OpenCores
URL https://opencores.org/ocsvn/versatile_library/versatile_library/trunk

Subversion Repositories versatile_library

Compare Revisions

  • This comparison shows the changes necessary to convert path
    /versatile_library/trunk/rtl/verilog
    from Rev 4 to Rev 5
    Reverse comparison

Rev 4 → Rev 5

/memories.v
0,0 → 1,434
//////////////////////////////////////////////////////////////////////
//// ////
//// Versatile library, memories ////
//// ////
//// Description ////
//// memories ////
//// ////
//// ////
//// To Do: ////
//// - add more memory types ////
//// ////
//// Author(s): ////
//// - Michael Unneback, unneback@opencores.org ////
//// ORSoC AB ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2010 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
 
/// ROM
 
module vl_rom ( a, q, clk);
 
parameter data_width = 32;
parameter addr_width = 4;
 
parameter [0:1>>addr_width-1] data [data_width-1:0] = {
{32'h18000000},
{32'hA8200000},
{32'hA8200000},
{32'hA8200000},
{32'h44003000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000},
{32'h15000000}};
 
input [addr_width-1:0] a;
output reg [data_width-1:0] q;
input clk;
 
always @ (posedge clk)
q <= data[a];
 
endmodule
 
// Single port RAM
 
module vl_ram ( d, adr, we, q, clk);
parameter data_width = 32;
parameter addr_width = 8;
input [(data_width-1):0] d;
input [(addr_width-1):0] adr;
input we;
output reg [(data_width-1):0] q;
input clk;
reg [data_width-1:0] ram [(1<<addr_width)-1:0];
always @ (posedge clk)
begin
if (we)
ram[adr] <= d;
q <= ram[adr];
end
 
endmodule
 
// Dual port RAM
 
// ACTEL FPGA should not use logic to handle rw collision
`ifdef ACTEL
`define SYN /*synthesis syn_ramstyle = "no_rw_check"*/
`else
`define SYN
`endif
 
module vl_dual_port_ram_1r1w ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
parameter data_width = 32;
parameter addr_width = 8;
input [(data_width-1):0] d_a;
input [(addr_width-1):0] adr_a;
input [(addr_width-1):0] adr_b;
input we_a;
output [(data_width-1):0] q_b;
input clk_a, clk_b;
reg [(addr_width-1):0] adr_b_reg;
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
always @ (posedge clk_a)
if (we_a)
ram[adr_a] <= d_a;
always @ (posedge clk_b)
adr_b_reg <= adr_b;
assign q_b = ram[adr_b_reg];
endmodule
 
module vl_dual_port_ram_2r1w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
parameter data_width = 32;
parameter addr_width = 8;
input [(data_width-1):0] d_a;
input [(addr_width-1):0] adr_a;
input [(addr_width-1):0] adr_b;
input we_a;
output [(data_width-1):0] q_b;
output reg [(data_width-1):0] q_a;
input clk_a, clk_b;
reg [(data_width-1):0] q_b;
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
always @ (posedge clk_a)
begin
q_a <= ram[adr_a];
if (we_a)
ram[adr_a] <= d_a;
end
always @ (posedge clk_b)
q_b <= ram[adr_b];
endmodule
 
module vl_dual_port_ram_2r2w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, d_b, we_b, clk_b );
parameter data_width = 32;
parameter addr_width = 8;
input [(data_width-1):0] d_a;
input [(addr_width-1):0] adr_a;
input [(addr_width-1):0] adr_b;
input we_a;
output [(data_width-1):0] q_b;
input [(data_width-1):0] d_b;
output reg [(data_width-1):0] q_a;
input we_b;
input clk_a, clk_b;
reg [(data_width-1):0] q_b;
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
always @ (posedge clk_a)
begin
q_a <= ram[adr_a];
if (we_a)
ram[adr_a] <= d_a;
end
always @ (posedge clk_b)
begin
q_b <= ram[adr_b];
if (we_b)
ram[adr_b] <= d_b;
end
endmodule
 
// Content addresable memory, CAM
 
// FIFO
 
module vl_fifo_cmp_async ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst );
 
parameter ADDR_WIDTH = 4;
parameter N = ADDR_WIDTH-1;
 
parameter Q1 = 2'b00;
parameter Q2 = 2'b01;
parameter Q3 = 2'b11;
parameter Q4 = 2'b10;
 
parameter going_empty = 1'b0;
parameter going_full = 1'b1;
input [N:0] wptr, rptr;
output reg fifo_empty;
output fifo_full;
input wclk, rclk, rst;
 
`ifndef GENERATE_DIRECTION_AS_LATCH
wire direction;
`endif
`ifdef GENERATE_DIRECTION_AS_LATCH
reg direction;
`endif
reg direction_set, direction_clr;
wire async_empty, async_full;
wire fifo_full2;
reg fifo_empty2;
// direction_set
always @ (wptr[N:N-1] or rptr[N:N-1])
case ({wptr[N:N-1],rptr[N:N-1]})
{Q1,Q2} : direction_set <= 1'b1;
{Q2,Q3} : direction_set <= 1'b1;
{Q3,Q4} : direction_set <= 1'b1;
{Q4,Q1} : direction_set <= 1'b1;
default : direction_set <= 1'b0;
endcase
 
// direction_clear
always @ (wptr[N:N-1] or rptr[N:N-1] or rst)
if (rst)
direction_clr <= 1'b1;
else
case ({wptr[N:N-1],rptr[N:N-1]})
{Q2,Q1} : direction_clr <= 1'b1;
{Q3,Q2} : direction_clr <= 1'b1;
{Q4,Q3} : direction_clr <= 1'b1;
{Q1,Q4} : direction_clr <= 1'b1;
default : direction_clr <= 1'b0;
endcase
 
`ifndef GENERATE_DIRECTION_AS_LATCH
dff_sr dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction));
`endif
 
`ifdef GENERATE_DIRECTION_AS_LATCH
always @ (posedge direction_set or posedge direction_clr)
if (direction_clr)
direction <= going_empty;
else
direction <= going_full;
`endif
 
assign async_empty = (wptr == rptr) && (direction==going_empty);
assign async_full = (wptr == rptr) && (direction==going_full);
 
dff_sr dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2));
dff_sr dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full));
 
/*
always @ (posedge wclk or posedge rst or posedge async_full)
if (rst)
{fifo_full, fifo_full2} <= 2'b00;
else if (async_full)
{fifo_full, fifo_full2} <= 2'b11;
else
{fifo_full, fifo_full2} <= {fifo_full2, async_full};
*/
always @ (posedge rclk or posedge async_empty)
if (async_empty)
{fifo_empty, fifo_empty2} <= 2'b11;
else
{fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty};
 
endmodule // async_comp
 
module vl_fifo_1r1w_async (
d, wr, fifo_full, wr_clk, wr_rst,
q, rd, fifo_empty, rd_clk, rd_rst
);
parameter data_width = 18;
parameter addr_width = 4;
 
// write side
input [data_width-1:0] d;
input wr;
output fifo_full;
input wr_clk;
input wr_rst;
// read side
output [data_width-1:0] q;
input rd;
output fifo_empty;
input rd_clk;
input rd_rst;
 
wire [addr_width:1] wadr, wadr_bin, radr, radr_bin;
 
vl_fifo_1r1w_async (
d, wr, fifo_full, wr_clk, wr_rst,
q, rd, fifo_empty, rd_clk, rd_rst
);
 
adr_gen
# ( .length(addr_width))
fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk));
adr_gen
# (.length(addr_width))
fifo_rd_adr( .cke(wr), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_rst));
 
vl_dual_port_ram_1r1w
# (.data_width(data_width), .addr_width(addr_width))
dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk));
 
vl_fifo_cmp_async
# (.addr_width(addr_width))
cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) );
 
endmodule
 
module vl_fifo_2r2w (
// a side
a_d, a_wr, a_fifo_full,
a_q, a_rd, a_fifo_empty,
a_clk, a_rst,
// b side
b_d, b_wr, b_fifo_full,
b_q, b_rd, b_fifo_empty,
b_clk, b_rst
);
parameter data_width = 18;
parameter addr_width = 4;
 
// a side
input [data_width-1:0] a_d;
input a_wr;
output a_fifo_full;
output [data_width-1:0] a_q;
input a_rd;
output a_fifo_empty;
input a_clk;
input a_rst;
 
// b side
input [data_width-1:0] b_d;
input b_wr;
output b_fifo_full;
output [data_width-1:0] b_q;
input b_rd;
output b_fifo_empty;
input b_clk;
input b_rst;
 
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
vl_fifo_1r1w_async_a (
.d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst),
.q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst)
);
 
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
vl_fifo_1r1w_async_b (
.d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst),
.q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst)
);
endmodule
 
module vl_fifo_2r2w_simplex (
// a side
a_d, a_wr, a_fifo_full,
a_q, a_rd, a_fifo_empty,
a_clk, a_rst,
// b side
b_d, b_wr, b_fifo_full,
b_q, b_rd, b_fifo_empty,
b_clk, b_rst
);
parameter data_width = 18;
parameter addr_width = 4;
 
// a side
input [data_width-1:0] a_d;
input a_wr;
output a_fifo_full;
output [data_width-1:0] a_q;
input a_rd;
output a_fifo_empty;
input a_clk;
input a_rst;
 
// b side
input [data_width-1:0] b_d;
input b_wr;
output b_fifo_full;
output [data_width-1:0] b_q;
input b_rd;
output b_fifo_empty;
input b_clk;
input b_rst;
 
// adr_gen
wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin;
wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin;
// dpram
wire [addr_width:0] a_dpram_adr, b_dpram_adr;
 
adr_gen
# ( .length(addr_width))
fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk));
adr_gen
# (.length(addr_width))
fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk));
 
adr_gen
# ( .length(addr_width))
fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk));
adr_gen
# (.length(addr_width))
fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk));
 
// mux read or write adr to DPRAM
assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin};
assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin};
 
vfifo_dual_port_ram_dc_dw
# (.data_width(data_width), .addr_width(addr_width+1))
dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk),
.d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk));
 
vl_fifo_async_cmp
# (.addr_width(addr_width))
cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) );
 
versatile_fifo_async_cmp
# (.addr_width(addr_width))
cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) );
 
endmodule
/counters.v
40,9 → 40,24
//// ////
//////////////////////////////////////////////////////////////////////
 
module cnt_shreg_ce ( cke, q, rst, clk);
module cnt_shreg_wrap ( q, rst, clk);
 
parameter length = 4;
output reg [0:length-1] q;
input rst;
input clk;
 
always @ (posedge clk or posedge rst)
if (rst)
q <= {1'b1,{length-1{1'b0}}};
else
q <= {q[length-1],q[0:length-2]};
endmodule
 
module cnt_shreg_ce_wrap ( cke, q, rst, clk);
 
parameter length = 4;
input cke;
output reg [0:length-1] q;
input rst;
53,7 → 68,7
q <= {1'b1,{length-1{1'b0}}};
else
if (cke)
q <= q >> 1;
q <= {q[length-1],q[0:length-2]};
endmodule
 
60,8 → 75,7
module cnt_shreg_ce_clear ( cke, clear, q, rst, clk);
 
parameter length = 4;
input cke;
input clear;
input cke, clear;
output reg [0:length-1] q;
input rst;
input clk;
78,4 → 92,22
endmodule
 
module cnt_shreg_ce_clear_wrap ( cke, clear, q, rst, clk);
 
parameter length = 4;
input cke, clear;
output reg [0:length-1] q;
input rst;
input clk;
 
always @ (posedge clk or posedge rst)
if (rst)
q <= {1'b1,{length-1{1'b0}}};
else
if (cke)
if (clear)
q <= {1'b1,{length-1{1'b0}}};
else
q <= {q[length-1],q[0:length-2]};
endmodule
/registers.v
57,6 → 57,31
 
endmodule
 
module dff_array ( d, q, clk, rst);
 
parameter width = 1;
parameter depth = 2;
parameter reset_value = 1'b0;
 
input [width-1:0] d;
input clk, rst;
output [width-1:0] q;
reg [0:depth-1] q_tmp [width-1:0];
integer i;
always @ (posedge clk or posedge rst)
if (rst) begin
for (i=0;i<depth;i=i+1)
q_tmp[i] <= {width{reset_value}};
end else begin
q_tmp[0] <= d;
for (i=1;i<depth;i=i+1)
q_tmp[i] <= q_tmp[i-1];
end
assign q = q_tmp[depth-1];
endmodule
 
module dff_ce ( d, ce, q, clk, rst);
 
parameter width = 1;
218,3 → 243,25
endmodule
 
`endif
 
// LATCH
// For targtes not supporting LATCH use dff_sr with clk=1 and data=1
`ifdef ALTERA
module latch ( d, le, q, clk);
input d, le;
output q;
input clk;
dff_sr i0 (.aclr(), .aset(), .clock(1'b1), .data(1'b1), .q(q));
endmodule
`else
module latch ( d, le, q, clk);
input d, le;
output q;
input clk;/*
always @ (posedge direction_set or posedge direction_clr)
if (direction_clr)
direction <= going_empty;
else
direction <= going_full;*/
endmodule
`endif
/Makefile
14,6 → 14,7
 
VERILOG_FILES += $(VERILOG_FILES_CNT)
VERILOG_FILES += counters.v
VERILOG_FILES += memories.v
 
VERSATILE_LIBRARIES = versatile_library.v
VERSATILE_LIBRARIES += versatile_library_actel.v

powered by: WebSVN 2.1.0

© copyright 1999-2021 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.