OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /open8_urisc
    from Rev 8 to Rev 7
    Reverse comparison

Rev 8 → Rev 7

/trunk/VHDL/Open8.vhd File deleted
trunk/VHDL Property changes : Deleted: svn:mergeinfo ## -0,0 +0,0 ## Index: trunk/open8_urisc/VHDL/Open8.vhd =================================================================== --- trunk/open8_urisc/VHDL/Open8.vhd (nonexistent) +++ trunk/open8_urisc/VHDL/Open8.vhd (revision 7) @@ -0,0 +1,1495 @@ +-- Copyright (c)2006, Jeremy Seth Henry +-- All rights reserved. +-- +-- Redistribution and use in source and binary forms, with or without +-- modification, are permitted provided that the following conditions are met: +-- * Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- * Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in the +-- documentation and/or other materials provided with the distribution, +-- where applicable (as part of a user interface, debugging port, etc.) +-- +-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY +-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY +-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +-- VHDL Units : Open8_CPU +-- Description: VHDL model of the V8 uRISC 8-bit processor core +-- Notes : Generic definitions +-- : Stack_Start_Address - determines the initial (reset) value of +-- : the stack pointer. Also used for the RSP instruction if +-- : Allow_Stack_Address_Move is 0. +-- : +-- : Allow_Stack_Address_Move - When set to 1, allows the RSP to be +-- : programmed via thet RSP instruction. If enabled, the contents +-- : of R1:R0 are used to initialize the stack pointer. +-- : +-- : ISR_Start_Addr - determines the location of the interrupt +-- : service vector table. There are 8 service vectors, or 16 +-- : bytes, which must be allocated to either ROM or RAM. +-- : +-- : Program_Start_Addr - Determines the initial value of the +-- : program counter. +-- : +-- : Default_Interrupt_Mask - Determines the intial value of the +-- : interrupt mask. To remain true to the original core, which +-- : had no interrupt mask, this should be set to x"FF". Otherwise +-- : it can be initialized to any value. +-- : +-- : Enable_CPU_Halt - determines whether the CPU_Halt pin is +-- : connected or not. This signal is typically used to halt the +-- : processor for a few cycles when accessing slower peripherals, +-- : but may also be used to single step the processor. If this +-- : feature isn't used, it can be disabled to increase Fmax. +-- : +-- : The CPU_Halt signal can be used to access slower peripherals +-- : by allowing the device to "pause" the CPU. This can be used, +-- : for example, to write to a standard LCD panel, which requires +-- : a 4MHz interface, by halting on writes. Alternately, devices +-- : such as SDRAM controllers, can pause the processor until the +-- : data is ready to be presented. +-- : +-- : The Enable_Auto_Increment generic can be used to modify the +-- : indexed instructions such that specifying an odd register +-- : will use the next lower register pair, post-incrementing the +-- : value in that pair. IOW, specifying STX R1 will instead +-- : result in STX R0++, or R0 = {R1:R0}; {R1:R0} + 1 +-- : +-- : Instructions USR and USR2 have been replaced with DBNZ, and MUL +-- : respectively. DBNZ decrements the specified register, and will +-- : branch if the result is non-zero (Zero flag is not set). MUL +-- : places the result of R0 * Rn into R1:R0, and executes in two +-- : cycles. (R1:R0 = R0 * Rn) +-- : +-- Revision History +-- Author Date Change +------------------ -------- --------------------------------------------------- +-- Seth Henry 07/19/06 Design Start + +library ieee; + use ieee.std_logic_1164.all; + use ieee.std_logic_unsigned.all; + use ieee.std_logic_arith.all; + +library work; +use work.Open8_pkg.all; + +entity Open8_CPU is + generic( + Stack_Start_Addr : ADDRESS_TYPE := x"007F"; -- Top of Stack + Allow_Stack_Address_Move : std_logic := '0'; -- Use Normal v8 RSP + ISR_Start_Addr : ADDRESS_TYPE := x"0080"; -- Bottom of ISR vec's + Program_Start_Addr : ADDRESS_TYPE := x"0090"; -- Initial PC location + Default_Interrupt_Mask : DATA_TYPE := x"FF"; -- Enable all Ints + Enable_CPU_Halt : std_logic := '0'; -- Disable HALT pin + Enable_Auto_Increment : std_logic := '0' ); -- Modify indexed instr + port( + Clock : in std_logic; + Reset_n : in std_logic; + CPU_Halt : in std_logic; + Interrupts : in INTERRUPT_BUNDLE; + -- + Address : out ADDRESS_TYPE; + Rd_Data : in DATA_TYPE; + Rd_Enable : out std_logic; + Wr_Data : out DATA_TYPE; + Wr_Enable : out std_logic ); +end entity; + +architecture rtl of Open8_CPU is + subtype OPCODE_TYPE is std_logic_vector(4 downto 0); + subtype SUBOP_TYPE is std_logic_vector(2 downto 0); + + -- Most of the ALU instructions are the same as their Opcode equivalents with + -- three exceptions (for IDLE, UPP2, and MUL2) + constant ALU_INC : OPCODE_TYPE := "00000"; -- x"00" + constant ALU_ADC : OPCODE_TYPE := "00001"; -- x"01" + constant ALU_TX0 : OPCODE_TYPE := "00010"; -- x"02" + constant ALU_OR : OPCODE_TYPE := "00011"; -- x"03" + constant ALU_AND : OPCODE_TYPE := "00100"; -- x"04" + constant ALU_XOR : OPCODE_TYPE := "00101"; -- x"05" + constant ALU_ROL : OPCODE_TYPE := "00110"; -- x"06" + constant ALU_ROR : OPCODE_TYPE := "00111"; -- x"07" + constant ALU_DEC : OPCODE_TYPE := "01000"; -- x"08" + constant ALU_SBC : OPCODE_TYPE := "01001"; -- x"09" + constant ALU_ADD : OPCODE_TYPE := "01010"; -- x"0A" + constant ALU_STP : OPCODE_TYPE := "01011"; -- x"0B" + constant ALU_BTT : OPCODE_TYPE := "01100"; -- x"0C" + constant ALU_CLP : OPCODE_TYPE := "01101"; -- x"0D" + constant ALU_T0X : OPCODE_TYPE := "01110"; -- x"0E" + constant ALU_CMP : OPCODE_TYPE := "01111"; -- x"0F" + constant ALU_POP : OPCODE_TYPE := "10001"; -- x"11" + constant ALU_MUL : OPCODE_TYPE := "10110"; -- x"16" + constant ALU_UPP : OPCODE_TYPE := "11000"; -- x"18" + constant ALU_LDI : OPCODE_TYPE := "11100"; -- x"1C" + constant ALU_LDX : OPCODE_TYPE := "11110"; -- x"1E" + + constant ALU_IDLE : OPCODE_TYPE := "10000"; -- x"10" + constant ALU_UPP2 : OPCODE_TYPE := "10010"; -- x"11" + constant ALU_RFLG : OPCODE_TYPE := "10011"; -- x"12" + + constant FL_ZERO : integer := 0; + constant FL_CARRY : integer := 1; + constant FL_NEG : integer := 2; + constant FL_INT_EN : integer := 3; + constant FL_GP1 : integer := 4; + constant FL_GP2 : integer := 5; + constant FL_GP3 : integer := 6; + constant FL_GP4 : integer := 7; + + type ALU_CTRL_TYPE is record + Oper : OPCODE_TYPE; + Reg : SUBOP_TYPE; + Data : DATA_TYPE; + end record; + + constant ACCUM : SUBOP_TYPE := "000"; + constant INT_FLAG : SUBOP_TYPE := "011"; + + -- There are only 8 byte-wide registers - and the write register is always 0, + -- so there is little point in making a RAM out of this + type REGFILE_TYPE is array (0 to 7) of DATA_TYPE; + + subtype FLAG_TYPE is DATA_TYPE; + + type PC_MODES is ( PC_IDLE, PC_REV1, PC_REV2, PC_INCR, PC_LOAD ); + + type PC_CTRL_TYPE is record + Oper : PC_MODES; + Offset : DATA_TYPE; + Addr : ADDRESS_TYPE; + end record; + + type SP_MODES is ( SP_IDLE, SP_RSET, SP_POP, SP_PUSH ); + + type SP_CTRL_TYPE is record + Oper : SP_MODES; + Addr : ADDRESS_TYPE; + end record; + + type INT_CTRL_TYPE is record + Mask_Set : std_logic; + Mask_Data : DATA_TYPE; + Soft_Ints : INTERRUPT_BUNDLE; + Incr_ISR : std_logic; + end record; + + type AS_MODES is ( ADDR_PC, ADDR_SP, ADDR_IMM, ADDR_ISR); + + type ADDR_CTRL_TYPE is record + Src : AS_MODES; + end record; + + type DP_MODES is ( DATA_IDLE, DATA_REG, DATA_FLAG, DATA_PC ); + + type DATA_CTRL_TYPE is record + Src : DP_MODES; + Reg : SUBOP_TYPE; + end record; + + signal Halt : std_logic; + signal ALU_Ctrl : ALU_CTRL_TYPE; + signal ALU_Regs : REGFILE_TYPE; + signal ALU_Flags : FLAG_TYPE; + signal PC_Ctrl : PC_CTRL_TYPE; + signal SP_Ctrl : SP_CTRL_TYPE; + signal AS_Ctrl : ADDR_CTRL_TYPE; + signal DP_Ctrl : DATA_CTRL_TYPE; + signal INT_Ctrl : INT_CTRL_TYPE; + signal Int_Req, Int_Ack : std_logic; + signal Int_RTI : std_logic; + signal Int_Mask : DATA_TYPE; + signal PC : ADDRESS_TYPE; + signal SP : ADDRESS_TYPE; + signal ISR : ADDRESS_TYPE; + signal IMM : ADDRESS_TYPE; +begin + +Halt_Disabled_fn: if( Enable_CPU_Halt = '0' )generate + Halt <= '0'; +end generate; + +Halt_Enabled_fn: if( Enable_CPU_Halt = '1' )generate + Halt <= CPU_Halt; +end generate; + +------------------------------------------------------------------------------- +-- ALU (Arithmetic / Logic Unit +-- Notes: +-- 1) Infers a multiplier in Xilinx/Altera parts - should be checked in others +------------------------------------------------------------------------------- + +Open8_ALU : block is + + -- Preinitialization is for simulation only - check actual reset conditions + signal Regfile_D, Regfile : REGFILE_TYPE := (others => (others => '0') ); + signal Flags_D, Flags : FLAG_TYPE := (others => '0'); + signal Mult : ADDRESS_TYPE := (others => '0'); + + signal Sum : std_logic_vector(8 downto 0) := (others => '0'); + signal Addend_A, Addend_B : DATA_TYPE := (others => '0'); + signal Carry : std_logic := '0'; + +begin + + ALU_Regs <= Regfile; + ALU_Flags <= Flags; + + ALU_proc: process( ALU_Ctrl, Regfile, Flags, Mult, Sum ) + variable Index : integer range 0 to 7 := 0; + variable Temp : std_logic_vector(8 downto 0); + begin + Regfile_D <= Regfile; + Flags_D <= Flags; + Addend_A <= x"00"; + Addend_B <= x"00"; + Carry <= '0'; + + Temp := (others => '0'); + Index := conv_integer(ALU_Ctrl.Reg); + + case ALU_Ctrl.Oper is + when ALU_INC | ALU_UPP => -- Rn = Rn + 1 : Flags N,C,Z + Addend_A <= x"01"; + Addend_B <= Regfile(Index); + Flags_D(FL_CARRY) <= Sum(8); + Regfile_D(Index) <= Sum(7 downto 0); + -- ALU_INC and ALU_UPP are essentially the same, except that ALU_UPP + -- doesn't set the N or Z flags. Note that the MSB can be used to + -- distinguish between the two ALU modes. + if( ALU_Ctrl.Oper(4) = '0' )then + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Sum(7); + end if; + + when ALU_UPP2 => -- Rn = Rn + C + Addend_A <= x"00"; + Addend_B <= Regfile(Index); + Carry <= Flags(FL_CARRY); + Flags_D(FL_CARRY) <= Sum(8); + Regfile_D(Index) <= Sum(7 downto 0); + + when ALU_ADC => -- R0 = R0 + Rn + C : Flags N,C,Z + Addend_A <= Regfile(0); + Addend_B <= Regfile(Index); + Carry <= Flags(FL_CARRY); + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Sum(8); + Flags_D(FL_NEG) <= Sum(7); + Regfile_D(0) <= Sum(7 downto 0); + + when ALU_TX0 => -- R0 = Rn : Flags N,Z + Temp := "0" & Regfile(Index); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(0) <= Temp(7 downto 0); + + when ALU_OR => -- R0 = R0 | Rn : Flags N,Z + Temp(7 downto 0) := Regfile(0) or Regfile(Index); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(0) <= Temp(7 downto 0); + + when ALU_AND => -- R0 = R0 & Rn : Flags N,Z + Temp(7 downto 0) := Regfile(0) and Regfile(Index); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(0) <= Temp(7 downto 0); + + when ALU_XOR => -- R0 = R0 ^ Rn : Flags N,Z + Temp(7 downto 0) := Regfile(0) xor Regfile(Index); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(0) <= Temp(7 downto 0); + + when ALU_ROL => -- Rn = Rn<<1,C : Flags N,C,Z + Temp := Regfile(Index) & Flags(FL_CARRY); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Temp(8); + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(Index) <= Temp(7 downto 0); + + when ALU_ROR => -- Rn = C,Rn>>1 : Flags N,C,Z + Temp := Regfile(Index)(0) & Flags(FL_CARRY) & + Regfile(Index)(7 downto 1); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Temp(8); + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(Index) <= Temp(7 downto 0); + + when ALU_DEC => -- Rn = Rn - 1 : Flags N,C,Z + Addend_A <= Regfile(Index); + Addend_B <= x"FF"; + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Sum(8); + Flags_D(FL_NEG) <= Sum(7); + Regfile_D(Index) <= Sum(7 downto 0); + + when ALU_SBC => -- Rn = R0 - Rn - C : Flags N,C,Z + Addend_A <= Regfile(0); + Addend_B <= not Regfile(Index); + Carry <= Flags(FL_CARRY); + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Sum(8); + Flags_D(FL_NEG) <= Sum(7); + Regfile_D(0) <= Sum(7 downto 0); + + when ALU_ADD => -- R0 = R0 + Rn : Flags N,C,Z + Addend_A <= Regfile(0); + Addend_B <= Regfile(Index); + Flags_D(FL_CARRY) <= Sum(8); + Regfile_D(0) <= Sum(7 downto 0); + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Sum(7); + + when ALU_STP => -- Sets bit(n) in the Flags register + Flags_D(Index) <= '1'; + + when ALU_BTT => -- Tests if R0 is negative or zero. No change to R0 + Temp := "0" & Regfile(Index); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + + when ALU_CLP => -- Clears bit(n) in the Flags register + Flags_D(Index) <= '0'; + + when ALU_T0X => -- Rn = R0 : Flags N,Z + Temp := "0" & Regfile(0); + Flags_D(FL_ZERO) <= '0'; + if( Temp(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= Temp(7); + Regfile_D(Index) <= Temp(7 downto 0); + + when ALU_CMP => -- Sets Flags on R0 - Rn : Flags N,C,Z + Addend_A <= Regfile(0); + Addend_B <= not Regfile(Index); + Carry <= '1'; + Flags_D(FL_ZERO) <= '0'; + if( Sum(7 downto 0) = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_CARRY) <= Sum(8); + Flags_D(FL_NEG) <= Sum(7); + + when ALU_MUL => -- Stage 1 of 2 {R1:R0} = R0 * Rn : Flags N,Z + Regfile_D(0) <= Mult(7 downto 0); + Regfile_D(1) <= Mult(15 downto 8); + Flags_D(FL_ZERO) <= '0'; + if( Mult = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + + when ALU_LDI | ALU_POP => -- Rn <= Data : Flags N,Z + -- The POP instruction doesn't alter the flags, so we need to check + if( ALU_Ctrl.Oper = ALU_LDI )then + Flags_D(FL_ZERO) <= '0'; + if( ALU_Ctrl.Data = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= ALU_Ctrl.Data(7); + end if; + Regfile_D(Index) <= ALU_Ctrl.Data; + + when ALU_LDX => -- R0 <= Data : Flags N,Z + Flags_D(FL_ZERO) <= '0'; + if( ALU_Ctrl.Data = 0 )then + Flags_D(FL_ZERO) <= '1'; + end if; + Flags_D(FL_NEG) <= ALU_Ctrl.Data(7); + Regfile_D(0) <= ALU_Ctrl.Data; + + when ALU_RFLG => + Flags_D <= ALU_Ctrl.Data; + + when others => null; + end case; + end process; + + -- 8-bit Adder with carry + Sum <= ("0" & Addend_A) + ("0" & Addend_B) + Carry; + + -- We need to infer a hardware multipler, so we create a special clocked + -- process with no reset or clock enable + M_Reg: process( Clock ) + begin + if( rising_edge(Clock) )then + Mult <= Regfile(0) * + Regfile(conv_integer(ALU_Ctrl.Reg)); + end if; + end process; + + S_Regs: process( Reset_n, Clock ) + begin + if( Reset_n = '0' )then + for i in 0 to 7 loop + Regfile(i) <= (others => '0'); + end loop; + Flags <= x"00"; + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + Regfile <= Regfile_D; + Flags <= Flags_D; + end if; + end if; + end process; + +end block; + +------------------------------------------------------------------------------- +-- Program Counter +------------------------------------------------------------------------------- + +Open8_PC : block is + -- Preinitialization is for simulation only - check actual reset conditions + signal PC_Q : ADDRESS_TYPE := (others => '0'); + signal Rewind_1_2n : std_logic := '0'; +begin + + PC <= PC_Q; + + -- This sets the carry input on the "rewind" adder. If the rewind command is + -- PC_REV2, then we clear the carry. Otherwise, we leave it high. + Rewind_PC_Calc: process( PC_Ctrl ) + begin + Rewind_1_2n <= '1'; + if( PC_Ctrl.Oper = PC_REV2 )then + Rewind_1_2n <= '0'; + end if; + end process; + + Program_Counter: process( Reset_n, Clock, Halt, PC_Ctrl, PC_Q, Rewind_1_2n ) + variable PC_Offset_SX : ADDRESS_TYPE := x"0000"; + begin + PC_Offset_SX(15 downto 8):= (others => PC_Ctrl.Offset(7)); + PC_Offset_SX(7 downto 0) := PC_Ctrl.Offset; + if( Reset_n = '0' )then + PC_Q <= Program_Start_Addr; + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + case PC_Ctrl.Oper is + when PC_IDLE => + null; + when PC_REV1 | PC_REV2 => + PC_Q <= PC_Q - 2 + Rewind_1_2n; + when PC_INCR => + PC_Q <= PC_Q + PC_Offset_SX - 2; + when PC_LOAD => + PC_Q <= PC_Ctrl.Addr; + end case; + end if; + end if; + end process; + +end block; + +------------------------------------------------------------------------------- +-- Stack Pointer +------------------------------------------------------------------------------- + +Open8_SP : block is + -- Preinitialization is for simulation only - check actual reset conditions + signal SP_Q : ADDRESS_TYPE := (others => '0'); +begin + + SP <= SP_Q; + + Stack_Pointer: process( Reset_n, Clock ) + begin + if( Reset_n = '0' )then + SP_Q <= Stack_Start_Addr; + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + case SP_Ctrl.Oper is + when SP_IDLE => null; + when SP_RSET => SP_Q <= SP_Ctrl.Addr; + when SP_POP => SP_Q <= SP_Q + 1; + when SP_PUSH => SP_Q <= SP_Q - 1; + end case; + end if; + end if; + end process; + +end block; + +------------------------------------------------------------------------------- +-- Interrupt Controller +------------------------------------------------------------------------------- + +Open8_INT : block is + + -- Preinitialization is for simulation only - check actual reset conditions + constant INT_VECTOR_0 : ADDRESS_TYPE := ISR_Start_Addr; + constant INT_VECTOR_1 : ADDRESS_TYPE := ISR_Start_Addr+2; + constant INT_VECTOR_2 : ADDRESS_TYPE := ISR_Start_Addr+4; + constant INT_VECTOR_3 : ADDRESS_TYPE := ISR_Start_Addr+6; + constant INT_VECTOR_4 : ADDRESS_TYPE := ISR_Start_Addr+8; + constant INT_VECTOR_5 : ADDRESS_TYPE := ISR_Start_Addr+10; + constant INT_VECTOR_6 : ADDRESS_TYPE := ISR_Start_Addr+12; + constant INT_VECTOR_7 : ADDRESS_TYPE := ISR_Start_Addr+14; + + signal i_Ints : INTERRUPT_BUNDLE := (others => '0'); + signal Pending_D : INTERRUPT_BUNDLE := (others => '0'); + signal Pending : INTERRUPT_BUNDLE := (others => '0'); + signal Wait_for_FSM : std_logic := '0'; + signal Mask : std_logic_vector(6 downto 0) := (others => '0'); + signal ISR_D, ISR_Q : ADDRESS_TYPE := (others => '0'); + + type INT_HIST is array (0 to 8) of integer range 0 to 7; + signal History : INT_HIST := (others => 0); + signal Int_Trig : std_logic := '0'; + signal Hist_Level : integer range 0 to 7 := 0; + signal Hist_Ptr : integer range 0 to 8 := 0; + +begin + Int_Mask <= Mask & '1'; + ISR <= ISR_Q; + + Int_Mask_proc: process( Mask, Interrupts, INT_Ctrl ) + variable S_Mask : std_logic_vector(7 downto 0); + begin + S_Mask := Mask & '1'; + for i in 0 to 7 loop + i_Ints(i) <= (Interrupts(i) or INT_Ctrl.Soft_Ints(i)) + and S_Mask(i); + end loop; + end process; + + Int_Ctrl_proc: process( i_Ints, Pending, Wait_for_FSM, ISR_Q, INT_Ctrl, + History, Hist_Ptr ) + begin + ISR_D <= ISR_Q; + Pending_D <= Pending; + Int_Trig <= '0'; + Hist_Level <= 0; + + -- Record any incoming interrupts to the pending buffer + if( i_Ints > 0 )then + Pending_D <= i_Ints; + end if; + + -- Incr_ISR allows the CPU Core to advance the vector address to pop the + -- lower half of the address. + if( INT_Ctrl.Incr_ISR = '1' )then + ISR_D <= ISR_Q + 1; + end if; + + -- Only mess with interrupt signals while the CPU core is not currently + -- working with the ISR address (ie, not loading a new service vector) + if( Wait_for_FSM = '0' and Pending > 0 )then + if( Pending(0) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 0) )then + ISR_D <= INT_VECTOR_0; + Pending_D(0) <= '0'; + Hist_Level <= 0; + Int_Trig <= '1'; + elsif( Pending(1) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 1) )then + ISR_D <= INT_VECTOR_1; + Pending_D(1) <= '0'; + Hist_Level <= 1; + Int_Trig <= '1'; + elsif( Pending(2) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 2) )then + ISR_D <= INT_VECTOR_2; + Pending_D(2) <= '0'; + Hist_Level <= 2; + Int_Trig <= '1'; + elsif( Pending(3) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 3) )then + ISR_D <= INT_VECTOR_3; + Pending_D(3) <= '0'; + Hist_Level <= 3; + Int_Trig <= '1'; + elsif( Pending(4) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 4) )then + ISR_D <= INT_VECTOR_4; + Pending_D(4) <= '0'; + Hist_Level <= 4; + Int_Trig <= '1'; + elsif( Pending(5) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 5) )then + ISR_D <= INT_VECTOR_5; + Pending_D(5) <= '0'; + Hist_Level <= 5; + Int_Trig <= '1'; + elsif( Pending(6) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 6) )then + ISR_D <= INT_VECTOR_6; + Pending_D(6) <= '0'; + Hist_Level <= 6; + Int_Trig <= '1'; + elsif( Pending(7) = '1' and (Hist_Ptr = 0 or History(Hist_Ptr) > 7) )then + ISR_D <= INT_VECTOR_7; + Pending_D(7) <= '0'; + Hist_Level <= 7; + Int_Trig <= '1'; + end if; + end if; + end process; + + S_Regs: process( Reset_n, Clock ) + begin + if( Reset_n = '0' )then + Int_Req <= '0'; + Pending <= x"00"; + Wait_for_FSM <= '0'; + Mask <= Default_Interrupt_Mask(7 downto 1); + ISR_Q <= INT_VECTOR_0; + for i in 0 to 8 loop + History(i) <= 0; + end loop; + Hist_Ptr <= 0; + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + Int_Req <= Wait_for_FSM and (not Int_Ack); + Pending <= Pending_D; + -- Reset the Wait_for_FSM flag on Int_Ack + if( Int_Ack = '1' )then + Wait_for_FSM <= '0'; + -- Set the Wait_for_FSM flag on Int_Trig + elsif( Int_Trig = '1' )then + Wait_for_FSM <= '1'; + end if; + if( INT_Ctrl.Mask_Set = '1' )then + Mask <= INT_Ctrl.Mask_Data(7 downto 1); + end if; + ISR_Q <= ISR_D; + if( Int_Trig = '1' )then + History(Hist_Ptr+1) <= Hist_Level; + Hist_Ptr <= Hist_Ptr + 1; + elsif( Int_RTI = '1' and Hist_Ptr > 0 )then + Hist_Ptr <= Hist_Ptr - 1; + end if; + end if; + end if; + end process; + +end block; + +------------------------------------------------------------------------------- +-- State Logic / Instruction Decoding & Execution +------------------------------------------------------------------------------- + +Open8_FSM : block is + + -- These are all the primary instructions/op-codes (upper 5-bits) + constant OP_INC : OPCODE_TYPE := "00000"; + constant OP_ADC : OPCODE_TYPE := "00001"; + constant OP_TX0 : OPCODE_TYPE := "00010"; + constant OP_OR : OPCODE_TYPE := "00011"; + constant OP_AND : OPCODE_TYPE := "00100"; + constant OP_XOR : OPCODE_TYPE := "00101"; + constant OP_ROL : OPCODE_TYPE := "00110"; + constant OP_ROR : OPCODE_TYPE := "00111"; + constant OP_DEC : OPCODE_TYPE := "01000"; + constant OP_SBC : OPCODE_TYPE := "01001"; + constant OP_ADD : OPCODE_TYPE := "01010"; + constant OP_STP : OPCODE_TYPE := "01011"; + constant OP_BTT : OPCODE_TYPE := "01100"; + constant OP_CLP : OPCODE_TYPE := "01101"; + constant OP_T0X : OPCODE_TYPE := "01110"; + constant OP_CMP : OPCODE_TYPE := "01111"; + constant OP_PSH : OPCODE_TYPE := "10000"; + constant OP_POP : OPCODE_TYPE := "10001"; + constant OP_BR0 : OPCODE_TYPE := "10010"; + constant OP_BR1 : OPCODE_TYPE := "10011"; + constant OP_DBNZ : OPCODE_TYPE := "10100"; -- USR + constant OP_INT : OPCODE_TYPE := "10101"; + constant OP_MUL : OPCODE_TYPE := "10110"; -- USR2 + constant OP_STK : OPCODE_TYPE := "10111"; + constant OP_UPP : OPCODE_TYPE := "11000"; + constant OP_STA : OPCODE_TYPE := "11001"; + constant OP_STX : OPCODE_TYPE := "11010"; + constant OP_STO : OPCODE_TYPE := "11011"; + constant OP_LDI : OPCODE_TYPE := "11100"; + constant OP_LDA : OPCODE_TYPE := "11101"; + constant OP_LDX : OPCODE_TYPE := "11110"; + constant OP_LDO : OPCODE_TYPE := "11111"; + + -- These are all specific sub-opcodes for OP_STK / 0xB8 (lower 3-bits) + constant SOP_RSP : SUBOP_TYPE := "000"; + constant SOP_RTS : SUBOP_TYPE := "001"; + constant SOP_RTI : SUBOP_TYPE := "010"; + constant SOP_BRK : SUBOP_TYPE := "011"; + constant SOP_JMP : SUBOP_TYPE := "100"; + constant SOP_SMSK : SUBOP_TYPE := "101"; + constant SOP_GMSK : SUBOP_TYPE := "110"; + constant SOP_JSR : SUBOP_TYPE := "111"; + + -- Preinitialization is for simulation only - check actual reset conditions + type CPU_STATES is ( + -- Instruction fetch & Decode + PIPE_FILL_0, PIPE_FILL_1, PIPE_FILL_2, INSTR_DECODE, + -- Branching + BRN_C1, DBNZ_C1, JMP_C1, JMP_C2, + -- Loads + LDA_C1, LDA_C2, LDA_C3, LDA_C4, LDI_C1, LDO_C1, LDX_C1, LDX_C2, LDX_C3, + -- Stores + STA_C1, STA_C2, STA_C3, STO_C1, STX_C1, STX_C2, + -- 2-cycle math + MUL_C1, UPP_C1, + -- Stack + PSH_C1, POP_C1, POP_C2, POP_C3, POP_C4, + -- Subroutines & Interrupts + WAIT_FOR_INT, ISR_C1, ISR_C2, ISR_C3, JSR_C1, JSR_C2, + RTS_C1, RTS_C2, RTS_C3, RTS_C4, RTS_C5, RTI_C6, + -- Debugging + BRK_C1 ); + + signal CPU_Next_State : CPU_STATES := PIPE_FILL_0; + signal CPU_State : CPU_STATES := PIPE_FILL_0; + + type CACHE_MODES is (CACHE_IDLE, CACHE_INSTR, CACHE_OPER1, CACHE_OPER2, + CACHE_PREFETCH ); + signal Cache_Ctrl : CACHE_MODES := CACHE_IDLE; + + signal Opcode : OPCODE_TYPE := (others => '0'); + signal SubOp, SubOp_p1 : SUBOP_TYPE := (others => '0'); + -- synthesis translate_off + signal Instruction : DATA_TYPE := (others => '0'); + -- synthesis translate_on + signal Prefetch : DATA_TYPE := (others => '0'); + signal Operand1, Operand2 : DATA_TYPE := (others => '0'); + + signal Instr_Prefetch : std_logic := '0'; + + signal Ack_D, Ack_Q, Ack_Q1: std_logic := '0'; + signal Int_RTI_D : std_logic := '0'; + +begin + + -- synthesis translate_off + Instruction <= Opcode & SubOp; + -- synthesis translate_on + + State_Logic: process(CPU_State, ALU_Regs, ALU_Flags, Int_Mask, Opcode, + SubOp , SubOp_p1, Operand1, Operand2, Int_Req ) + variable Reg, Reg_1 : integer range 0 to 7 := 0; + variable Offset_SX : ADDRESS_TYPE; + begin + CPU_Next_State <= CPU_State; + Cache_Ctrl <= CACHE_IDLE; + -- + ALU_Ctrl.Oper <= ALU_IDLE; + ALU_Ctrl.Reg <= ACCUM; + ALU_Ctrl.Data <= x"00"; + -- + PC_Ctrl.Oper <= PC_IDLE; + + PC_Ctrl.Offset <= x"03"; + PC_Ctrl.Addr <= x"0000"; + -- + SP_Ctrl.Oper <= SP_IDLE; + -- + AS_Ctrl.Src <= ADDR_PC; + IMM <= x"0000"; + -- + DP_Ctrl.Src <= DATA_IDLE; + DP_Ctrl.Reg <= ACCUM; + -- + INT_Ctrl.Mask_Set <= '0'; + INT_Ctrl.Soft_Ints <= x"00"; + INT_Ctrl.Incr_ISR <= '0'; + Ack_D <= '0'; + Int_RTI_D <= '0'; + + -- Assign the most common value of Reg and Reg1 outside the case structure + -- to simplify things. + Reg := conv_integer(SubOp); + Reg_1 := conv_integer(SubOp_p1); + Offset_SX(15 downto 0) := (others => Operand1(7)); + Offset_SX(7 downto 0) := Operand1; + + case CPU_State is +------------------------------------------------------------------------------- +-- Initial Instruction fetch & decode +------------------------------------------------------------------------------- + when PIPE_FILL_0 => + CPU_Next_State <= PIPE_FILL_1; + PC_Ctrl.Oper <= PC_INCR; + + when PIPE_FILL_1 => + CPU_Next_State <= PIPE_FILL_2; + PC_Ctrl.Oper <= PC_INCR; + + when PIPE_FILL_2 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + + when INSTR_DECODE => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + + case Opcode is + when OP_PSH => + CPU_Next_State <= PSH_C1; + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_REV1; + DP_Ctrl.Src <= DATA_REG; + DP_Ctrl.Reg <= SubOp; + + when OP_POP => + CPU_Next_State <= POP_C1; + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_REV2; + SP_Ctrl.Oper <= SP_POP; + + when OP_BR0 | OP_BR1 => + CPU_Next_State <= BRN_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_INCR; + + when OP_DBNZ => + CPU_Next_State <= DBNZ_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_DEC; + ALU_Ctrl.Reg <= SubOp; + + when OP_INT => + PC_Ctrl.Oper <= PC_INCR; + if( Int_Mask(Reg) = '1' )then + CPU_Next_State <= WAIT_FOR_INT; + INT_Ctrl.Soft_Ints(Reg) <= '1'; + end if; + + when OP_STK => + case SubOp is + when SOP_RSP => + PC_Ctrl.Oper <= PC_INCR; + SP_Ctrl.Oper <= SP_RSET; + + when SOP_RTS | SOP_RTI => + CPU_Next_State <= RTS_C1; + Cache_Ctrl <= CACHE_IDLE; + SP_Ctrl.Oper <= SP_POP; + + when SOP_BRK => + CPU_Next_State <= BRK_C1; + PC_Ctrl.Oper <= PC_REV2; + + when SOP_JMP => + CPU_Next_State <= JMP_C1; + Cache_Ctrl <= CACHE_OPER1; + + when SOP_SMSK => + PC_Ctrl.Oper <= PC_INCR; + INT_Ctrl.Mask_Set <= '1'; + + when SOP_GMSK => + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper<= ALU_LDI; + ALU_Ctrl.Reg <= ACCUM; + ALU_Ctrl.Data<= Int_Mask; + + when SOP_JSR => + CPU_Next_State <= JSR_C1; + Cache_Ctrl <= CACHE_OPER1; + DP_Ctrl.Src <= DATA_PC; + DP_Ctrl.Reg <= ACCUM+1; + + when others => null; + end case; + + when OP_MUL => + CPU_Next_State <= MUL_C1; + Cache_Ctrl <= CACHE_PREFETCH; + + -- We need to back the PC up by 1, and all it to refill. An + -- unfortunate consequence of the pipelining. We can get away with + -- only 1 extra clock by pre-fetching the next instruction, though + PC_Ctrl.Oper <= PC_REV1; + -- Multiplication is automatic, but requires a single clock cycle. + -- We need to specify the register for Rn (R1:R0 = R0 * Rn) now, + -- but will issue the multiply command on the next clock to copy + -- the results to the specified register. + ALU_Ctrl.Oper <= ALU_IDLE; + ALU_Ctrl.Reg <= SubOp; -- Rn + + when OP_UPP => + CPU_Next_State <= UPP_C1; + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_REV1; + ALU_Ctrl.Oper <= Opcode; + ALU_Ctrl.Reg <= SubOp; + + when OP_LDA => + CPU_Next_State <= LDA_C1; + Cache_Ctrl <= CACHE_OPER1; + + when OP_LDI => + CPU_Next_State <= LDI_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_INCR; + + when OP_LDO => + CPU_Next_State <= LDO_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_REV2; + + when OP_LDX => + CPU_Next_State <= LDX_C1; + PC_Ctrl.Oper <= PC_REV2; + AS_Ctrl.Src <= ADDR_IMM; + -- If auto-increment is disabled, use the specified register pair, + -- otherwise, for an odd:even pair, and issue the first half of + -- a UPP instruction to the ALU + if( Enable_Auto_Increment = '0' )then + IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg); + else + Reg := conv_integer(SubOp(2 downto 1) & '0'); + Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); + IMM <= ALU_Regs(Reg_1) & ALU_Regs(Reg); + if( SubOp(0) = '1' )then + ALU_Ctrl.Oper<= ALU_UPP; + ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; + end if; + end if; + + when OP_STA => + CPU_Next_State <= STA_C1; + Cache_Ctrl <= CACHE_OPER1; + + when OP_STO => + CPU_Next_State <= STO_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_REV2; + DP_Ctrl.Src <= DATA_REG; + DP_Ctrl.Reg <= ACCUM; + + when OP_STX => + CPU_Next_State <= STX_C1; + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_REV2; + DP_Ctrl.Src <= DATA_REG; + DP_Ctrl.Reg <= ACCUM; + + when others => + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= Opcode; + ALU_Ctrl.Reg <= SubOp; + + end case; + +------------------------------------------------------------------------------- +-- Program Control (BR0_C1, BR1_C1, DBNZ_C1, JMP ) +------------------------------------------------------------------------------- + + when BRN_C1 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + if( ALU_Flags(Reg) = Opcode(0) )then + CPU_Next_State <= PIPE_FILL_0; + Cache_Ctrl <= CACHE_IDLE; + PC_Ctrl.Offset <= Operand1; + end if; + + when DBNZ_C1 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + if( ALU_Flags(FL_ZERO) = '0' )then + CPU_Next_State <= PIPE_FILL_0; + Cache_Ctrl <= CACHE_IDLE; + PC_Ctrl.Offset <= Operand1; + end if; + + when JMP_C1 => + CPU_Next_State <= JMP_C2; + Cache_Ctrl <= CACHE_OPER2; + + when JMP_C2 => + CPU_Next_State <= PIPE_FILL_0; + PC_Ctrl.Oper <= PC_LOAD; + PC_Ctrl.Addr <= Operand2 & Operand1; + +------------------------------------------------------------------------------- +-- Data Storage - Load from memory (LDA, LDI, LDO, LDX) +------------------------------------------------------------------------------- + + when LDA_C1 => + CPU_Next_State <= LDA_C2; + Cache_Ctrl <= CACHE_OPER2; + + when LDA_C2 => + CPU_Next_State <= LDA_C3; + AS_Ctrl.Src <= ADDR_IMM; + IMM <= Operand2 & Operand1; + + when LDA_C3 => + CPU_Next_State <= LDA_C4; + PC_Ctrl.Oper <= PC_INCR; + + when LDA_C4 => + CPU_Next_State <= LDI_C1; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_INCR; + + when LDI_C1 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_LDI; + ALU_Ctrl.Reg <= SubOp; + ALU_Ctrl.Data <= Operand1; + + when LDO_C1 => + CPU_Next_State <= LDX_C1; + AS_Ctrl.Src <= ADDR_IMM; + PC_Ctrl.Oper <= PC_INCR; + if( Enable_Auto_Increment = '1' )then + Reg := conv_integer(SubOp(2 downto 1) & '0'); + Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; + if( SubOp(0) = '1' )then + ALU_Ctrl.Oper<= ALU_UPP; + ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; + end if; + else + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; + end if; + + when LDX_C1 => + CPU_Next_State <= LDX_C2; + PC_Ctrl.Oper <= PC_INCR; + + when LDX_C2 => + CPU_Next_State <= LDX_C3; + PC_Ctrl.Oper <= PC_INCR; + Cache_Ctrl <= CACHE_OPER1; + + when LDX_C3 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_LDX; + ALU_Ctrl.Reg <= ACCUM; + ALU_Ctrl.Data <= Operand1; + +------------------------------------------------------------------------------- +-- Data Storage - Load from memory (STA, STO, STX) +------------------------------------------------------------------------------- + when STA_C1 => + CPU_Next_State <= STA_C2; + Cache_Ctrl <= CACHE_OPER2; + DP_Ctrl.Src <= DATA_REG; + DP_Ctrl.Reg <= SubOp; + + when STA_C2 => + CPU_Next_State <= STA_C3; + AS_Ctrl.Src <= ADDR_IMM; + IMM <= Operand2 & Operand1; + PC_Ctrl.Oper <= PC_INCR; + + when STA_C3 => + CPU_Next_State <= PIPE_FILL_2; + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_INCR; + + when STO_C1 => + Cache_Ctrl <= CACHE_PREFETCH; + PC_Ctrl.Oper <= PC_INCR; + AS_Ctrl.Src <= ADDR_IMM; + -- If auto-increment is disabled, just load the registers normally + if( Enable_Auto_Increment = '0' )then + CPU_Next_State <= PIPE_FILL_1; + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; + -- Otherwise, enforce the even register rule, and check the LSB to see + -- if we should perform the auto-increment on the register pair + else + CPU_Next_State <= STX_C2; + Reg := conv_integer(SubOp(2 downto 1) & '0'); + Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)) + Offset_SX; + if( SubOp(0) = '1' )then + ALU_Ctrl.Oper <= ALU_UPP; + ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; + end if; + end if; + + when STX_C1 => + PC_Ctrl.Oper <= PC_INCR; + AS_Ctrl.Src <= ADDR_IMM; + -- If auto-increment is disabled, just load the registers normally + if( Enable_Auto_Increment = '0' )then + CPU_Next_State <= PIPE_FILL_1; + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)); + -- Otherwise, enforce the even register rule, and check the LSB to see + -- if we should perform the auto-increment on the register pair + else + CPU_Next_State <= STX_C2; + Reg := conv_integer(SubOp(2 downto 1) & '0'); + Reg_1 := conv_integer(SubOp(2 downto 1) & '1'); + IMM <= (ALU_Regs(Reg_1) & ALU_Regs(Reg)); + if( SubOp(0) = '1' )then + ALU_Ctrl.Oper <= ALU_UPP; + ALU_Ctrl.Reg <= SubOp(2 downto 1) & '0'; + end if; + end if; + + when STX_C2 => + CPU_Next_State <= PIPE_FILL_2; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_UPP2; + ALU_Ctrl.Reg <= SubOp(2 downto 1) & '1'; + +------------------------------------------------------------------------------- +-- Multi-Cycle Math Operations (UPP, MUL) +------------------------------------------------------------------------------- + -- Because we have to backup the pipeline by 1 to refetch the 2nd + -- instruction/first operand, we have to return through PF2 + + when MUL_C1 => + CPU_Next_State <= PIPE_FILL_2; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_MUL; + + when UPP_C1 => + CPU_Next_State <= PIPE_FILL_2; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_UPP2; + ALU_Ctrl.Reg <= SubOp_p1; + +------------------------------------------------------------------------------- +-- Basic Stack Manipulation (PSH, POP, RSP) +------------------------------------------------------------------------------- + when PSH_C1 => + CPU_Next_State <= PIPE_FILL_1; + AS_Ctrl.Src <= ADDR_SP; + SP_Ctrl.Oper <= SP_PUSH; + + when POP_C1 => + CPU_Next_State <= POP_C2; + AS_Ctrl.Src <= ADDR_SP; + + when POP_C2 => + CPU_Next_State <= POP_C3; + PC_Ctrl.Oper <= PC_INCR; + + when POP_C3 => + CPU_Next_State <= POP_C4; + Cache_Ctrl <= CACHE_OPER1; + PC_Ctrl.Oper <= PC_INCR; + + when POP_C4 => + CPU_Next_State <= INSTR_DECODE; + Cache_Ctrl <= CACHE_INSTR; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_POP; + ALU_Ctrl.Reg <= SubOp; + ALU_Ctrl.Data <= Operand1; + +------------------------------------------------------------------------------- +-- Subroutines & Interrupts (RTS, JSR) +------------------------------------------------------------------------------- + when WAIT_FOR_INT => -- For soft interrupts only, halt the PC + CPU_Next_State <= WAIT_FOR_INT; + + when ISR_C1 => + CPU_Next_State <= ISR_C2; + AS_Ctrl.Src <= ADDR_ISR; + INT_Ctrl.Incr_ISR <= '1'; + PC_Ctrl.Oper <= PC_INCR; + -- Rewind the PC by 3 to compensate for the pipeline registers + PC_Ctrl.Offset <= x"FF"; + + when ISR_C2 => + CPU_Next_State <= ISR_C3; + AS_Ctrl.Src <= ADDR_ISR; + DP_Ctrl.Src <= DATA_FLAG; + + when ISR_C3 => + CPU_Next_State <= JSR_C1; + Cache_Ctrl <= CACHE_OPER1; + AS_Ctrl.Src <= ADDR_SP; + SP_Ctrl.Oper <= SP_PUSH; + DP_Ctrl.Src <= DATA_PC; + DP_Ctrl.Reg <= ACCUM+1; + ALU_Ctrl.Oper <= ALU_STP; + ALU_Ctrl.Reg <= INT_FLAG; + Ack_D <= '1'; + + when JSR_C1 => + CPU_Next_State <= JSR_C2; + Cache_Ctrl <= CACHE_OPER2; + AS_Ctrl.Src <= ADDR_SP; + SP_Ctrl.Oper <= SP_PUSH; + DP_Ctrl.Src <= DATA_PC; + DP_Ctrl.Reg <= ACCUM; + + when JSR_C2 => + CPU_Next_State <= PIPE_FILL_0; + AS_Ctrl.Src <= ADDR_SP; + SP_Ctrl.Oper <= SP_PUSH; + PC_Ctrl.Oper <= PC_LOAD; + PC_Ctrl.Addr <= Operand2 & Operand1; + + when RTS_C1 => + CPU_Next_State <= RTS_C2; + AS_Ctrl.Src <= ADDR_SP; + SP_Ctrl.Oper <= SP_POP; + + when RTS_C2 => + CPU_Next_State <= RTS_C3; + AS_Ctrl.Src <= ADDR_SP; + -- if this is an RTI, then we need to POP the flags + if( SubOp = SOP_RTI )then + SP_Ctrl.Oper <= SP_POP; + end if; + + when RTS_C3 => + CPU_Next_State <= RTS_C4; + Cache_Ctrl <= CACHE_OPER1; + -- It doesn't really matter what is on the address bus for RTS, while + -- it does for RTI, so we make this the default + AS_Ctrl.Src <= ADDR_SP; + + when RTS_C4 => + CPU_Next_State <= RTS_C5; + Cache_Ctrl <= CACHE_OPER2; + + when RTS_C5 => + CPU_Next_State <= PIPE_FILL_0; + PC_Ctrl.Oper <= PC_LOAD; + PC_Ctrl.Addr <= Operand2 & Operand1; + if( SubOp = SOP_RTI )then + CPU_Next_State <= RTI_C6; + Cache_Ctrl <= CACHE_OPER1; + end if; + + when RTI_C6 => + CPU_Next_State <= PIPE_FILL_1; + PC_Ctrl.Oper <= PC_INCR; + ALU_Ctrl.Oper <= ALU_RFLG; + ALU_Ctrl.Data <= Operand1; + PC_Ctrl.Oper <= PC_INCR; + Int_RTI_D <= '1'; + +------------------------------------------------------------------------------- +-- Debugging (BRK) Performs a 5-clock NOP +------------------------------------------------------------------------------- + when BRK_C1 => + CPU_Next_State <= PIPE_FILL_0; + + when others => null; + end case; + + -- Interrupt service routines can only begin during the decode and wait + -- states to avoid corruption due to incomplete instruction execution + if( Int_Req = '1' )then + if( CPU_State = INSTR_DECODE or CPU_State = WAIT_FOR_INT )then + CPU_Next_State <= ISR_C1; + end if; + end if; + + end process; + + S_Regs: process( Reset_n, Clock ) + begin + if( Reset_n = '0' )then + CPU_State <= PIPE_FILL_0; + Opcode <= OP_INC; + SubOp <= ACCUM; + SubOp_p1 <= ACCUM; + Operand1 <= x"00"; + Operand2 <= x"00"; + Instr_Prefetch <= '0'; + Prefetch <= x"00"; + + Ack_Q <= '0'; + Ack_Q1 <= '0'; + Int_Ack <= '0'; + Int_RTI <= '0'; + + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + CPU_State <= CPU_Next_State; + case Cache_Ctrl is + when CACHE_INSTR => + Opcode <= Rd_Data(7 downto 3); + SubOp <= Rd_Data(2 downto 0); + SubOp_p1 <= Rd_Data(2 downto 0) + 1; + if( Instr_Prefetch = '1' )then + Opcode <= Prefetch(7 downto 3); + SubOp <= Prefetch(2 downto 0); + SubOp_p1 <= Prefetch(2 downto 0) + 1; + Instr_Prefetch <= '0'; + end if; + when CACHE_OPER1 => + Operand1 <= Rd_Data; + when CACHE_OPER2 => + Operand2 <= Rd_Data; + when CACHE_PREFETCH => + Prefetch <= Rd_Data; + Instr_Prefetch <= '1'; + when CACHE_IDLE => + null; + end case; + + -- Interrupt signalling registers + Ack_Q <= Ack_D; + Ack_Q1 <= Ack_Q; + Int_Ack <= Ack_Q1; + Int_RTI <= Int_RTI_D; + end if; + end if; + end process; + +------------------------------------------------------------------------------- +-- Fixed in-line statements for the interrupt mask, and stack pointer address +------------------------------------------------------------------------------- + +-- The interrupt control mask is always sourced out of R0 + INT_Ctrl.Mask_Data <= ALU_Regs(conv_integer(ACCUM)); + +-- The original RSP instruction simply reset the stack pointer to the preset +-- address set at compile time. However, with little extra effort, we can +-- modify the instruction to allow the stack pointer to be moved anywhere in +-- the memory map. Since RSP can't have an sub-opcode, R1:R0 was chosen as +-- a fixed source + +Prog_Stack_Addr_Move_fn: if( Allow_Stack_Address_Move = '1' )generate + SP_Ctrl.Addr <= ALU_Regs(1) & ALU_Regs(0); +end generate; + +Normal_Stack_Reset_fn: if( Allow_Stack_Address_Move = '0' )generate + SP_Ctrl.Addr <= Stack_Start_Addr; +end generate; + +end block; + +------------------------------------------------------------------------------- +-- Address Source Mux +------------------------------------------------------------------------------- + +Open8_AS : block is +begin + + Address_Select: process( AS_Ctrl, PC, SP, IMM, ISR ) + variable PC_Mux, SP_Mux : ADDRESS_TYPE; + variable IMM_Mux, ISR_Mux: ADDRESS_TYPE; + begin + PC_Mux := (others => '0'); + SP_Mux := (others => '0'); + IMM_Mux := (others => '0'); + ISR_Mux := (others => '0'); + + case AS_Ctrl.Src is + when ADDR_PC => + PC_Mux := PC; + when ADDR_SP => + SP_Mux := SP; + when ADDR_IMM => + IMM_Mux := IMM; + when ADDR_ISR => + ISR_Mux := ISR; + end case; + + for i in 0 to 15 loop + Address(i) <= PC_Mux(i) or SP_Mux(i) or IMM_Mux(i) or + ISR_Mux(i); + end loop; + end process; + +end block; + +------------------------------------------------------------------------------- +-- (Write) Data Path +------------------------------------------------------------------------------- + +Open8_DP : block is + signal Wr_Data_D : DATA_TYPE := (others => '0'); + signal Wr_Enable_D : std_logic := '0'; +begin + + Data_Select: process( DP_Ctrl, ALU_Regs, ALU_Flags, PC ) + variable Reg_Mux, PC_Mux : DATA_TYPE; + variable Flag_Mux : DATA_TYPE; + begin + Reg_Mux := (others => '0'); + Flag_Mux := (others => '0'); + PC_Mux := (others => '0'); + Wr_Enable_D <= '0'; + + case DP_Ctrl.Src is + when DATA_IDLE => + null; + when DATA_REG => + Reg_Mux := ALU_Regs(conv_integer(DP_Ctrl.Reg)); + Wr_Enable_D <= '1'; + when DATA_FLAG => + Flag_Mux := ALU_Flags; + Wr_Enable_D <= '1'; + when DATA_PC => + Wr_Enable_D <= '1'; + if( DP_Ctrl.Reg = ACCUM )then + PC_Mux := PC(7 downto 0); + else + PC_Mux := PC(15 downto 8); + end if; + end case; + + for i in 0 to 7 loop + Wr_Data_D(i) <= Reg_Mux(i) or Flag_Mux(i) or PC_Mux(i); + end loop; + end process; + + S_Regs: process( Reset_n, Clock ) + begin + if( Reset_n = '0' )then + Wr_Data <= (others => '0'); + Wr_Enable <= '0'; + Rd_Enable <= '1'; + elsif( rising_edge(Clock) )then + if( Halt = '0' )then + Wr_Data <= Wr_Data_D; + Wr_Enable <= Wr_Enable_D; + Rd_Enable <= not Wr_Enable_D; + end if; + end if; + end process; + +end block; + +end rtl; Index: trunk/open8_urisc/VHDL/Open8_pkg.vhd =================================================================== --- trunk/open8_urisc/VHDL/Open8_pkg.vhd (nonexistent) +++ trunk/open8_urisc/VHDL/Open8_pkg.vhd (revision 7) @@ -0,0 +1,68 @@ +-- Copyright (c)2006, Jeremy Seth Henry +-- All rights reserved. +-- +-- Redistribution and use in source and binary forms, with or without +-- modification, are permitted provided that the following conditions are met: +-- * Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- * Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in the +-- documentation and/or other materials provided with the distribution, +-- where applicable (as part of a user interface, debugging port, etc.) +-- +-- THIS SOFTWARE IS PROVIDED BY JEREMY SETH HENRY ``AS IS'' AND ANY +-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +-- DISCLAIMED. IN NO EVENT SHALL JEREMY SETH HENRY BE LIABLE FOR ANY +-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +-- VHDL Units : Open8_pkg +-- Description: Contains constant definitions for the Open8 processor +-- Revision History +-- Author Date Change +------------------ -------- --------------------------------------------------- +-- Seth Henry 07/22/06 Design Start + +library ieee; +use ieee.std_logic_1164.all; + +package Open8_pkg is + + -- These subtypes can be used with external peripherals to simplify + -- connection to the core. + subtype ADDRESS_TYPE is std_logic_vector(15 downto 0); + subtype DATA_TYPE is std_logic_vector(7 downto 0); + -- Note: INTERRUPT_BUNDLE must be exactly the same width as DATA_TYPE + subtype INTERRUPT_BUNDLE is DATA_TYPE; + + -- Component declaration + component Open8_CPU is + generic( + Stack_Start_Addr : ADDRESS_TYPE; + Allow_Stack_Address_Move : std_logic := '0'; + ISR_Start_Addr : ADDRESS_TYPE; + Program_Start_Addr : ADDRESS_TYPE; + Default_Interrupt_Mask : DATA_TYPE; + Enable_CPU_Halt : std_logic := '0'; + Enable_Auto_Increment : std_logic := '0' ); + port( + Clock : in std_logic; + Reset_n : in std_logic; + CPU_Halt : in std_logic; + Interrupts : in INTERRUPT_BUNDLE; + Address : out ADDRESS_TYPE; + Rd_Data : in DATA_TYPE; + Rd_Enable : out std_logic; + Wr_Data : out DATA_TYPE; + Wr_Enable : out std_logic ); + end component; + +end Open8_pkg; + +package body Open8_pkg is +end package body;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.