Line 43... |
Line 43... |
// The difference between these control signals allows individual stages
|
// The difference between these control signals allows individual stages
|
// to propagate instructions independently. In general, the logic works
|
// to propagate instructions independently. In general, the logic works
|
// as:
|
// as:
|
//
|
//
|
//
|
//
|
// assign (n)_ce = (n-1)_valid && (~(n)_stall)
|
// assign (n)_ce = (n-1)_valid && (!(n)_stall)
|
//
|
//
|
//
|
//
|
// always @(posedge i_clk)
|
// always @(posedge i_clk)
|
// if ((i_rst)||(clear_pipeline))
|
// if ((i_rst)||(clear_pipeline))
|
// (n)_valid = 0
|
// (n)_valid = 0
|
Line 259... |
Line 259... |
wire [3:0] dcd_F;
|
wire [3:0] dcd_F;
|
wire dcd_wR, dcd_rA, dcd_rB,
|
wire dcd_wR, dcd_rA, dcd_rB,
|
dcd_ALU, dcd_M, dcd_DIV, dcd_FP,
|
dcd_ALU, dcd_M, dcd_DIV, dcd_FP,
|
dcd_wF, dcd_gie, dcd_break, dcd_lock,
|
dcd_wF, dcd_gie, dcd_break, dcd_lock,
|
dcd_pipe, dcd_ljmp;
|
dcd_pipe, dcd_ljmp;
|
reg r_dcd_valid;
|
|
wire dcd_valid;
|
wire dcd_valid;
|
wire [AW:0] dcd_pc /* verilator public_flat */;
|
wire [AW:0] dcd_pc /* verilator public_flat */;
|
wire [31:0] dcd_I;
|
wire [31:0] dcd_I;
|
wire dcd_zI; // true if dcd_I == 0
|
wire dcd_zI; // true if dcd_I == 0
|
wire dcd_A_stall, dcd_B_stall, dcd_F_stall;
|
wire dcd_A_stall, dcd_B_stall, dcd_F_stall;
|
Line 296... |
Line 295... |
wire [14:0] op_Fl;
|
wire [14:0] op_Fl;
|
reg [6:0] r_op_F;
|
reg [6:0] r_op_F;
|
wire [7:0] op_F;
|
wire [7:0] op_F;
|
wire op_ce, op_phase, op_pipe, op_change_data_ce;
|
wire op_ce, op_phase, op_pipe, op_change_data_ce;
|
// Some pipeline control wires
|
// Some pipeline control wires
|
`ifdef OPT_PIPELINED
|
|
reg op_A_alu, op_A_mem;
|
|
reg op_B_alu, op_B_mem;
|
|
`endif
|
|
reg op_illegal;
|
reg op_illegal;
|
wire op_break;
|
wire op_break;
|
wire op_lock;
|
wire op_lock;
|
|
|
`ifdef VERILATOR
|
`ifdef VERILATOR
|
Line 345... |
Line 340... |
|
|
wire div_ce, div_error, div_busy, div_valid;
|
wire div_ce, div_error, div_busy, div_valid;
|
wire [31:0] div_result;
|
wire [31:0] div_result;
|
wire [3:0] div_flags;
|
wire [3:0] div_flags;
|
|
|
assign div_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_div)
|
assign div_ce = (master_ce)&&(!clear_pipeline)&&(op_valid_div)
|
&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
|
&&(!mem_rdbusy)&&(!div_busy)&&(!fpu_busy)
|
&&(set_cond);
|
&&(set_cond);
|
|
|
wire fpu_ce, fpu_error, fpu_busy, fpu_valid;
|
wire fpu_ce, fpu_error, fpu_busy, fpu_valid;
|
wire [31:0] fpu_result;
|
wire [31:0] fpu_result;
|
wire [3:0] fpu_flags;
|
wire [3:0] fpu_flags;
|
|
|
assign fpu_ce = (master_ce)&&(~clear_pipeline)&&(op_valid_fpu)
|
assign fpu_ce = (master_ce)&&(!clear_pipeline)&&(op_valid_fpu)
|
&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
|
&&(!mem_rdbusy)&&(!div_busy)&&(!fpu_busy)
|
&&(set_cond);
|
&&(set_cond);
|
|
|
wire adf_ce_unconditional;
|
wire adf_ce_unconditional;
|
|
|
//
|
//
|
Line 377... |
Line 372... |
|
|
|
|
//
|
//
|
// MASTER: clock enable.
|
// MASTER: clock enable.
|
//
|
//
|
assign master_ce = ((~i_halt)||(alu_phase))&&(~o_break)&&(~sleep);
|
assign master_ce = ((!i_halt)||(alu_phase))&&(!o_break)&&(!sleep);
|
|
|
|
|
//
|
//
|
// PIPELINE STAGE #1 :: Prefetch
|
// PIPELINE STAGE #1 :: Prefetch
|
// Calculate stall conditions
|
// Calculate stall conditions
|
Line 390... |
Line 385... |
//
|
//
|
|
|
//
|
//
|
// PIPELINE STAGE #2 :: Instruction Decode
|
// PIPELINE STAGE #2 :: Instruction Decode
|
// Calculate stall conditions
|
// Calculate stall conditions
|
assign dcd_ce = ((~dcd_valid)||(~dcd_stalled))&&(~clear_pipeline);
|
|
|
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
assign dcd_stalled = (dcd_valid)&&(op_stall);
|
assign dcd_stalled = (dcd_valid)&&(op_stall);
|
`else
|
`else // Not pipelined -- either double or single fetch
|
// If not pipelined, there will be no op_valid_ anything, and the
|
assign dcd_stalled = (dcd_valid)&&(op_stall);
|
// op_stall will be false, dcd_X_stall will be false, thus we can simply
|
|
// do a ...
|
|
assign dcd_stalled = 1'b0;
|
|
`endif
|
`endif
|
//
|
//
|
// PIPELINE STAGE #3 :: Read Operands
|
// PIPELINE STAGE #3 :: Read Operands
|
// Calculate stall conditions
|
// Calculate stall conditions
|
wire prelock_stall;
|
wire prelock_stall;
|
Line 416... |
Line 407... |
||(mem_busy)||(div_busy)||(fpu_busy);
|
||(mem_busy)||(div_busy)||(fpu_busy);
|
|
|
assign op_stall = (op_valid)&&( // Only stall if we're loaded w/validins
|
assign op_stall = (op_valid)&&( // Only stall if we're loaded w/validins
|
// Stall if we're stopped, and not allowed to execute
|
// Stall if we're stopped, and not allowed to execute
|
// an instruction
|
// an instruction
|
// (~master_ce) // Already captured in alu_stall
|
// (!master_ce) // Already captured in alu_stall
|
//
|
//
|
// Stall if going into the ALU and the ALU is stalled
|
// Stall if going into the ALU and the ALU is stalled
|
// i.e. if the memory is busy, or we are single
|
// i.e. if the memory is busy, or we are single
|
// stepping. This also includes our stalls for
|
// stepping. This also includes our stalls for
|
// op_break and op_lock, so we don't need to
|
// op_break and op_lock, so we don't need to
|
Line 450... |
Line 441... |
// CC register
|
// CC register
|
||(dcd_F_stall)
|
||(dcd_F_stall)
|
);
|
);
|
assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
|
assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
|
|
|
|
`else
|
|
assign op_stall = (alu_busy)||(div_busy)||(fpu_busy)||(wr_reg_ce)
|
|
||(mem_busy)||(op_valid)||(!master_ce)||(wr_flags_ce);
|
|
assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(!op_stall);
|
|
`endif
|
|
|
// BUT ... op_ce is too complex for many of the data operations. So
|
// BUT ... op_ce is too complex for many of the data operations. So
|
// let's make their circuit enable code simpler. In particular, if
|
// let's make their circuit enable code simpler. In particular, if
|
// op_ doesn't need to be preserved, we can change it all we want
|
// op_ doesn't need to be preserved, we can change it all we want
|
// ... right? The clear_pipeline code, for example, really only needs
|
// ... right? The clear_pipeline code, for example, really only needs
|
// to determine whether op_valid is true.
|
// to determine whether op_valid is true.
|
assign op_change_data_ce = (~op_stall);
|
assign op_change_data_ce = (!op_stall);
|
`else
|
|
assign op_stall = (op_valid)&&(~master_ce);
|
|
assign op_ce = ((dcd_valid)||(dcd_illegal)||(dcd_early_branch))&&(~clear_pipeline);
|
|
assign op_change_data_ce = 1'b1;
|
|
`endif
|
|
|
|
//
|
//
|
// PIPELINE STAGE #4 :: ALU / Memory
|
// PIPELINE STAGE #4 :: ALU / Memory
|
// Calculate stall conditions
|
// Calculate stall conditions
|
//
|
//
|
Line 477... |
Line 468... |
// since we don't know if it'll put us to sleep or not.
|
// since we don't know if it'll put us to sleep or not.
|
// 4. Last case: Stall if we would otherwise move a break instruction
|
// 4. Last case: Stall if we would otherwise move a break instruction
|
// through the ALU. Break instructions are not allowed through
|
// through the ALU. Break instructions are not allowed through
|
// the ALU.
|
// the ALU.
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
assign alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(op_valid_alu)) //Case 1&2
|
assign alu_stall = (((!master_ce)||(mem_rdbusy)||(alu_busy))&&(op_valid_alu)) //Case 1&2
|
||(prelock_stall)
|
||(prelock_stall)
|
||((op_valid)&&(op_break))
|
||((op_valid)&&(op_break))
|
||(wr_reg_ce)&&(wr_write_cc)
|
||(wr_reg_ce)&&(wr_write_cc)
|
||(div_busy)||(fpu_busy);
|
||(div_busy)||(fpu_busy);
|
assign alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall)
|
assign alu_ce = (master_ce)&&(op_valid_alu)&&(!alu_stall)
|
&&(~clear_pipeline);
|
&&(!clear_pipeline);
|
`else
|
`else
|
assign alu_stall = (op_valid_alu)&&((~master_ce)||(op_break));
|
assign alu_stall = (op_valid_alu)&&((!master_ce)||(op_break));
|
assign alu_ce = (master_ce)&&(op_valid_alu)&&(~alu_stall)&&(~clear_pipeline);
|
assign alu_ce = (master_ce)&&(op_valid_alu)&&(!alu_stall)&&(!clear_pipeline);
|
`endif
|
`endif
|
//
|
//
|
|
|
//
|
//
|
// Note: if you change the conditions for mem_ce, you must also change
|
// Note: if you change the conditions for mem_ce, you must also change
|
// alu_pc_valid.
|
// alu_pc_valid.
|
//
|
//
|
`ifdef OPT_PIPELINED
|
assign mem_ce = (master_ce)&&(op_valid_mem)&&(!mem_stalled)
|
assign mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled)
|
&&(!clear_pipeline);
|
&&(~clear_pipeline);
|
|
`else
|
|
// If we aren't pipelined, then no one will be changing what's in the
|
|
// pipeline (i.e. clear_pipeline), while our only instruction goes
|
|
// through the ... pipeline.
|
|
//
|
|
// However, in hind sight this logic didn't work. What happens when
|
|
// something gets in the pipeline and then (due to interrupt or some
|
|
// such) needs to be voided? Thus we avoid simplification and keep
|
|
// what worked here.
|
|
assign mem_ce = (master_ce)&&(op_valid_mem)&&(~mem_stalled)
|
|
&&(~clear_pipeline);
|
|
`endif
|
|
`ifdef OPT_PIPELINED_BUS_ACCESS
|
`ifdef OPT_PIPELINED_BUS_ACCESS
|
assign mem_stalled = (~master_ce)||(alu_busy)||((op_valid_mem)&&(
|
assign mem_stalled = (!master_ce)||(alu_busy)||((op_valid_mem)&&(
|
(mem_pipe_stalled)
|
(mem_pipe_stalled)
|
||(prelock_stall)
|
||(prelock_stall)
|
||((~op_pipe)&&(mem_busy))
|
||((!op_pipe)&&(mem_busy))
|
||(div_busy)
|
||(div_busy)
|
||(fpu_busy)
|
||(fpu_busy)
|
// Stall waiting for flags to be valid
|
// Stall waiting for flags to be valid
|
// Or waiting for a write to the PC register
|
// Or waiting for a write to the PC register
|
// Or CC register, since that can change the
|
// Or CC register, since that can change the
|
Line 525... |
Line 504... |
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
|
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
|
&&((wr_write_pc)||(wr_write_cc)))));
|
&&((wr_write_pc)||(wr_write_cc)))));
|
`else
|
`else
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
assign mem_stalled = (mem_busy)||((op_valid_mem)&&(
|
assign mem_stalled = (mem_busy)||((op_valid_mem)&&(
|
(~master_ce)
|
(!master_ce)
|
// Stall waiting for flags to be valid
|
// Stall waiting for flags to be valid
|
// Or waiting for a write to the PC register
|
// Or waiting for a write to the PC register
|
// Or CC register, since that can change the
|
// Or CC register, since that can change the
|
// PC as well
|
// PC as well
|
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
|
||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
|
`else
|
`else
|
assign mem_stalled = (op_valid_mem)&&(~master_ce);
|
assign mem_stalled = (op_valid_mem)&&(!master_ce);
|
`endif
|
`endif
|
`endif
|
`endif
|
|
|
// ALU, DIV, or FPU CE ... equivalent to the OR of all three of these
|
// ALU, DIV, or FPU CE ... equivalent to the OR of all three of these
|
assign adf_ce_unconditional = (master_ce)&&(~clear_pipeline)&&(op_valid)
|
assign adf_ce_unconditional = (master_ce)&&(!clear_pipeline)&&(op_valid)
|
&&(~op_valid_mem)&&(~mem_rdbusy)
|
&&(!op_valid_mem)&&(!mem_rdbusy)
|
&&((~op_valid_alu)||(~alu_stall))&&(~op_break)
|
&&((!op_valid_alu)||(!alu_stall))&&(!op_break)
|
&&(~div_busy)&&(~fpu_busy)&&(~clear_pipeline);
|
&&(!div_busy)&&(!fpu_busy)&&(!clear_pipeline);
|
|
|
//
|
//
|
//
|
//
|
// PIPELINE STAGE #1 :: Prefetch
|
// PIPELINE STAGE #1 :: Prefetch
|
//
|
//
|
//
|
//
|
`ifdef OPT_SINGLE_FETCH
|
wire pf_stalled;
|
wire pf_ce;
|
assign pf_stalled = (dcd_stalled)||(dcd_phase);
|
|
|
|
wire pf_new_pc;
|
|
assign pf_new_pc = (new_pc)||((dcd_early_branch)&&(!clear_pipeline));
|
|
|
assign pf_ce = (~pf_valid)&&(~dcd_valid)&&(~op_valid)&&(~alu_busy)&&(~mem_busy)&&(~alu_pc_valid)&&(~mem_pc_valid);
|
wire [(AW-1):0] pf_request_address;
|
|
assign pf_request_address = ((dcd_early_branch)&&(!clear_pipeline))
|
|
? dcd_branch_pc:pf_pc[(AW+1):2];
|
|
assign pf_gie = gie;
|
|
`ifdef OPT_SINGLE_FETCH
|
prefetch #(ADDRESS_WIDTH)
|
prefetch #(ADDRESS_WIDTH)
|
pf(i_clk, (i_rst), (pf_ce), (~dcd_stalled), pf_pc[(AW+1):2], gie,
|
pf(i_clk, (i_rst), pf_new_pc, w_clear_icache,
|
pf_instruction, pf_instruction_pc, pf_gie,
|
(!pf_stalled),
|
|
pf_request_address,
|
|
pf_instruction, pf_instruction_pc,
|
pf_valid, pf_illegal,
|
pf_valid, pf_illegal,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_ack, pf_stall, pf_err, i_wb_data);
|
pf_ack, pf_stall, pf_err, i_wb_data);
|
|
|
initial r_dcd_valid = 1'b0;
|
`else
|
always @(posedge i_clk)
|
`ifdef OPT_DOUBLE_FETCH
|
if (clear_pipeline)
|
|
r_dcd_valid <= 1'b0;
|
|
else if (dcd_ce)
|
|
r_dcd_valid <= (pf_valid)||(pf_illegal);
|
|
else if (op_ce)
|
|
r_dcd_valid <= 1'b0;
|
|
assign dcd_valid = r_dcd_valid;
|
|
|
|
`else // Pipe fetch
|
wire [1:0] pf_dbg;
|
|
dblfetch #(ADDRESS_WIDTH)
|
|
pf(i_clk, i_rst, pf_new_pc,
|
|
w_clear_icache,
|
|
(!pf_stalled),
|
|
pf_request_address,
|
|
pf_instruction, pf_instruction_pc,
|
|
pf_valid,
|
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
|
pf_ack, pf_stall, pf_err, i_wb_data,
|
|
pf_illegal);
|
|
|
|
`else // Not single fetch and not double fetch
|
|
|
wire pf_stalled;
|
|
assign pf_stalled = (dcd_stalled)||(dcd_phase);
|
|
`ifdef OPT_TRADITIONAL_PFCACHE
|
`ifdef OPT_TRADITIONAL_PFCACHE
|
wire [(AW-1):0] pf_request_address;
|
|
assign pf_request_address = ((dcd_early_branch)&&(!clear_pipeline))
|
|
? dcd_branch_pc:pf_pc[(AW+1):2];
|
|
pfcache #(LGICACHE, ADDRESS_WIDTH)
|
pfcache #(LGICACHE, ADDRESS_WIDTH)
|
pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
|
pf(i_clk, i_rst, pf_new_pc, w_clear_icache,
|
w_clear_icache,
|
|
// dcd_pc,
|
// dcd_pc,
|
(!pf_stalled),
|
(!pf_stalled),
|
pf_request_address,
|
pf_request_address,
|
pf_instruction, pf_instruction_pc, pf_valid,
|
pf_instruction, pf_instruction_pc, pf_valid,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_ack, pf_stall, pf_err, i_wb_data,
|
pf_ack, pf_stall, pf_err, i_wb_data,
|
pf_illegal);
|
pf_illegal);
|
`else
|
`else
|
pipefetch #(RESET_BUS_ADDRESS, LGICACHE, ADDRESS_WIDTH)
|
pipefetch #(RESET_BUS_ADDRESS, LGICACHE, ADDRESS_WIDTH)
|
pf(i_clk, i_rst, (new_pc)||(dcd_early_branch),
|
pf(i_clk, i_rst, pf_new_pc,
|
w_clear_icache, (!pf_stalled),
|
w_clear_icache, (!pf_stalled),
|
(new_pc)?pf_pc[(AW+1):2]:dcd_branch_pc,
|
(new_pc)?pf_pc[(AW+1):2]:dcd_branch_pc,
|
pf_instruction, pf_instruction_pc, pf_valid,
|
pf_instruction, pf_instruction_pc, pf_valid,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
|
pf_ack, pf_stall, pf_err, i_wb_data,
|
pf_ack, pf_stall, pf_err, i_wb_data,
|
(mem_cyc_lcl)||(mem_cyc_gbl),
|
(mem_cyc_lcl)||(mem_cyc_gbl),
|
pf_illegal);
|
pf_illegal);
|
`endif
|
`endif // OPT_TRADITIONAL_CACHE
|
`ifdef OPT_NO_USERMODE
|
`endif // OPT_DOUBLE_FETCH
|
assign pf_gie = 1'b0;
|
`endif // OPT_SINGLE_FETCH
|
`else
|
|
assign pf_gie = gie;
|
|
`endif
|
|
|
|
initial r_dcd_valid = 1'b0;
|
assign dcd_ce = (!dcd_valid)||(!dcd_stalled);
|
always @(posedge i_clk)
|
|
if ((clear_pipeline)||(w_clear_icache))
|
|
r_dcd_valid <= 1'b0;
|
|
else if (dcd_ce)
|
|
r_dcd_valid <= ((dcd_phase)||(pf_valid))
|
|
&&(~dcd_ljmp)&&(~dcd_early_branch);
|
|
else if (op_ce)
|
|
r_dcd_valid <= 1'b0;
|
|
assign dcd_valid = r_dcd_valid;
|
|
`endif
|
|
|
|
// If not pipelined, there will be no op_valid_ anything, and the
|
|
idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
|
idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
|
IMPLEMENT_FPU)
|
IMPLEMENT_FPU)
|
instruction_decoder(i_clk, (clear_pipeline),
|
instruction_decoder(i_clk,
|
(~dcd_valid)||(~op_stall), dcd_stalled, pf_instruction, pf_gie,
|
(clear_pipeline)||(w_clear_icache),
|
pf_instruction_pc, pf_valid, pf_illegal, dcd_phase,
|
dcd_ce,
|
|
dcd_stalled, pf_instruction, pf_gie,
|
|
pf_instruction_pc, pf_valid, pf_illegal,
|
|
dcd_valid, dcd_phase,
|
dcd_illegal, dcd_pc, dcd_gie,
|
dcd_illegal, dcd_pc, dcd_gie,
|
{ dcd_Rcc, dcd_Rpc, dcd_R },
|
{ dcd_Rcc, dcd_Rpc, dcd_R },
|
{ dcd_Acc, dcd_Apc, dcd_A },
|
{ dcd_Acc, dcd_Apc, dcd_A },
|
{ dcd_Bcc, dcd_Bpc, dcd_B },
|
{ dcd_Bcc, dcd_Bpc, dcd_B },
|
dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn,
|
dcd_I, dcd_zI, dcd_F, dcd_wF, dcd_opn,
|
Line 727... |
Line 702... |
op_rB <= dcd_rB;
|
op_rB <= dcd_rB;
|
end
|
end
|
`endif
|
`endif
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
`ifdef OPT_PIPELINED
|
|
if (op_ce)
|
if (op_ce)
|
`endif
|
|
begin
|
begin
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
if ((wr_reg_ce)&&(wr_reg_id == dcd_A))
|
if ((wr_reg_ce)&&(wr_reg_id == dcd_A))
|
r_op_Av <= wr_gpreg_vl;
|
r_op_Av <= wr_gpreg_vl;
|
else
|
else
|
Line 744... |
Line 717... |
r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags };
|
r_op_Av <= { w_cpu_info, w_op_Av[22:16], 1'b0, (dcd_A[4])?w_uflags:w_iflags };
|
else
|
else
|
r_op_Av <= w_op_Av;
|
r_op_Av <= w_op_Av;
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
end else
|
end else
|
begin // We were going to pick these up when they became valid,
|
begin
|
// but for some reason we're stuck here as they became
|
|
// valid. Pick them up now anyway
|
|
// if (((op_A_alu)&&(alu_wR))||((op_A_mem)&&(mem_valid)))
|
|
// r_op_Av <= wr_gpreg_vl;
|
|
if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA))
|
if ((wr_reg_ce)&&(wr_reg_id == op_Aid)&&(op_rA))
|
r_op_Av <= wr_gpreg_vl;
|
r_op_Av <= wr_gpreg_vl;
|
`endif
|
`endif
|
end
|
end
|
|
|
Line 796... |
Line 765... |
// conditions checking those bits. Therefore, Vivado complains that
|
// conditions checking those bits. Therefore, Vivado complains that
|
// these two bits are redundant. Hence the convoluted expression
|
// these two bits are redundant. Hence the convoluted expression
|
// below, arriving at what we finally want in the (now wire net)
|
// below, arriving at what we finally want in the (now wire net)
|
// op_F.
|
// op_F.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
`ifdef OPT_PIPELINED
|
|
if (op_ce) // Cannot do op_change_data_ce here since op_F depends
|
if (op_ce) // Cannot do op_change_data_ce here since op_F depends
|
// upon being either correct for a valid op, or correct
|
// upon being either correct for a valid op, or correct
|
// for the last valid op
|
// for the last valid op
|
`endif
|
|
begin // Set the flag condition codes, bit order is [3:0]=VNCZ
|
begin // Set the flag condition codes, bit order is [3:0]=VNCZ
|
case(dcd_F[2:0])
|
case(dcd_F[2:0])
|
3'h0: r_op_F <= 7'h00; // Always
|
3'h0: r_op_F <= 7'h00; // Always
|
3'h1: r_op_F <= 7'h11; // Z
|
3'h1: r_op_F <= 7'h11; // Z
|
3'h2: r_op_F <= 7'h44; // LT
|
3'h2: r_op_F <= 7'h44; // LT
|
Line 816... |
Line 783... |
endcase
|
endcase
|
end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
|
end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
|
assign op_F = { r_op_F[3], r_op_F[6:0] };
|
assign op_F = { r_op_F[3], r_op_F[6:0] };
|
|
|
wire w_op_valid;
|
wire w_op_valid;
|
assign w_op_valid = (~clear_pipeline)&&(dcd_valid)&&(~dcd_ljmp)&&(!dcd_early_branch);
|
assign w_op_valid = (!clear_pipeline)&&(dcd_valid)&&(!dcd_ljmp)&&(!dcd_early_branch);
|
initial op_valid = 1'b0;
|
initial op_valid = 1'b0;
|
initial op_valid_alu = 1'b0;
|
initial op_valid_alu = 1'b0;
|
initial op_valid_mem = 1'b0;
|
initial op_valid_mem = 1'b0;
|
initial op_valid_div = 1'b0;
|
initial op_valid_div = 1'b0;
|
initial op_valid_fpu = 1'b0;
|
initial op_valid_fpu = 1'b0;
|
Line 843... |
Line 810... |
// wait until our operands are valid, then we aren't
|
// wait until our operands are valid, then we aren't
|
// valid yet until then.
|
// valid yet until then.
|
op_valid<= (w_op_valid)||(dcd_illegal)&&(dcd_valid)||(dcd_early_branch);
|
op_valid<= (w_op_valid)||(dcd_illegal)&&(dcd_valid)||(dcd_early_branch);
|
op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal)
|
op_valid_alu <= (w_op_valid)&&((dcd_ALU)||(dcd_illegal)
|
||(dcd_early_branch));
|
||(dcd_early_branch));
|
op_valid_mem <= (dcd_M)&&(~dcd_illegal)&&(w_op_valid);
|
op_valid_mem <= (dcd_M)&&(!dcd_illegal)&&(w_op_valid);
|
op_valid_div <= (dcd_DIV)&&(~dcd_illegal)&&(w_op_valid);
|
op_valid_div <= (dcd_DIV)&&(!dcd_illegal)&&(w_op_valid);
|
op_valid_fpu <= (dcd_FP)&&(~dcd_illegal)&&(w_op_valid);
|
op_valid_fpu <= (dcd_FP)&&(!dcd_illegal)&&(w_op_valid);
|
end else if ((adf_ce_unconditional)||(mem_ce))
|
end else if ((adf_ce_unconditional)||(mem_ce))
|
begin
|
begin
|
op_valid <= 1'b0;
|
op_valid <= 1'b0;
|
op_valid_alu <= 1'b0;
|
op_valid_alu <= 1'b0;
|
op_valid_mem <= 1'b0;
|
op_valid_mem <= 1'b0;
|
Line 864... |
Line 831... |
// break to repeat and continue upon return. To get out of this
|
// break to repeat and continue upon return. To get out of this
|
// condition, replace the break instruction with what it is supposed
|
// condition, replace the break instruction with what it is supposed
|
// to be, step through it, and then replace it back. In this fashion,
|
// to be, step through it, and then replace it back. In this fashion,
|
// a debugger can step through code.
|
// a debugger can step through code.
|
// assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001);
|
// assign w_op_break = (dcd_break)&&(r_dcd_I[15:0] == 16'h0001);
|
`ifdef OPT_PIPELINED
|
|
reg r_op_break;
|
reg r_op_break;
|
|
|
initial r_op_break = 1'b0;
|
initial r_op_break = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(clear_pipeline)) r_op_break <= 1'b0;
|
if ((i_rst)||(clear_pipeline)) r_op_break <= 1'b0;
|
else if (op_ce)
|
else if (op_ce)
|
r_op_break <= (dcd_break);
|
r_op_break <= (dcd_break);
|
else if (!op_valid)
|
else if (!op_valid)
|
r_op_break <= 1'b0;
|
r_op_break <= 1'b0;
|
assign op_break = r_op_break;
|
assign op_break = r_op_break;
|
`else
|
|
assign op_break = dcd_break;
|
|
`endif
|
|
|
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
generate
|
generate
|
if (IMPLEMENT_LOCK != 0)
|
if (IMPLEMENT_LOCK != 0)
|
begin
|
begin
|
Line 890... |
Line 853... |
initial r_op_lock = 1'b0;
|
initial r_op_lock = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (clear_pipeline)
|
if (clear_pipeline)
|
r_op_lock <= 1'b0;
|
r_op_lock <= 1'b0;
|
else if (op_ce)
|
else if (op_ce)
|
r_op_lock <= (dcd_valid)&&(dcd_lock)&&(~clear_pipeline);
|
r_op_lock <= (dcd_valid)&&(dcd_lock)&&(!clear_pipeline);
|
assign op_lock = r_op_lock;
|
assign op_lock = r_op_lock;
|
|
|
end else begin
|
end else begin
|
assign op_lock = 1'b0;
|
assign op_lock = 1'b0;
|
end endgenerate
|
end endgenerate
|
Line 923... |
Line 886... |
// this logic should just optimize.
|
// this logic should just optimize.
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (op_ce)
|
if (op_ce)
|
begin
|
begin
|
op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR))
|
op_wF <= (dcd_wF)&&((!dcd_Rcc)||(!dcd_wR))
|
&&(~dcd_early_branch)&&(~dcd_illegal);
|
&&(!dcd_early_branch)&&(!dcd_illegal);
|
op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal);
|
op_wR <= (dcd_wR)&&(!dcd_early_branch)&&(!dcd_illegal);
|
end
|
end
|
`else
|
`else
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
op_wF <= (dcd_wF)&&((~dcd_Rcc)||(~dcd_wR))
|
op_wF <= (dcd_wF)&&((!dcd_Rcc)||(!dcd_wR))
|
&&(~dcd_early_branch)&&(~dcd_illegal);
|
&&(!dcd_early_branch)&&(!dcd_illegal);
|
op_wR <= (dcd_wR)&&(~dcd_early_branch)&&(~dcd_illegal);
|
op_wR <= (dcd_wR)&&(!dcd_early_branch)&&(!dcd_illegal);
|
end
|
end
|
`endif
|
`endif
|
|
|
`ifdef VERILATOR
|
`ifdef VERILATOR
|
`ifdef OPT_PIPELINED
|
`ifdef SINGLE_FETCH
|
|
always @(*)
|
|
begin
|
|
op_sim = dcd_sim;
|
|
op_sim_immv = dcd_sim_immv;
|
|
end
|
|
`else
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (op_change_data_ce)
|
if (op_change_data_ce)
|
begin
|
begin
|
op_sim <= dcd_sim;
|
op_sim <= dcd_sim;
|
op_sim_immv <= dcd_sim_immv;
|
op_sim_immv <= dcd_sim_immv;
|
end
|
end
|
`else
|
|
always @(*)
|
|
begin
|
|
op_sim = dcd_sim;
|
|
op_sim_immv = dcd_sim_immv;
|
|
end
|
|
`endif
|
`endif
|
`endif
|
`endif
|
|
|
`ifdef OPT_PIPELINED
|
|
reg [3:0] r_op_opn;
|
reg [3:0] r_op_opn;
|
reg [4:0] r_op_R;
|
reg [4:0] r_op_R;
|
reg r_op_Rcc;
|
reg r_op_Rcc;
|
reg r_op_gie;
|
reg r_op_gie;
|
|
|
|
initial r_op_gie = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (op_change_data_ce)
|
if (op_change_data_ce)
|
begin
|
begin
|
// Which ALU operation? Early branches are
|
// Which ALU operation? Early branches are
|
// unimplemented moves
|
// unimplemented moves
|
Line 976... |
Line 940... |
//
|
//
|
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
|
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
|
end
|
end
|
assign op_opn = r_op_opn;
|
assign op_opn = r_op_opn;
|
assign op_R = r_op_R;
|
assign op_R = r_op_R;
|
`ifdef OPT_NO_USERMODE
|
|
assign op_gie = 1'b0;
|
|
`else
|
|
assign op_gie = r_op_gie;
|
assign op_gie = r_op_gie;
|
`endif
|
|
assign op_Rcc = r_op_Rcc;
|
assign op_Rcc = r_op_Rcc;
|
`else
|
|
assign op_opn = dcd_opn;
|
|
assign op_R = dcd_R;
|
|
`ifdef OPT_NO_USERMODE
|
|
assign op_gie = 1'b0;
|
|
`else
|
|
assign op_gie = dcd_gie;
|
|
`endif
|
|
// With no pipelining, there is no early branching. We keep it
|
|
always @(posedge i_clk)
|
|
op_pc <= (dcd_early_branch)?dcd_branch_pc:dcd_pc[AW:1];
|
|
`endif
|
|
assign op_Fl = (op_gie)?(w_uflags):(w_iflags);
|
assign op_Fl = (op_gie)?(w_uflags):(w_iflags);
|
|
|
`ifdef OPT_CIS
|
`ifdef OPT_CIS
|
reg r_op_phase;
|
reg r_op_phase;
|
initial r_op_phase = 1'b0;
|
initial r_op_phase = 1'b0;
|
Line 1085... |
Line 1034... |
// if we're not piping this new instruction.
|
// if we're not piping this new instruction.
|
// If we were piping, the pipe logic in the
|
// If we were piping, the pipe logic in the
|
// decode circuit has told us that the hazard
|
// decode circuit has told us that the hazard
|
// is clear, so we're okay then.
|
// is clear, so we're okay then.
|
//
|
//
|
((~dcd_zI)&&(
|
((!dcd_zI)&&(
|
((op_R == dcd_B)&&(op_wR))
|
((op_R == dcd_B)&&(op_wR))
|
||((mem_rdbusy)&&(~dcd_pipe))
|
||((mem_rdbusy)&&(!dcd_pipe))
|
))
|
))
|
// Stall following any instruction that will
|
// Stall following any instruction that will
|
// set the flags, if we're going to need the
|
// set the flags, if we're going to need the
|
// flags (CC) register for op_B.
|
// flags (CC) register for op_B.
|
||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc))
|
||(((op_wF)||(cc_invalid_for_dcd))&&(dcd_Bcc))
|
// Stall on any ongoing memory operation that
|
// Stall on any ongoing memory operation that
|
// will write to op_B -- captured above
|
// will write to op_B -- captured above
|
// ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcd_B)&&(~dcd_zI))
|
// ||((mem_busy)&&(!mem_we)&&(mem_last_reg==dcd_B)&&(!dcd_zI))
|
)
|
)
|
||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd));
|
||((dcd_rB)&&(dcd_Bcc)&&(cc_invalid_for_dcd));
|
assign dcd_F_stall = ((~dcd_F[3])
|
assign dcd_F_stall = ((!dcd_F[3])
|
||((dcd_rA)&&(dcd_Acc))
|
||((dcd_rA)&&(dcd_Acc))
|
||((dcd_rB)&&(dcd_Bcc)))
|
||((dcd_rB)&&(dcd_Bcc)))
|
&&(op_valid)&&(op_Rcc);
|
&&(op_valid)&&(op_Rcc);
|
// &&(dcd_valid) is checked for elsewhere
|
// &&(dcd_valid) is checked for elsewhere
|
`else
|
`else
|
Line 1167... |
Line 1116... |
end else if (alu_ce)
|
end else if (alu_ce)
|
begin
|
begin
|
// alu_reg <= op_R;
|
// alu_reg <= op_R;
|
alu_wR <= (op_wR)&&(set_cond);
|
alu_wR <= (op_wR)&&(set_cond);
|
alu_wF <= (op_wF)&&(set_cond);
|
alu_wF <= (op_wF)&&(set_cond);
|
end else if (~alu_busy) begin
|
end else if (!alu_busy) begin
|
// These are strobe signals, so clear them if not
|
// These are strobe signals, so clear them if not
|
// set for any particular clock
|
// set for any particular clock
|
alu_wR <= (i_halt)&&(i_dbg_we);
|
alu_wR <= (i_halt)&&(i_dbg_we);
|
alu_wF <= 1'b0;
|
alu_wF <= 1'b0;
|
end
|
end
|
Line 1207... |
Line 1156... |
// DEBUG Register write access starts here
|
// DEBUG Register write access starts here
|
//
|
//
|
reg dbgv;
|
reg dbgv;
|
initial dbgv = 1'b0;
|
initial dbgv = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
dbgv <= (~i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted);
|
dbgv <= (!i_rst)&&(i_halt)&&(i_dbg_we)&&(r_halted);
|
reg [31:0] dbg_val;
|
reg [31:0] dbg_val;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
dbg_val <= i_dbg_data;
|
dbg_val <= i_dbg_data;
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign alu_gie = 1'b0;
|
assign alu_gie = 1'b0;
|
Line 1230... |
Line 1179... |
|
|
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
reg [(AW-1):0] r_alu_pc;
|
reg [(AW-1):0] r_alu_pc;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((adf_ce_unconditional)
|
if ((adf_ce_unconditional)
|
||((master_ce)&&(op_valid_mem)&&(~clear_pipeline)
|
||((master_ce)&&(op_valid_mem)&&(!clear_pipeline)
|
&&(~mem_stalled)))
|
&&(!mem_stalled)))
|
r_alu_pc <= op_pc;
|
r_alu_pc <= op_pc;
|
assign alu_pc = r_alu_pc;
|
assign alu_pc = r_alu_pc;
|
`else
|
`else
|
assign alu_pc = op_pc;
|
assign alu_pc = op_pc;
|
`endif
|
`endif
|
Line 1254... |
Line 1203... |
initial r_alu_pc_valid = 1'b0;
|
initial r_alu_pc_valid = 1'b0;
|
initial mem_pc_valid = 1'b0;
|
initial mem_pc_valid = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (clear_pipeline)
|
if (clear_pipeline)
|
r_alu_pc_valid <= 1'b0;
|
r_alu_pc_valid <= 1'b0;
|
else if ((adf_ce_unconditional)&&(!op_phase)) //Includes&&(~alu_clear_pipeline)
|
else if ((adf_ce_unconditional)&&(!op_phase))
|
r_alu_pc_valid <= 1'b1;
|
r_alu_pc_valid <= 1'b1;
|
else if (((~alu_busy)&&(~div_busy)&&(~fpu_busy))||(clear_pipeline))
|
else if (((!alu_busy)&&(!div_busy)&&(!fpu_busy))||(clear_pipeline))
|
r_alu_pc_valid <= 1'b0;
|
r_alu_pc_valid <= 1'b0;
|
assign alu_pc_valid = (r_alu_pc_valid)&&((~alu_busy)&&(~div_busy)&&(~fpu_busy));
|
assign alu_pc_valid = (r_alu_pc_valid)&&((!alu_busy)&&(!div_busy)&&(!fpu_busy));
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
mem_pc_valid <= 1'b0;
|
mem_pc_valid <= 1'b0;
|
else
|
else
|
mem_pc_valid <= (mem_ce);
|
mem_pc_valid <= (mem_ce);
|
Line 1324... |
Line 1273... |
mem_stb_gbl, mem_stb_lcl,
|
mem_stb_gbl, mem_stb_lcl,
|
mem_we, mem_addr, mem_data, mem_sel,
|
mem_we, mem_addr, mem_data, mem_sel,
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
|
|
`else // PIPELINED_BUS_ACCESS
|
`else // PIPELINED_BUS_ACCESS
|
memops #(AW,IMPLEMENT_LOCK,WITH_LOCAL_BUS) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
|
memops #(AW,IMPLEMENT_LOCK,WITH_LOCAL_BUS) domem(i_clk, i_rst,
|
|
(mem_ce)&&(set_cond), bus_lock,
|
(op_opn[2:0]), op_Bv, op_Av, op_R,
|
(op_opn[2:0]), op_Bv, op_Av, op_R,
|
mem_busy,
|
mem_busy,
|
mem_valid, bus_err, mem_wreg, mem_result,
|
mem_valid, bus_err, mem_wreg, mem_result,
|
mem_cyc_gbl, mem_cyc_lcl,
|
mem_cyc_gbl, mem_cyc_lcl,
|
mem_stb_gbl, mem_stb_lcl,
|
mem_stb_gbl, mem_stb_lcl,
|
mem_we, mem_addr, mem_data, mem_sel,
|
mem_we, mem_addr, mem_data, mem_sel,
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
mem_ack, mem_stall, mem_err, i_wb_data);
|
assign mem_pipe_stalled = 1'b0;
|
assign mem_pipe_stalled = 1'b0;
|
`endif // PIPELINED_BUS_ACCESS
|
`endif // PIPELINED_BUS_ACCESS
|
assign mem_rdbusy = ((mem_busy)&&(~mem_we));
|
assign mem_rdbusy = ((mem_busy)&&(!mem_we));
|
|
|
// Either the prefetch or the instruction gets the memory bus, but
|
// Either the prefetch or the instruction gets the memory bus, but
|
// never both.
|
// never both.
|
wbdblpriarb #(32,AW) pformem(i_clk, i_rst,
|
wbdblpriarb #(32,AW) pformem(i_clk, i_rst,
|
// Memory access to the arbiter, priority position
|
// Memory access to the arbiter, priority position
|
Line 1387... |
Line 1337... |
// Note that the flags needed to be checked before issuing the
|
// Note that the flags needed to be checked before issuing the
|
// bus instruction, so they don't need to be checked here.
|
// bus instruction, so they don't need to be checked here.
|
// Further, alu_wR includes (set_cond), so we don't need to
|
// Further, alu_wR includes (set_cond), so we don't need to
|
// check for that here either.
|
// check for that here either.
|
assign wr_reg_ce = (dbgv)||(mem_valid)
|
assign wr_reg_ce = (dbgv)||(mem_valid)
|
||((~clear_pipeline)&&(~alu_illegal)
|
||((!clear_pipeline)&&(!alu_illegal)
|
&&(((alu_wR)&&(alu_valid))
|
&&(((alu_wR)&&(alu_valid))
|
||(div_valid)||(fpu_valid)));
|
||(div_valid)||(fpu_valid)));
|
// Which register shall be written?
|
// Which register shall be written?
|
// COULD SIMPLIFY THIS: by adding three bits to these registers,
|
// COULD SIMPLIFY THIS: by adding three bits to these registers,
|
// One or PC, one for CC, and one for GIE match
|
// One or PC, one for CC, and one for GIE match
|
Line 1429... |
Line 1379... |
|
|
//
|
//
|
// Write back to the condition codes/flags register ...
|
// Write back to the condition codes/flags register ...
|
// When shall we write to our flags register? alu_wF already
|
// When shall we write to our flags register? alu_wF already
|
// includes the set condition ...
|
// includes the set condition ...
|
assign wr_flags_ce = ((alu_wF)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal);
|
assign wr_flags_ce = ((alu_wF)||(div_valid)||(fpu_valid))&&(!clear_pipeline)&&(!alu_illegal);
|
assign w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag,
|
assign w_uflags = { 1'b0, uhalt_phase, ufpu_err_flag,
|
udiv_err_flag, ubus_err_flag, trap, ill_err_u,
|
udiv_err_flag, ubus_err_flag, trap, ill_err_u,
|
ubreak, step, 1'b1, sleep,
|
ubreak, step, 1'b1, sleep,
|
((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
|
((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
|
assign w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag,
|
assign w_iflags = { 1'b0, ihalt_phase, ifpu_err_flag,
|
idiv_err_flag, ibus_err_flag, trap, ill_err_i,
|
idiv_err_flag, ibus_err_flag, trap, ill_err_i,
|
break_en, 1'b0, 1'b0, sleep,
|
break_en, 1'b0, 1'b0, sleep,
|
((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
|
((wr_flags_ce)&&(!alu_gie))?alu_flags:iflags };
|
|
|
|
|
// What value to write?
|
// What value to write?
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
// If explicitly writing the register itself
|
// If explicitly writing the register itself
|
Line 1453... |
Line 1403... |
: alu_flags);
|
: alu_flags);
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((wr_reg_ce)&&(wr_write_scc))
|
if ((wr_reg_ce)&&(wr_write_scc))
|
iflags <= wr_gpreg_vl[3:0];
|
iflags <= wr_gpreg_vl[3:0];
|
else if ((wr_flags_ce)&&(~alu_gie))
|
else if ((wr_flags_ce)&&(!alu_gie))
|
iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
|
iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
|
: alu_flags);
|
: alu_flags);
|
|
|
// The 'break' enable bit. This bit can only be set from supervisor
|
// The 'break' enable bit. This bit can only be set from supervisor
|
// mode. It control what the CPU does upon encountering a break
|
// mode. It control what the CPU does upon encountering a break
|
Line 1484... |
Line 1434... |
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
reg r_break_pending;
|
reg r_break_pending;
|
|
|
initial r_break_pending = 1'b0;
|
initial r_break_pending = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((clear_pipeline)||(~op_valid))
|
if ((clear_pipeline)||(!op_valid))
|
r_break_pending <= 1'b0;
|
r_break_pending <= 1'b0;
|
else if (op_break)
|
else if (op_break)
|
r_break_pending <= (~alu_busy)&&(~div_busy)&&(~fpu_busy)&&(~mem_busy)&&(!wr_reg_ce);
|
r_break_pending <= (!alu_busy)&&(!div_busy)&&(!fpu_busy)&&(!mem_busy)&&(!wr_reg_ce);
|
else
|
else
|
r_break_pending <= 1'b0;
|
r_break_pending <= 1'b0;
|
assign break_pending = r_break_pending;
|
assign break_pending = r_break_pending;
|
`else
|
`else
|
assign break_pending = op_break;
|
assign break_pending = op_break;
|
`endif
|
`endif
|
|
|
|
|
assign o_break = ((break_en)||(~op_gie))&&(break_pending)
|
assign o_break = ((break_en)||(!op_gie))&&(break_pending)
|
&&(~clear_pipeline)
|
&&(!clear_pipeline)
|
||((~alu_gie)&&(bus_err))
|
||((!alu_gie)&&(bus_err))
|
||((~alu_gie)&&(div_error))
|
||((!alu_gie)&&(div_error))
|
||((~alu_gie)&&(fpu_error))
|
||((!alu_gie)&&(fpu_error))
|
||((~alu_gie)&&(alu_illegal)&&(!clear_pipeline));
|
||((!alu_gie)&&(alu_illegal)&&(!clear_pipeline));
|
|
|
// The sleep register. Setting the sleep register causes the CPU to
|
// The sleep register. Setting the sleep register causes the CPU to
|
// sleep until the next interrupt. Setting the sleep register within
|
// sleep until the next interrupt. Setting the sleep register within
|
// interrupt mode causes the processor to halt until a reset. This is
|
// interrupt mode causes the processor to halt until a reset. This is
|
// a panic/fault halt. The trick is that you cannot be allowed to
|
// a panic/fault halt. The trick is that you cannot be allowed to
|
Line 1518... |
Line 1468... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_sleep_is_halt <= 1'b0;
|
r_sleep_is_halt <= 1'b0;
|
else if ((wr_reg_ce)&&(wr_write_cc)
|
else if ((wr_reg_ce)&&(wr_write_cc)
|
&&(wr_spreg_vl[`CPU_SLEEP_BIT])
|
&&(wr_spreg_vl[`CPU_SLEEP_BIT])
|
&&(~wr_spreg_vl[`CPU_GIE_BIT]))
|
&&(!wr_spreg_vl[`CPU_GIE_BIT]))
|
r_sleep_is_halt <= 1'b1;
|
r_sleep_is_halt <= 1'b1;
|
|
|
// Trying to switch to user mode, either via a WAIT or an RTU
|
// Trying to switch to user mode, either via a WAIT or an RTU
|
// instruction will cause the CPU to sleep until an interrupt, in
|
// instruction will cause the CPU to sleep until an interrupt, in
|
// the NO-USERMODE build.
|
// the NO-USERMODE build.
|
Line 1534... |
Line 1484... |
sleep <= 1'b1;
|
sleep <= 1'b1;
|
`else
|
`else
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_switch_to_interrupt))
|
if ((i_rst)||(w_switch_to_interrupt))
|
sleep <= 1'b0;
|
sleep <= 1'b0;
|
else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie))
|
else if ((wr_reg_ce)&&(wr_write_cc)&&(!alu_gie))
|
// In supervisor mode, we have no protections. The
|
// In supervisor mode, we have no protections. The
|
// supervisor can set the sleep bit however he wants.
|
// supervisor can set the sleep bit however he wants.
|
// Well ... not quite. Switching to user mode and
|
// Well ... not quite. Switching to user mode and
|
// sleep mode shouold only be possible if the interrupt
|
// sleep mode shouold only be possible if the interrupt
|
// flag isn't set.
|
// flag isn't set.
|
// Thus: if (i_interrupt)&&(wr_spreg_vl[GIE])
|
// Thus: if (i_interrupt)&&(wr_spreg_vl[GIE])
|
// don't set the sleep bit
|
// don't set the sleep bit
|
// otherwise however it would o.w. be set
|
// otherwise however it would o.w. be set
|
sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT])
|
sleep <= (wr_spreg_vl[`CPU_SLEEP_BIT])
|
&&((~i_interrupt)||(~wr_spreg_vl[`CPU_GIE_BIT]));
|
&&((!i_interrupt)||(!wr_spreg_vl[`CPU_GIE_BIT]));
|
else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT]))
|
else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_spreg_vl[`CPU_GIE_BIT]))
|
// In user mode, however, you can only set the sleep
|
// In user mode, however, you can only set the sleep
|
// mode while remaining in user mode. You can't switch
|
// mode while remaining in user mode. You can't switch
|
// to sleep mode *and* supervisor mode at the same
|
// to sleep mode *and* supervisor mode at the same
|
// time, lest you halt the CPU.
|
// time, lest you halt the CPU.
|
Line 1556... |
Line 1506... |
`endif
|
`endif
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
step <= 1'b0;
|
step <= 1'b0;
|
else if ((wr_reg_ce)&&(~alu_gie)&&(wr_write_ucc))
|
else if ((wr_reg_ce)&&(!alu_gie)&&(wr_write_ucc))
|
step <= wr_spreg_vl[`CPU_STEP_BIT];
|
step <= wr_spreg_vl[`CPU_STEP_BIT];
|
|
|
// The GIE register. Only interrupts can disable the interrupt register
|
// The GIE register. Only interrupts can disable the interrupt register
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign w_switch_to_interrupt = 1'b0;
|
assign w_switch_to_interrupt = 1'b0;
|
assign w_release_from_interrupt = 1'b0;
|
assign w_release_from_interrupt = 1'b0;
|
`else
|
`else
|
assign w_switch_to_interrupt = (gie)&&(
|
assign w_switch_to_interrupt = (gie)&&(
|
// On interrupt (obviously)
|
// On interrupt (obviously)
|
((i_interrupt)&&(~alu_phase)&&(~bus_lock))
|
((i_interrupt)&&(!alu_phase)&&(!bus_lock))
|
// If we are stepping the CPU
|
// If we are stepping the CPU
|
||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(~alu_phase)&&(~bus_lock))
|
||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(!alu_phase)&&(!bus_lock))
|
// If we encounter a break instruction, if the break
|
// If we encounter a break instruction, if the break
|
// enable isn't set.
|
// enable isn't set.
|
||((master_ce)&&(break_pending)&&(~break_en))
|
||((master_ce)&&(break_pending)&&(!break_en))
|
// On an illegal instruction
|
// On an illegal instruction
|
||((alu_illegal)&&(!clear_pipeline))
|
||((alu_illegal)&&(!clear_pipeline))
|
// On division by zero. If the divide isn't
|
// On division by zero. If the divide isn't
|
// implemented, div_valid and div_error will be short
|
// implemented, div_valid and div_error will be short
|
// circuited and that logic will be bypassed
|
// circuited and that logic will be bypassed
|
Line 1585... |
Line 1535... |
// also set as well, else this will fail.
|
// also set as well, else this will fail.
|
||(fpu_error)
|
||(fpu_error)
|
//
|
//
|
||(bus_err)
|
||(bus_err)
|
// If we write to the CC register
|
// If we write to the CC register
|
||((wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT])
|
||((wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT])
|
&&(wr_reg_id[4])&&(wr_write_cc))
|
&&(wr_reg_id[4])&&(wr_write_cc))
|
);
|
);
|
assign w_release_from_interrupt = (~gie)&&(~i_interrupt)
|
assign w_release_from_interrupt = (!gie)&&(!i_interrupt)
|
// Then if we write the sCC register
|
// Then if we write the sCC register
|
&&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT])
|
&&(((wr_reg_ce)&&(wr_spreg_vl[`CPU_GIE_BIT])
|
&&(wr_write_scc))
|
&&(wr_write_scc))
|
);
|
);
|
`endif
|
`endif
|
Line 1621... |
Line 1571... |
|
|
initial r_trap = 1'b0;
|
initial r_trap = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_trap <= 1'b0;
|
r_trap <= 1'b0;
|
else if ((alu_gie)&&(wr_reg_ce)&&(~wr_spreg_vl[`CPU_GIE_BIT])
|
else if ((alu_gie)&&(wr_reg_ce)&&(!wr_spreg_vl[`CPU_GIE_BIT])
|
&&(wr_write_ucc)) // &&(wr_reg_id[4]) implied
|
&&(wr_write_ucc)) // &&(wr_reg_id[4]) implied
|
r_trap <= 1'b1;
|
r_trap <= 1'b1;
|
else if ((wr_reg_ce)&&(wr_write_ucc)&&(~alu_gie))
|
else if ((wr_reg_ce)&&(wr_write_ucc)&&(!alu_gie))
|
r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]);
|
r_trap <= (r_trap)&&(wr_spreg_vl[`CPU_TRAP_BIT]);
|
|
|
reg r_ubreak;
|
reg r_ubreak;
|
|
|
initial r_ubreak = 1'b0;
|
initial r_ubreak = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_ubreak <= 1'b0;
|
r_ubreak <= 1'b0;
|
else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt))
|
else if ((op_gie)&&(break_pending)&&(w_switch_to_interrupt))
|
r_ubreak <= 1'b1;
|
r_ubreak <= 1'b1;
|
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]);
|
r_ubreak <= (ubreak)&&(wr_spreg_vl[`CPU_BREAK_BIT]);
|
|
|
assign trap = r_trap;
|
assign trap = r_trap;
|
assign ubreak = r_ubreak;
|
assign ubreak = r_ubreak;
|
`endif
|
`endif
|
Line 1651... |
Line 1601... |
if (i_rst)
|
if (i_rst)
|
ill_err_i <= 1'b0;
|
ill_err_i <= 1'b0;
|
// Only the debug interface can clear this bit
|
// Only the debug interface can clear this bit
|
else if ((dbgv)&&(wr_write_scc))
|
else if ((dbgv)&&(wr_write_scc))
|
ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]);
|
ill_err_i <= (ill_err_i)&&(wr_spreg_vl[`CPU_ILL_BIT]);
|
else if ((alu_illegal)&&(~alu_gie)&&(!clear_pipeline))
|
else if ((alu_illegal)&&(!alu_gie)&&(!clear_pipeline))
|
ill_err_i <= 1'b1;
|
ill_err_i <= 1'b1;
|
|
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign ill_err_u = 1'b0;
|
assign ill_err_u = 1'b0;
|
`else
|
`else
|
Line 1667... |
Line 1617... |
// or reset
|
// or reset
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_ill_err_u <= 1'b0;
|
r_ill_err_u <= 1'b0;
|
// If the supervisor (or debugger) writes to this register,
|
// If the supervisor (or debugger) writes to this register,
|
// clearing the bit, then clear it
|
// clearing the bit, then clear it
|
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT]));
|
r_ill_err_u <=((ill_err_u)&&(wr_spreg_vl[`CPU_ILL_BIT]));
|
else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline))
|
else if ((alu_illegal)&&(alu_gie)&&(!clear_pipeline))
|
r_ill_err_u <= 1'b1;
|
r_ill_err_u <= 1'b1;
|
|
|
assign ill_err_u = r_ill_err_u;
|
assign ill_err_u = r_ill_err_u;
|
Line 1686... |
Line 1636... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
ibus_err_flag <= 1'b0;
|
ibus_err_flag <= 1'b0;
|
else if ((dbgv)&&(wr_write_scc))
|
else if ((dbgv)&&(wr_write_scc))
|
ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
|
ibus_err_flag <= (ibus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
|
else if ((bus_err)&&(~alu_gie))
|
else if ((bus_err)&&(!alu_gie))
|
ibus_err_flag <= 1'b1;
|
ibus_err_flag <= 1'b1;
|
// User bus error flag -- if ever set, it will cause an interrupt to
|
// User bus error flag -- if ever set, it will cause an interrupt to
|
// supervisor mode.
|
// supervisor mode.
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign ubus_err_flag = 1'b0;
|
assign ubus_err_flag = 1'b0;
|
Line 1699... |
Line 1649... |
|
|
initial r_ubus_err_flag = 1'b0;
|
initial r_ubus_err_flag = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_ubus_err_flag <= 1'b0;
|
r_ubus_err_flag <= 1'b0;
|
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)&&(wr_write_ucc))
|
r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
|
r_ubus_err_flag <= (ubus_err_flag)&&(wr_spreg_vl[`CPU_BUSERR_BIT]);
|
else if ((bus_err)&&(alu_gie))
|
else if ((bus_err)&&(alu_gie))
|
r_ubus_err_flag <= 1'b1;
|
r_ubus_err_flag <= 1'b1;
|
|
|
assign ubus_err_flag = r_ubus_err_flag;
|
assign ubus_err_flag = r_ubus_err_flag;
|
Line 1721... |
Line 1671... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_idiv_err_flag <= 1'b0;
|
r_idiv_err_flag <= 1'b0;
|
else if ((dbgv)&&(wr_write_scc))
|
else if ((dbgv)&&(wr_write_scc))
|
r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
|
r_idiv_err_flag <= (r_idiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
|
else if ((div_error)&&(~alu_gie))
|
else if ((div_error)&&(!alu_gie))
|
r_idiv_err_flag <= 1'b1;
|
r_idiv_err_flag <= 1'b1;
|
|
|
assign idiv_err_flag = r_idiv_err_flag;
|
assign idiv_err_flag = r_idiv_err_flag;
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign udiv_err_flag = 1'b0;
|
assign udiv_err_flag = 1'b0;
|
Line 1734... |
Line 1684... |
// cause a sudden switch interrupt to supervisor mode.
|
// cause a sudden switch interrupt to supervisor mode.
|
initial r_udiv_err_flag = 1'b0;
|
initial r_udiv_err_flag = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_udiv_err_flag <= 1'b0;
|
r_udiv_err_flag <= 1'b0;
|
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
|
else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)
|
&&(wr_write_ucc))
|
&&(wr_write_ucc))
|
r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
|
r_udiv_err_flag <= (r_udiv_err_flag)&&(wr_spreg_vl[`CPU_DIVERR_BIT]);
|
else if ((div_error)&&(alu_gie))
|
else if ((div_error)&&(alu_gie))
|
r_udiv_err_flag <= 1'b1;
|
r_udiv_err_flag <= 1'b1;
|
|
|
Line 1759... |
Line 1709... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_ifpu_err_flag <= 1'b0;
|
r_ifpu_err_flag <= 1'b0;
|
else if ((dbgv)&&(wr_write_scc))
|
else if ((dbgv)&&(wr_write_scc))
|
r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
|
r_ifpu_err_flag <= (r_ifpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
|
else if ((fpu_error)&&(fpu_valid)&&(~alu_gie))
|
else if ((fpu_error)&&(fpu_valid)&&(!alu_gie))
|
r_ifpu_err_flag <= 1'b1;
|
r_ifpu_err_flag <= 1'b1;
|
// User floating point error flag -- if ever set, it will cause
|
// User floating point error flag -- if ever set, it will cause
|
// a sudden switch interrupt to supervisor mode.
|
// a sudden switch interrupt to supervisor mode.
|
initial r_ufpu_err_flag = 1'b0;
|
initial r_ufpu_err_flag = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)&&(w_release_from_interrupt))
|
if ((i_rst)&&(w_release_from_interrupt))
|
r_ufpu_err_flag <= 1'b0;
|
r_ufpu_err_flag <= 1'b0;
|
else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
|
else if (((!alu_gie)||(dbgv))&&(wr_reg_ce)
|
&&(wr_write_ucc))
|
&&(wr_write_ucc))
|
r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
|
r_ufpu_err_flag <= (r_ufpu_err_flag)&&(wr_spreg_vl[`CPU_FPUERR_BIT]);
|
else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
|
else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
|
r_ufpu_err_flag <= 1'b1;
|
r_ufpu_err_flag <= 1'b1;
|
|
|
Line 1787... |
Line 1737... |
|
|
initial r_ihalt_phase = 0;
|
initial r_ihalt_phase = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_ihalt_phase <= 1'b0;
|
r_ihalt_phase <= 1'b0;
|
else if ((~alu_gie)&&(alu_pc_valid)&&(~clear_pipeline))
|
else if ((!alu_gie)&&(alu_pc_valid)&&(!clear_pipeline))
|
r_ihalt_phase <= alu_phase;
|
r_ihalt_phase <= alu_phase;
|
|
|
assign ihalt_phase = r_ihalt_phase;
|
assign ihalt_phase = r_ihalt_phase;
|
|
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
Line 1803... |
Line 1753... |
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_release_from_interrupt))
|
if ((i_rst)||(w_release_from_interrupt))
|
r_uhalt_phase <= 1'b0;
|
r_uhalt_phase <= 1'b0;
|
else if ((alu_gie)&&(alu_pc_valid))
|
else if ((alu_gie)&&(alu_pc_valid))
|
r_uhalt_phase <= alu_phase;
|
r_uhalt_phase <= alu_phase;
|
else if ((~alu_gie)&&(wr_reg_ce)&&(wr_write_ucc))
|
else if ((!alu_gie)&&(wr_reg_ce)&&(wr_write_ucc))
|
r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT];
|
r_uhalt_phase <= wr_spreg_vl[`CPU_PHASE_BIT];
|
|
|
assign uhalt_phase = r_uhalt_phase;
|
assign uhalt_phase = r_uhalt_phase;
|
`endif
|
`endif
|
`else
|
`else
|
Line 1820... |
Line 1770... |
// We support two: upc and ipc. If the instruction is normal,
|
// We support two: upc and ipc. If the instruction is normal,
|
// we increment upc, if interrupt level we increment ipc. If
|
// we increment upc, if interrupt level we increment ipc. If
|
// the instruction writes the PC, we write whichever PC is appropriate.
|
// the instruction writes the PC, we write whichever PC is appropriate.
|
//
|
//
|
// Do we need to all our partial results from the pipeline?
|
// Do we need to all our partial results from the pipeline?
|
// What happens when the pipeline has gie and ~gie instructions within
|
// What happens when the pipeline has gie and !gie instructions within
|
// it? Do we clear both? What if a gie instruction tries to clear
|
// it? Do we clear both? What if a gie instruction tries to clear
|
// a non-gie instruction?
|
// a non-gie instruction?
|
`ifdef OPT_NO_USERMODE
|
`ifdef OPT_NO_USERMODE
|
assign upc = {(AW+2){1'b0}};
|
assign upc = {(AW+2){1'b0}};
|
`else
|
`else
|
Line 1832... |
Line 1782... |
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
|
if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
|
r_upc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
r_upc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
else if ((alu_gie)&&
|
else if ((alu_gie)&&
|
(((alu_pc_valid)&&(~clear_pipeline)&&(!alu_illegal))
|
(((alu_pc_valid)&&(!clear_pipeline)&&(!alu_illegal))
|
||(mem_pc_valid)))
|
||(mem_pc_valid)))
|
r_upc <= { alu_pc, 2'b00 };
|
r_upc <= { alu_pc, 2'b00 };
|
assign upc = r_upc;
|
assign upc = r_upc;
|
`endif
|
`endif
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
ipc <= { RESET_BUS_ADDRESS, 2'b00 };
|
ipc <= { RESET_BUS_ADDRESS, 2'b00 };
|
else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc))
|
else if ((wr_reg_ce)&&(!wr_reg_id[4])&&(wr_write_pc))
|
ipc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
ipc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
else if ((!alu_gie)&&(!alu_phase)&&
|
else if ((!alu_gie)&&(!alu_phase)&&
|
(((alu_pc_valid)&&(~clear_pipeline)&&(!alu_illegal))
|
(((alu_pc_valid)&&(!clear_pipeline)&&(!alu_illegal))
|
||(mem_pc_valid)))
|
||(mem_pc_valid)))
|
ipc <= { alu_pc, 2'b00 };
|
ipc <= { alu_pc, 2'b00 };
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
pf_pc <= { RESET_BUS_ADDRESS, 2'b00 };
|
pf_pc <= { RESET_BUS_ADDRESS, 2'b00 };
|
else if ((w_switch_to_interrupt)||((~gie)&&(w_clear_icache)))
|
else if ((w_switch_to_interrupt)||((!gie)&&(w_clear_icache)))
|
pf_pc <= { ipc[(AW+1):2], 2'b00 };
|
pf_pc <= { ipc[(AW+1):2], 2'b00 };
|
else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache)))
|
else if ((w_release_from_interrupt)||((gie)&&(w_clear_icache)))
|
pf_pc <= { upc[(AW+1):2], 2'b00 };
|
pf_pc <= { upc[(AW+1):2], 2'b00 };
|
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
|
else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
|
pf_pc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
pf_pc <= { wr_spreg_vl[(AW+1):2], 2'b00 };
|
`ifdef OPT_PIPELINED
|
else if ((dcd_early_branch)&&(!clear_pipeline))
|
else if ((dcd_early_branch)&&(~clear_pipeline))
|
|
pf_pc <= { dcd_branch_pc + 1'b1, 2'b00 };
|
pf_pc <= { dcd_branch_pc + 1'b1, 2'b00 };
|
else if ((new_pc)||((!pf_stalled)&&(pf_valid)))
|
else if ((new_pc)||((!pf_stalled)&&(pf_valid)))
|
pf_pc <= { pf_pc[(AW+1):2] + {{(AW-1){1'b0}},1'b1}, 2'b00 };
|
pf_pc <= { pf_pc[(AW+1):2] + {{(AW-1){1'b0}},1'b1}, 2'b00 };
|
`else
|
|
else if ((alu_gie==gie)&&(
|
|
((alu_pc_valid)&&(~clear_pipeline))
|
|
||(mem_pc_valid)))
|
|
pf_pc <= { alu_pc[(AW-1):0], 2'b00 };
|
|
`endif
|
|
|
|
`ifdef OPT_PIPELINED
|
// If we aren't pipelined, or equivalently if we have no cache, these
|
|
// instructions will get quietly (or not so quietly) ignored by the
|
|
// optimizer.
|
reg r_clear_icache;
|
reg r_clear_icache;
|
initial r_clear_icache = 1'b1;
|
initial r_clear_icache = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_pf_cache))
|
if ((i_rst)||(i_clear_pf_cache))
|
r_clear_icache <= 1'b1;
|
r_clear_icache <= 1'b1;
|
else if ((wr_reg_ce)&&(wr_write_scc))
|
else if ((wr_reg_ce)&&(wr_write_scc))
|
r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT];
|
r_clear_icache <= wr_spreg_vl[`CPU_CLRCACHE_BIT];
|
else
|
else
|
r_clear_icache <= 1'b0;
|
r_clear_icache <= 1'b0;
|
assign w_clear_icache = r_clear_icache;
|
assign w_clear_icache = r_clear_icache;
|
`else
|
|
assign w_clear_icache = i_clear_pf_cache;
|
|
`endif
|
|
|
|
initial new_pc = 1'b1;
|
initial new_pc = 1'b1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(w_clear_icache))
|
if ((i_rst)||(w_clear_icache))
|
new_pc <= 1'b1;
|
new_pc <= 1'b1;
|
Line 1947... |
Line 1889... |
`ifdef OPT_PIPELINED
|
`ifdef OPT_PIPELINED
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_halted <= (i_halt)&&(
|
r_halted <= (i_halt)&&(
|
// To be halted, any long lasting instruction must
|
// To be halted, any long lasting instruction must
|
// be completed.
|
// be completed.
|
(~pf_cyc)&&(~mem_busy)&&(~alu_busy)
|
(!pf_cyc)&&(!mem_busy)&&(!alu_busy)
|
&&(~div_busy)&&(~fpu_busy)
|
&&(!div_busy)&&(!fpu_busy)
|
// Operations must either be valid, or illegal
|
// Operations must either be valid, or illegal
|
&&((op_valid)||(i_rst)||(dcd_illegal))
|
&&((op_valid)||(i_rst)||(dcd_illegal))
|
// Decode stage must be either valid, in reset, or ill
|
// Decode stage must be either valid, in reset, or ill
|
&&((dcd_valid)||(i_rst)||(pf_illegal)));
|
&&((dcd_valid)||(i_rst)||(pf_illegal)));
|
`else
|
`else
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
r_halted <= (i_halt)&&((op_valid)||(i_rst));
|
r_halted <= (i_halt)&&((op_valid)||(i_rst));
|
`endif
|
`endif
|
assign o_dbg_stall = ~r_halted;
|
assign o_dbg_stall = !r_halted;
|
|
|
//
|
//
|
//
|
//
|
// Produce accounting outputs: Account for any CPU stalls, so we can
|
// Produce accounting outputs: Account for any CPU stalls, so we can
|
// later evaluate how well we are doing.
|
// later evaluate how well we are doing.
|
//
|
//
|
//
|
//
|
assign o_op_stall = (master_ce)&&(op_stall);
|
assign o_op_stall = (master_ce)&&(op_stall);
|
assign o_pf_stall = (master_ce)&&(~pf_valid);
|
assign o_pf_stall = (master_ce)&&(!pf_valid);
|
assign o_i_count = (alu_pc_valid)&&(~clear_pipeline);
|
assign o_i_count = (alu_pc_valid)&&(!clear_pipeline);
|
|
|
`ifdef DEBUG_SCOPE
|
`ifdef DEBUG_SCOPE
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_debug <= {
|
o_debug <= {
|
/*
|
wr_reg_ce, pf_valid, new_pc,
|
o_break, i_wb_err, pf_pc[1:0],
|
(wr_reg_ce)?
|
flags,
|
{ wr_reg_id, wr_gpreg_vl[23:0] }
|
pf_valid, dcd_valid, op_valid, alu_valid, mem_valid,
|
:{ op_stall,
|
op_ce, alu_ce, mem_ce,
|
o_wb_gbl_cyc, o_wb_gbl_stb, o_wb_we,
|
//
|
|
master_ce, op_valid_alu, op_valid_mem,
|
|
//
|
|
alu_stall, mem_busy, op_pipe, mem_pipe_stalled,
|
|
mem_we,
|
|
// ((op_valid_alu)&&(alu_stall))
|
|
// ||((op_valid_mem)&&(~op_pipe)&&(mem_busy))
|
|
// ||((op_valid_mem)&&( op_pipe)&&(mem_pipe_stalled)));
|
|
// op_Av[23:20], op_Av[3:0],
|
|
gie, sleep, wr_reg_ce, wr_gpreg_vl[4:0]
|
|
*/
|
|
/*
|
|
i_rst, master_ce, (new_pc),
|
|
((dcd_early_branch)&&(dcd_valid)),
|
|
pf_valid, pf_illegal,
|
|
op_ce, dcd_ce, dcd_valid, dcd_stalled,
|
|
pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err,
|
|
pf_pc[7:0], pf_addr[7:0]
|
|
*/
|
|
|
|
i_wb_err, gie, alu_illegal,
|
|
(new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
|
|
mem_busy,
|
mem_busy,
|
(mem_busy)?{ (o_wb_gbl_stb|o_wb_lcl_stb), o_wb_we,
|
dcd_valid, op_ce, pf_pc[21:0] }
|
o_wb_addr[8:0] }
|
|
: { pf_instruction[31:21] },
|
|
pf_valid, (pf_valid) ? alu_pc[14:0]
|
|
:{ pf_cyc, pf_stb, pf_pc[14:2] }
|
|
|
|
/*
|
|
i_wb_err, gie, new_pc, dcd_early_branch, // 4
|
|
pf_valid, pf_cyc, pf_stb, pf_instruction_pc[0], // 4
|
|
pf_instruction[30:27], // 4
|
|
dcd_gie, mem_busy, o_wb_gbl_cyc, o_wb_gbl_stb, // 4
|
|
dcd_valid,
|
|
((dcd_early_branch)&&(~clear_pipeline)) // 15
|
|
? dcd_branch_pc[14:0]:pf_pc[14:0]
|
|
*/
|
|
};
|
};
|
`endif
|
`endif
|
|
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|