Line 44... |
Line 44... |
wire inf;
|
wire inf;
|
|
|
positDecompose #(.PSTWID(PSTWID), .es(es)) u1 (.i(i), .sgn(sgn), .rgs(rgs), .rgm(rgm), .exp(exp), .sig(sig), .zer(zer), .inf(inf));
|
positDecompose #(.PSTWID(PSTWID), .es(es)) u1 (.i(i), .sgn(sgn), .rgs(rgs), .rgm(rgm), .exp(exp), .sig(sig), .zer(zer), .inf(inf));
|
|
|
wire [N-1:0] m = {sig,{es{1'b0}}};
|
wire [N-1:0] m = {sig,{es{1'b0}}};
|
// If we have a negative regime then the number is a fraction less than one (output a zero).
|
wire isZero = zer;
|
wire isZero = zer|~rgs;
|
wire [15:0] argm = rgs ? rgm : -rgm;
|
wire [15:0] ex = (rgm << es) + exp;
|
wire [15:0] ex1 = (argm << es) + exp;
|
wire [N-1:0] mo = m >> (PSTWID-ex-1);
|
wire exv = ~ex1[15] && ex1 > PSTWID-1;
|
|
wire [N*2-1:0] mo = {m,{N{1'b0}}} >> (PSTWID-ex1-1);
|
|
wire L = mo[N];
|
|
wire G = mo[N-1];
|
|
wire R = mo[N-2];
|
|
wire St = |mo[N-3:0];
|
|
// If regime+exp == -1 then the value is 0.5 or greater, so round up.
|
|
// If the regime+exp < -1 then the values is 0.25 or less, do not round up.
|
|
// Otherwise use rounding rules.
|
|
wire ulp = (~ex1[15] && ((G & (R | St)) | (L & G & ~(R | St)))) ||
|
|
(ex1==16'hFFFF);
|
|
wire [PSTWID-1:0] rnd_ulp = {{PSTWID-1{1'b0}},ulp};
|
|
wire [PSTWID-1:0] tmp = ~rgs ? rnd_ulp : mo[N*2-1:N] + rnd_ulp;
|
|
|
always @*
|
always @*
|
casez({isZero,inf}) // exponent all ones or exponent overflow?
|
casez({isZero,inf|exv}) // exponent all ones or exponent overflow?
|
// convert to +0.0 zero-in zero-out (the sign will always be plus)
|
// convert to +0.0 zero-in zero-out (the sign will always be plus)
|
2'b1?: o = {PSTWID{1'b0}};
|
2'b1?: o = {PSTWID{1'b0}};
|
// Infinity in or exponent overflow in conversion = infinity out
|
// Infinity in or exponent overflow in conversion = infinity out
|
2'b01: o = {1'b1,{PSTWID-1{1'b0}}};
|
2'b01: o = {1'b1,{PSTWID-1{1'b0}}};
|
// Other numbers
|
// Other numbers
|
default: o = sgn ? -mo : mo;
|
default: o = sgn ? -tmp : tmp;
|
endcase
|
endcase
|
|
|
endmodule
|
endmodule
|