesis translate_off |
signal Instruction : DATA_TYPE := (others => '0'); |
-- synthesis translate_on |
signal Prefetch : DATA_TYPE := (others => '0'); |
signal Operand1, Operand2 : DATA_TYPE := (others => '0'); |
|
signal Instr_Prefetch : std_logic := '0'; |
|
signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0'; |
signal Int_RTI_D : std_logic := '0'; |
|
begin |
|
-- synthesis translate_off |
Instruction <= Opcode & SubOp; |
-- synthesis translate_on |
|
State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode, |
SubOp , SubOp_p1, Operand1, Operand2, Int_Req ) |
variable Reg, Reg_1 : integer range 0 to 7 := 0; |
variable Offset_SX : ADDRESS_TYPE; |
begin |
CPU_Next_State <= CPU_State; |
Cache_Ctrl <= CACHE_IDLE; |
-- |
ALU_Ctrl.Oper <= ALU_IDLE; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data <= x"00"; |
-- |
PC_Ctrl.Oper <= PC_IDLE; |
|
PC_Ctrl.Offset <= x"03"; |
PC_Ctrl.Addr <= x"0000"; |
-- |
SP_Ctrl.Oper <= SP_IDLE; |
-- |
AS_Ctrl.Src <= ADDR_PC; |
IMM <= x"0000"; |
-- |
DP_Ctrl.Src <= DATA_IDLE; |
DP_Ctrl.Reg <= ACCUM; |
-- |
INT_Ctrl.Mask_Set <= '0'; |
INT_Ctrl.Soft_Ints <= x"00"; |
INT_Ctrl.Incr_ISR <= '0'; |
Ack_D <= '0'; |
Int_RTI_D <= '0'; |
|
-- Assign the most common value of Reg and Reg1 outside the case structure |
-- to simplify things. |
Reg := conv_integer(SubOp); |
Reg_1 := conv_integer(SubOp_p1); |
Offset_SX(15 downto 0) := (others => Operand1(7)); |
Offset_SX(7 downto 0) := Operand1; |
|
case CPU_State is |
------------------------------------------------------------------------------- |
-- Initial Instruction fetch & decode |
------------------------------------------------------------------------------- |
when PIPE_FILL_0 => |
CPU_Next_State <= PIPE_FILL_1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when PIPE_FILL_1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
|
when PIPE_FILL_2 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
|
when INSTR_DECODE => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
|
case Opcode is |
when OP_PSH => |
CPU_Next_State <= PSH_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV1; |
DP_Ctrl.Src <= DATA_REG; |
DP_Ctrl.Reg <= SubOp; |
|
when OP_POP => |
CPU_Next_State <= POP_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV2; |
SP_Ctrl.Oper <= SP_POP; |
|
when OP_BR0 | OP_BR1 => |
CPU_Next_State <= BRN_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when OP_DBNZ => |
CPU_Next_State <= DBNZ_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_DEC; |
ALU_Ctrl.Reg <= SubOp; |
|
when OP_INT => |
PC_Ctrl.Oper <= PC_INCR; |
if( Int_Mask(Reg) = '1' )then |
CPU_Next_State <= WAIT_FOR_INT; |
INT_Ctrl.Soft_Ints(Reg) <= '1'; |
end if; |
|
when OP_STK => |
case SubOp is |
when SOP_RSP => |
PC_Ctrl.Oper <= PC_INCR; |
SP_Ctrl.Oper <= SP_RSET; |
|
when SOP_RTS | SOP_RTI => |
CPU_Next_State <= RTS_C1; |
Cache_Ctrl <= CACHE_IDLE; |
SP_Ctrl.Oper <= SP_POP; |
|
when SOP_BRK => |
CPU_Next_State <= BRK_C1; |
PC_Ctrl.Oper <= PC_REV2; |
|
when SOP_JMP => |
CPU_Next_State <= JMP_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when SOP_SMSK => |
PC_Ctrl.Oper <= PC_INCR; |
INT_Ctrl.Mask_Set <= '1'; |
|
when SOP_GMSK => |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper<= ALU_LDI; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data<= Int_Mask; |
|
when SOP_JSR => |
CPU_Next_State <= JSR_C1; |
Cache_Ctrl <= CACHE_OPER1; |
DP_Ctrl.Src <= DATA_PC; |
DP_Ctrl.Reg <= ACCUM+1; |
|
when others => null; |
end case; |
|
when OP_MUL => |
CPU_Next_State <= MUL_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
|
-- We need to back the PC up by 1, and all it to refill. An |
-- unfortunate consequence of the pipelining. We can get away with |
-- only 1 extra clock by pre-fetching the next instruction, though |
PC_Ctrl.Oper <= PC_REV1; |
-- Multiplication is automatic, but requires a single clock cycle. |
-- We need to specify the register for Rn (R1:R0 = R0 * Rn) now, |
-- but will issue the multiply command on the next clock to copy |
-- the results to the specified register. |
ALU_Ctrl.Oper <= ALU_IDLE; |
ALU_Ctrl.Reg <= SubOp; -- Rn |
|
when OP_UPP => |
CPU_Next_State <= UPP_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV1; |
ALU_Ctrl.Oper <= Opcode; |
ALU_Ctrl.Reg <= SubOp; |
|
when OP_LDA => |
CPU_Next_State <= LDA_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when OP_LDI => |
CPU_Next_State <= LDI_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when OP_LDO => |
CPU_Next_State <= LDO_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_REV2; |
|
when OP_LDX => |
CPU_Next_State <= LDX_C1; |
PC_Ctrl.Oper <= PC_REV2; |
AS_Ctrl.Src <= ADDR_IMM; |
-- If auto-increment is disabled, use the specified register pair, |
-- otherwise, for an odd:even pair, and issue the first half of |
-- a UPP instruction to the ALU |
if( Enable_Auto_Increment = '0' )then |
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg); |
else |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg); |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper<= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when OP_STA => |
CPU_Next_State <= STA_C1; |
Cache_Ctrl <= CACHE_OPER1; |
|
when OP_STO => |
CPU_Next_State <= STO_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_REV2; |
DP_Ctrl.Src <= DATA_REG; |
DP_Ctrl.Reg <= ACCUM; |
|
when OP_STX => |
CPU_Next_State <= STX_C1; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_REV2; |
DP_Ctrl.Src <= DATA_REG; |
DP_Ctrl.Reg <= ACCUM; |
|
when others => |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= Opcode; |
ALU_Ctrl.Reg <= SubOp; |
|
end case; |
|
------------------------------------------------------------------------------- |
-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP ) |
------------------------------------------------------------------------------- |
|
when BRN_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
if( ALU_Flags(Reg) = Opcode(0) )then |
CPU_Next_State <= PIPE_FILL_0; |
Cache_Ctrl <= CACHE_IDLE; |
PC_Ctrl.Offset <= Operand1; |
end if; |
|
when DBNZ_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
if( ALU_Flags(FL_ZERO) = '0' )then |
CPU_Next_State <= PIPE_FILL_0; |
Cache_Ctrl <= CACHE_IDLE; |
PC_Ctrl.Offset <= Operand1; |
end if; |
|
when JMP_C1 => |
CPU_Next_State <= JMP_C2; |
Cache_Ctrl <= CACHE_OPER2; |
|
when JMP_C2 => |
CPU_Next_State <= PIPE_FILL_0; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
|
------------------------------------------------------------------------------- |
-- Data Storage - Load from memory (LDA, LDI, LDO, LDX) |
------------------------------------------------------------------------------- |
|
when LDA_C1 => |
CPU_Next_State <= LDA_C2; |
Cache_Ctrl <= CACHE_OPER2; |
|
when LDA_C2 => |
CPU_Next_State <= LDA_C3; |
AS_Ctrl.Src <= ADDR_IMM; |
IMM <= Operand2 & Operand1; |
|
when LDA_C3 => |
CPU_Next_State <= LDA_C4; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDA_C4 => |
CPU_Next_State <= LDI_C1; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDI_C1 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_LDI; |
ALU_Ctrl.Reg <= SubOp; |
ALU_Ctrl.Data <= Operand1; |
|
when LDO_C1 => |
CPU_Next_State <= LDX_C1; |
AS_Ctrl.Src <= ADDR_IMM; |
PC_Ctrl.Oper <= PC_INCR; |
if( Enable_Auto_Increment = '1' )then |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper<= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
else |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; |
end if; |
|
when LDX_C1 => |
CPU_Next_State <= LDX_C2; |
PC_Ctrl.Oper <= PC_INCR; |
|
when LDX_C2 => |
CPU_Next_State <= LDX_C3; |
PC_Ctrl.Oper <= PC_INCR; |
Cache_Ctrl <= CACHE_OPER1; |
|
when LDX_C3 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_LDX; |
ALU_Ctrl.Reg <= ACCUM; |
ALU_Ctrl.Data <= Operand1; |
|
------------------------------------------------------------------------------- |
-- Data Storage - Load from memory (STA, STO, STX) |
------------------------------------------------------------------------------- |
when STA_C1 => |
CPU_Next_State <= STA_C2; |
Cache_Ctrl <= CACHE_OPER2; |
DP_Ctrl.Src <= DATA_REG; |
DP_Ctrl.Reg <= SubOp; |
|
when STA_C2 => |
CPU_Next_State <= STA_C3; |
AS_Ctrl.Src <= ADDR_IMM; |
IMM <= Operand2 & Operand1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when STA_C3 => |
CPU_Next_State <= PIPE_FILL_2; |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_INCR; |
|
when STO_C1 => |
Cache_Ctrl <= CACHE_PREFETCH; |
PC_Ctrl.Oper <= PC_INCR; |
AS_Ctrl.Src <= ADDR_IMM; |
-- If auto-increment is disabled, just load the registers normally |
if( Enable_Auto_Increment = '0' )then |
CPU_Next_State <= PIPE_FILL_1; |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; |
-- Otherwise, enforce the even register rule, and check the LSB to see |
-- if we should perform the auto-increment on the register pair |
else |
CPU_Next_State <= STX_C2; |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper <= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when STX_C1 => |
PC_Ctrl.Oper <= PC_INCR; |
AS_Ctrl.Src <= ADDR_IMM; |
-- If auto-increment is disabled, just load the registers normally |
if( Enable_Auto_Increment = '0' )then |
CPU_Next_State <= PIPE_FILL_1; |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)); |
-- Otherwise, enforce the even register rule, and check the LSB to see |
-- if we should perform the auto-increment on the register pair |
else |
CPU_Next_State <= STX_C2; |
Reg := conv_integer(SubOp(2 downto 1) & '0'); |
Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); |
IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)); |
if( SubOp(0) = '1' )then |
ALU_Ctrl.Oper <= ALU_UPP; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; |
end if; |
end if; |
|
when STX_C2 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_UPP2; |
ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1'; |
|
------------------------------------------------------------------------------- |
-- Multi-Cycle Math Operations (UPP, MUL) |
------------------------------------------------------------------------------- |
-- Because we have to backup the pipeline by 1 to refetch the 2nd |
-- instruction/first operand, we have to return through PF2 |
|
when MUL_C1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_MUL; |
|
when UPP_C1 => |
CPU_Next_State <= PIPE_FILL_2; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_UPP2; |
ALU_Ctrl.Reg <= SubOp_p1; |
|
------------------------------------------------------------------------------- |
-- Basic Stack Manipulation (PSH, POP, RSP) |
------------------------------------------------------------------------------- |
when PSH_C1 => |
CPU_Next_State <= PIPE_FILL_1; |
AS_Ctrl.Src <= ADDR_SP; |
SP_Ctrl.Oper <= SP_PUSH; |
|
when POP_C1 => |
CPU_Next_State <= POP_C2; |
AS_Ctrl.Src <= ADDR_SP; |
|
when POP_C2 => |
CPU_Next_State <= POP_C3; |
PC_Ctrl.Oper <= PC_INCR; |
|
when POP_C3 => |
CPU_Next_State <= POP_C4; |
Cache_Ctrl <= CACHE_OPER1; |
PC_Ctrl.Oper <= PC_INCR; |
|
when POP_C4 => |
CPU_Next_State <= INSTR_DECODE; |
Cache_Ctrl <= CACHE_INSTR; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_POP; |
ALU_Ctrl.Reg <= SubOp; |
ALU_Ctrl.Data <= Operand1; |
|
------------------------------------------------------------------------------- |
-- Subroutines & Interrupts (RTS, JSR) |
------------------------------------------------------------------------------- |
when WAIT_FOR_INT => -- For soft interrupts only, halt the PC |
CPU_Next_State <= WAIT_FOR_INT; |
|
when ISR_C1 => |
CPU_Next_State <= ISR_C2; |
AS_Ctrl.Src <= ADDR_ISR; |
INT_Ctrl.Incr_ISR <= '1'; |
PC_Ctrl.Oper <= PC_INCR; |
-- Rewind the PC by 3 to compensate for the pipeline registers |
PC_Ctrl.Offset <= x"FF"; |
|
when ISR_C2 => |
CPU_Next_State <= ISR_C3; |
AS_Ctrl.Src <= ADDR_ISR; |
DP_Ctrl.Src <= DATA_FLAG; |
|
when ISR_C3 => |
CPU_Next_State <= JSR_C1; |
Cache_Ctrl <= CACHE_OPER1; |
AS_Ctrl.Src <= ADDR_SP; |
SP_Ctrl.Oper <= SP_PUSH; |
DP_Ctrl.Src <= DATA_PC; |
DP_Ctrl.Reg <= ACCUM+1; |
ALU_Ctrl.Oper <= ALU_STP; |
ALU_Ctrl.Reg <= INT_FLAG; |
Ack_D <= '1'; |
|
when JSR_C1 => |
CPU_Next_State <= JSR_C2; |
Cache_Ctrl <= CACHE_OPER2; |
AS_Ctrl.Src <= ADDR_SP; |
SP_Ctrl.Oper <= SP_PUSH; |
DP_Ctrl.Src <= DATA_PC; |
DP_Ctrl.Reg <= ACCUM; |
|
when JSR_C2 => |
CPU_Next_State <= PIPE_FILL_0; |
AS_Ctrl.Src <= ADDR_SP; |
SP_Ctrl.Oper <= SP_PUSH; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
|
when RTS_C1 => |
CPU_Next_State <= RTS_C2; |
AS_Ctrl.Src <= ADDR_SP; |
SP_Ctrl.Oper <= SP_POP; |
|
when RTS_C2 => |
CPU_Next_State <= RTS_C3; |
AS_Ctrl.Src <= ADDR_SP; |
-- if this is an RTI, then we need to POP the flags |
if( SubOp = SOP_RTI )then |
SP_Ctrl.Oper <= SP_POP; |
end if; |
|
when RTS_C3 => |
CPU_Next_State <= RTS_C4; |
Cache_Ctrl <= CACHE_OPER1; |
-- It doesn't really matter what is on the address bus for RTS, while |
-- it does for RTI, so we make this the default |
AS_Ctrl.Src <= ADDR_SP; |
|
when RTS_C4 => |
CPU_Next_State <= RTS_C5; |
Cache_Ctrl <= CACHE_OPER2; |
|
when RTS_C5 => |
CPU_Next_State <= PIPE_FILL_0; |
PC_Ctrl.Oper <= PC_LOAD; |
PC_Ctrl.Addr <= Operand2 & Operand1; |
if( SubOp = SOP_RTI )then |
CPU_Next_State <= RTI_C6; |
Cache_Ctrl <= CACHE_OPER1; |
end if; |
|
when RTI_C6 => |
CPU_Next_State <= PIPE_FILL_1; |
PC_Ctrl.Oper <= PC_INCR; |
ALU_Ctrl.Oper <= ALU_RFLG; |
ALU_Ctrl.Data <= Operand1; |
PC_Ctrl.Oper <= PC_INCR; |
Int_RTI_D <= '1'; |
|
------------------------------------------------------------------------------- |
-- Debugging (BRK) Performs a 5-clock NOP |
------------------------------------------------------------------------------- |
when BRK_C1 => |
CPU_Next_State <= PIPE_FILL_0; |
|
when others => null; |
end case; |
|
-- Interrupt service routines can only begin during the decode and wait |
-- states to avoid corruption due to incomplete instruction execution |
if( Int_Req = '1' )then |
if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then |
CPU_Next_State <= ISR_C1; |
end if; |
end if; |
|
end process; |
|
S_Regs: process( Reset_n, Clock ) |
begin |
if( Reset_n = '0' )then |
CPU_State <= PIPE_FILL_0; |
Opcode <= OP_INC; |
SubOp <= ACCUM; |
SubOp_p1 <= ACCUM; |
Operand1 <= x"00"; |
Operand2 <= x"00"; |
Instr_Prefetch <= '0'; |
Prefetch <= x"00"; |
|
Ack_Q <= '0'; |
Ack_Q1 <= '0'; |
Int_Ack <= '0'; |
Int_RTI <= '0'; |
|
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
CPU_State <= CPU_Next_State; |
case Cache_Ctrl is |
when CACHE_INSTR => |
Opcode <= Rd_Data(7 downto 3); |
SubOp <= Rd_Data(2 downto 0); |
SubOp_p1 <= Rd_Data(2 downto 0) + 1; |
if( Instr_Prefetch = '1' )then |
Opcode <= Prefetch(7 downto 3); |
SubOp <= Prefetch(2 downto 0); |
SubOp_p1 <= Prefetch(2 downto 0) + 1; |
Instr_Prefetch <= '0'; |
end if; |
when CACHE_OPER1 => |
Operand1 <= Rd_Data; |
when CACHE_OPER2 => |
Operand2 <= Rd_Data; |
when CACHE_PREFETCH => |
Prefetch <= Rd_Data; |
Instr_Prefetch <= '1'; |
when CACHE_IDLE => |
null; |
end case; |
|
-- Interrupt signalling registers |
Ack_Q <= Ack_D; |
Ack_Q1 <= Ack_Q; |
Int_Ack <= Ack_Q1; |
Int_RTI <= Int_RTI_D; |
end if; |
end if; |
end process; |
|
------------------------------------------------------------------------------- |
-- Fixed in-line statements for the interrupt mask, and stack pointer address |
------------------------------------------------------------------------------- |
|
-- The interrupt control mask is always sourced out of R0 |
INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM)); |
|
-- The original RSP instruction simply reset the stack pointer to the preset |
-- address set at compile time. However, with little extra effort, we can |
-- modify the instruction to allow the stack pointer to be moved anywhere in |
-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as |
-- a fixed source |
|
Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move = '1' )generate |
SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0); |
end generate; |
|
Normal_Stack_Reset_fn: if( Allow_Stack_Address_Move = '0' )generate |
SP_Ctrl.Addr <= Stack_Start_Addr; |
end generate; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- Address Source Mux |
------------------------------------------------------------------------------- |
|
Open8_AS : block is |
begin |
|
Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR ) |
variable PC_Mux, SP_Mux : ADDRESS_TYPE; |
variable IMM_Mux, ISR_Mux: ADDRESS_TYPE; |
begin |
PC_Mux := (others => '0'); |
SP_Mux := (others => '0'); |
IMM_Mux := (others => '0'); |
ISR_Mux := (others => '0'); |
|
case AS_Ctrl.Src is |
when ADDR_PC => |
PC_Mux := PC; |
when ADDR_SP => |
SP_Mux := SP; |
when ADDR_IMM => |
IMM_Mux := IMM; |
when ADDR_ISR => |
ISR_Mux := ISR; |
end case; |
|
for i in 0 to 15 loop |
Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or |
ISR_Mux(i); |
end loop; |
end process; |
|
end block; |
|
------------------------------------------------------------------------------- |
-- (Write) Data Path |
------------------------------------------------------------------------------- |
|
Open8_DP : block is |
signal Wr_Data_D : DATA_TYPE := (others => '0'); |
signal Wr_Enable_D : std_logic := '0'; |
begin |
|
Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC ) |
variable Reg_Mux, PC_Mux : DATA_TYPE; |
variable Flag_Mux : DATA_TYPE; |
begin |
Reg_Mux := (others => '0'); |
Flag_Mux := (others => '0'); |
PC_Mux := (others => '0'); |
Wr_Enable_D <= '0'; |
|
case DP_Ctrl.Src is |
when DATA_IDLE => |
null; |
when DATA_REG => |
Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg)); |
Wr_Enable_D <= '1'; |
when DATA_FLAG => |
Flag_Mux := ALU_Flags; |
Wr_Enable_D <= '1'; |
when DATA_PC => |
Wr_Enable_D <= '1'; |
if( DP_Ctrl.Reg = ACCUM )then |
PC_Mux := PC(7 downto 0); |
else |
PC_Mux := PC(15 downto 8); |
end if; |
end case; |
|
for i in 0 to 7 loop |
Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i); |
end loop; |
end process; |
|
S_Regs: process( Reset_n, Clock ) |
begin |
if( Reset_n = '0' )then |
Wr_Data <= (others => '0'); |
Wr_Enable <= '0'; |
Rd_Enable <= '1'; |
elsif( rising_edge(Clock) )then |
if( Halt = '0' )then |
Wr_Data <= Wr_Data_D; |
Wr_Enable <= Wr_Enable_D; |
Rd_Enable <= not Wr_Enable_D; |
end if; |
end if; |
end process; |
|
end block; |
|
end rtl; |
/trunk/VHDL/Open8_pkg.vhd
0,0 → 1,68
-- Copyright (c)2006, Jeremy Seth Henry |
-- All rights reserved. |
-- |
-- Redistribution and use in source and binary forms, with or without |
-- modification, are permitted provided that the following conditions are met: |
-- * Redistributions of source code must retain the above copyright |
-- notice, this list of conditions and the following disclaimer. |
-- * Redistributions in binary form must reproduce the above copyright |
-- notice, this list of conditions and the following disclaimer in the |
-- documentation and/or other materials provided with the distribution, |
-- where applicable (as part of a user interface, debugging port, etc.) |
-- |
-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY |
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY |
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
-- VHDL Units : Open8_pkg |
-- Description: Contains constant definitions for the Open8 processor |
-- Revision History |
-- Author Date Change |
------------------ -------- --------------------------------------------------- |
-- Seth Henry 07/22/06 Design Start |
|
library ieee; |
use ieee.std_logic_1164.all; |
|
package Open8_pkg is |
|
-- These subtypes can be used with external peripherals to simplify |
-- connection to the core. |
subtype ADDRESS_TYPE is std_logic_vector(15 downto 0); |
subtype DATA_TYPE is std_logic_vector(7 downto 0); |
-- Note: INTERRUPT_BUNDLE must be exactly the same width as DATA_TYPE |
subtype INTERRUPT_BUNDLE is DATA_TYPE; |
|
-- Component declaration |
component Open8_CPU is |
generic( |
Stack_Start_Addr : ADDRESS_TYPE; |
Allow_Stack_Address_Move : std_logic := '0'; |
ISR_Start_Addr : ADDRESS_TYPE; |
Program_Start_Addr : ADDRESS_TYPE; |
Default_Interrupt_Mask : DATA_TYPE; |
Enable_CPU_Halt : std_logic := '0'; |
Enable_Auto_Increment : std_logic := '0' ); |
port( |
Clock : in std_logic; |
Reset_n : in std_logic; |
CPU_Halt : in std_logic; |
Interrupts : in INTERRUPT_BUNDLE; |
Address : out ADDRESS_TYPE; |
Rd_Data : in DATA_TYPE; |
Rd_Enable : out std_logic; |
Wr_Data : out DATA_TYPE; |
Wr_Enable : out std_logic ); |
end component; |
|
end Open8_pkg; |
|
package body Open8_pkg is |
end package body; |
trunk/VHDL
Property changes :
Added: svn:mergeinfo
## -0,0 +0,0 ##
Index: trunk/open8_urisc/VHDL/Open8.vhd
===================================================================
--- trunk/open8_urisc/VHDL/Open8.vhd (revision 7)
+++ trunk/open8_urisc/VHDL/Open8.vhd (nonexistent)
@@ -1,1495 +0,0 @@
--- Copyright (c)2006, Jeremy Seth Henry
--- All rights reserved.
---
--- Redistribution and use in source and binary forms, with or without
--- modification, are permitted provided that the following conditions are met:
--- * Redistributions of source code must retain the above copyright
--- notice, this list of conditions and the following disclaimer.
--- * Redistributions in binary form must reproduce the above copyright
--- notice, this list of conditions and the following disclaimer in the
--- documentation and/or other materials provided with the distribution,
--- where applicable (as part of a user interface, debugging port, etc.)
---
--- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
--- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
--- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
--- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
--- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
--- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
--- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
--- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
--- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
--- VHDL Units : Open8_CPU
--- Description: VHDL model of the V8 uRISC 8-bit processor core
--- Notes : Generic definitions
--- : Stack_Start_Address - determines the initial (reset) value of
--- : the stack pointer. Also used for the RSP instruction if
--- : Allow_Stack_Address_Move is 0.
--- :
--- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be
--- : programmed via thet RSP instruction. If enabled, the contents
--- : of R1:R0 are used to initialize the stack pointer.
--- :
--- : ISR_Start_Addr - determines the location of the interrupt
--- : service vector table. There are 8 service vectors, or 16
--- : bytes, which must be allocated to either ROM or RAM.
--- :
--- : Program_Start_Addr - Determines the initial value of the
--- : program counter.
--- :
--- : Default_Interrupt_Mask - Determines the intial value of the
--- : interrupt mask. To remain true to the original core, which
--- : had no interrupt mask, this should be set to x"FF". Otherwise
--- : it can be initialized to any value.
--- :
--- : Enable_CPU_Halt - determines whether the CPU_Halt pin is
--- : connected or not. This signal is typically used to halt the
--- : processor for a few cycles when accessing slower peripherals,
--- : but may also be used to single step the processor. If this
--- : feature isn't used, it can be disabled to increase Fmax.
--- :
--- : The CPU_Halt signal can be used to access slower peripherals
--- : by allowing the device to "pause" the CPU. This can be used,
--- : for example, to write to a standard LCD panel, which requires
--- : a 4MHz interface, by halting on writes. Alternately, devices
--- : such as SDRAM controllers, can pause the processor until the
--- : data is ready to be presented.
--- :
--- : The Enable_Auto_Increment generic can be used to modify the
--- : indexed instructions such that specifying an odd register
--- : will use the next lower register pair, post-incrementing the
--- : value in that pair. IOW, specifying STX R1 will instead
--- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1
--- :
--- : Instructions USR and USR2 have been replaced with DBNZ, and MUL
--- : respectively. DBNZ decrements the specified register, and will
--- : branch if the result is non-zero (Zero flag is not set). MUL
--- : places the result of R0 * Rn into R1:R0, and executes in two
--- : cycles. (R1:R0 = R0 * Rn)
--- :
--- Revision History
--- Author Date Change
------------------- -------- ---------------------------------------------------
--- Seth Henry 07/19/06 Design Start
-
-library ieee;
- use ieee.std_logic_1164.all;
- use ieee.std_logic_unsigned.all;
- use ieee.std_logic_arith.all;
-
-library work;
-use work.Open8_pkg.all;
-
-entity Open8_CPU is
- generic(
- Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack
- Allow_Stack_Address_Move : std_logic := '0'; -- Use Normal v8 RSP
- ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's
- Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location
- Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints
- Enable_CPU_Halt : std_logic := '0'; -- Disable HALT pin
- Enable_Auto_Increment : std_logic := '0' ); -- Modify indexed instr
- port(
- Clock : in std_logic;
- Reset_n : in std_logic;
- CPU_Halt : in std_logic;
- Interrupts : in INTERRUPT_BUNDLE;
- --
- Address : out ADDRESS_TYPE;
- Rd_Data : in DATA_TYPE;
- Rd_Enable : out std_logic;
- Wr_Data : out DATA_TYPE;
- Wr_Enable : out std_logic );
-end entity;
-
-architecture rtl of Open8_CPU is
- subtype OPCODE_TYPE is std_logic_vector(4 downto 0);
- subtype SUBOP_TYPE is std_logic_vector(2 downto 0);
-
- -- Most of the ALU instructions are the same as their Opcode equivalents with
- -- three exceptions (for IDLE, UPP2, and MUL2)
- constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00"
- constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01"
- constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02"
- constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03"
- constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04"
- constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05"
- constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06"
- constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07"
- constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08"
- constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09"
- constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A"
- constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B"
- constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C"
- constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D"
- constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E"
- constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F"
- constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11"
- constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16"
- constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18"
- constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C"
- constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E"
-
- constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10"
- constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"11"
- constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"12"
-
- constant FL_ZERO : integer := 0;
- constant FL_CARRY : integer := 1;
- constant FL_NEG : integer := 2;
- constant FL_INT_EN : integer := 3;
- constant FL_GP1 : integer := 4;
- constant FL_GP2 : integer := 5;
- constant FL_GP3 : integer := 6;
- constant FL_GP4 : integer := 7;
-
- type ALU_CTRL_TYPE is record
- Oper : OPCODE_TYPE;
- Reg : SUBOP_TYPE;
- Data : DATA_TYPE;
- end record;
-
- constant ACCUM : SUBOP_TYPE := "000";
- constant INT_FLAG : SUBOP_TYPE := "011";
-
- -- There are only 8 byte-wide registers - and the write register is always 0,
- -- so there is little point in making a RAM out of this
- type REGFILE_TYPE is array (0 to 7) of DATA_TYPE;
-
- subtype FLAG_TYPE is DATA_TYPE;
-
- type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD );
-
- type PC_CTRL_TYPE is record
- Oper : PC_MODES;
- Offset : DATA_TYPE;
- Addr : ADDRESS_TYPE;
- end record;
-
- type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH );
-
- type SP_CTRL_TYPE is record
- Oper : SP_MODES;
- Addr : ADDRESS_TYPE;
- end record;
-
- type INT_CTRL_TYPE is record
- Mask_Set : std_logic;
- Mask_Data : DATA_TYPE;
- Soft_Ints : INTERRUPT_BUNDLE;
- Incr_ISR : std_logic;
- end record;
-
- type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR);
-
- type ADDR_CTRL_TYPE is record
- Src : AS_MODES;
- end record;
-
- type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC );
-
- type DATA_CTRL_TYPE is record
- Src : DP_MODES;
- Reg : SUBOP_TYPE;
- end record;
-
- signal Halt : std_logic;
- signal ALU_Ctrl : ALU_CTRL_TYPE;
- signal ALU_Regs : REGFILE_TYPE;
- signal ALU_Flags : FLAG_TYPE;
- signal PC_Ctrl : PC_CTRL_TYPE;
- signal SP_Ctrl : SP_CTRL_TYPE;
- signal AS_Ctrl : ADDR_CTRL_TYPE;
- signal DP_Ctrl : DATA_CTRL_TYPE;
- signal INT_Ctrl : INT_CTRL_TYPE;
- signal Int_Req, Int_Ack : std_logic;
- signal Int_RTI : std_logic;
- signal Int_Mask : DATA_TYPE;
- signal PC : ADDRESS_TYPE;
- signal SP : ADDRESS_TYPE;
- signal ISR : ADDRESS_TYPE;
- signal IMM : ADDRESS_TYPE;
-begin
-
-Halt_Disabled_fn: if( Enable_CPU_Halt = '0' )generate
- Halt <= '0';
-end generate;
-
-Halt_Enabled_fn: if( Enable_CPU_Halt = '1' )generate
- Halt <= CPU_Halt;
-end generate;
-
--------------------------------------------------------------------------------
--- ALU (Arithmetic / Logic Unit
--- Notes:
--- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others
--------------------------------------------------------------------------------
-
-Open8_ALU : block is
-
- -- Preinitialization is for simulation only - check actual reset conditions
- signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') );
- signal Flags_D, Flags : FLAG_TYPE := (others => '0');
- signal Mult : ADDRESS_TYPE := (others => '0');
-
- signal Sum : std_logic_vector(8 downto 0) := (others => '0');
- signal Addend_A, Addend_B : DATA_TYPE := (others => '0');
- signal Carry : std_logic := '0';
-
-begin
-
- ALU_Regs <= Regfile;
- ALU_Flags <= Flags;
-
- ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum )
- variable Index : integer range 0 to 7 := 0;
- variable Temp : std_logic_vector(8 downto 0);
- begin
- Regfile_D <= Regfile;
- Flags_D <= Flags;
- Addend_A <= x"00";
- Addend_B <= x"00";
- Carry <= '0';
-
- Temp := (others => '0');
- Index := conv_integer(ALU_Ctrl.Reg);
-
- case ALU_Ctrl.Oper is
- when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z
- Addend_A <= x"01";
- Addend_B <= Regfile(Index);
- Flags_D(FL_CARRY) <= Sum(8);
- Regfile_D(Index) <= Sum(7 downto 0);
- -- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP
- -- doesn't set the N or Z flags. Note that the MSB can be used to
- -- distinguish between the two ALU modes.
- if( ALU_Ctrl.Oper(4) = '0' )then
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Sum(7);
- end if;
-
- when ALU_UPP2 => -- Rn = Rn + C
- Addend_A <= x"00";
- Addend_B <= Regfile(Index);
- Carry <= Flags(FL_CARRY);
- Flags_D(FL_CARRY) <= Sum(8);
- Regfile_D(Index) <= Sum(7 downto 0);
-
- when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z
- Addend_A <= Regfile(0);
- Addend_B <= Regfile(Index);
- Carry <= Flags(FL_CARRY);
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Sum(8);
- Flags_D(FL_NEG) <= Sum(7);
- Regfile_D(0) <= Sum(7 downto 0);
-
- when ALU_TX0 => -- R0 = Rn : Flags N,Z
- Temp := "0" & Regfile(Index);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(0) <= Temp(7 downto 0);
-
- when ALU_OR => -- R0 = R0 | Rn : Flags N,Z
- Temp(7 downto 0) := Regfile(0) or Regfile(Index);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(0) <= Temp(7 downto 0);
-
- when ALU_AND => -- R0 = R0 & Rn : Flags N,Z
- Temp(7 downto 0) := Regfile(0) and Regfile(Index);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(0) <= Temp(7 downto 0);
-
- when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z
- Temp(7 downto 0) := Regfile(0) xor Regfile(Index);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(0) <= Temp(7 downto 0);
-
- when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z
- Temp := Regfile(Index) & Flags(FL_CARRY);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Temp(8);
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(Index) <= Temp(7 downto 0);
-
- when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z
- Temp := Regfile(Index)(0) & Flags(FL_CARRY) &
- Regfile(Index)(7 downto 1);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Temp(8);
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(Index) <= Temp(7 downto 0);
-
- when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z
- Addend_A <= Regfile(Index);
- Addend_B <= x"FF";
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Sum(8);
- Flags_D(FL_NEG) <= Sum(7);
- Regfile_D(Index) <= Sum(7 downto 0);
-
- when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z
- Addend_A <= Regfile(0);
- Addend_B <= not Regfile(Index);
- Carry <= Flags(FL_CARRY);
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Sum(8);
- Flags_D(FL_NEG) <= Sum(7);
- Regfile_D(0) <= Sum(7 downto 0);
-
- when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z
- Addend_A <= Regfile(0);
- Addend_B <= Regfile(Index);
- Flags_D(FL_CARRY) <= Sum(8);
- Regfile_D(0) <= Sum(7 downto 0);
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Sum(7);
-
- when ALU_STP => -- Sets bit(n) in the Flags register
- Flags_D(Index) <= '1';
-
- when ALU_BTT => -- Tests if R0 is negative or zero. No change to R0
- Temp := "0" & Regfile(Index);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
-
- when ALU_CLP => -- Clears bit(n) in the Flags register
- Flags_D(Index) <= '0';
-
- when ALU_T0X => -- Rn = R0 : Flags N,Z
- Temp := "0" & Regfile(0);
- Flags_D(FL_ZERO) <= '0';
- if( Temp(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= Temp(7);
- Regfile_D(Index) <= Temp(7 downto 0);
-
- when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z
- Addend_A <= Regfile(0);
- Addend_B <= not Regfile(Index);
- Carry <= '1';
- Flags_D(FL_ZERO) <= '0';
- if( Sum(7 downto 0) = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_CARRY) <= Sum(8);
- Flags_D(FL_NEG) <= Sum(7);
-
- when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags N,Z
- Regfile_D(0) <= Mult(7 downto 0);
- Regfile_D(1) <= Mult(15 downto 8);
- Flags_D(FL_ZERO) <= '0';
- if( Mult = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
-
- when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z
- -- The POP instruction doesn't alter the flags, so we need to check
- if( ALU_Ctrl.Oper = ALU_LDI )then
- Flags_D(FL_ZERO) <= '0';
- if( ALU_Ctrl.Data = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
- end if;
- Regfile_D(Index) <= ALU_Ctrl.Data;
-
- when ALU_LDX => -- R0 <= Data : Flags N,Z
- Flags_D(FL_ZERO) <= '0';
- if( ALU_Ctrl.Data = 0 )then
- Flags_D(FL_ZERO) <= '1';
- end if;
- Flags_D(FL_NEG) <= ALU_Ctrl.Data(7);
- Regfile_D(0) <= ALU_Ctrl.Data;
-
- when ALU_RFLG =>
- Flags_D <= ALU_Ctrl.Data;
-
- when others => null;
- end case;
- end process;
-
- -- 8-bit Adder with carry
- Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry;
-
- -- We need to infer a hardware multipler, so we create a special clocked
- -- process with no reset or clock enable
- M_Reg: process( Clock )
- begin
- if( rising_edge(Clock) )then
- Mult <= Regfile(0) *
- Regfile(conv_integer(ALU_Ctrl.Reg));
- end if;
- end process;
-
- S_Regs: process( Reset_n, Clock )
- begin
- if( Reset_n = '0' )then
- for i in 0 to 7 loop
- Regfile(i) <= (others => '0');
- end loop;
- Flags <= x"00";
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- Regfile <= Regfile_D;
- Flags <= Flags_D;
- end if;
- end if;
- end process;
-
-end block;
-
--------------------------------------------------------------------------------
--- Program Counter
--------------------------------------------------------------------------------
-
-Open8_PC : block is
- -- Preinitialization is for simulation only - check actual reset conditions
- signal PC_Q : ADDRESS_TYPE := (others => '0');
- signal Rewind_1_2n : std_logic := '0';
-begin
-
- PC <= PC_Q;
-
- -- This sets the carry input on the "rewind" adder. If the rewind command is
- -- PC_REV2, then we clear the carry. Otherwise, we leave it high.
- Rewind_PC_Calc: process( PC_Ctrl )
- begin
- Rewind_1_2n <= '1';
- if( PC_Ctrl.Oper = PC_REV2 )then
- Rewind_1_2n <= '0';
- end if;
- end process;
-
- Program_Counter: process( Reset_n, Clock, Halt, PC_Ctrl, PC_Q, Rewind_1_2n )
- variable PC_Offset_SX : ADDRESS_TYPE := x"0000";
- begin
- PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7));
- PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset;
- if( Reset_n = '0' )then
- PC_Q <= Program_Start_Addr;
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- case PC_Ctrl.Oper is
- when PC_IDLE =>
- null;
- when PC_REV1 | PC_REV2 =>
- PC_Q <= PC_Q - 2 + Rewind_1_2n;
- when PC_INCR =>
- PC_Q <= PC_Q + PC_Offset_SX - 2;
- when PC_LOAD =>
- PC_Q <= PC_Ctrl.Addr;
- end case;
- end if;
- end if;
- end process;
-
-end block;
-
--------------------------------------------------------------------------------
--- Stack Pointer
--------------------------------------------------------------------------------
-
-Open8_SP : block is
- -- Preinitialization is for simulation only - check actual reset conditions
- signal SP_Q : ADDRESS_TYPE := (others => '0');
-begin
-
- SP <= SP_Q;
-
- Stack_Pointer: process( Reset_n, Clock )
- begin
- if( Reset_n = '0' )then
- SP_Q <= Stack_Start_Addr;
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- case SP_Ctrl.Oper is
- when SP_IDLE => null;
- when SP_RSET => SP_Q <= SP_Ctrl.Addr;
- when SP_POP => SP_Q <= SP_Q + 1;
- when SP_PUSH => SP_Q <= SP_Q - 1;
- end case;
- end if;
- end if;
- end process;
-
-end block;
-
--------------------------------------------------------------------------------
--- Interrupt Controller
--------------------------------------------------------------------------------
-
-Open8_INT : block is
-
- -- Preinitialization is for simulation only - check actual reset conditions
- constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr;
- constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2;
- constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4;
- constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6;
- constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8;
- constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10;
- constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12;
- constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14;
-
- signal i_Ints : INTERRUPT_BUNDLE := (others => '0');
- signal Pending_D : INTERRUPT_BUNDLE := (others => '0');
- signal Pending : INTERRUPT_BUNDLE := (others => '0');
- signal Wait_for_FSM : std_logic := '0';
- signal Mask : std_logic_vector(6 downto 0) := (others => '0');
- signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0');
-
- type INT_HIST is array (0 to 8) of integer range 0 to 7;
- signal History : INT_HIST := (others => 0);
- signal Int_Trig : std_logic := '0';
- signal Hist_Level : integer range 0 to 7 := 0;
- signal Hist_Ptr : integer range 0 to 8 := 0;
-
-begin
- Int_Mask <= Mask & '1';
- ISR <= ISR_Q;
-
- Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl )
- variable S_Mask : std_logic_vector(7 downto 0);
- begin
- S_Mask := Mask & '1';
- for i in 0 to 7 loop
- i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i))
- and S_Mask(i);
- end loop;
- end process;
-
- Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl,
- History, Hist_Ptr )
- begin
- ISR_D <= ISR_Q;
- Pending_D <= Pending;
- Int_Trig <= '0';
- Hist_Level <= 0;
-
- -- Record any incoming interrupts to the pending buffer
- if( i_Ints > 0 )then
- Pending_D <= i_Ints;
- end if;
-
- -- Incr_ISR allows the CPU Core to advance the vector address to pop the
- -- lower half of the address.
- if( INT_Ctrl.Incr_ISR = '1' )then
- ISR_D <= ISR_Q + 1;
- end if;
-
- -- Only mess with interrupt signals while the CPU core is not currently
- -- working with the ISR address (ie, not loading a new service vector)
- if( Wait_for_FSM = '0' and Pending > 0 )then
- if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then
- ISR_D <= INT_VECTOR_0;
- Pending_D(0) <= '0';
- Hist_Level <= 0;
- Int_Trig <= '1';
- elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then
- ISR_D <= INT_VECTOR_1;
- Pending_D(1) <= '0';
- Hist_Level <= 1;
- Int_Trig <= '1';
- elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then
- ISR_D <= INT_VECTOR_2;
- Pending_D(2) <= '0';
- Hist_Level <= 2;
- Int_Trig <= '1';
- elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then
- ISR_D <= INT_VECTOR_3;
- Pending_D(3) <= '0';
- Hist_Level <= 3;
- Int_Trig <= '1';
- elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then
- ISR_D <= INT_VECTOR_4;
- Pending_D(4) <= '0';
- Hist_Level <= 4;
- Int_Trig <= '1';
- elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then
- ISR_D <= INT_VECTOR_5;
- Pending_D(5) <= '0';
- Hist_Level <= 5;
- Int_Trig <= '1';
- elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then
- ISR_D <= INT_VECTOR_6;
- Pending_D(6) <= '0';
- Hist_Level <= 6;
- Int_Trig <= '1';
- elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then
- ISR_D <= INT_VECTOR_7;
- Pending_D(7) <= '0';
- Hist_Level <= 7;
- Int_Trig <= '1';
- end if;
- end if;
- end process;
-
- S_Regs: process( Reset_n, Clock )
- begin
- if( Reset_n = '0' )then
- Int_Req <= '0';
- Pending <= x"00";
- Wait_for_FSM <= '0';
- Mask <= Default_Interrupt_Mask(7 downto 1);
- ISR_Q <= INT_VECTOR_0;
- for i in 0 to 8 loop
- History(i) <= 0;
- end loop;
- Hist_Ptr <= 0;
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- Int_Req <= Wait_for_FSM and (not Int_Ack);
- Pending <= Pending_D;
- -- Reset the Wait_for_FSM flag on Int_Ack
- if( Int_Ack = '1' )then
- Wait_for_FSM <= '0';
- -- Set the Wait_for_FSM flag on Int_Trig
- elsif( Int_Trig = '1' )then
- Wait_for_FSM <= '1';
- end if;
- if( INT_Ctrl.Mask_Set = '1' )then
- Mask <= INT_Ctrl.Mask_Data(7 downto 1);
- end if;
- ISR_Q <= ISR_D;
- if( Int_Trig = '1' )then
- History(Hist_Ptr+1) <= Hist_Level;
- Hist_Ptr <= Hist_Ptr + 1;
- elsif( Int_RTI = '1' and Hist_Ptr > 0 )then
- Hist_Ptr <= Hist_Ptr - 1;
- end if;
- end if;
- end if;
- end process;
-
-end block;
-
--------------------------------------------------------------------------------
--- State Logic / Instruction Decoding & Execution
--------------------------------------------------------------------------------
-
-Open8_FSM : block is
-
- -- These are all the primary instructions/op-codes (upper 5-bits)
- constant OP_INC : OPCODE_TYPE := "00000";
- constant OP_ADC : OPCODE_TYPE := "00001";
- constant OP_TX0 : OPCODE_TYPE := "00010";
- constant OP_OR : OPCODE_TYPE := "00011";
- constant OP_AND : OPCODE_TYPE := "00100";
- constant OP_XOR : OPCODE_TYPE := "00101";
- constant OP_ROL : OPCODE_TYPE := "00110";
- constant OP_ROR : OPCODE_TYPE := "00111";
- constant OP_DEC : OPCODE_TYPE := "01000";
- constant OP_SBC : OPCODE_TYPE := "01001";
- constant OP_ADD : OPCODE_TYPE := "01010";
- constant OP_STP : OPCODE_TYPE := "01011";
- constant OP_BTT : OPCODE_TYPE := "01100";
- constant OP_CLP : OPCODE_TYPE := "01101";
- constant OP_T0X : OPCODE_TYPE := "01110";
- constant OP_CMP : OPCODE_TYPE := "01111";
- constant OP_PSH : OPCODE_TYPE := "10000";
- constant OP_POP : OPCODE_TYPE := "10001";
- constant OP_BR0 : OPCODE_TYPE := "10010";
- constant OP_BR1 : OPCODE_TYPE := "10011";
- constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR
- constant OP_INT : OPCODE_TYPE := "10101";
- constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2
- constant OP_STK : OPCODE_TYPE := "10111";
- constant OP_UPP : OPCODE_TYPE := "11000";
- constant OP_STA : OPCODE_TYPE := "11001";
- constant OP_STX : OPCODE_TYPE := "11010";
- constant OP_STO : OPCODE_TYPE := "11011";
- constant OP_LDI : OPCODE_TYPE := "11100";
- constant OP_LDA : OPCODE_TYPE := "11101";
- constant OP_LDX : OPCODE_TYPE := "11110";
- constant OP_LDO : OPCODE_TYPE := "11111";
-
- -- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits)
- constant SOP_RSP : SUBOP_TYPE := "000";
- constant SOP_RTS : SUBOP_TYPE := "001";
- constant SOP_RTI : SUBOP_TYPE := "010";
- constant SOP_BRK : SUBOP_TYPE := "011";
- constant SOP_JMP : SUBOP_TYPE := "100";
- constant SOP_SMSK : SUBOP_TYPE := "101";
- constant SOP_GMSK : SUBOP_TYPE := "110";
- constant SOP_JSR : SUBOP_TYPE := "111";
-
- -- Preinitialization is for simulation only - check actual reset conditions
- type CPU_STATES is (
- -- Instruction fetch & Decode
- PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE,
- -- Branching
- BRN_C1, DBNZ_C1, JMP_C1, JMP_C2,
- -- Loads
- LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3,
- -- Stores
- STA_C1, STA_C2, STA_C3, STO_C1, STX_C1, STX_C2,
- -- 2-cycle math
- MUL_C1, UPP_C1,
- -- Stack
- PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4,
- -- Subroutines & Interrupts
- WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2,
- RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6,
- -- Debugging
- BRK_C1 );
-
- signal CPU_Next_State : CPU_STATES := PIPE_FILL_0;
- signal CPU_State : CPU_STATES := PIPE_FILL_0;
-
- type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2,
- CACHE_PREFETCH );
- signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE;
-
- signal Opcode : OPCODE_TYPE := (others => '0');
- signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0');
- -- synthesis translate_off
- signal Instruction : DATA_TYPE := (others => '0');
- -- synthesis translate_on
- signal Prefetch : DATA_TYPE := (others => '0');
- signal Operand1, Operand2 : DATA_TYPE := (others => '0');
-
- signal Instr_Prefetch : std_logic := '0';
-
- signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0';
- signal Int_RTI_D : std_logic := '0';
-
-begin
-
- -- synthesis translate_off
- Instruction <= Opcode & SubOp;
- -- synthesis translate_on
-
- State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode,
- SubOp , SubOp_p1, Operand1, Operand2, Int_Req )
- variable Reg, Reg_1 : integer range 0 to 7 := 0;
- variable Offset_SX : ADDRESS_TYPE;
- begin
- CPU_Next_State <= CPU_State;
- Cache_Ctrl <= CACHE_IDLE;
- --
- ALU_Ctrl.Oper <= ALU_IDLE;
- ALU_Ctrl.Reg <= ACCUM;
- ALU_Ctrl.Data <= x"00";
- --
- PC_Ctrl.Oper <= PC_IDLE;
-
- PC_Ctrl.Offset <= x"03";
- PC_Ctrl.Addr <= x"0000";
- --
- SP_Ctrl.Oper <= SP_IDLE;
- --
- AS_Ctrl.Src <= ADDR_PC;
- IMM <= x"0000";
- --
- DP_Ctrl.Src <= DATA_IDLE;
- DP_Ctrl.Reg <= ACCUM;
- --
- INT_Ctrl.Mask_Set <= '0';
- INT_Ctrl.Soft_Ints <= x"00";
- INT_Ctrl.Incr_ISR <= '0';
- Ack_D <= '0';
- Int_RTI_D <= '0';
-
- -- Assign the most common value of Reg and Reg1 outside the case structure
- -- to simplify things.
- Reg := conv_integer(SubOp);
- Reg_1 := conv_integer(SubOp_p1);
- Offset_SX(15 downto 0) := (others => Operand1(7));
- Offset_SX(7 downto 0) := Operand1;
-
- case CPU_State is
--------------------------------------------------------------------------------
--- Initial Instruction fetch & decode
--------------------------------------------------------------------------------
- when PIPE_FILL_0 =>
- CPU_Next_State <= PIPE_FILL_1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when PIPE_FILL_1 =>
- CPU_Next_State <= PIPE_FILL_2;
- PC_Ctrl.Oper <= PC_INCR;
-
- when PIPE_FILL_2 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
-
- when INSTR_DECODE =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
-
- case Opcode is
- when OP_PSH =>
- CPU_Next_State <= PSH_C1;
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_REV1;
- DP_Ctrl.Src <= DATA_REG;
- DP_Ctrl.Reg <= SubOp;
-
- when OP_POP =>
- CPU_Next_State <= POP_C1;
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_REV2;
- SP_Ctrl.Oper <= SP_POP;
-
- when OP_BR0 | OP_BR1 =>
- CPU_Next_State <= BRN_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when OP_DBNZ =>
- CPU_Next_State <= DBNZ_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_DEC;
- ALU_Ctrl.Reg <= SubOp;
-
- when OP_INT =>
- PC_Ctrl.Oper <= PC_INCR;
- if( Int_Mask(Reg) = '1' )then
- CPU_Next_State <= WAIT_FOR_INT;
- INT_Ctrl.Soft_Ints(Reg) <= '1';
- end if;
-
- when OP_STK =>
- case SubOp is
- when SOP_RSP =>
- PC_Ctrl.Oper <= PC_INCR;
- SP_Ctrl.Oper <= SP_RSET;
-
- when SOP_RTS | SOP_RTI =>
- CPU_Next_State <= RTS_C1;
- Cache_Ctrl <= CACHE_IDLE;
- SP_Ctrl.Oper <= SP_POP;
-
- when SOP_BRK =>
- CPU_Next_State <= BRK_C1;
- PC_Ctrl.Oper <= PC_REV2;
-
- when SOP_JMP =>
- CPU_Next_State <= JMP_C1;
- Cache_Ctrl <= CACHE_OPER1;
-
- when SOP_SMSK =>
- PC_Ctrl.Oper <= PC_INCR;
- INT_Ctrl.Mask_Set <= '1';
-
- when SOP_GMSK =>
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper<= ALU_LDI;
- ALU_Ctrl.Reg <= ACCUM;
- ALU_Ctrl.Data<= Int_Mask;
-
- when SOP_JSR =>
- CPU_Next_State <= JSR_C1;
- Cache_Ctrl <= CACHE_OPER1;
- DP_Ctrl.Src <= DATA_PC;
- DP_Ctrl.Reg <= ACCUM+1;
-
- when others => null;
- end case;
-
- when OP_MUL =>
- CPU_Next_State <= MUL_C1;
- Cache_Ctrl <= CACHE_PREFETCH;
-
- -- We need to back the PC up by 1, and all it to refill. An
- -- unfortunate consequence of the pipelining. We can get away with
- -- only 1 extra clock by pre-fetching the next instruction, though
- PC_Ctrl.Oper <= PC_REV1;
- -- Multiplication is automatic, but requires a single clock cycle.
- -- We need to specify the register for Rn (R1:R0 = R0 * Rn) now,
- -- but will issue the multiply command on the next clock to copy
- -- the results to the specified register.
- ALU_Ctrl.Oper <= ALU_IDLE;
- ALU_Ctrl.Reg <= SubOp; -- Rn
-
- when OP_UPP =>
- CPU_Next_State <= UPP_C1;
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_REV1;
- ALU_Ctrl.Oper <= Opcode;
- ALU_Ctrl.Reg <= SubOp;
-
- when OP_LDA =>
- CPU_Next_State <= LDA_C1;
- Cache_Ctrl <= CACHE_OPER1;
-
- when OP_LDI =>
- CPU_Next_State <= LDI_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when OP_LDO =>
- CPU_Next_State <= LDO_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_REV2;
-
- when OP_LDX =>
- CPU_Next_State <= LDX_C1;
- PC_Ctrl.Oper <= PC_REV2;
- AS_Ctrl.Src <= ADDR_IMM;
- -- If auto-increment is disabled, use the specified register pair,
- -- otherwise, for an odd:even pair, and issue the first half of
- -- a UPP instruction to the ALU
- if( Enable_Auto_Increment = '0' )then
- IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
- else
- Reg := conv_integer(SubOp(2 downto 1) & '0');
- Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
- IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg);
- if( SubOp(0) = '1' )then
- ALU_Ctrl.Oper<= ALU_UPP;
- ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
- end if;
- end if;
-
- when OP_STA =>
- CPU_Next_State <= STA_C1;
- Cache_Ctrl <= CACHE_OPER1;
-
- when OP_STO =>
- CPU_Next_State <= STO_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_REV2;
- DP_Ctrl.Src <= DATA_REG;
- DP_Ctrl.Reg <= ACCUM;
-
- when OP_STX =>
- CPU_Next_State <= STX_C1;
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_REV2;
- DP_Ctrl.Src <= DATA_REG;
- DP_Ctrl.Reg <= ACCUM;
-
- when others =>
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= Opcode;
- ALU_Ctrl.Reg <= SubOp;
-
- end case;
-
--------------------------------------------------------------------------------
--- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP )
--------------------------------------------------------------------------------
-
- when BRN_C1 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
- if( ALU_Flags(Reg) = Opcode(0) )then
- CPU_Next_State <= PIPE_FILL_0;
- Cache_Ctrl <= CACHE_IDLE;
- PC_Ctrl.Offset <= Operand1;
- end if;
-
- when DBNZ_C1 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
- if( ALU_Flags(FL_ZERO) = '0' )then
- CPU_Next_State <= PIPE_FILL_0;
- Cache_Ctrl <= CACHE_IDLE;
- PC_Ctrl.Offset <= Operand1;
- end if;
-
- when JMP_C1 =>
- CPU_Next_State <= JMP_C2;
- Cache_Ctrl <= CACHE_OPER2;
-
- when JMP_C2 =>
- CPU_Next_State <= PIPE_FILL_0;
- PC_Ctrl.Oper <= PC_LOAD;
- PC_Ctrl.Addr <= Operand2 & Operand1;
-
--------------------------------------------------------------------------------
--- Data Storage - Load from memory (LDA, LDI, LDO, LDX)
--------------------------------------------------------------------------------
-
- when LDA_C1 =>
- CPU_Next_State <= LDA_C2;
- Cache_Ctrl <= CACHE_OPER2;
-
- when LDA_C2 =>
- CPU_Next_State <= LDA_C3;
- AS_Ctrl.Src <= ADDR_IMM;
- IMM <= Operand2 & Operand1;
-
- when LDA_C3 =>
- CPU_Next_State <= LDA_C4;
- PC_Ctrl.Oper <= PC_INCR;
-
- when LDA_C4 =>
- CPU_Next_State <= LDI_C1;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when LDI_C1 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_LDI;
- ALU_Ctrl.Reg <= SubOp;
- ALU_Ctrl.Data <= Operand1;
-
- when LDO_C1 =>
- CPU_Next_State <= LDX_C1;
- AS_Ctrl.Src <= ADDR_IMM;
- PC_Ctrl.Oper <= PC_INCR;
- if( Enable_Auto_Increment = '1' )then
- Reg := conv_integer(SubOp(2 downto 1) & '0');
- Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
- if( SubOp(0) = '1' )then
- ALU_Ctrl.Oper<= ALU_UPP;
- ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
- end if;
- else
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
- end if;
-
- when LDX_C1 =>
- CPU_Next_State <= LDX_C2;
- PC_Ctrl.Oper <= PC_INCR;
-
- when LDX_C2 =>
- CPU_Next_State <= LDX_C3;
- PC_Ctrl.Oper <= PC_INCR;
- Cache_Ctrl <= CACHE_OPER1;
-
- when LDX_C3 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_LDX;
- ALU_Ctrl.Reg <= ACCUM;
- ALU_Ctrl.Data <= Operand1;
-
--------------------------------------------------------------------------------
--- Data Storage - Load from memory (STA, STO, STX)
--------------------------------------------------------------------------------
- when STA_C1 =>
- CPU_Next_State <= STA_C2;
- Cache_Ctrl <= CACHE_OPER2;
- DP_Ctrl.Src <= DATA_REG;
- DP_Ctrl.Reg <= SubOp;
-
- when STA_C2 =>
- CPU_Next_State <= STA_C3;
- AS_Ctrl.Src <= ADDR_IMM;
- IMM <= Operand2 & Operand1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when STA_C3 =>
- CPU_Next_State <= PIPE_FILL_2;
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_INCR;
-
- when STO_C1 =>
- Cache_Ctrl <= CACHE_PREFETCH;
- PC_Ctrl.Oper <= PC_INCR;
- AS_Ctrl.Src <= ADDR_IMM;
- -- If auto-increment is disabled, just load the registers normally
- if( Enable_Auto_Increment = '0' )then
- CPU_Next_State <= PIPE_FILL_1;
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
- -- Otherwise, enforce the even register rule, and check the LSB to see
- -- if we should perform the auto-increment on the register pair
- else
- CPU_Next_State <= STX_C2;
- Reg := conv_integer(SubOp(2 downto 1) & '0');
- Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX;
- if( SubOp(0) = '1' )then
- ALU_Ctrl.Oper <= ALU_UPP;
- ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
- end if;
- end if;
-
- when STX_C1 =>
- PC_Ctrl.Oper <= PC_INCR;
- AS_Ctrl.Src <= ADDR_IMM;
- -- If auto-increment is disabled, just load the registers normally
- if( Enable_Auto_Increment = '0' )then
- CPU_Next_State <= PIPE_FILL_1;
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
- -- Otherwise, enforce the even register rule, and check the LSB to see
- -- if we should perform the auto-increment on the register pair
- else
- CPU_Next_State <= STX_C2;
- Reg := conv_integer(SubOp(2 downto 1) & '0');
- Reg_1 := conv_integer(SubOp(2 downto 1) & '1');
- IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg));
- if( SubOp(0) = '1' )then
- ALU_Ctrl.Oper <= ALU_UPP;
- ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0';
- end if;
- end if;
-
- when STX_C2 =>
- CPU_Next_State <= PIPE_FILL_2;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_UPP2;
- ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1';
-
--------------------------------------------------------------------------------
--- Multi-Cycle Math Operations (UPP, MUL)
--------------------------------------------------------------------------------
- -- Because we have to backup the pipeline by 1 to refetch the 2nd
- -- instruction/first operand, we have to return through PF2
-
- when MUL_C1 =>
- CPU_Next_State <= PIPE_FILL_2;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_MUL;
-
- when UPP_C1 =>
- CPU_Next_State <= PIPE_FILL_2;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_UPP2;
- ALU_Ctrl.Reg <= SubOp_p1;
-
--------------------------------------------------------------------------------
--- Basic Stack Manipulation (PSH, POP, RSP)
--------------------------------------------------------------------------------
- when PSH_C1 =>
- CPU_Next_State <= PIPE_FILL_1;
- AS_Ctrl.Src <= ADDR_SP;
- SP_Ctrl.Oper <= SP_PUSH;
-
- when POP_C1 =>
- CPU_Next_State <= POP_C2;
- AS_Ctrl.Src <= ADDR_SP;
-
- when POP_C2 =>
- CPU_Next_State <= POP_C3;
- PC_Ctrl.Oper <= PC_INCR;
-
- when POP_C3 =>
- CPU_Next_State <= POP_C4;
- Cache_Ctrl <= CACHE_OPER1;
- PC_Ctrl.Oper <= PC_INCR;
-
- when POP_C4 =>
- CPU_Next_State <= INSTR_DECODE;
- Cache_Ctrl <= CACHE_INSTR;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_POP;
- ALU_Ctrl.Reg <= SubOp;
- ALU_Ctrl.Data <= Operand1;
-
--------------------------------------------------------------------------------
--- Subroutines & Interrupts (RTS, JSR)
--------------------------------------------------------------------------------
- when WAIT_FOR_INT => -- For soft interrupts only, halt the PC
- CPU_Next_State <= WAIT_FOR_INT;
-
- when ISR_C1 =>
- CPU_Next_State <= ISR_C2;
- AS_Ctrl.Src <= ADDR_ISR;
- INT_Ctrl.Incr_ISR <= '1';
- PC_Ctrl.Oper <= PC_INCR;
- -- Rewind the PC by 3 to compensate for the pipeline registers
- PC_Ctrl.Offset <= x"FF";
-
- when ISR_C2 =>
- CPU_Next_State <= ISR_C3;
- AS_Ctrl.Src <= ADDR_ISR;
- DP_Ctrl.Src <= DATA_FLAG;
-
- when ISR_C3 =>
- CPU_Next_State <= JSR_C1;
- Cache_Ctrl <= CACHE_OPER1;
- AS_Ctrl.Src <= ADDR_SP;
- SP_Ctrl.Oper <= SP_PUSH;
- DP_Ctrl.Src <= DATA_PC;
- DP_Ctrl.Reg <= ACCUM+1;
- ALU_Ctrl.Oper <= ALU_STP;
- ALU_Ctrl.Reg <= INT_FLAG;
- Ack_D <= '1';
-
- when JSR_C1 =>
- CPU_Next_State <= JSR_C2;
- Cache_Ctrl <= CACHE_OPER2;
- AS_Ctrl.Src <= ADDR_SP;
- SP_Ctrl.Oper <= SP_PUSH;
- DP_Ctrl.Src <= DATA_PC;
- DP_Ctrl.Reg <= ACCUM;
-
- when JSR_C2 =>
- CPU_Next_State <= PIPE_FILL_0;
- AS_Ctrl.Src <= ADDR_SP;
- SP_Ctrl.Oper <= SP_PUSH;
- PC_Ctrl.Oper <= PC_LOAD;
- PC_Ctrl.Addr <= Operand2 & Operand1;
-
- when RTS_C1 =>
- CPU_Next_State <= RTS_C2;
- AS_Ctrl.Src <= ADDR_SP;
- SP_Ctrl.Oper <= SP_POP;
-
- when RTS_C2 =>
- CPU_Next_State <= RTS_C3;
- AS_Ctrl.Src <= ADDR_SP;
- -- if this is an RTI, then we need to POP the flags
- if( SubOp = SOP_RTI )then
- SP_Ctrl.Oper <= SP_POP;
- end if;
-
- when RTS_C3 =>
- CPU_Next_State <= RTS_C4;
- Cache_Ctrl <= CACHE_OPER1;
- -- It doesn't really matter what is on the address bus for RTS, while
- -- it does for RTI, so we make this the default
- AS_Ctrl.Src <= ADDR_SP;
-
- when RTS_C4 =>
- CPU_Next_State <= RTS_C5;
- Cache_Ctrl <= CACHE_OPER2;
-
- when RTS_C5 =>
- CPU_Next_State <= PIPE_FILL_0;
- PC_Ctrl.Oper <= PC_LOAD;
- PC_Ctrl.Addr <= Operand2 & Operand1;
- if( SubOp = SOP_RTI )then
- CPU_Next_State <= RTI_C6;
- Cache_Ctrl <= CACHE_OPER1;
- end if;
-
- when RTI_C6 =>
- CPU_Next_State <= PIPE_FILL_1;
- PC_Ctrl.Oper <= PC_INCR;
- ALU_Ctrl.Oper <= ALU_RFLG;
- ALU_Ctrl.Data <= Operand1;
- PC_Ctrl.Oper <= PC_INCR;
- Int_RTI_D <= '1';
-
--------------------------------------------------------------------------------
--- Debugging (BRK) Performs a 5-clock NOP
--------------------------------------------------------------------------------
- when BRK_C1 =>
- CPU_Next_State <= PIPE_FILL_0;
-
- when others => null;
- end case;
-
- -- Interrupt service routines can only begin during the decode and wait
- -- states to avoid corruption due to incomplete instruction execution
- if( Int_Req = '1' )then
- if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then
- CPU_Next_State <= ISR_C1;
- end if;
- end if;
-
- end process;
-
- S_Regs: process( Reset_n, Clock )
- begin
- if( Reset_n = '0' )then
- CPU_State <= PIPE_FILL_0;
- Opcode <= OP_INC;
- SubOp <= ACCUM;
- SubOp_p1 <= ACCUM;
- Operand1 <= x"00";
- Operand2 <= x"00";
- Instr_Prefetch <= '0';
- Prefetch <= x"00";
-
- Ack_Q <= '0';
- Ack_Q1 <= '0';
- Int_Ack <= '0';
- Int_RTI <= '0';
-
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- CPU_State <= CPU_Next_State;
- case Cache_Ctrl is
- when CACHE_INSTR =>
- Opcode <= Rd_Data(7 downto 3);
- SubOp <= Rd_Data(2 downto 0);
- SubOp_p1 <= Rd_Data(2 downto 0) + 1;
- if( Instr_Prefetch = '1' )then
- Opcode <= Prefetch(7 downto 3);
- SubOp <= Prefetch(2 downto 0);
- SubOp_p1 <= Prefetch(2 downto 0) + 1;
- Instr_Prefetch <= '0';
- end if;
- when CACHE_OPER1 =>
- Operand1 <= Rd_Data;
- when CACHE_OPER2 =>
- Operand2 <= Rd_Data;
- when CACHE_PREFETCH =>
- Prefetch <= Rd_Data;
- Instr_Prefetch <= '1';
- when CACHE_IDLE =>
- null;
- end case;
-
- -- Interrupt signalling registers
- Ack_Q <= Ack_D;
- Ack_Q1 <= Ack_Q;
- Int_Ack <= Ack_Q1;
- Int_RTI <= Int_RTI_D;
- end if;
- end if;
- end process;
-
--------------------------------------------------------------------------------
--- Fixed in-line statements for the interrupt mask, and stack pointer address
--------------------------------------------------------------------------------
-
--- The interrupt control mask is always sourced out of R0
- INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM));
-
--- The original RSP instruction simply reset the stack pointer to the preset
--- address set at compile time. However, with little extra effort, we can
--- modify the instruction to allow the stack pointer to be moved anywhere in
--- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as
--- a fixed source
-
-Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move = '1' )generate
- SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0);
-end generate;
-
-Normal_Stack_Reset_fn: if( Allow_Stack_Address_Move = '0' )generate
- SP_Ctrl.Addr <= Stack_Start_Addr;
-end generate;
-
-end block;
-
--------------------------------------------------------------------------------
--- Address Source Mux
--------------------------------------------------------------------------------
-
-Open8_AS : block is
-begin
-
- Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR )
- variable PC_Mux, SP_Mux : ADDRESS_TYPE;
- variable IMM_Mux, ISR_Mux: ADDRESS_TYPE;
- begin
- PC_Mux := (others => '0');
- SP_Mux := (others => '0');
- IMM_Mux := (others => '0');
- ISR_Mux := (others => '0');
-
- case AS_Ctrl.Src is
- when ADDR_PC =>
- PC_Mux := PC;
- when ADDR_SP =>
- SP_Mux := SP;
- when ADDR_IMM =>
- IMM_Mux := IMM;
- when ADDR_ISR =>
- ISR_Mux := ISR;
- end case;
-
- for i in 0 to 15 loop
- Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or
- ISR_Mux(i);
- end loop;
- end process;
-
-end block;
-
--------------------------------------------------------------------------------
--- (Write) Data Path
--------------------------------------------------------------------------------
-
-Open8_DP : block is
- signal Wr_Data_D : DATA_TYPE := (others => '0');
- signal Wr_Enable_D : std_logic := '0';
-begin
-
- Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC )
- variable Reg_Mux, PC_Mux : DATA_TYPE;
- variable Flag_Mux : DATA_TYPE;
- begin
- Reg_Mux := (others => '0');
- Flag_Mux := (others => '0');
- PC_Mux := (others => '0');
- Wr_Enable_D <= '0';
-
- case DP_Ctrl.Src is
- when DATA_IDLE =>
- null;
- when DATA_REG =>
- Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg));
- Wr_Enable_D <= '1';
- when DATA_FLAG =>
- Flag_Mux := ALU_Flags;
- Wr_Enable_D <= '1';
- when DATA_PC =>
- Wr_Enable_D <= '1';
- if( DP_Ctrl.Reg = ACCUM )then
- PC_Mux := PC(7 downto 0);
- else
- PC_Mux := PC(15 downto 8);
- end if;
- end case;
-
- for i in 0 to 7 loop
- Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i);
- end loop;
- end process;
-
- S_Regs: process( Reset_n, Clock )
- begin
- if( Reset_n = '0' )then
- Wr_Data <= (others => '0');
- Wr_Enable <= '0';
- Rd_Enable <= '1';
- elsif( rising_edge(Clock) )then
- if( Halt = '0' )then
- Wr_Data <= Wr_Data_D;
- Wr_Enable <= Wr_Enable_D;
- Rd_Enable <= not Wr_Enable_D;
- end if;
- end if;
- end process;
-
-end block;
-
-end rtl;
Index: trunk/open8_urisc/VHDL/Open8_pkg.vhd
===================================================================
--- trunk/open8_urisc/VHDL/Open8_pkg.vhd (revision 7)
+++ trunk/open8_urisc/VHDL/Open8_pkg.vhd (nonexistent)
@@ -1,68 +0,0 @@
--- Copyright (c)2006, Jeremy Seth Henry
--- All rights reserved.
---
--- Redistribution and use in source and binary forms, with or without
--- modification, are permitted provided that the following conditions are met:
--- * Redistributions of source code must retain the above copyright
--- notice, this list of conditions and the following disclaimer.
--- * Redistributions in binary form must reproduce the above copyright
--- notice, this list of conditions and the following disclaimer in the
--- documentation and/or other materials provided with the distribution,
--- where applicable (as part of a user interface, debugging port, etc.)
---
--- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY
--- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
--- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
--- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY
--- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
--- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
--- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
--- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
--- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
--- VHDL Units : Open8_pkg
--- Description: Contains constant definitions for the Open8 processor
--- Revision History
--- Author Date Change
------------------- -------- ---------------------------------------------------
--- Seth Henry 07/22/06 Design Start
-
-library ieee;
-use ieee.std_logic_1164.all;
-
-package Open8_pkg is
-
- -- These subtypes can be used with external peripherals to simplify
- -- connection to the core.
- subtype ADDRESS_TYPE is std_logic_vector(15 downto 0);
- subtype DATA_TYPE is std_logic_vector(7 downto 0);
- -- Note: INTERRUPT_BUNDLE must be exactly the same width as DATA_TYPE
- subtype INTERRUPT_BUNDLE is DATA_TYPE;
-
- -- Component declaration
- component Open8_CPU is
- generic(
- Stack_Start_Addr : ADDRESS_TYPE;
- Allow_Stack_Address_Move : std_logic := '0';
- ISR_Start_Addr : ADDRESS_TYPE;
- Program_Start_Addr : ADDRESS_TYPE;
- Default_Interrupt_Mask : DATA_TYPE;
- Enable_CPU_Halt : std_logic := '0';
- Enable_Auto_Increment : std_logic := '0' );
- port(
- Clock : in std_logic;
- Reset_n : in std_logic;
- CPU_Halt : in std_logic;
- Interrupts : in INTERRUPT_BUNDLE;
- Address : out ADDRESS_TYPE;
- Rd_Data : in DATA_TYPE;
- Rd_Enable : out std_logic;
- Wr_Data : out DATA_TYPE;
- Wr_Enable : out std_logic );
- end component;
-
-end Open8_pkg;
-
-package body Open8_pkg is
-end package body;