URL
https://opencores.org/ocsvn/zipcpu/zipcpu/trunk
Subversion Repositories zipcpu
Compare Revisions
- This comparison shows the changes necessary to convert path
/zipcpu/trunk/rtl
- from Rev 179 to Rev 178
- ↔ Reverse comparison
Rev 179 → Rev 178
/core/zipcpu.v
7,9 → 7,7
// Purpose: This is the top level module holding the core of the Zip CPU |
// together. The Zip CPU is designed to be as simple as possible. |
// (actual implementation aside ...) The instruction set is about as |
// RISC as you can get, with only 26 instruction types currently supported. |
// (There are still 8-instruction Op-Codes reserved for floating point, |
// and 5 which can be used for transactions not requiring registers.) |
// RISC as you can get, there are only 16 instruction types supported. |
// Please see the accompanying spec.pdf file for a description of these |
// instructions. |
// |
28,11 → 26,10
// |
// 4. Write-back Results |
// |
// Further information about the inner workings of this CPU, such as |
// what causes pipeline stalls, may be found in the spec.pdf file. (The |
// documentation within this file had become out of date and out of sync |
// with the spec.pdf, so look to the spec.pdf for accurate and up to date |
// information.) |
// Further information about the inner workings of this CPU may be |
// found in the spec.pdf file. (The documentation within this file |
// had become out of date and out of sync with the spec.pdf, so look |
// to the spec.pdf for accurate and up to date information.) |
// |
// |
// In general, the pipelining is controlled by three pieces of logic |
106,8 → 103,6
// |
`define CPU_CC_REG 4'he |
`define CPU_PC_REG 4'hf |
`define CPU_CLRCACHE_BIT 14 // Floating point error flag, set on error |
`define CPU_PHASE_BIT 13 // Floating point error flag, set on error |
`define CPU_FPUERR_BIT 12 // Floating point error flag, set on error |
`define CPU_DIVERR_BIT 11 // Divide error flag, set on divide by zero |
`define CPU_BUSERR_BIT 10 // Bus error flag, set on error |
140,7 → 135,7
`endif |
); |
parameter RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24, |
LGICACHE=8; |
LGICACHE=6; |
`ifdef OPT_MULTIPLY |
parameter IMPLEMENT_MPY = `OPT_MULTIPLY; |
`else |
208,16 → 203,13
// Condition codes |
// (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z |
reg [3:0] flags, iflags; |
wire [14:0] w_uflags, w_iflags; |
wire [13:0] w_uflags, w_iflags; |
reg trap, break_en, step, gie, sleep, r_halted; |
wire break_pending; |
wire w_clear_icache; |
`ifdef OPT_ILLEGAL_INSTRUCTION |
reg ill_err_u, ill_err_i; |
`else |
wire ill_err_u, ill_err_i; |
`endif |
reg ubreak; |
reg ibus_err_flag, ubus_err_flag; |
wire idiv_err_flag, udiv_err_flag; |
wire ifpu_err_flag, ufpu_err_flag; |
234,7 → 226,7
reg [(AW-1):0] pf_pc; |
reg new_pc; |
wire clear_pipeline; |
assign clear_pipeline = new_pc; |
assign clear_pipeline = new_pc || i_clear_pf_cache; |
|
wire dcd_stalled; |
wire pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err; |
282,15 → 274,14
// |
// Now, let's read our operands |
reg [4:0] alu_reg; |
wire [3:0] opn; |
wire [4:0] opR; |
reg [3:0] opn; |
reg [4:0] opR; |
reg [31:0] r_opA, r_opB; |
reg [(AW-1):0] op_pc; |
wire [31:0] w_opA, w_opB; |
wire [31:0] opA_nowait, opB_nowait, opA, opB; |
reg opR_wr, opF_wr; |
wire op_gie, opR_cc; |
wire [14:0] opFl; |
reg opR_wr, opR_cc, opF_wr, op_gie; |
wire [13:0] opFl; |
reg [5:0] r_opF; |
wire [7:0] opF; |
wire op_ce, op_phase, op_pipe, op_change_data_ce; |
305,7 → 296,7
wire op_illegal; |
assign op_illegal = 1'b0; |
`endif |
wire op_break; |
reg op_break; |
wire op_lock; |
|
|
315,7 → 306,7
// Variable declarations |
// |
// |
wire [(AW-1):0] alu_pc; |
reg [(AW-1):0] alu_pc; |
reg r_alu_pc_valid, mem_pc_valid; |
wire alu_pc_valid; |
wire alu_phase; |
324,8 → 315,9
wire [3:0] alu_flags; |
wire alu_valid, alu_busy; |
wire set_cond; |
reg alu_wr, alF_wr; |
wire alu_gie, alu_illegal_op, alu_illegal; |
reg alu_wr, alF_wr, alu_gie; |
wire alu_illegal_op; |
wire alu_illegal; |
|
|
|
357,7 → 349,12
&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) |
&&(set_cond); |
|
wire adf_ce_unconditional; |
// ALU, DIV, or FPU CE ... equivalent to the OR of all three of these |
wire adf_ce, adf_ce_unconditional; |
assign adf_ce_unconditional = (master_ce)&&(~clear_pipeline)&&(opvalid) |
&&(~opvalid_mem)&&(~mem_rdbusy)&&(~div_busy) |
&&(~fpu_busy); |
assign adf_ce = (adf_ce_unconditional)&&(set_cond); |
|
// |
// |
364,8 → 361,7
// PIPELINE STAGE #5 :: Write-back |
// Variable declarations |
// |
wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc, |
wr_write_scc, wr_write_ucc; |
wire wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc; |
wire [4:0] wr_reg_id; |
wire [31:0] wr_gpreg_vl, wr_spreg_vl; |
wire w_switch_to_interrupt, w_release_from_interrupt; |
404,14 → 400,6
// Calculate stall conditions |
wire op_lock_stall; |
`ifdef OPT_PIPELINED |
reg cc_invalid_for_dcd; |
always @(posedge i_clk) |
cc_invalid_for_dcd <= (wr_flags_ce) |
||(wr_reg_ce)&&(wr_reg_id[3:0] == `CPU_CC_REG) |
||(opvalid)&&((opF_wr)||((opR_wr)&&(opR[3:0] == `CPU_CC_REG))) |
||((alF_wr)||((alu_wr)&&(alu_reg[3:0] == `CPU_CC_REG))) |
||(mem_busy)||(div_busy)||(fpu_busy); |
|
assign op_stall = (opvalid)&&( // Only stall if we're loaded w/validins |
// Stall if we're stopped, and not allowed to execute |
// an instruction |
430,7 → 418,6
// that cannot be pipelined, and the memory is |
// already busy |
||(mem_stalled) // &&(opvalid_mem) part of mem_stalled |
||(opR_cc) |
) |
||(dcdvalid)&&( |
// Stall if we need to wait for an operand A |
446,8 → 433,6
||(dcdF_stall) |
); |
assign op_ce = ((dcdvalid)||(dcd_illegal))&&(~op_stall)&&(~clear_pipeline); |
|
|
// BUT ... op_ce is too complex for many of the data operations. So |
// let's make their circuit enable code simpler. In particular, if |
// op_ doesn't need to be preserved, we can change it all we want |
475,14 → 460,17
// the ALU. |
`ifdef OPT_PIPELINED |
assign alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(opvalid_alu)) //Case 1&2 |
// Old case #3--this isn't an ALU stall though ... |
||((opvalid_alu)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie) |
&&(wr_write_cc)) // Case 3 |
||((opvalid)&&(op_lock)&&(op_lock_stall)) |
||((opvalid)&&(op_break)) |
||(wr_reg_ce)&&(wr_write_cc) |
||(div_busy)||(fpu_busy); |
assign alu_ce = (master_ce)&&(opvalid_alu)&&(~alu_stall) |
&&(~clear_pipeline); |
`else |
assign alu_stall = (opvalid_alu)&&((~master_ce)||(op_break)); |
assign alu_stall = ((~master_ce)&&(opvalid_alu)) |
||((opvalid_alu)&&(op_break)); |
assign alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))&&(~alu_stall)&&(~clear_pipeline); |
`endif |
// |
532,11 → 520,6
`endif |
`endif |
|
// ALU, DIV, or FPU CE ... equivalent to the OR of all three of these |
assign adf_ce_unconditional = (master_ce)&&(~clear_pipeline)&&(opvalid) |
&&(~opvalid_mem)&&(~mem_rdbusy) |
&&((~opvalid_alu)||(~alu_stall))&&(~op_break) |
&&(~div_busy)&&(~fpu_busy)&&(~clear_pipeline); |
|
// |
// |
559,7 → 542,7
if ((i_rst)||(clear_pipeline)) |
r_dcdvalid <= 1'b0; |
else if (dcd_ce) |
r_dcdvalid <= (pf_valid)||(pf_illegal); |
r_dcdvalid <= (pf_valid); |
else if (op_ce) |
r_dcdvalid <= 1'b0; |
assign dcdvalid = r_dcdvalid; |
569,7 → 552,7
`ifdef OPT_TRADITIONAL_PFCACHE |
pfcache #(LGICACHE, ADDRESS_WIDTH) |
pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), |
w_clear_icache, |
i_clear_pf_cache, |
// dcd_pc, |
~dcd_stalled, |
((dcd_early_branch)&&(~clear_pipeline)) |
580,8 → 563,8
pf_illegal); |
`else |
pipefetch #(RESET_ADDRESS, LGICACHE, ADDRESS_WIDTH) |
pf(i_clk, i_rst, (new_pc)||(dcd_early_branch), |
w_clear_icache, ~dcd_stalled, |
pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)), |
i_clear_pf_cache, ~dcd_stalled, |
(new_pc)?pf_pc:dcd_branch_pc, |
instruction, instruction_pc, pf_valid, |
pf_cyc, pf_stb, pf_we, pf_addr, pf_data, |
598,10 → 581,10
|
initial r_dcdvalid = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(clear_pipeline)||(w_clear_icache)) |
if ((i_rst)||(clear_pipeline)) |
r_dcdvalid <= 1'b0; |
else if (dcd_ce) |
r_dcdvalid <= (pf_valid)&&(~dcd_ljmp)&&(~dcd_early_branch); |
r_dcdvalid <= (pf_valid)&&(~dcd_ljmp)&&((~r_dcdvalid)||(~dcd_early_branch)); |
else if (op_ce) |
r_dcdvalid <= 1'b0; |
assign dcdvalid = r_dcdvalid; |
608,12 → 591,10
`endif |
|
`ifdef OPT_NEW_INSTRUCTION_SET |
|
// If not pipelined, there will be no opvalid_ anything, and the |
idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE, |
IMPLEMENT_FPU) |
instruction_decoder(i_clk, (i_rst)||(clear_pipeline), |
(~dcdvalid)||(~op_stall), dcd_stalled, instruction, instruction_gie, |
dcd_ce, dcd_stalled, instruction, instruction_gie, |
instruction_pc, pf_valid, pf_illegal, dcd_phase, |
dcd_illegal, dcd_pc, dcd_gie, |
{ dcdR_cc, dcdR_pc, dcdR }, |
747,19 → 728,14
`endif |
|
always @(posedge i_clk) |
`ifdef OPT_PIPELINED |
if (op_change_data_ce) |
`endif |
begin |
`ifdef OPT_PIPELINED |
if ((wr_reg_ce)&&(wr_reg_id == dcdA)) |
r_opA <= wr_gpreg_vl; |
else |
`endif |
if (dcdA_pc) |
else if (dcdA_pc) |
r_opA <= w_pcA_v; |
else if (dcdA_cc) |
r_opA <= { w_cpu_info, w_opA[22:16], 1'b0, (dcdA[4])?w_uflags:w_iflags }; |
r_opA <= { w_cpu_info, w_opA[22:14], (dcdA[4])?w_uflags:w_iflags }; |
else |
r_opA <= w_opA; |
`ifdef OPT_PIPELINED |
783,22 → 759,18
endgenerate |
|
assign w_opBnI = (~dcdB_rd) ? 32'h00 |
`ifdef OPT_PIPELINED |
: ((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_gpreg_vl |
`endif |
: (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_gpreg_vl |
: ((dcdB_pc) ? w_pcB_v |
: ((dcdB_cc) ? { w_cpu_info, w_opB[22:16], // w_opB[31:14], |
1'b0, (dcdB[4])?w_uflags:w_iflags} |
: w_opB)); |
: ((dcdB_cc) ? { w_cpu_info, w_opB[22:14], // w_opB[31:14], |
(dcdB[4])?w_uflags:w_iflags} |
: w_opB))); |
|
always @(posedge i_clk) |
`ifdef OPT_PIPELINED |
if (op_change_data_ce) |
r_opB <= w_opBnI + dcdI; |
`ifdef OPT_PIPELINED |
else if ((wr_reg_ce)&&(opB_id == wr_reg_id)&&(opB_rd)) |
r_opB <= wr_gpreg_vl; |
`else |
r_opB <= w_opBnI + dcdI; |
`endif |
|
// The logic here has become more complex than it should be, no thanks |
811,11 → 783,9
// below, arriving at what we finally want in the (now wire net) |
// opF. |
always @(posedge i_clk) |
`ifdef OPT_PIPELINED |
if (op_ce) // Cannot do op_change_data_ce here since opF depends |
// upon being either correct for a valid op, or correct |
// for the last valid op |
`endif |
begin // Set the flag condition codes, bit order is [3:0]=VNCZ |
case(dcdF[2:0]) |
3'h0: r_opF <= 6'h00; // Always |
855,8 → 825,6
opvalid <= 1'b0; |
opvalid_alu <= 1'b0; |
opvalid_mem <= 1'b0; |
opvalid_div <= 1'b0; |
opvalid_fpu <= 1'b0; |
end else if (op_ce) |
begin |
// Do we have a valid instruction? |
867,9 → 835,9
// Hence, the test on dcd_stalled here. If we must |
// wait until our operands are valid, then we aren't |
// valid yet until then. |
opvalid<= (w_opvalid)||(dcd_illegal)&&(dcdvalid); |
opvalid<= w_opvalid; |
`ifdef OPT_ILLEGAL_INSTRUCTION |
opvalid_alu <= (w_opvalid)&&((dcdALU)||(dcd_illegal)); |
opvalid_alu <= ((dcdALU)||(dcd_illegal))&&(w_opvalid); |
opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(w_opvalid); |
opvalid_div <= (dcdDV)&&(~dcd_illegal)&&(w_opvalid); |
opvalid_fpu <= (dcdFP)&&(~dcd_illegal)&&(w_opvalid); |
897,19 → 865,12
// to be, step through it, and then replace it back. In this fashion, |
// a debugger can step through code. |
// assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001); |
`ifdef OPT_PIPELINED |
reg r_op_break; |
|
initial r_op_break = 1'b0; |
initial op_break = 1'b0; |
always @(posedge i_clk) |
if (i_rst) r_op_break <= 1'b0; |
else if (op_ce) r_op_break <= (dcd_break); // &&(dcdvalid) |
if (i_rst) op_break <= 1'b0; |
else if (op_ce) op_break <= (dcd_break); |
else if ((clear_pipeline)||(~opvalid)) |
r_op_break <= 1'b0; |
assign op_break = r_op_break; |
`else |
assign op_break = dcd_break; |
`endif |
op_break <= 1'b0; |
|
`ifdef OPT_PIPELINED |
generate |
952,18 → 913,15
op_illegal <= 1'b0; |
else if(op_ce) |
`ifdef OPT_PIPELINED |
op_illegal <= (dcdvalid)&&((dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0))); |
op_illegal <=(dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0)); |
`else |
op_illegal <= (dcdvalid)&&((dcd_illegal)||(dcd_lock)); |
op_illegal <= (dcd_illegal)||(dcd_lock); |
`endif |
else if(alu_ce) |
op_illegal <= 1'b0; |
`endif |
|
// No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not |
// set, dcd_early_branch will simply be a wire connected to zero and |
// this logic should just optimize. |
`ifdef OPT_PIPELINED |
always @(posedge i_clk) |
if (op_ce) |
begin |
971,47 → 929,22
&&(~dcd_early_branch)&&(~dcd_illegal); |
opR_wr <= (dcdR_wr)&&(~dcd_early_branch)&&(~dcd_illegal); |
end |
`else |
always @(posedge i_clk) |
begin |
opF_wr <= (dcdF_wr)&&((~dcdR_cc)||(~dcdR_wr)) |
&&(~dcd_early_branch)&&(~dcd_illegal); |
opR_wr <= (dcdR_wr)&&(~dcd_early_branch)&&(~dcd_illegal); |
end |
`endif |
|
`ifdef OPT_PIPELINED |
reg [3:0] r_opn; |
reg [4:0] r_opR; |
reg r_opR_cc; |
reg r_op_gie; |
always @(posedge i_clk) |
if (op_change_data_ce) |
begin |
r_opn <= dcdOp; // Which ALU operation? |
opn <= dcdOp; // Which ALU operation? |
// opM <= dcdM; // Is this a memory operation? |
// What register will these results be written into? |
r_opR <= dcdR; |
r_opR_cc <= (dcdR_cc)&&(dcdR_wr)&&(dcdR[4]==dcd_gie); |
opR <= dcdR; |
opR_cc <= (dcdR_cc)&&(dcdR_wr)&&(dcdR[4]==dcd_gie); |
// User level (1), vs supervisor (0)/interrupts disabled |
r_op_gie <= dcd_gie; |
op_gie <= dcd_gie; |
|
|
// |
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc; |
end |
assign opn = r_opn; |
assign opR = r_opR; |
assign op_gie = r_op_gie; |
assign opR_cc = r_opR_cc; |
`else |
assign opn = dcdOp; |
assign opR = dcdR; |
assign op_gie = dcd_gie; |
// With no pipelining, there is no early branching. We keep it |
always @(posedge i_clk) |
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc; |
`endif |
assign opFl = (op_gie)?(w_uflags):(w_iflags); |
|
`ifdef OPT_VLIW |
1056,8 → 989,7
assign dcdA_stall = (dcdA_rd) // &&(dcdvalid) is checked for elsewhere |
&&((opvalid)||(mem_rdbusy) |
||(div_busy)||(fpu_busy)) |
&&(((opF_wr)||(cc_invalid_for_dcd))&&(dcdA_cc)) |
||((dcdA_rd)&&(dcdA_cc)&&(cc_invalid_for_dcd)); |
&&((opF_wr)&&(dcdA_cc)); |
`else |
// There are no pipeline hazards, if we aren't pipelined |
assign dcdA_stall = 1'b0; |
1110,12 → 1042,11
// Stall following any instruction that will |
// set the flags, if we're going to need the |
// flags (CC) register for opB. |
||(((opF_wr)||(cc_invalid_for_dcd))&&(dcdB_cc)) |
||((opF_wr)&&(dcdB_cc)) |
// Stall on any ongoing memory operation that |
// will write to opB -- captured above |
// ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcdB)&&(~dcd_zI)) |
) |
||((dcdB_rd)&&(dcdB_cc)&&(cc_invalid_for_dcd)); |
); |
assign dcdF_stall = ((~dcdF[3]) |
||((dcdA_rd)&&(dcdA_cc)) |
||((dcdB_rd)&&(dcdB_cc))) |
1151,7 → 1082,7
opA, opB, div_busy, div_valid, div_error, div_result, |
div_flags); |
end else begin |
assign div_error = 1'b0; // Can't be high unless div_valid |
assign div_error = 1'b1; |
assign div_busy = 1'b0; |
assign div_valid = 1'b0; |
assign div_result= 32'h00; |
1166,13 → 1097,13
// opA, opB, fpu_busy, fpu_valid, fpu_err, fpu_result, |
// fpu_flags); |
// |
assign fpu_error = 1'b0; // Must only be true if fpu_valid |
assign fpu_error = 1'b1; |
assign fpu_busy = 1'b0; |
assign fpu_valid = 1'b0; |
assign fpu_result= 32'h00; |
assign fpu_flags = 4'h0; |
end else begin |
assign fpu_error = 1'b0; |
assign fpu_error = 1'b1; |
assign fpu_busy = 1'b0; |
assign fpu_valid = 1'b0; |
assign fpu_result= 32'h00; |
1213,19 → 1144,11
assign alu_phase = 1'b0; |
`endif |
|
`ifdef OPT_PIPELINED |
always @(posedge i_clk) |
if (adf_ce_unconditional) |
alu_reg <= opR; |
else if ((i_halt)&&(i_dbg_we)) |
alu_reg <= i_dbg_reg; |
`else |
always @(posedge i_clk) |
if ((i_halt)&&(i_dbg_we)) |
alu_reg <= i_dbg_reg; |
else |
alu_reg <= opR; |
`endif |
|
// |
// DEBUG Register write access starts here |
1237,39 → 1160,24
reg [31:0] dbg_val; |
always @(posedge i_clk) |
dbg_val <= i_dbg_data; |
`ifdef OPT_PIPELINED |
reg r_alu_gie; |
|
always @(posedge i_clk) |
if ((adf_ce_unconditional)||(mem_ce)) |
r_alu_gie <= op_gie; |
assign alu_gie = r_alu_gie; |
|
reg [(AW-1):0] r_alu_pc; |
alu_gie <= op_gie; |
always @(posedge i_clk) |
if ((adf_ce_unconditional) |
||((master_ce)&&(opvalid_mem)&&(~clear_pipeline) |
&&(~mem_stalled))) |
r_alu_pc <= op_pc; |
assign alu_pc = r_alu_pc; |
`else |
assign alu_gie = op_gie; |
assign alu_pc = op_pc; |
`endif |
alu_pc <= op_pc; |
|
`ifdef OPT_ILLEGAL_INSTRUCTION |
reg r_alu_illegal; |
initial r_alu_illegal = 0; |
always @(posedge i_clk) |
if ((i_rst)||(clear_pipeline)) |
if (clear_pipeline) |
r_alu_illegal <= 1'b0; |
else if (alu_ce) |
else if ((alu_ce)||(mem_ce)) |
r_alu_illegal <= op_illegal; |
else |
r_alu_illegal <= 1'b0; |
assign alu_illegal = (alu_illegal_op)||(r_alu_illegal); |
`else |
assign alu_illegal = 1'b0; |
`endif |
|
initial r_alu_pc_valid = 1'b0; |
1391,11 → 1299,8
assign wr_reg_id = (alu_wr|div_valid|fpu_valid)?alu_reg:mem_wreg; |
// Are we writing to the CC register? |
assign wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG); |
assign wr_write_scc = (wr_reg_id[4:0] == {1'b0, `CPU_CC_REG}); |
assign wr_write_ucc = (wr_reg_id[4:0] == {1'b1, `CPU_CC_REG}); |
// Are we writing to the PC? |
assign wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG); |
|
// What value to write? |
assign wr_gpreg_vl = ((mem_valid) ? mem_result |
:((div_valid|fpu_valid)) |
1412,11 → 1317,11
// When shall we write to our flags register? alF_wr already |
// includes the set condition ... |
assign wr_flags_ce = ((alF_wr)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal); |
assign w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag, |
assign w_uflags = { uhalt_phase, ufpu_err_flag, |
udiv_err_flag, ubus_err_flag, trap, ill_err_u, |
ubreak, step, 1'b1, sleep, |
1'b0, step, 1'b1, sleep, |
((wr_flags_ce)&&(alu_gie))?alu_flags:flags }; |
assign w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag, |
assign w_iflags = { ihalt_phase, ifpu_err_flag, |
idiv_err_flag, ibus_err_flag, trap, ill_err_i, |
break_en, 1'b0, 1'b0, sleep, |
((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags }; |
1425,7 → 1330,7
// What value to write? |
always @(posedge i_clk) |
// If explicitly writing the register itself |
if ((wr_reg_ce)&&(wr_write_ucc)) |
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc)) |
flags <= wr_gpreg_vl[3:0]; |
// Otherwise if we're setting the flags from an ALU operation |
else if ((wr_flags_ce)&&(alu_gie)) |
1433,7 → 1338,7
: alu_flags); |
|
always @(posedge i_clk) |
if ((wr_reg_ce)&&(wr_write_scc)) |
if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) |
iflags <= wr_gpreg_vl[3:0]; |
else if ((wr_flags_ce)&&(~alu_gie)) |
iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags |
1449,8 → 1354,8
// if ((break_en) AND (break_instruction)) // user mode or not |
// HALT CPU |
// else if (break_instruction) // only in user mode |
// set an interrupt flag, set the user break bit, |
// go to supervisor mode, allow supervisor to step the CPU. |
// set an interrupt flag, go to supervisor mode |
// allow supervisor to step the CPU. |
// Upon a CPU halt, any break condition will be reset. The |
// external debugger will then need to deal with whatever |
// condition has taken place. |
1458,33 → 1363,29
always @(posedge i_clk) |
if ((i_rst)||(i_halt)) |
break_en <= 1'b0; |
else if ((wr_reg_ce)&&(wr_write_scc)) |
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc)) |
break_en <= wr_spreg_vl[`CPU_BREAK_BIT]; |
|
`ifdef OPT_PIPELINED |
reg r_break_pending; |
|
initial r_break_pending = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(clear_pipeline)||(~opvalid)) |
r_break_pending <= 1'b0; |
else if (op_break) |
r_break_pending <= (~alu_busy)&&(~div_busy)&&(~fpu_busy)&&(~mem_busy); |
else |
r_break_pending <= 1'b0; |
assign break_pending = r_break_pending; |
`ifdef OPT_ILLEGAL_INSTRUCTION |
assign o_break = ((break_en)||(~op_gie))&&(op_break) |
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy) |
&&(~alu_busy) |
&&(~div_busy)&&(~fpu_busy) |
&&(~clear_pipeline) |
||((~alu_gie)&&(bus_err)) |
||((~alu_gie)&&(div_valid)&&(div_error)) |
||((~alu_gie)&&(fpu_valid)&&(fpu_error)) |
||((~alu_gie)&&(alu_pc_valid)&&(alu_illegal)); |
`else |
assign break_pending = op_break; |
assign o_break = (((break_en)||(~op_gie))&&(op_break) |
&&(~alu_valid)&&(~mem_valid)&&(~mem_busy) |
&&(~alu_busy)&&(~div_busy)&&(~fpu_busy) |
&&(~clear_pipeline)) |
||((~alu_gie)&&(bus_err)) |
||((~alu_gie)&&(div_valid)&&(div_error)) |
||((~alu_gie)&&(fpu_valid)&&(fpu_error)); |
`endif |
|
|
assign o_break = ((break_en)||(~op_gie))&&(break_pending) |
&&(~clear_pipeline) |
||((~alu_gie)&&(bus_err)) |
||((~alu_gie)&&(div_error)) |
||((~alu_gie)&&(fpu_error)) |
||((~alu_gie)&&(alu_illegal)); |
|
// The sleep register. Setting the sleep register causes the CPU to |
// sleep until the next interrupt. Setting the sleep register within |
// interrupt mode causes the processor to halt until a reset. This is |
1515,7 → 1416,7
always @(posedge i_clk) |
if ((i_rst)||(w_switch_to_interrupt)) |
step <= 1'b0; |
else if ((wr_reg_ce)&&(~alu_gie)&&(wr_write_ucc)) |
else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc)) |
step <= wr_spreg_vl[`CPU_STEP_BIT]; |
else if (((alu_pc_valid)||(mem_pc_valid))&&(step)&&(gie)) |
step <= 1'b0; |
1528,19 → 1429,18
||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(~alu_phase)&&(~bus_lock)) |
// If we encounter a break instruction, if the break |
// enable isn't set. |
||((master_ce)&&(break_pending)&&(~break_en)) |
||((master_ce)&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy) |
&&(op_break)&&(~break_en)) |
`ifdef OPT_ILLEGAL_INSTRUCTION |
// On an illegal instruction |
||(alu_illegal) |
||((alu_pc_valid)&&(alu_illegal)) |
`endif |
// On division by zero. If the divide isn't |
// implemented, div_valid and div_error will be short |
// circuited and that logic will be bypassed |
||(div_error) |
// Same thing on a floating point error. Note that |
// fpu_error must *never* be set unless fpu_valid is |
// also set as well, else this will fail. |
||(fpu_error) |
||((div_valid)&&(div_error)) |
// Same thing on a floating point error. |
||((fpu_valid)&&(fpu_error)) |
// |
||(bus_err) |
// If we write to the CC register |
1548,9 → 1448,9
&&(wr_reg_id[4])&&(wr_write_cc)) |
); |
assign w_release_from_interrupt = (~gie)&&(~i_interrupt) |
// Then if we write the sCC register |
// Then if we write the CC register |
&&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT]) |
&&(wr_write_scc)) |
&&(~wr_reg_id[4])&&(wr_write_cc)) |
); |
always @(posedge i_clk) |
if (i_rst) |
1562,24 → 1462,16
|
initial trap = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(w_release_from_interrupt)) |
if (i_rst) |
trap <= 1'b0; |
else if (w_release_from_interrupt) |
trap <= 1'b0; |
else if ((alu_gie)&&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT]) |
&&(wr_write_ucc)) // &&(wr_reg_id[4]) implied |
&&(wr_write_cc)) // &&(wr_reg_id[4]) implied |
trap <= 1'b1; |
else if ((wr_reg_ce)&&(wr_write_ucc)&&(~alu_gie)) |
trap <= (trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]); |
else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_id[4])) |
trap <= wr_spreg_vl[`CPU_TRAP_BIT]; |
|
initial ubreak = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(w_release_from_interrupt)) |
ubreak <= 1'b0; |
else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt)) |
ubreak <= 1'b1; |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) |
ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]); |
|
|
`ifdef OPT_ILLEGAL_INSTRUCTION |
initial ill_err_i = 1'b0; |
always @(posedge i_clk) |
1586,21 → 1478,25
if (i_rst) |
ill_err_i <= 1'b0; |
// Only the debug interface can clear this bit |
else if ((dbgv)&&(wr_write_scc)) |
ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]); |
else if ((alu_illegal)&&(~alu_gie)) |
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) |
&&(~wr_spreg_vl[`CPU_ILL_BIT])) |
ill_err_i <= 1'b0; |
else if ((alu_pc_valid)&&(alu_illegal)&&(~alu_gie)) |
ill_err_i <= 1'b1; |
initial ill_err_u = 1'b0; |
always @(posedge i_clk) |
if (i_rst) |
ill_err_u <= 1'b0; |
// The bit is automatically cleared on release from interrupt |
// or reset |
if ((i_rst)||(w_release_from_interrupt)) |
else if (w_release_from_interrupt) |
ill_err_u <= 1'b0; |
// If the supervisor (or debugger) writes to this register, |
// clearing the bit, then clear it |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) |
ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT])); |
else if ((alu_illegal)&&(alu_gie)) |
// If the supervisor writes to this register, clearing the |
// bit, then clear it |
else if (((~alu_gie)||(dbgv)) |
&&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_ILL_BIT]) |
&&(wr_reg_id[4])&&(wr_write_cc)) |
ill_err_u <= 1'b0; |
else if ((alu_pc_valid)&&(alu_illegal)&&(alu_gie)) |
ill_err_u <= 1'b1; |
`else |
assign ill_err_u = 1'b0; |
1612,8 → 1508,9
always @(posedge i_clk) |
if (i_rst) |
ibus_err_flag <= 1'b0; |
else if ((dbgv)&&(wr_write_scc)) |
ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); |
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) |
&&(~wr_spreg_vl[`CPU_BUSERR_BIT])) |
ibus_err_flag <= 1'b0; |
else if ((bus_err)&&(~alu_gie)) |
ibus_err_flag <= 1'b1; |
// User bus error flag -- if ever set, it will cause an interrupt to |
1620,10 → 1517,14
// supervisor mode. |
initial ubus_err_flag = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(w_release_from_interrupt)) |
if (i_rst) |
ubus_err_flag <= 1'b0; |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc)) |
ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]); |
else if (w_release_from_interrupt) |
ubus_err_flag <= 1'b0; |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) |
&&(~wr_spreg_vl[`CPU_BUSERR_BIT]) |
&&(wr_reg_id[4])&&(wr_write_cc)) |
ubus_err_flag <= 1'b0; |
else if ((bus_err)&&(alu_gie)) |
ubus_err_flag <= 1'b1; |
|
1639,20 → 1540,24
always @(posedge i_clk) |
if (i_rst) |
r_idiv_err_flag <= 1'b0; |
else if ((dbgv)&&(wr_write_scc)) |
r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); |
else if ((div_error)&&(~alu_gie)) |
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) |
&&(~wr_spreg_vl[`CPU_DIVERR_BIT])) |
r_idiv_err_flag <= 1'b0; |
else if ((div_error)&&(div_valid)&&(~alu_gie)) |
r_idiv_err_flag <= 1'b1; |
// User divide (by zero) error flag -- if ever set, it will |
// cause a sudden switch interrupt to supervisor mode. |
initial r_udiv_err_flag = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)||(w_release_from_interrupt)) |
if (i_rst) |
r_udiv_err_flag <= 1'b0; |
else if (w_release_from_interrupt) |
r_udiv_err_flag <= 1'b0; |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) |
&&(wr_write_ucc)) |
r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]); |
else if ((div_error)&&(alu_gie)) |
&&(~wr_spreg_vl[`CPU_DIVERR_BIT]) |
&&(wr_reg_id[4])&&(wr_write_cc)) |
r_udiv_err_flag <= 1'b0; |
else if ((div_error)&&(alu_gie)&&(div_valid)) |
r_udiv_err_flag <= 1'b1; |
|
assign idiv_err_flag = r_idiv_err_flag; |
1672,8 → 1577,9
always @(posedge i_clk) |
if (i_rst) |
r_ifpu_err_flag <= 1'b0; |
else if ((dbgv)&&(wr_write_scc)) |
r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); |
else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG}) |
&&(~wr_spreg_vl[`CPU_FPUERR_BIT])) |
r_ifpu_err_flag <= 1'b0; |
else if ((fpu_error)&&(fpu_valid)&&(~alu_gie)) |
r_ifpu_err_flag <= 1'b1; |
// User floating point error flag -- if ever set, it will cause |
1680,11 → 1586,14
// a sudden switch interrupt to supervisor mode. |
initial r_ufpu_err_flag = 1'b0; |
always @(posedge i_clk) |
if ((i_rst)&&(w_release_from_interrupt)) |
if (i_rst) |
r_ufpu_err_flag <= 1'b0; |
else if (w_release_from_interrupt) |
r_ufpu_err_flag <= 1'b0; |
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce) |
&&(wr_write_ucc)) |
r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]); |
&&(~wr_spreg_vl[`CPU_FPUERR_BIT]) |
&&(wr_reg_id[4])&&(wr_write_cc)) |
r_ufpu_err_flag <= 1'b0; |
else if ((fpu_error)&&(alu_gie)&&(fpu_valid)) |
r_ufpu_err_flag <= 1'b1; |
|
1701,17 → 1610,13
initial r_ihalt_phase = 0; |
initial r_uhalt_phase = 0; |
always @(posedge i_clk) |
if (i_rst) |
r_ihalt_phase <= 1'b0; |
else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline)) |
if (~alu_gie) |
r_ihalt_phase <= alu_phase; |
always @(posedge i_clk) |
if ((i_rst)||(w_release_from_interrupt)) |
if (alu_gie) |
r_uhalt_phase <= alu_phase; |
else if (w_release_from_interrupt) |
r_uhalt_phase <= 1'b0; |
else if ((alu_gie)&&(alu_pc_valid)) |
r_uhalt_phase <= alu_phase; |
else if ((~alu_gie)&&(wr_reg_ce)&&(wr_write_ucc)) |
r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT]; |
|
assign ihalt_phase = r_ihalt_phase; |
assign uhalt_phase = r_uhalt_phase; |
1751,9 → 1656,9
always @(posedge i_clk) |
if (i_rst) |
pf_pc <= RESET_ADDRESS; |
else if ((w_switch_to_interrupt)||((~gie)&&(w_clear_icache))) |
else if (w_switch_to_interrupt) |
pf_pc <= ipc; |
else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache))) |
else if (w_release_from_interrupt) |
pf_pc <= upc; |
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc)) |
pf_pc <= wr_spreg_vl[(AW-1):0]; |
1782,21 → 1687,6
else |
new_pc <= 1'b0; |
|
`ifdef OPT_PIPELINED |
reg r_clear_icache; |
initial r_clear_icache = 1'b1; |
always @(posedge i_clk) |
if ((i_rst)||(i_clear_pf_cache)) |
r_clear_icache <= 1'b1; |
else if ((wr_reg_ce)&&(wr_write_scc)) |
r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT]; |
else |
r_clear_icache <= 1'b0; |
assign w_clear_icache = r_clear_icache; |
`else |
assign w_clear_icache = 1'b0; |
`endif |
|
// |
// The debug interface |
generate |
1809,9 → 1699,7
o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc}; |
else if (i_dbg_reg[3:0] == `CPU_CC_REG) |
begin |
o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; |
o_dbg_reg[15] <= 1'b0; |
o_dbg_reg[31:23] <= w_cpu_info; |
o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; |
o_dbg_reg[`CPU_GIE_BIT] <= gie; |
end |
end |
1823,9 → 1711,7
o_dbg_reg <= (i_dbg_reg[4])?upc:ipc; |
else if (i_dbg_reg[3:0] == `CPU_CC_REG) |
begin |
o_dbg_reg[14:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; |
o_dbg_reg[15] <= 1'b0; |
o_dbg_reg[31:23] <= w_cpu_info; |
o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags; |
o_dbg_reg[`CPU_GIE_BIT] <= gie; |
end |
end |
1834,22 → 1720,13
always @(posedge i_clk) |
o_dbg_cc <= { o_break, bus_err, gie, sleep }; |
|
`ifdef OPT_PIPELINED |
always @(posedge i_clk) |
r_halted <= (i_halt)&&( |
// To be halted, any long lasting instruction must |
// be completed. |
(~pf_cyc)&&(~mem_busy)&&(~alu_busy) |
&&(~div_busy)&&(~fpu_busy) |
// Operations must either be valid, or illegal |
&&((opvalid)||(i_rst)||(dcd_illegal)) |
// Decode stage must be either valid, in reset, or ill |
&&((dcdvalid)||(i_rst)||(pf_illegal))); |
`else |
always @(posedge i_clk) |
r_halted <= (i_halt)&&((opvalid)||(i_rst)); |
`endif |
assign o_dbg_stall = ~r_halted; |
(pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy) |
||(alu_busy)||(div_busy)||(fpu_busy) |
||((~opvalid)&&(~i_rst)&&(~dcd_illegal)) |
||((~dcdvalid)&&(~i_rst)&&(~pf_illegal))); |
assign o_dbg_stall = r_halted; |
|
// |
// |
1864,7 → 1741,6
`ifdef DEBUG_SCOPE |
always @(posedge i_clk) |
o_debug <= { |
/* |
o_break, i_wb_err, pf_pc[1:0], |
flags, |
pf_valid, dcdvalid, opvalid, alu_valid, mem_valid, |
1879,7 → 1755,6
// ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled))); |
// opA[23:20], opA[3:0], |
gie, sleep, wr_reg_ce, wr_gpreg_vl[4:0] |
*/ |
/* |
i_rst, master_ce, (new_pc), |
((dcd_early_branch)&&(dcdvalid)), |
1888,7 → 1763,7
pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err, |
pf_pc[7:0], pf_addr[7:0] |
*/ |
|
/* |
i_wb_err, gie, alu_illegal, |
(new_pc)||((dcd_early_branch)&&(~clear_pipeline)), |
mem_busy, |
1897,7 → 1772,7
: { instruction[31:21] }, |
pf_valid, (pf_valid) ? alu_pc[14:0] |
:{ pf_cyc, pf_stb, pf_pc[12:0] } |
|
*/ |
/* |
i_wb_err, gie, new_pc, dcd_early_branch, // 4 |
pf_valid, pf_cyc, pf_stb, instruction_pc[0], // 4 |