/*$$HEADER*/
|
/*$$HEADER*/
|
/******************************************************************************/
|
/******************************************************************************/
|
/* */
|
/* */
|
/* H E A D E R I N F O R M A T I O N */
|
/* H E A D E R I N F O R M A T I O N */
|
/* */
|
/* */
|
/******************************************************************************/
|
/******************************************************************************/
|
|
|
// Project Name : OpenRISC Debug Proxy
|
// Project Name : OpenRISC Debug Proxy
|
// File Name : usb_functions.c
|
// File Name : usb_functions.c
|
// Prepared By : jb
|
// Prepared By : jb
|
// Project Start : 2008-10-01
|
// Project Start : 2008-10-01
|
|
|
/*$$COPYRIGHT NOTICE*/
|
/*$$COPYRIGHT NOTICE*/
|
/******************************************************************************/
|
/******************************************************************************/
|
/* */
|
/* */
|
/* C O P Y R I G H T N O T I C E */
|
/* C O P Y R I G H T N O T I C E */
|
/* */
|
/* */
|
/******************************************************************************/
|
/******************************************************************************/
|
/*
|
/*
|
This library is free software; you can redistribute it and/or
|
This library is free software; you can redistribute it and/or
|
modify it under the terms of the GNU Lesser General Public
|
modify it under the terms of the GNU Lesser General Public
|
License as published by the Free Software Foundation;
|
License as published by the Free Software Foundation;
|
version 2.1 of the License, a copy of which is available from
|
version 2.1 of the License, a copy of which is available from
|
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt.
|
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt.
|
|
|
This library is distributed in the hope that it will be useful,
|
This library is distributed in the hope that it will be useful,
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
Lesser General Public License for more details.
|
Lesser General Public License for more details.
|
|
|
You should have received a copy of the GNU Lesser General Public
|
You should have received a copy of the GNU Lesser General Public
|
License along with this library; if not, write to the Free Software
|
License along with this library; if not, write to the Free Software
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
*/
|
*/
|
|
|
/*$$DESCRIPTION*/
|
/*$$DESCRIPTION*/
|
/******************************************************************************/
|
/******************************************************************************/
|
/* */
|
/* */
|
/* D E S C R I P T I O N */
|
/* D E S C R I P T I O N */
|
/* */
|
/* */
|
/******************************************************************************/
|
/******************************************************************************/
|
//
|
//
|
// Code calling the FT2232 JTAG MPSSE driver functions. Does a majority of the
|
// Code calling the FT2232 JTAG MPSSE driver functions. Does a majority of the
|
// fiddly work when interfacing to the system via its debug module.
|
// fiddly work when interfacing to the system via its debug module.
|
//
|
//
|
|
|
|
|
/*$$CHANGE HISTORY*/
|
/*$$CHANGE HISTORY*/
|
/******************************************************************************/
|
/******************************************************************************/
|
/* */
|
/* */
|
/* C H A N G E H I S T O R Y */
|
/* C H A N G E H I S T O R Y */
|
/* */
|
/* */
|
/******************************************************************************/
|
/******************************************************************************/
|
// Date Version Description
|
// Date Version Description
|
//------------------------------------------------------------------------
|
//------------------------------------------------------------------------
|
// 081101 First revision jb
|
// 081101 First revision jb
|
|
|
#include <assert.h>
|
#include <assert.h>
|
#include <stdio.h>
|
#include <stdio.h>
|
#include <ctype.h>
|
#include <ctype.h>
|
#include <string.h>
|
#include <string.h>
|
#include <stdlib.h>
|
#include <stdlib.h>
|
#include <unistd.h>
|
#include <unistd.h>
|
#include <stdarg.h>
|
#include <stdarg.h>
|
#include <sys/stat.h>
|
#include <sys/stat.h>
|
#include <sys/types.h>
|
#include <sys/types.h>
|
|
|
#include <netinet/in.h>
|
#include <netinet/in.h>
|
|
|
#ifdef CYGWIN_COMPILE
|
#ifdef CYGWIN_COMPILE
|
#include <windows.h>
|
#include <windows.h>
|
#include "win_FTCJTAG.h"
|
#include "win_FTCJTAG.h"
|
#else // We're on Linux or Mac OS X
|
#else // We're on Linux or Mac OS X
|
#include "WinTypes.h" // We still use things from here in this file - TODO: remove this dependency
|
#include "WinTypes.h" // We still use things from here in this file - TODO: remove this dependency
|
#include "FT2232cMpsseJtag.h"
|
#include "FT2232cMpsseJtag.h"
|
#endif
|
#endif
|
|
|
#include "gdb.h"
|
#include "gdb.h"
|
|
|
#include "usb_functions.h"
|
#include "usb_functions.h"
|
|
|
#include "or_debug_proxy.h"
|
#include "or_debug_proxy.h"
|
|
|
#include "usb_driver_calls.h"
|
#include "usb_driver_calls.h"
|
|
|
// Global JTAG signals for reading/writing
|
// Global JTAG signals for reading/writing
|
DWORD dwNumBytesReturned = 0;
|
DWORD dwNumBytesReturned = 0;
|
|
|
/* Crc of current read or written data. */
|
/* Crc of current read or written data. */
|
uint32_t crc_r, crc_w = 0;
|
uint32_t crc_r, crc_w = 0;
|
|
|
/* Generates new crc, sending in new bit input_bit */
|
/* Generates new crc, sending in new bit input_bit */
|
uint32_t crc_calc(uint32_t crc, uint32_t input_bit) {
|
uint32_t crc_calc(uint32_t crc, uint32_t input_bit) {
|
uint32_t d = (input_bit) ? 0xfffffff : 0x0000000;
|
uint32_t d = (input_bit) ? 0xfffffff : 0x0000000;
|
uint32_t crc_32 = ((crc >> 31)&1) ? 0xfffffff : 0x0000000;
|
uint32_t crc_32 = ((crc >> 31)&1) ? 0xfffffff : 0x0000000;
|
crc <<= 1;
|
crc <<= 1;
|
return crc ^ ((d ^ crc_32) & DBG_CRC_POLY);
|
return crc ^ ((d ^ crc_32) & DBG_CRC_POLY);
|
}
|
}
|
|
|
// Speedy bit reversing algorithms for base2 lengths
|
// Speedy bit reversing algorithms for base2 lengths
|
// Thanks to: http://aggregate.org/MAGIC/#Bit%20Reversal
|
// Thanks to: http://aggregate.org/MAGIC/#Bit%20Reversal
|
uint32_t bit_reverse_swar_2(uint32_t x)
|
uint32_t bit_reverse_swar_2(uint32_t x)
|
{
|
{
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
return x;
|
return x;
|
}
|
}
|
uint32_t bit_reverse_swar_4(uint32_t x)
|
uint32_t bit_reverse_swar_4(uint32_t x)
|
{
|
{
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
return x;
|
return x;
|
}
|
}
|
static inline uint32_t bit_reverse_swar_8(uint32_t x)
|
static inline uint32_t bit_reverse_swar_8(uint32_t x)
|
{
|
{
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
return x;
|
return x;
|
}
|
}
|
uint32_t bit_reverse_swar_16(uint32_t x)
|
uint32_t bit_reverse_swar_16(uint32_t x)
|
{
|
{
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
return x;
|
return x;
|
}
|
}
|
uint32_t bit_reverse_swar_32(uint32_t x)
|
uint32_t bit_reverse_swar_32(uint32_t x)
|
{
|
{
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xaaaaaaaa)>>1)|((x&0x55555555)<<1));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xcccccccc)>>2)|((x&0x33333333)<<2));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
x=(((x&0xf0f0f0f0)>>4)|((x&0x0f0f0f0f)<<4));
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
x=(((x&0xff00ff00)>>8)|((x&0x00ff00ff)<<8));
|
x=(((x&0xffff0000)>>16)|((x&0x0000ffff)<<16)); // We could be on 64-bit arch!
|
x=(((x&0xffff0000)>>16)|((x&0x0000ffff)<<16)); // We could be on 64-bit arch!
|
return x;
|
return x;
|
}
|
}
|
|
|
uint32_t bit_reverse_data(uint32_t data, uint32_t length){
|
uint32_t bit_reverse_data(uint32_t data, uint32_t length){
|
if (length == 2) return bit_reverse_swar_2(data);
|
if (length == 2) return bit_reverse_swar_2(data);
|
if (length == 4) return bit_reverse_swar_4(data);
|
if (length == 4) return bit_reverse_swar_4(data);
|
if (length == 8) return bit_reverse_swar_8(data);
|
if (length == 8) return bit_reverse_swar_8(data);
|
if (length == 16) return bit_reverse_swar_16(data);
|
if (length == 16) return bit_reverse_swar_16(data);
|
if (length == 32) return bit_reverse_swar_32(data);
|
if (length == 32) return bit_reverse_swar_32(data);
|
// Long and laborious way - hopefully never gets called anymore!
|
// Long and laborious way - hopefully never gets called anymore!
|
uint32_t i,reverse=0;
|
uint32_t i,reverse=0;
|
for (i=0;i<length;i++) reverse |= (((data>>i)&1)<<(length-1-i));
|
for (i=0;i<length;i++) reverse |= (((data>>i)&1)<<(length-1-i));
|
return reverse;
|
return reverse;
|
}
|
}
|
// Constants that are used a lot, and were 5 bits, so might as well precalculate them
|
// Constants that are used a lot, and were 5 bits, so might as well precalculate them
|
// These are from or_debug_proxy.h, so if the original values change these
|
// These are from or_debug_proxy.h, so if the original values change these
|
// should be recalculated!!
|
// should be recalculated!!
|
const uint8_t DI_GO_5BITREVERSED = 0x00;
|
const uint8_t DI_GO_5BITREVERSED = 0x00;
|
const uint8_t DI_READ_CMD_5BITREVERSED = 0x10;
|
const uint8_t DI_READ_CMD_5BITREVERSED = 0x10;
|
const uint8_t DI_WRITE_CMD_5BITREVERSED = 0x08;
|
const uint8_t DI_WRITE_CMD_5BITREVERSED = 0x08;
|
const uint8_t DI_READ_CTRL_5BITREVERSED = 0x18;
|
const uint8_t DI_READ_CTRL_5BITREVERSED = 0x18;
|
const uint8_t DI_WRITE_CTRL_5BITREVERSED = 0x04;
|
const uint8_t DI_WRITE_CTRL_5BITREVERSED = 0x04;
|
|
|
|
|
void usb_dbg_test() {
|
void usb_dbg_test() {
|
|
|
uint32_t npc, ppc, r1;
|
uint32_t npc, ppc, r1;
|
unsigned char stalled;
|
unsigned char stalled;
|
|
|
|
|
|
|
printf("Stalling or1k\n");
|
printf("Stalling or1k\n");
|
err = dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
err = dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
|
|
err = dbg_cpu0_read_ctrl(0, &stalled);
|
err = dbg_cpu0_read_ctrl(0, &stalled);
|
if (!(stalled & 0x1)) {
|
if (!(stalled & 0x1)) {
|
printf("or1k should be stalled\n"); // check stall or1k
|
printf("or1k should be stalled\n"); // check stall or1k
|
exit(1);
|
exit(1);
|
}
|
}
|
|
|
/* Clear Debug Reason Register (DRR) 0x3015 */
|
/* Clear Debug Reason Register (DRR) 0x3015 */
|
err = dbg_cpu0_write((6 << 11) + 21, 0);
|
err = dbg_cpu0_write((6 << 11) + 21, 0);
|
err = dbg_cpu0_read((0 << 11) + 16, &npc); /* Read NPC */
|
err = dbg_cpu0_read((0 << 11) + 16, &npc); /* Read NPC */
|
err = dbg_cpu0_read((0 << 11) + 18, &ppc); /* Read PPC */
|
err = dbg_cpu0_read((0 << 11) + 18, &ppc); /* Read PPC */
|
err = dbg_cpu0_read(0x401, &r1); /* Read R1 */
|
err = dbg_cpu0_read(0x401, &r1); /* Read R1 */
|
|
|
if (err)
|
if (err)
|
{
|
{
|
printf("Jtag error %d occured; exiting.", err);
|
printf("Jtag error %d occured; exiting.", err);
|
FT2232_USB_JTAG_CloseDevice();
|
FT2232_USB_JTAG_CloseDevice();
|
exit(1);
|
exit(1);
|
}
|
}
|
printf("Read npc = %.8x ppc = %.8x r1 = %.8x\n", npc, ppc, r1);
|
printf("Read npc = %.8x ppc = %.8x r1 = %.8x\n", npc, ppc, r1);
|
|
|
return;
|
return;
|
}
|
}
|
|
|
/*
|
/*
|
void ensure_or1k_stalled();
|
void ensure_or1k_stalled();
|
|
|
// Function to check if the processor is stalled, if not, stall it.
|
// Function to check if the processor is stalled, if not, stall it.
|
// this is useful in the event that GDB thinks the processor is stalled, but has, in fact
|
// this is useful in the event that GDB thinks the processor is stalled, but has, in fact
|
// been hard reset on the board and is running.
|
// been hard reset on the board and is running.
|
void ensure_or1k_stalled()
|
void ensure_or1k_stalled()
|
{
|
{
|
unsigned char stalled;
|
unsigned char stalled;
|
dbg_cpu0_read_ctrl(0, &stalled);
|
dbg_cpu0_read_ctrl(0, &stalled);
|
if ((stalled & 0x1) != 0x1)
|
if ((stalled & 0x1) != 0x1)
|
{
|
{
|
if (DEBUG_CMDS)
|
if (DEBUG_CMDS)
|
printf("Processor not stalled, like we thought\n");
|
printf("Processor not stalled, like we thought\n");
|
|
|
// Set the TAP controller to its OR1k chain
|
// Set the TAP controller to its OR1k chain
|
usb_set_tap_ir(JI_DEBUG);
|
usb_set_tap_ir(JI_DEBUG);
|
current_chain = -1;
|
current_chain = -1;
|
|
|
// Processor isn't stalled, contrary to what we though, so stall it
|
// Processor isn't stalled, contrary to what we though, so stall it
|
printf("Stalling or1k\n");
|
printf("Stalling or1k\n");
|
dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
|
|
}
|
}
|
}
|
}
|
*/
|
*/
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
/*!Write up to 32-bits to the JTAG bus via the USB device
|
/*!Write up to 32-bits to the JTAG bus via the USB device
|
|
|
Write up to 32-bits to the JTAG bus.
|
Write up to 32-bits to the JTAG bus.
|
|
|
@param[in] stream This should store the data to be written to the bus
|
@param[in] stream This should store the data to be written to the bus
|
@param[in] num_bits Number of bits to write on the JTAG bus
|
@param[in] num_bits Number of bits to write on the JTAG bus
|
@param[in] dwTapControllerState State to leave the JTAG TAP in when done */
|
@param[in] dwTapControllerState State to leave the JTAG TAP in when done */
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
void usb_write_stream (uint32_t stream, uint32_t num_bits, DWORD dwTapControllerState){
|
void usb_write_stream (uint32_t stream, uint32_t num_bits, DWORD dwTapControllerState){
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
uint32_t i,num_bytes;
|
uint32_t i,num_bytes;
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
|
|
if ((num_bits/8)>0)num_bytes=(num_bits/8);
|
if ((num_bits/8)>0)num_bytes=(num_bits/8);
|
else num_bytes=1;
|
else num_bytes=1;
|
// First clear the buffer for the amount of data we're shifting in
|
// First clear the buffer for the amount of data we're shifting in
|
// Bytewise copy the stream into WriteDataBuffer, LSB first
|
// Bytewise copy the stream into WriteDataBuffer, LSB first
|
|
|
// This means if we want to send things MSb first, we need to pass them
|
// This means if we want to send things MSb first, we need to pass them
|
// to this function wrapped with a call to bit_reverse_data(data,length)
|
// to this function wrapped with a call to bit_reverse_data(data,length)
|
|
|
for (i=0; i<(num_bytes)+1;i++)
|
for (i=0; i<(num_bytes)+1;i++)
|
WriteDataBuffer[i] = ((stream >>(8*i)) & (0xff));
|
WriteDataBuffer[i] = ((stream >>(8*i)) & (0xff));
|
|
|
// Now generate the CRC for what we're sending
|
// Now generate the CRC for what we're sending
|
// data should be presented MSb first (at bit0)
|
// data should be presented MSb first (at bit0)
|
for (i=0;i<num_bits;i++)
|
for (i=0;i<num_bits;i++)
|
crc_w = crc_calc(crc_w,((stream>>i)&1));
|
crc_w = crc_calc(crc_w,((stream>>i)&1));
|
|
|
|
|
if (DEBUG_USB_DRVR_FUNCS)
|
if (DEBUG_USB_DRVR_FUNCS)
|
{
|
{
|
printf("\nusb_write_stream: num_bytes=%d, WriteDataBuffer contents for %d bits:",num_bytes,num_bits);
|
printf("\nusb_write_stream: num_bytes=%d, WriteDataBuffer contents for %d bits:",num_bytes,num_bits);
|
for (i=0;i<num_bytes+1;i++)
|
for (i=0;i<num_bytes+1;i++)
|
printf("%x",WriteDataBuffer[num_bytes-i]);
|
printf("%x",WriteDataBuffer[num_bytes-i]);
|
printf("\n");
|
printf("\n");
|
}
|
}
|
|
|
//Status = pFT2232cMpsseJtag->JTAG_WriteDataToExternalDevice(ftHandle, false, num_bits,
|
//Status = pFT2232cMpsseJtag->JTAG_WriteDataToExternalDevice(ftHandle, false, num_bits,
|
// &WriteDataBuffer, num_bytes, dwTapControllerState);
|
// &WriteDataBuffer, num_bytes, dwTapControllerState);
|
// Platform independant function call
|
// Platform independant function call
|
Status = FT2232_USB_JTAG_WriteDataToExternalDevice(false, num_bits,
|
Status = FT2232_USB_JTAG_WriteDataToExternalDevice(false, num_bits,
|
&WriteDataBuffer, num_bytes, dwTapControllerState);
|
&WriteDataBuffer, num_bytes, dwTapControllerState);
|
|
|
if (Status != FTC_SUCCESS)
|
if (Status != FTC_SUCCESS)
|
printf("Write to USB device failed: status code: %ld\n",Status);
|
printf("Write to USB device failed: status code: %ld\n",Status);
|
|
|
}
|
}
|
|
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
/*!Read up to 32-bits off the JTAG bus via the USB device
|
/*!Read up to 32-bits off the JTAG bus via the USB device
|
|
|
The return value of this should remain uint32_t as we're returning all the
|
The return value of this should remain uint32_t as we're returning all the
|
data in a signal variable. We never need more than 32-bits in a single read
|
data in a signal variable. We never need more than 32-bits in a single read
|
when using this function.
|
when using this function.
|
|
|
@param[in] num_bits Number of bits to read off from the USB
|
@param[in] num_bits Number of bits to read off from the USB
|
@param[in] dwTapControllerState State to leave the JTAG TAP in when done
|
@param[in] dwTapControllerState State to leave the JTAG TAP in when done
|
@return: The data read from the USB device */
|
@return: The data read from the USB device */
|
/*---------------------------------------------------------------------------*/
|
/*---------------------------------------------------------------------------*/
|
uint32_t usb_read_stream(uint32_t num_bits, DWORD dwTapControllerState){
|
uint32_t usb_read_stream(uint32_t num_bits, DWORD dwTapControllerState){
|
ReadDataByteBuffer ReadDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
uint32_t returnVal =0;
|
uint32_t returnVal =0;
|
uint32_t i;
|
uint32_t i;
|
|
|
// Platform independant driver call
|
// Platform independant driver call
|
Status = FT2232_USB_JTAG_ReadDataFromExternalDevice(false, num_bits, &ReadDataBuffer, &dwNumBytesReturned, dwTapControllerState);
|
Status = FT2232_USB_JTAG_ReadDataFromExternalDevice(false, num_bits, &ReadDataBuffer, &dwNumBytesReturned, dwTapControllerState);
|
|
|
if (DEBUG_USB_DRVR_FUNCS)
|
if (DEBUG_USB_DRVR_FUNCS)
|
printf("usb_read_stream: returned Status: 0x%lx from reading %u bits, \n",
|
printf("usb_read_stream: returned Status: 0x%lx from reading %u bits, \n",
|
Status,num_bits);
|
Status,num_bits);
|
|
|
if (Status == FTC_SUCCESS){
|
if (Status == FTC_SUCCESS){
|
|
|
for(i=0;i<num_bits;i++){
|
for(i=0;i<num_bits;i++){
|
returnVal |= ((ReadDataBuffer[i/8]>>(i%8))&0x1)<<(num_bits-1-i);
|
returnVal |= ((ReadDataBuffer[i/8]>>(i%8))&0x1)<<(num_bits-1-i);
|
}
|
}
|
}
|
}
|
// Generate the CRC for read
|
// Generate the CRC for read
|
for (i=0;i<num_bits;i++)
|
for (i=0;i<num_bits;i++)
|
crc_r = crc_calc(crc_r, ((returnVal>>(num_bits-1-i))&1));
|
crc_r = crc_calc(crc_r, ((returnVal>>(num_bits-1-i))&1));
|
|
|
return returnVal;
|
return returnVal;
|
}
|
}
|
|
|
/* Sets TAP instruction register */
|
/* Sets TAP instruction register */
|
void usb_set_tap_ir(uint32_t ir) {
|
void usb_set_tap_ir(uint32_t ir) {
|
|
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
|
|
WriteDataBuffer[0] = ir;
|
WriteDataBuffer[0] = ir;
|
|
|
// Using global ftHandle, writing to TAP instruction register 4 bits,
|
// Using global ftHandle, writing to TAP instruction register 4 bits,
|
//Status = pFT2232cMpsseJtag->JTAG_WriteDataToExternalDevice(ftHandle, true,
|
//Status = pFT2232cMpsseJtag->JTAG_WriteDataToExternalDevice(ftHandle, true,
|
//JI_SIZE, &WriteDataBuffer, 1, RUN_TEST_IDLE_STATE);
|
//JI_SIZE, &WriteDataBuffer, 1, RUN_TEST_IDLE_STATE);
|
// Platform independant driver call
|
// Platform independant driver call
|
|
|
Status = FT2232_USB_JTAG_WriteDataToExternalDevice(true, JI_SIZE, &WriteDataBuffer, 1, RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteDataToExternalDevice(true, JI_SIZE, &WriteDataBuffer, 1, RUN_TEST_IDLE_STATE);
|
|
|
if (DEBUG_USB_DRVR_FUNCS)
|
if (DEBUG_USB_DRVR_FUNCS)
|
printf("USB JTAG write of %x to instruction register returned Status: 0x%lx\n",
|
printf("USB JTAG write of %x to instruction register returned Status: 0x%lx\n",
|
ir, Status);
|
ir, Status);
|
current_chain = -1;
|
current_chain = -1;
|
}
|
}
|
|
|
static uint32_t id_read_at_reset = 0;
|
static uint32_t id_read_at_reset = 0;
|
|
|
/* Resets JTAG, and sets DEBUG scan chain */
|
/* Resets JTAG, and sets DEBUG scan chain */
|
int usb_dbg_reset() {
|
int usb_dbg_reset() {
|
|
|
// uint32_t err;
|
// uint32_t err;
|
uint32_t id;
|
uint32_t id;
|
uint32_t reinit_count=0;
|
uint32_t reinit_count=0;
|
retry_jtag_init:
|
retry_jtag_init:
|
if (init_usb_jtag() > 0)
|
if (init_usb_jtag() > 0)
|
return DBG_ERR_CRC;
|
return DBG_ERR_CRC;
|
|
|
// Set ID code instruction in IR
|
// Set ID code instruction in IR
|
usb_set_tap_ir(JI_IDCODE);
|
usb_set_tap_ir(JI_IDCODE);
|
|
|
// Now read out the IDCODE for the device
|
// Now read out the IDCODE for the device
|
id = usb_read_stream(32, RUN_TEST_IDLE_STATE);
|
id = usb_read_stream(32, RUN_TEST_IDLE_STATE);
|
|
|
// if read ID was rubbish retry init - this is probably NOT the best way to do this...
|
// if read ID was rubbish retry init - this is probably NOT the best way to do this...
|
if ((id == 0xffffffff) | (id == 0x00000002) | (id == 0x00000000)) {
|
if ((id == 0xffffffff) | (id == 0x00000002) | (id == 0x00000000)) {
|
//pFT2232cMpsseJtag->JTAG_CloseDevice(gFtHandle);
|
//pFT2232cMpsseJtag->JTAG_CloseDevice(gFtHandle);
|
// Platform independant driver call
|
// Platform independant driver call
|
FT2232_USB_JTAG_CloseDevice();
|
FT2232_USB_JTAG_CloseDevice();
|
if (reinit_count++ > 4){
|
if (reinit_count++ > 4){
|
printf("JTAG TAP ID read error. Unable to detect TAP controller. \nPlease ensure debugger is connected to target correctly.\n");
|
printf("JTAG TAP ID read error. Unable to detect TAP controller. \nPlease ensure debugger is connected to target correctly.\n");
|
exit(1);
|
exit(1);
|
}
|
}
|
goto retry_jtag_init;
|
goto retry_jtag_init;
|
}
|
}
|
|
|
printf("JTAG ID = %08x\n", id & 0xffffffff);
|
printf("JTAG ID = %08x\n", id & 0xffffffff);
|
|
|
/* select debug scan chain and stay in it forever */
|
/* select debug scan chain and stay in it forever */
|
usb_set_tap_ir(JI_DEBUG);
|
usb_set_tap_ir(JI_DEBUG);
|
|
|
id_read_at_reset = id; // Store this to check later if there's errors
|
id_read_at_reset = id; // Store this to check later if there's errors
|
|
|
current_chain = -1;
|
current_chain = -1;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* counts retries and returns zero if we should abort */
|
/* counts retries and returns zero if we should abort */
|
static int retry_no = 0;
|
static int retry_no = 0;
|
int retry_do() {
|
int retry_do() {
|
|
|
unsigned char stalled;
|
unsigned char stalled;
|
|
int tap_id_reads = 0;
|
|
|
//printf("RETRY\n");
|
//printf("RETRY\n");
|
if (retry_no == 0)
|
if (retry_no == 0)
|
printf("Communication error. Retrying\n");
|
printf("Communication error. Retrying\n");
|
|
|
retry_no++;
|
retry_no++;
|
|
|
// Odds are if we're having a communication problem, we should
|
// Odds are if we're having a communication problem, we should
|
// just reconnect to the processor. It's probably just been reset.
|
// just reconnect to the processor. It's probably just been reset.
|
/*
|
/*
|
FT2232_USB_JTAG_CloseDevice();// Close the device
|
FT2232_USB_JTAG_CloseDevice();// Close the device
|
|
|
if (init_usb_jtag() > 0)
|
if (init_usb_jtag() > 0)
|
{
|
{
|
if (retry_no >= NUM_HARD_RETRIES)
|
if (retry_no >= NUM_HARD_RETRIES)
|
return 1;
|
return 1;
|
else
|
else
|
return 0;
|
return 0;
|
}
|
}
|
*/
|
*/
|
|
|
// Try a readback of the TAP ID
|
// Try a readback of the TAP ID
|
|
read_tap:
|
// Set ID code instruction in IR
|
// Set ID code instruction in IR
|
usb_set_tap_ir(JI_IDCODE);
|
usb_set_tap_ir(JI_IDCODE);
|
|
|
// Now read out the IDCODE for the device
|
// Now read out the IDCODE for the device
|
uint32_t id = usb_read_stream(32, RUN_TEST_IDLE_STATE);
|
uint32_t id = usb_read_stream(32, RUN_TEST_IDLE_STATE);
|
|
|
//Return the chain to DEBUG mode
|
//Return the chain to DEBUG mode
|
usb_set_tap_ir(JI_DEBUG);
|
usb_set_tap_ir(JI_DEBUG);
|
|
|
if((id&0xffffffff) != (id_read_at_reset&0xffffffff))
|
if((id&0xffffffff) != (id_read_at_reset&0xffffffff))
|
{
|
{
|
|
if (tap_id_reads == 10)
|
|
{
|
// Pretty big problem - can't even read the ID of the TAP anymore
|
// Pretty big problem - can't even read the ID of the TAP anymore
|
// So return error
|
// So return error
|
printf("Unable to read JTAG TAP ID - read %08x, expected %08x\n", id, id_read_at_reset);
|
printf("Unable to read JTAG TAP ID - read %08x, expected %08x\n",
|
|
id, id_read_at_reset);
|
|
|
return 1;
|
return 1;
|
}
|
}
|
|
|
|
tap_id_reads++;
|
|
|
|
goto read_tap;
|
|
}
|
|
|
current_chain = -1;
|
current_chain = -1;
|
|
|
if (retry_no == 1)
|
if (retry_no == 1)
|
sleep(1);
|
sleep(1);
|
|
|
else if ( retry_no < NUM_SOFT_RETRIES)
|
else if ( retry_no < NUM_SOFT_RETRIES)
|
return 0; // Just attempt again
|
return 0; // Just attempt again
|
|
|
if ((retry_no >= NUM_SOFT_RETRIES) && (retry_no < NUM_SOFT_RETRIES + NUM_HARD_RETRIES) )
|
if ((retry_no >= NUM_SOFT_RETRIES) && (retry_no < NUM_SOFT_RETRIES + NUM_HARD_RETRIES) )
|
{
|
{
|
// Attempt a stall of the processor and then we'll try again
|
// Attempt a stall of the processor and then we'll try again
|
//usb_dbg_test();
|
//usb_dbg_test();
|
printf("Resetting or1k\n");
|
printf("Resetting or1k\n");
|
err = dbg_cpu0_write_ctrl(0, 0x02); // reset or1k
|
err = dbg_cpu0_write_ctrl(0, 0x02); // reset or1k
|
|
|
printf("Stalling or1k\n");
|
printf("Stalling or1k\n");
|
err = dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
err = dbg_cpu0_write_ctrl(0, 0x01); // stall or1k
|
|
|
err = dbg_cpu0_read_ctrl(0, &stalled);
|
err = dbg_cpu0_read_ctrl(0, &stalled);
|
if (!(stalled & 0x1)) {
|
if (!(stalled & 0x1)) {
|
printf("or1k should be stalled\n"); // check stall or1k
|
printf("or1k should be stalled\n"); // check stall or1k
|
FT2232_USB_JTAG_CloseDevice();// Close the device
|
FT2232_USB_JTAG_CloseDevice();// Close the device
|
exit(1);
|
exit(1);
|
}
|
}
|
|
|
//retry_no++;
|
//retry_no++;
|
return 0;
|
return 0;
|
}
|
}
|
else // Unable to get the processor going again, return 1
|
else // Unable to get the processor going again, return 1
|
return 1;
|
return 1;
|
|
|
}
|
}
|
|
|
/* resets retry counter */
|
/* resets retry counter */
|
void retry_ok() {
|
void retry_ok() {
|
retry_no = 0;
|
retry_no = 0;
|
}
|
}
|
|
|
/* Sets scan chain. */
|
/* Sets scan chain. */
|
int usb_dbg_set_chain(int chain) {
|
int usb_dbg_set_chain(int chain) {
|
uint32_t status, crc_generated, crc_read;
|
uint32_t status, crc_generated, crc_read;
|
dbg_chain = chain;
|
dbg_chain = chain;
|
|
|
try_again:
|
try_again:
|
if (current_chain == chain) return DBG_ERR_OK;
|
if (current_chain == chain) return DBG_ERR_OK;
|
current_chain = -1;
|
current_chain = -1;
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("set_chain %i\n", chain);
|
if (DEBUG_CMDS) printf("set_chain %i\n", chain);
|
|
|
crc_w = 0xffffffff; // reset crc write variable
|
crc_w = 0xffffffff; // reset crc write variable
|
|
|
// CRC generated in usb_read/write_stream functions
|
// CRC generated in usb_read/write_stream functions
|
|
|
usb_write_stream((((bit_reverse_data(chain,DBGCHAIN_SIZE) & 0xf) << 1) | 1),
|
usb_write_stream((((bit_reverse_data(chain,DBGCHAIN_SIZE) & 0xf) << 1) | 1),
|
DBGCHAIN_SIZE+1 , PAUSE_TEST_DATA_REGISTER_STATE);
|
DBGCHAIN_SIZE+1 , PAUSE_TEST_DATA_REGISTER_STATE);
|
|
|
usb_write_stream(bit_reverse_data(crc_w, DBG_CRC_SIZE),DBG_CRC_SIZE,
|
usb_write_stream(bit_reverse_data(crc_w, DBG_CRC_SIZE),DBG_CRC_SIZE,
|
PAUSE_TEST_DATA_REGISTER_STATE);
|
PAUSE_TEST_DATA_REGISTER_STATE);
|
|
|
crc_r = 0xffffffff; // reset the crc_r variable
|
crc_r = 0xffffffff; // reset the crc_r variable
|
|
|
status = (usb_read_stream(DC_STATUS_SIZE,
|
status = (usb_read_stream(DC_STATUS_SIZE,
|
PAUSE_TEST_DATA_REGISTER_STATE) & 0xf);
|
PAUSE_TEST_DATA_REGISTER_STATE) & 0xf);
|
|
|
crc_generated = crc_r;
|
crc_generated = crc_r;
|
|
|
crc_read = usb_read_stream(DBG_CRC_SIZE, RUN_TEST_IDLE_STATE);
|
crc_read = usb_read_stream(DBG_CRC_SIZE, RUN_TEST_IDLE_STATE);
|
//printf("%x %x %x\n",status, crc_generated, crc_read);
|
//printf("%x %x %x\n",status, crc_generated, crc_read);
|
|
|
/* CRCs must match, otherwise retry */
|
/* CRCs must match, otherwise retry */
|
if (crc_read != crc_generated) {
|
if (crc_read != crc_generated) {
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return DBG_ERR_CRC;
|
else return DBG_ERR_CRC;
|
}
|
}
|
/* we should read expected status value, otherwise retry */
|
/* we should read expected status value, otherwise retry */
|
if (status != 0) {
|
if (status != 0) {
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return status;
|
else return status;
|
}
|
}
|
|
|
/* reset retry counter */
|
/* reset retry counter */
|
retry_ok();
|
retry_ok();
|
|
|
current_chain = chain;
|
current_chain = chain;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
|
|
/* sends out a command with 32bit address and 16bit length, if len >= 0 */
|
/* sends out a command with 32bit address and 16bit length, if len >= 0 */
|
int usb_dbg_command(uint32_t type, uint32_t adr, uint32_t len) {
|
int usb_dbg_command(uint32_t type, uint32_t adr, uint32_t len) {
|
uint32_t i,status, crc_generated, crc_read;
|
uint32_t i,status, crc_generated, crc_read;
|
|
|
// JTAG driver things
|
// JTAG driver things
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
|
|
try_again:
|
try_again:
|
usb_dbg_set_chain(dbg_chain);
|
usb_dbg_set_chain(dbg_chain);
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("comm %d %d %8x \n", type,len,adr);
|
if (DEBUG_CMDS) printf("comm %d %d %8x \n", type,len,adr);
|
|
|
//Calculate CRCs first
|
//Calculate CRCs first
|
crc_w = 0xffffffff;
|
crc_w = 0xffffffff;
|
|
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
crc_w = crc_calc(crc_w, (DI_WRITE_CMD_5BITREVERSED >> i) & 1);
|
crc_w = crc_calc(crc_w, (DI_WRITE_CMD_5BITREVERSED >> i) & 1);
|
//crc_w = crc_calc(crc_w,
|
//crc_w = crc_calc(crc_w,
|
// ((bit_reverse_data((DI_WRITE_CMD & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
// ((bit_reverse_data((DI_WRITE_CMD & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
|
|
for (i=0;i<4;i++)
|
for (i=0;i<4;i++)
|
crc_w = crc_calc(crc_w,((bit_reverse_data(type,4))>>i)&1);
|
crc_w = crc_calc(crc_w,((bit_reverse_data(type,4))>>i)&1);
|
|
|
for (i=0;i<32;i++)
|
for (i=0;i<32;i++)
|
crc_w = crc_calc(crc_w,((bit_reverse_data(adr,32))>>i)&1);
|
crc_w = crc_calc(crc_w,((bit_reverse_data(adr,32))>>i)&1);
|
|
|
assert(len > 0);
|
assert(len > 0);
|
for (i=0;i<16;i++)
|
for (i=0;i<16;i++)
|
crc_w = crc_calc(crc_w,((bit_reverse_data(len-1,16))>>i)&1);
|
crc_w = crc_calc(crc_w,((bit_reverse_data(len-1,16))>>i)&1);
|
|
|
|
|
|
|
// Now pack the write data buffer
|
// Now pack the write data buffer
|
// 1-bit 0, 4-bits cmd, 4-bit type, 32-bit adr, 32-bit CRC
|
// 1-bit 0, 4-bits cmd, 4-bit type, 32-bit adr, 32-bit CRC
|
// [0]
|
// [0]
|
//bits 0-4
|
//bits 0-4
|
WriteDataBuffer[0]=(DI_WRITE_CMD_5BITREVERSED);
|
WriteDataBuffer[0]=(DI_WRITE_CMD_5BITREVERSED);
|
//bits 5-7
|
//bits 5-7
|
WriteDataBuffer[0] |= ((bit_reverse_data(type,4)&0x7)<<5);
|
WriteDataBuffer[0] |= ((bit_reverse_data(type,4)&0x7)<<5);
|
// [1]
|
// [1]
|
// bit 0 - last bit of type
|
// bit 0 - last bit of type
|
WriteDataBuffer[1] = ((bit_reverse_data(type,4)&0x08)>>3);
|
WriteDataBuffer[1] = ((bit_reverse_data(type,4)&0x08)>>3);
|
//bits 1-7 - first 7 bits of adr
|
//bits 1-7 - first 7 bits of adr
|
WriteDataBuffer[1] |= ((bit_reverse_data(adr,32)&0x07f)<<1);
|
WriteDataBuffer[1] |= ((bit_reverse_data(adr,32)&0x07f)<<1);
|
//[2-4] 24 bits of adr
|
//[2-4] 24 bits of adr
|
for(i=0;i<3;i++)
|
for(i=0;i<3;i++)
|
WriteDataBuffer[2+i] = (bit_reverse_data(adr,32)>>(7+(i*8)))&0xff;
|
WriteDataBuffer[2+i] = (bit_reverse_data(adr,32)>>(7+(i*8)))&0xff;
|
// [5] last bit of adr in bit 0, first 7 bits of len-1 follow
|
// [5] last bit of adr in bit 0, first 7 bits of len-1 follow
|
WriteDataBuffer[5] = (bit_reverse_data(adr,32)>>31)&1;
|
WriteDataBuffer[5] = (bit_reverse_data(adr,32)>>31)&1;
|
WriteDataBuffer[5] |= (bit_reverse_data(len-1,16)&0x7f)<<1;
|
WriteDataBuffer[5] |= (bit_reverse_data(len-1,16)&0x7f)<<1;
|
// [6] bits 7-14 of (len-1)
|
// [6] bits 7-14 of (len-1)
|
WriteDataBuffer[6] = (bit_reverse_data(len-1,16)>>7)&0xff;
|
WriteDataBuffer[6] = (bit_reverse_data(len-1,16)>>7)&0xff;
|
// [7] - last bit of len-1 and first 7 bits of the CRC
|
// [7] - last bit of len-1 and first 7 bits of the CRC
|
WriteDataBuffer[7] = (bit_reverse_data(len-1,16)>>15)&1;
|
WriteDataBuffer[7] = (bit_reverse_data(len-1,16)>>15)&1;
|
//Reverse the CRC first
|
//Reverse the CRC first
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
WriteDataBuffer[7] |= (crc_w&0x7f)<<1;
|
WriteDataBuffer[7] |= (crc_w&0x7f)<<1;
|
//[8-10] next 24 bits (7-30) of crc_w
|
//[8-10] next 24 bits (7-30) of crc_w
|
WriteDataBuffer[8] = (crc_w>>7)&0xff;
|
WriteDataBuffer[8] = (crc_w>>7)&0xff;
|
WriteDataBuffer[9] = (crc_w>>15)&0xff;
|
WriteDataBuffer[9] = (crc_w>>15)&0xff;
|
WriteDataBuffer[10] = (crc_w>>23)&0xff;
|
WriteDataBuffer[10] = (crc_w>>23)&0xff;
|
//[11] final bit of crc_w
|
//[11] final bit of crc_w
|
WriteDataBuffer[11] = (crc_w>>31)&1;
|
WriteDataBuffer[11] = (crc_w>>31)&1;
|
|
|
// Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
// Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
// Platform independant driver call
|
// Platform independant driver call
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
|
|
if (Status != FTC_SUCCESS)
|
if (Status != FTC_SUCCESS)
|
printf("USB write fail - code %ld\b",Status);
|
printf("USB write fail - code %ld\b",Status);
|
|
|
// Now look through the read data
|
// Now look through the read data
|
|
|
// From bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
// From bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
|
|
// Now extract the received CRC
|
// Now extract the received CRC
|
crc_read = 0;
|
crc_read = 0;
|
//first 3 bits (0-2)
|
//first 3 bits (0-2)
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
// middle 3 bytes (bits 3 to 26)
|
// middle 3 bytes (bits 3 to 26)
|
for (i=0;i<3;i++)
|
for (i=0;i<3;i++)
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
// last 5 bits from ReadDataBuffer[15]
|
// last 5 bits from ReadDataBuffer[15]
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
|
|
// Now calculate CRC on status
|
// Now calculate CRC on status
|
crc_r = 0xffffffff;
|
crc_r = 0xffffffff;
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
|
|
crc_generated = crc_r;
|
crc_generated = crc_r;
|
// Now bit reverse status and crc_read as we unpacked them
|
// Now bit reverse status and crc_read as we unpacked them
|
// with the MSb going to the LSb
|
// with the MSb going to the LSb
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
|
|
//printf("%x %x %x\n", status, crc_read, crc_generated);
|
//printf("%x %x %x\n", status, crc_read, crc_generated);
|
/* CRCs must match, otherwise retry */
|
/* CRCs must match, otherwise retry */
|
if (crc_read != crc_generated) {
|
if (crc_read != crc_generated) {
|
//exit(1);//remove later
|
//exit(1);//remove later
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return DBG_ERR_CRC;
|
else return DBG_ERR_CRC;
|
}
|
}
|
/* we should read expected status value, otherwise retry */
|
/* we should read expected status value, otherwise retry */
|
if (status != 0) {
|
if (status != 0) {
|
//exit(1);//remove later
|
//exit(1);//remove later
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return status;
|
else return status;
|
}
|
}
|
/* reset retry counter */
|
/* reset retry counter */
|
retry_ok();
|
retry_ok();
|
|
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
/* writes a ctrl reg */
|
/* writes a ctrl reg */
|
int usb_dbg_ctrl(uint32_t reset, uint32_t stall) {
|
int usb_dbg_ctrl(uint32_t reset, uint32_t stall) {
|
uint32_t i,status, crc_generated, crc_read;
|
uint32_t i,status, crc_generated, crc_read;
|
|
|
// JTAG driver things
|
// JTAG driver things
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
|
|
try_again:
|
try_again:
|
usb_dbg_set_chain(dbg_chain);
|
usb_dbg_set_chain(dbg_chain);
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("ctrl\n");
|
if (DEBUG_CMDS) printf("ctrl\n");
|
if (DEBUG_CMDS) printf("reset %x stall %x\n", reset, stall);
|
if (DEBUG_CMDS) printf("reset %x stall %x\n", reset, stall);
|
|
|
crc_w = 0xffffffff;
|
crc_w = 0xffffffff;
|
// Try packing everyhing we want to send into one write buffer
|
// Try packing everyhing we want to send into one write buffer
|
//Calculate CRCs first
|
//Calculate CRCs first
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
crc_w = crc_calc(crc_w, (DI_WRITE_CTRL_5BITREVERSED>>i)&1);
|
crc_w = crc_calc(crc_w, (DI_WRITE_CTRL_5BITREVERSED>>i)&1);
|
//crc_w = crc_calc(crc_w,
|
//crc_w = crc_calc(crc_w,
|
// ((bit_reverse_data((DI_WRITE_CTRL & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
// ((bit_reverse_data((DI_WRITE_CTRL & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
crc_w = crc_calc(crc_w,(reset&1));
|
crc_w = crc_calc(crc_w,(reset&1));
|
crc_w = crc_calc(crc_w,(stall&1));
|
crc_w = crc_calc(crc_w,(stall&1));
|
for (i=0;i<50;i++)
|
for (i=0;i<50;i++)
|
crc_w = crc_calc(crc_w,0);
|
crc_w = crc_calc(crc_w,0);
|
|
|
|
|
|
|
// Now pack the write data buffer
|
// Now pack the write data buffer
|
// 1-bit 0, 4-bits cmd, 52-bits CPU control register data (only first 2 matter)
|
// 1-bit 0, 4-bits cmd, 52-bits CPU control register data (only first 2 matter)
|
//bits 0-4
|
//bits 0-4
|
WriteDataBuffer[0]=(DI_WRITE_CTRL_5BITREVERSED);
|
WriteDataBuffer[0]=(DI_WRITE_CTRL_5BITREVERSED);
|
// bit 5
|
// bit 5
|
WriteDataBuffer[0] |= (reset)<<(DBGCHAIN_SIZE+1);
|
WriteDataBuffer[0] |= (reset)<<(DBGCHAIN_SIZE+1);
|
// bit 6
|
// bit 6
|
WriteDataBuffer[0] |= (stall)<<(DBGCHAIN_SIZE+2);
|
WriteDataBuffer[0] |= (stall)<<(DBGCHAIN_SIZE+2);
|
// Clear the next 48 bits
|
// Clear the next 48 bits
|
for (i=1; i<16;i++) //actually clear more than just the next 50 bits
|
for (i=1; i<16;i++) //actually clear more than just the next 50 bits
|
WriteDataBuffer[i] = 0;
|
WriteDataBuffer[i] = 0;
|
|
|
//Reverse the CRC first
|
//Reverse the CRC first
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
//Now load in the CRC, but take note of fact
|
//Now load in the CRC, but take note of fact
|
// that bit 0 of buffer[7] is last 0 from cmd register data
|
// that bit 0 of buffer[7] is last 0 from cmd register data
|
// fill up from WriteDataBuffer[7-11]
|
// fill up from WriteDataBuffer[7-11]
|
for (i=0;i<4;i++)
|
for (i=0;i<4;i++)
|
WriteDataBuffer[7+i] = ((crc_w<<1)>>(i*8))&0xff;
|
WriteDataBuffer[7+i] = ((crc_w<<1)>>(i*8))&0xff;
|
//Final bit, shift in and make sure is the only thing int he buffer
|
//Final bit, shift in and make sure is the only thing int he buffer
|
WriteDataBuffer[11]=0|((crc_w>>31)&1);
|
WriteDataBuffer[11]=0|((crc_w>>31)&1);
|
|
|
|
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
// Platform independant driver call
|
// Platform independant driver call
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,89+4+32 , &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
|
|
|
|
if (Status != FTC_SUCCESS)
|
if (Status != FTC_SUCCESS)
|
printf("USB write fail - code %ld\b",Status);
|
printf("USB write fail - code %ld\b",Status);
|
|
|
// Now look through the read data
|
// Now look through the read data
|
|
|
// From bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
// From bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
|
|
// Now extract the received CRC
|
// Now extract the received CRC
|
crc_read = 0;
|
crc_read = 0;
|
//first 3 bits (0-2)
|
//first 3 bits (0-2)
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
// middle 3 bytes (bits 3 to 26)
|
// middle 3 bytes (bits 3 to 26)
|
for (i=0;i<3;i++)
|
for (i=0;i<3;i++)
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
// last 5 bits from ReadDataBuffer[15]
|
// last 5 bits from ReadDataBuffer[15]
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
|
|
|
|
// Now calculate CRC on status and crc_read
|
// Now calculate CRC on status and crc_read
|
crc_r = 0xffffffff;
|
crc_r = 0xffffffff;
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
|
|
crc_generated = crc_r;
|
crc_generated = crc_r;
|
// Now bit reverse status and crc_read as we unpacked them
|
// Now bit reverse status and crc_read as we unpacked them
|
// with the MSb going to the LSb
|
// with the MSb going to the LSb
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
|
|
/* CRCs must match, otherwise retry */
|
/* CRCs must match, otherwise retry */
|
//printf("%x %x %x\n", status, crc_read, crc_generated);
|
//printf("%x %x %x\n", status, crc_read, crc_generated);
|
if (crc_read != crc_generated) {
|
if (crc_read != crc_generated) {
|
//exit(1);//Remove later!!
|
//exit(1);//Remove later!!
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return DBG_ERR_CRC;
|
else return DBG_ERR_CRC;
|
}
|
}
|
/* we should read expected status value, otherwise retry */
|
/* we should read expected status value, otherwise retry */
|
if (status != 0) {
|
if (status != 0) {
|
//exit(1);//Remove later!!
|
//exit(1);//Remove later!!
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return status;
|
else return status;
|
}
|
}
|
|
|
/* reset retry counter */
|
/* reset retry counter */
|
retry_ok();
|
retry_ok();
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
/* reads control register */
|
/* reads control register */
|
int usb_dbg_ctrl_read(uint32_t *reset, uint32_t *stall) {
|
int usb_dbg_ctrl_read(uint32_t *reset, uint32_t *stall) {
|
uint32_t i, status, crc_generated, crc_read;
|
uint32_t i, status, crc_generated, crc_read;
|
|
|
// JTAG driver things
|
// JTAG driver things
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
|
|
|
|
try_again:
|
try_again:
|
usb_dbg_set_chain(dbg_chain);
|
usb_dbg_set_chain(dbg_chain);
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("ctrl_read\n");
|
if (DEBUG_CMDS) printf("ctrl_read\n");
|
|
|
crc_w = 0xffffffff;
|
crc_w = 0xffffffff;
|
// Try packing everyhing we want to send into one write buffer
|
// Try packing everyhing we want to send into one write buffer
|
//Calculate CRCs first
|
//Calculate CRCs first
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
crc_w = crc_calc(crc_w, (DI_READ_CTRL_5BITREVERSED>>i)&1);
|
crc_w = crc_calc(crc_w, (DI_READ_CTRL_5BITREVERSED>>i)&1);
|
//crc_w = crc_calc(crc_w,
|
//crc_w = crc_calc(crc_w,
|
//((bit_reverse_data((DI_READ_CTRL & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
//((bit_reverse_data((DI_READ_CTRL & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
|
|
|
|
// Now pack the write data buffer
|
// Now pack the write data buffer
|
// 1-bit 0, 4-bits cmd, 32-bit CRC
|
// 1-bit 0, 4-bits cmd, 32-bit CRC
|
//bits 0-4
|
//bits 0-4
|
WriteDataBuffer[0]=(DI_READ_CTRL_5BITREVERSED);
|
WriteDataBuffer[0]=(DI_READ_CTRL_5BITREVERSED);
|
// Clear the next 48 bits
|
// Clear the next 48 bits
|
for (i=1; i<16;i++) //actually clear more than just the next 50 bits
|
for (i=1; i<16;i++) //actually clear more than just the next 50 bits
|
WriteDataBuffer[i] = 0;
|
WriteDataBuffer[i] = 0;
|
|
|
//Reverse the CRC first
|
//Reverse the CRC first
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
crc_w = bit_reverse_data(crc_w, DBG_CRC_SIZE);
|
//Now load in the CRC
|
//Now load in the CRC
|
//First 3 bits go in last 3 bits of buffer[0]
|
//First 3 bits go in last 3 bits of buffer[0]
|
WriteDataBuffer[0] |= (crc_w & 0x7)<<5;
|
WriteDataBuffer[0] |= (crc_w & 0x7)<<5;
|
// The rest of crc_w goes in buffer[1-4]
|
// The rest of crc_w goes in buffer[1-4]
|
for (i=0;i<3;i++)
|
for (i=0;i<3;i++)
|
WriteDataBuffer[1+i] = ((crc_w>>3)>>(i*8))&0xff;
|
WriteDataBuffer[1+i] = ((crc_w>>3)>>(i*8))&0xff;
|
//Final bit of write buffer with CRC
|
//Final bit of write buffer with CRC
|
WriteDataBuffer[4] = ((crc_w>>3)>>(24))&0x1f;
|
WriteDataBuffer[4] = ((crc_w>>3)>>(24))&0x1f;
|
|
|
|
|
|
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,5+32+52+4+32, &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,5+32+52+4+32, &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
// Platform independant driver call
|
// Platform independant driver call
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,5+32+52+4+32, &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,5+32+52+4+32, &WriteDataBuffer, 16, &ReadDataBuffer, &dwNumBytesReturned, RUN_TEST_IDLE_STATE);
|
if (Status != FTC_SUCCESS)
|
if (Status != FTC_SUCCESS)
|
printf("USB read fail - code %ld\b",Status);
|
printf("USB read fail - code %ld\b",Status);
|
|
|
// Now look through the read data
|
// Now look through the read data
|
//0 - 1+4-bit status, 3-bits CRC
|
//0 - 1+4-bit status, 3-bits CRC
|
//1,2,3 - CRC
|
//1,2,3 - CRC
|
//4 - first 5 bits CRC, last 3, control reg bits (first 3)
|
//4 - first 5 bits CRC, last 3, control reg bits (first 3)
|
//5,6,7,8,9,10 - control reg data (48 bits)
|
//5,6,7,8,9,10 - control reg data (48 bits)
|
//11 - bit0 - control reg data, bit 1-4 status bits, bits 5-7 CRC
|
//11 - bit0 - control reg data, bit 1-4 status bits, bits 5-7 CRC
|
//12, 13 14 - CRC
|
//12, 13 14 - CRC
|
// 15 bits 0-4 CRC
|
// 15 bits 0-4 CRC
|
// Starting from bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
// Starting from bit1 of ReadDataBuffer[11] we should have our 4-bit status
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
status = (ReadDataBuffer[11] >> 1) & 0xf;
|
|
|
//reset bit should be in ReadDataBuffer[4] as bit 5
|
//reset bit should be in ReadDataBuffer[4] as bit 5
|
*reset = (ReadDataBuffer[4] >> 5) & 1;
|
*reset = (ReadDataBuffer[4] >> 5) & 1;
|
//stalled bit should be in ReadDataBuffer[4] as bit 6
|
//stalled bit should be in ReadDataBuffer[4] as bit 6
|
*stall = (ReadDataBuffer[4] >> 6) & 1;
|
*stall = (ReadDataBuffer[4] >> 6) & 1;
|
// Now extract the received CRC
|
// Now extract the received CRC
|
crc_read = 0;
|
crc_read = 0;
|
//first 3 bits (0-2) of CRC are in bits 5-7 of ReadDataBuffer[11]
|
//first 3 bits (0-2) of CRC are in bits 5-7 of ReadDataBuffer[11]
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
crc_read |= (ReadDataBuffer[11] >> 5) & 0x7;
|
// middle 3 bytes (bits 3 to 26)
|
// middle 3 bytes (bits 3 to 26)
|
for (i=0;i<3;i++)
|
for (i=0;i<3;i++)
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
crc_read |= ((ReadDataBuffer[12+i]&0xff) << ((i*8)+3));
|
// last 5 bits from ReadDataBuffer[15]
|
// last 5 bits from ReadDataBuffer[15]
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
crc_read |= (ReadDataBuffer[15]&0x1f)<<27;
|
|
|
if (DEBUG_CMDS) printf("reset bit %x stalled bit %x:\n",
|
if (DEBUG_CMDS) printf("reset bit %x stalled bit %x:\n",
|
((ReadDataBuffer[4] >> 5) & 1), ((ReadDataBuffer[4] >> 6) & 1));
|
((ReadDataBuffer[4] >> 5) & 1), ((ReadDataBuffer[4] >> 6) & 1));
|
|
|
// Now calculate CRC on status and crc_read
|
// Now calculate CRC on status and crc_read
|
crc_r = 0xffffffff;
|
crc_r = 0xffffffff;
|
|
|
crc_r = crc_calc(crc_r, ((ReadDataBuffer[4] >> 5) & 1));
|
crc_r = crc_calc(crc_r, ((ReadDataBuffer[4] >> 5) & 1));
|
crc_r = crc_calc(crc_r, ((ReadDataBuffer[4] >> 6) & 1));
|
crc_r = crc_calc(crc_r, ((ReadDataBuffer[4] >> 6) & 1));
|
for(i=0;i<50;i++)
|
for(i=0;i<50;i++)
|
crc_r = crc_calc(crc_r,0);
|
crc_r = crc_calc(crc_r,0);
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
for(i=0;i<DC_STATUS_SIZE;i++)
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
|
|
crc_generated = crc_r;
|
crc_generated = crc_r;
|
// Now bit reverse status and crc_read as we unpacked them
|
// Now bit reverse status and crc_read as we unpacked them
|
// with the MSb going to the LSb
|
// with the MSb going to the LSb
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
|
|
/* CRCs must match, otherwise retry */
|
/* CRCs must match, otherwise retry */
|
//printf("%x %x %x\n", status, crc_generated, crc_read);
|
//printf("%x %x %x\n", status, crc_generated, crc_read);
|
if (crc_read != crc_generated) {
|
if (crc_read != crc_generated) {
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return DBG_ERR_CRC;
|
else return DBG_ERR_CRC;
|
}
|
}
|
/* we should read expected status value, otherwise retry */
|
/* we should read expected status value, otherwise retry */
|
if (status != 0) {
|
if (status != 0) {
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return status;
|
else return status;
|
}
|
}
|
/* reset retry counter */
|
/* reset retry counter */
|
retry_ok();
|
retry_ok();
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
/* issues a burst read/write */
|
/* issues a burst read/write */
|
int usb_dbg_go(unsigned char *data, uint16_t len, uint32_t read) {
|
int usb_dbg_go(unsigned char *data, uint16_t len, uint32_t read) {
|
uint32_t status, crc_generated, crc_read;
|
uint32_t status, crc_generated, crc_read;
|
int i,j;
|
int i,j;
|
uint8_t data_byte;
|
uint8_t data_byte;
|
|
|
// JTAG driver things
|
// JTAG driver things
|
FTC_STATUS Status = FTC_SUCCESS;
|
FTC_STATUS Status = FTC_SUCCESS;
|
WriteDataByteBuffer WriteDataBuffer;
|
WriteDataByteBuffer WriteDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
ReadDataByteBuffer ReadDataBuffer;
|
|
|
try_again:
|
try_again:
|
usb_dbg_set_chain(dbg_chain);
|
usb_dbg_set_chain(dbg_chain);
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("\n");
|
if (DEBUG_CMDS) printf("go len is %d, read is %d\n", len, read);
|
if (DEBUG_CMDS) printf("go len is %d, read is %d\n", len, read);
|
|
|
crc_w = 0xffffffff;
|
crc_w = 0xffffffff;
|
// Try packing everyhing we want to send into one write buffer
|
// Try packing everyhing we want to send into one write buffer
|
//Calculate CRCs first
|
//Calculate CRCs first
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
for (i=0;i<DBGCHAIN_SIZE+1;i++)
|
crc_w = crc_calc(crc_w, (DI_GO_5BITREVERSED>>i)&1);
|
crc_w = crc_calc(crc_w, (DI_GO_5BITREVERSED>>i)&1);
|
//crc_w = crc_calc(crc_w,
|
//crc_w = crc_calc(crc_w,
|
// ((bit_reverse_data((DI_GO & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
// ((bit_reverse_data((DI_GO & 0xf),DBGCHAIN_SIZE+1))>>i)&1);
|
// Set first 5 bits of WriteDataBuffer up to
|
// Set first 5 bits of WriteDataBuffer up to
|
// be the GO command and 0 first bit
|
// be the GO command and 0 first bit
|
WriteDataBuffer[0]=DI_GO_5BITREVERSED;
|
WriteDataBuffer[0]=DI_GO_5BITREVERSED;
|
|
|
if (read)
|
if (read)
|
{
|
{
|
// Do GO command for a read
|
// Do GO command for a read
|
// 0 then 4-bit go command, then 32-bit CRC for the last 5 bits
|
// 0 then 4-bit go command, then 32-bit CRC for the last 5 bits
|
// Then read (len+1)*8 + 4-bit status + 32-bit CRC
|
// Then read (len+1)*8 + 4-bit status + 32-bit CRC
|
|
|
|
|
// Reverse crc_w
|
// Reverse crc_w
|
crc_w = bit_reverse_data(crc_w,DBG_CRC_SIZE);
|
crc_w = bit_reverse_data(crc_w,DBG_CRC_SIZE);
|
|
|
// Now pack in the 32-bit CRC as we're not
|
// Now pack in the 32-bit CRC as we're not
|
// writing anything else after it
|
// writing anything else after it
|
//First 3 bits of each byte go in last 3 bits of buffer[i],
|
//First 3 bits of each byte go in last 3 bits of buffer[i],
|
// next 5 go in buffer[i+1]
|
// next 5 go in buffer[i+1]
|
for(i=0;i<4;i++){
|
for(i=0;i<4;i++){
|
WriteDataBuffer[i] |= ((crc_w>>(i*8))&0x07)<<5;
|
WriteDataBuffer[i] |= ((crc_w>>(i*8))&0x07)<<5;
|
WriteDataBuffer[i+1] = ((crc_w>>(i*8))>>3)&0x1f;
|
WriteDataBuffer[i+1] = ((crc_w>>(i*8))>>3)&0x1f;
|
}
|
}
|
|
|
// Should have data up to WriteDataBuffer[4] bit 4
|
// Should have data up to WriteDataBuffer[4] bit 4
|
// Read data should start at ReadDataBuffer[4] bit 5
|
// Read data should start at ReadDataBuffer[4] bit 5
|
|
|
//Clear the rest of the write buffer
|
//Clear the rest of the write buffer
|
for(i=5;i<(10+len);i++)
|
for(i=5;i<(10+len);i++)
|
WriteDataBuffer[i]=0;
|
WriteDataBuffer[i]=0;
|
}
|
}
|
if (!read){
|
if (!read){
|
// If we're writing we put in the 5 command bits, (len+1)*8 data bits,
|
// If we're writing we put in the 5 command bits, (len+1)*8 data bits,
|
// and then the 32-bit CRC do first 3 bits, then next 5 bits in
|
// and then the 32-bit CRC do first 3 bits, then next 5 bits in
|
// each of the for loops iterations
|
// each of the for loops iterations
|
for(i=0;i<len;i++){
|
for(i=0;i<len;i++){
|
|
|
data_byte = bit_reverse_swar_8(data[i]);
|
data_byte = bit_reverse_swar_8(data[i]);
|
|
|
WriteDataBuffer[i] |= ((data_byte&0x07)<<5);
|
WriteDataBuffer[i] |= ((data_byte&0x07)<<5);
|
WriteDataBuffer[i+1] = ((data_byte>>3)&0x1f);
|
WriteDataBuffer[i+1] = ((data_byte>>3)&0x1f);
|
|
|
// Now update the CRC
|
// Now update the CRC
|
for(j=0;j<8;j++)
|
for(j=0;j<8;j++)
|
crc_w = crc_calc(crc_w, (data_byte>>j)&1);
|
crc_w = crc_calc(crc_w, (data_byte>>j)&1);
|
|
|
}
|
}
|
|
|
// Reverse crc_w
|
// Reverse crc_w
|
crc_w = bit_reverse_data(crc_w,DBG_CRC_SIZE);
|
crc_w = bit_reverse_data(crc_w,DBG_CRC_SIZE);
|
|
|
// If we have len=4 for example, we will write to
|
// If we have len=4 for example, we will write to
|
// WriteDataBuffer[4]'s first 5 bits
|
// WriteDataBuffer[4]'s first 5 bits
|
|
|
// So now load in the 32-bit CRC from there
|
// So now load in the 32-bit CRC from there
|
for(i=0;i<4;i++){
|
for(i=0;i<4;i++){
|
WriteDataBuffer[len+i] |= ((crc_w>>(i*8))&0x07)<<5;
|
WriteDataBuffer[len+i] |= ((crc_w>>(i*8))&0x07)<<5;
|
WriteDataBuffer[len+i+1] = ((crc_w>>(i*8))>>3)&0x1f;
|
WriteDataBuffer[len+i+1] = ((crc_w>>(i*8))>>3)&0x1f;
|
}
|
}
|
// Should have data up to WriteDataBuffer[4+len] bit 4
|
// Should have data up to WriteDataBuffer[4+len] bit 4
|
// Read data should start at ReadDataBuffer[4+len] bit 5
|
// Read data should start at ReadDataBuffer[4+len] bit 5
|
|
|
}
|
}
|
|
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,(5+(len*8)+32+36), &WriteDataBuffer, (6+len+4), &ReadDataBuffer,&dwNumBytesReturned,RUN_TEST_IDLE_STATE);
|
//Status = pFT2232cMpsseJtag->JTAG_WriteReadDataToFromExternalDevice(gFtHandle,false,(5+(len*8)+32+36), &WriteDataBuffer, (6+len+4), &ReadDataBuffer,&dwNumBytesReturned,RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,(5+(len*8)+32+36), &WriteDataBuffer, (6+len+4), &ReadDataBuffer,&dwNumBytesReturned,RUN_TEST_IDLE_STATE);
|
Status = FT2232_USB_JTAG_WriteReadDataToFromExternalDevice(false,(5+(len*8)+32+36), &WriteDataBuffer, (6+len+4), &ReadDataBuffer,&dwNumBytesReturned,RUN_TEST_IDLE_STATE);
|
|
|
if (Status != FTC_SUCCESS)
|
if (Status != FTC_SUCCESS)
|
printf("USB write fail - code %ld\n",Status);
|
printf("USB write fail - code %ld\n",Status);
|
|
|
crc_r = 0xffffffff;
|
crc_r = 0xffffffff;
|
|
|
if (read){
|
if (read){
|
// Look through our data, starting from ReadDataBuffer[4] bit 5
|
// Look through our data, starting from ReadDataBuffer[4] bit 5
|
// We receive len bytes, starting at ReadDataBuffer[4] bit 5, so
|
// We receive len bytes, starting at ReadDataBuffer[4] bit 5, so
|
// unpack like so
|
// unpack like so
|
if (DEBUG_USB_DRVR_FUNCS) printf("USB read data buffer: ");
|
if (DEBUG_USB_DRVR_FUNCS) printf("USB read data buffer: ");
|
for(i=0;i<len;i++){
|
for(i=0;i<len;i++){
|
// get first 3 bits
|
// get first 3 bits
|
data[i] = (ReadDataBuffer[4+i]>>5)&0x07;
|
data[i] = (ReadDataBuffer[4+i]>>5)&0x07;
|
// then next 5 from next ReadDataBuffer byte
|
// then next 5 from next ReadDataBuffer byte
|
data[i] |= (ReadDataBuffer[4+i+1]&0x1f)<<3;
|
data[i] |= (ReadDataBuffer[4+i+1]&0x1f)<<3;
|
|
|
// Now calculate the CRC for this byte
|
// Now calculate the CRC for this byte
|
for(j=0;j<8;j++)
|
for(j=0;j<8;j++)
|
crc_r = crc_calc(crc_r, (data[i]>>j)&1);
|
crc_r = crc_calc(crc_r, (data[i]>>j)&1);
|
|
|
// Now bit reverse the byte as it was read in MSb first but
|
// Now bit reverse the byte as it was read in MSb first but
|
// written to LSb first
|
// written to LSb first
|
data[i] = bit_reverse_data(data[i],8);
|
data[i] = bit_reverse_data(data[i],8);
|
|
|
if (DEBUG_USB_DRVR_FUNCS) printf("%2x",data[i]);
|
if (DEBUG_USB_DRVR_FUNCS) printf("%2x",data[i]);
|
}
|
}
|
if (DEBUG_USB_DRVR_FUNCS) printf("\n");
|
if (DEBUG_USB_DRVR_FUNCS) printf("\n");
|
|
|
// Should be up to ReadDataBuffer[4+len] bit 5 for data
|
// Should be up to ReadDataBuffer[4+len] bit 5 for data
|
status = (ReadDataBuffer[4+len]>>5)&0x07;
|
status = (ReadDataBuffer[4+len]>>5)&0x07;
|
status |= (ReadDataBuffer[4+len+1]&1)<<3;
|
status |= (ReadDataBuffer[4+len+1]&1)<<3;
|
// Now get out crc_read
|
// Now get out crc_read
|
crc_read = 0;
|
crc_read = 0;
|
for(i=0;i<4;i++){
|
for(i=0;i<4;i++){
|
crc_read |= ((ReadDataBuffer[4+len+1+i]>>1)&0x7f)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i]>>1)&0x7f)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i+1]&0x1)<<7)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i+1]&0x1)<<7)<<(i*8);
|
}
|
}
|
|
|
for(i=0;i<4;i++)
|
for(i=0;i<4;i++)
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
}
|
}
|
if (!read){
|
if (!read){
|
// Just extract our 4-bits of status and CRC
|
// Just extract our 4-bits of status and CRC
|
status = (ReadDataBuffer[4+len]>>5)&0x07;
|
status = (ReadDataBuffer[4+len]>>5)&0x07;
|
status |= (ReadDataBuffer[4+len+1]&1)<<3;
|
status |= (ReadDataBuffer[4+len+1]&1)<<3;
|
|
|
// extract crc_read from the ReadDataBuffer
|
// extract crc_read from the ReadDataBuffer
|
crc_read = 0;
|
crc_read = 0;
|
for(i=0;i<4;i++){
|
for(i=0;i<4;i++){
|
crc_read |= ((ReadDataBuffer[4+len+1+i]>>1)&0x7f)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i]>>1)&0x7f)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i+1]&1)<<7)<<(i*8);
|
crc_read |= ((ReadDataBuffer[4+len+1+i+1]&1)<<7)<<(i*8);
|
}
|
}
|
// Calculate our own CRC from the status value
|
// Calculate our own CRC from the status value
|
for(i=0;i<4;i++)
|
for(i=0;i<4;i++)
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
crc_r = crc_calc(crc_r, (status>>i)&1);
|
|
|
}
|
}
|
|
|
crc_generated = crc_r;
|
crc_generated = crc_r;
|
// Now bit reverse status and crc_read as we unpacked them
|
// Now bit reverse status and crc_read as we unpacked them
|
// with the MSb going to the LSb
|
// with the MSb going to the LSb
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
status = bit_reverse_data(status, DC_STATUS_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
crc_read = bit_reverse_data(crc_read, DBG_CRC_SIZE);
|
|
|
|
|
/* CRCs must match, otherwise retry */
|
/* CRCs must match, otherwise retry */
|
if (crc_read != crc_generated) {
|
if (crc_read != crc_generated) {
|
if (DEBUG_CMDS || DEBUG_USB_DRVR_FUNCS)printf("CRC mismatch: %x %x %x\n", status, crc_read, crc_generated);
|
if (DEBUG_CMDS || DEBUG_USB_DRVR_FUNCS)printf("CRC mismatch: %x %x %x\n", status, crc_read, crc_generated);
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return DBG_ERR_CRC;
|
else return DBG_ERR_CRC;
|
}
|
}
|
/* we should read expected status value, otherwise retry */
|
/* we should read expected status value, otherwise retry */
|
if (status != 0) {
|
if (status != 0) {
|
if (!retry_do()) goto try_again;
|
if (!retry_do()) goto try_again;
|
else return status;
|
else return status;
|
}
|
}
|
|
|
retry_ok();
|
retry_ok();
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* read a word from wishbone */
|
/* read a word from wishbone */
|
int usb_dbg_wb_read32(uint32_t adr, uint32_t *data) {
|
int usb_dbg_wb_read32(uint32_t adr, uint32_t *data) {
|
// uint32_t err;
|
// uint32_t err;
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_command(0x6, adr, 4))) return err;
|
if ((err = usb_dbg_command(0x6, adr, 4))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, 4, 1))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, 4, 1))) return err;
|
*data = ntohl(*data);
|
*data = ntohl(*data);
|
return err;
|
return err;
|
}
|
}
|
|
|
/* write a word to wishbone */
|
/* write a word to wishbone */
|
int usb_dbg_wb_write32(uint32_t adr, uint32_t data) {
|
int usb_dbg_wb_write32(uint32_t adr, uint32_t data) {
|
// uint32_t err;
|
// uint32_t err;
|
data = ntohl(data);
|
data = ntohl(data);
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_command(0x2, adr, 4))) return err;
|
if ((err = usb_dbg_command(0x2, adr, 4))) return err;
|
if ((err = usb_dbg_go((unsigned char*)&data, 4, 0))) return err;
|
if ((err = usb_dbg_go((unsigned char*)&data, 4, 0))) return err;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* read a block from wishbone */
|
/* read a block from wishbone */
|
int usb_dbg_wb_read_block32(uint32_t adr, uint32_t *data, uint32_t len) {
|
int usb_dbg_wb_read_block32(uint32_t adr, uint32_t *data, uint32_t len) {
|
uint32_t i; // err;
|
uint32_t i; // err;
|
//printf("%08x %08x\n", adr, len);
|
//printf("%08x %08x\n", adr, len);
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_command(0x6, adr, len))) return err;
|
if ((err = usb_dbg_command(0x6, adr, len))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, len, 1))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, len, 1))) return err;
|
uint32_t * data_uint32 = (uint32_t *) data; // data[i] gives us a proper 64-bit wide word on a 64-bit arch, so cast back to network sized data when ntohl'ing
|
uint32_t * data_uint32 = (uint32_t *) data; // data[i] gives us a proper 64-bit wide word on a 64-bit arch, so cast back to network sized data when ntohl'ing
|
for (i = 0; i < len / 4; i ++) data_uint32[i] = ntohl(data_uint32[i]);
|
for (i = 0; i < len / 4; i ++) data_uint32[i] = ntohl(data_uint32[i]);
|
//printf("%08x\n", err);
|
//printf("%08x\n", err);
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
/* write a block to wishbone */
|
/* write a block to wishbone */
|
int usb_dbg_wb_write_block32(uint32_t adr, uint32_t *data, uint32_t len) {
|
int usb_dbg_wb_write_block32(uint32_t adr, uint32_t *data, uint32_t len) {
|
uint32_t i; //, err;
|
uint32_t i; //, err;
|
uint32_t * data_uint32 = (uint32_t *) data; // data[i] gives us a proper 64-bit wide word on a 64-bit arch, so cast back to network sized data when ntohl'ing
|
uint32_t * data_uint32 = (uint32_t *) data; // data[i] gives us a proper 64-bit wide word on a 64-bit arch, so cast back to network sized data when ntohl'ing
|
for (i = 0; i < len / 4; i ++) data_uint32[i] = ntohl(data_uint32[i]);
|
for (i = 0; i < len / 4; i ++) data_uint32[i] = ntohl(data_uint32[i]);
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_set_chain(DC_WISHBONE))) return err;
|
if ((err = usb_dbg_command(0x2, adr, len))) return err;
|
if ((err = usb_dbg_command(0x2, adr, len))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, len, 0))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, len, 0))) return err;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
|
|
/* read a register from cpu */
|
/* read a register from cpu */
|
int usb_dbg_cpu0_read(uint32_t adr, uint32_t *data) {
|
int usb_dbg_cpu0_read(uint32_t adr, uint32_t *data) {
|
// uint32_t err;
|
// uint32_t err;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_command(0x6, adr, 4))) return err;
|
if ((err = usb_dbg_command(0x6, adr, 4))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, 4, 1))) return err;
|
if ((err = usb_dbg_go((unsigned char*)data, 4, 1))) return err;
|
*data = ntohl(*data);
|
*data = ntohl(*data);
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* write a cpu register */
|
/* write a cpu register */
|
int usb_dbg_cpu0_write(uint32_t adr, uint32_t data) {
|
int usb_dbg_cpu0_write(uint32_t adr, uint32_t data) {
|
// uint32_t err;
|
// uint32_t err;
|
data = ntohl(data);
|
data = ntohl(data);
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_command(0x2, adr, 4))) return err;
|
if ((err = usb_dbg_command(0x2, adr, 4))) return err;
|
if ((err = usb_dbg_go((unsigned char*)&data, 4, 0))) return err;
|
if ((err = usb_dbg_go((unsigned char*)&data, 4, 0))) return err;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* write a cpu module register */
|
/* write a cpu module register */
|
int usb_dbg_cpu0_write_ctrl(uint32_t adr, unsigned char data) {
|
int usb_dbg_cpu0_write_ctrl(uint32_t adr, unsigned char data) {
|
// no ensuring that or1k is stalled here, becuase we're call this from that function
|
// no ensuring that or1k is stalled here, becuase we're call this from that function
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_ctrl(data >> 1, data & 0x1))) return err;
|
if ((err = usb_dbg_ctrl(data >> 1, data & 0x1))) return err;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* read a register from cpu module */
|
/* read a register from cpu module */
|
int usb_dbg_cpu0_read_ctrl(uint32_t adr, unsigned char *data) {
|
int usb_dbg_cpu0_read_ctrl(uint32_t adr, unsigned char *data) {
|
// no ensuring that or1k is stalled here, becuase we're call this from that function
|
// no ensuring that or1k is stalled here, becuase we're call this from that function
|
uint32_t r, s;
|
uint32_t r, s;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_set_chain(DC_CPU0))) return err;
|
if ((err = usb_dbg_ctrl_read(&r, &s))) return err;
|
if ((err = usb_dbg_ctrl_read(&r, &s))) return err;
|
*data = (r << 1) | s;
|
*data = (r << 1) | s;
|
return DBG_ERR_OK;
|
return DBG_ERR_OK;
|
}
|
}
|
|
|
/* Function to close the device handle. Is called when closing the app */
|
/* Function to close the device handle. Is called when closing the app */
|
void usb_close_device_handle()
|
void usb_close_device_handle()
|
{
|
{
|
// try unstalling the processor before quitting
|
// try unstalling the processor before quitting
|
dbg_cpu0_write_ctrl(0, 0x00); // unstall or1k
|
dbg_cpu0_write_ctrl(0, 0x00); // unstall or1k
|
FT2232_USB_JTAG_CloseDevice();
|
FT2232_USB_JTAG_CloseDevice();
|
}
|
}
|
|
|