//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
//// ////
|
//// ////
|
//// Versatile library, memories ////
|
//// Versatile library, memories ////
|
//// ////
|
//// ////
|
//// Description ////
|
//// Description ////
|
//// memories ////
|
//// memories ////
|
//// ////
|
//// ////
|
//// ////
|
//// ////
|
//// To Do: ////
|
//// To Do: ////
|
//// - add more memory types ////
|
//// - add more memory types ////
|
//// ////
|
//// ////
|
//// Author(s): ////
|
//// Author(s): ////
|
//// - Michael Unneback, unneback@opencores.org ////
|
//// - Michael Unneback, unneback@opencores.org ////
|
//// ORSoC AB ////
|
//// ORSoC AB ////
|
//// ////
|
//// ////
|
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
//// ////
|
//// ////
|
//// Copyright (C) 2010 Authors and OPENCORES.ORG ////
|
//// Copyright (C) 2010 Authors and OPENCORES.ORG ////
|
//// ////
|
//// ////
|
//// This source file may be used and distributed without ////
|
//// This source file may be used and distributed without ////
|
//// restriction provided that this copyright statement is not ////
|
//// restriction provided that this copyright statement is not ////
|
//// removed from the file and that any derivative work contains ////
|
//// removed from the file and that any derivative work contains ////
|
//// the original copyright notice and the associated disclaimer. ////
|
//// the original copyright notice and the associated disclaimer. ////
|
//// ////
|
//// ////
|
//// This source file is free software; you can redistribute it ////
|
//// This source file is free software; you can redistribute it ////
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
//// and/or modify it under the terms of the GNU Lesser General ////
|
//// Public License as published by the Free Software Foundation; ////
|
//// Public License as published by the Free Software Foundation; ////
|
//// either version 2.1 of the License, or (at your option) any ////
|
//// either version 2.1 of the License, or (at your option) any ////
|
//// later version. ////
|
//// later version. ////
|
//// ////
|
//// ////
|
//// This source is distributed in the hope that it will be ////
|
//// This source is distributed in the hope that it will be ////
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
//// PURPOSE. See the GNU Lesser General Public License for more ////
|
//// details. ////
|
//// details. ////
|
//// ////
|
//// ////
|
//// You should have received a copy of the GNU Lesser General ////
|
//// You should have received a copy of the GNU Lesser General ////
|
//// Public License along with this source; if not, download it ////
|
//// Public License along with this source; if not, download it ////
|
//// from http://www.opencores.org/lgpl.shtml ////
|
//// from http://www.opencores.org/lgpl.shtml ////
|
//// ////
|
//// ////
|
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
|
|
/// ROM
|
/// ROM
|
|
|
module vl_rom_init ( adr, q, clk);
|
module vl_rom_init ( adr, q, clk);
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(addr_width-1):0] adr;
|
input [(addr_width-1):0] adr;
|
output reg [(data_width-1):0] q;
|
output reg [(data_width-1):0] q;
|
input clk;
|
input clk;
|
reg [data_width-1:0] rom [(1<<addr_width)-1:0];
|
reg [data_width-1:0] rom [(1<<addr_width)-1:0];
|
parameter memory_file = "vl_rom.vmem";
|
parameter memory_file = "vl_rom.vmem";
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, rom);
|
$readmemh(memory_file, rom);
|
end
|
end
|
|
|
always @ (posedge clk)
|
always @ (posedge clk)
|
q <= rom[adr];
|
q <= rom[adr];
|
|
|
endmodule
|
endmodule
|
|
|
module vl_rom ( adr, q, clk);
|
/*
|
|
module vl_rom ( adr, q, clk);
|
parameter data_width = 32;
|
|
parameter addr_width = 4;
|
|
|
|
parameter [0:1>>addr_width-1] data [data_width-1:0] = {
|
parameter data_width = 32;
|
{32'h18000000},
|
parameter addr_width = 4;
|
{32'hA8200000},
|
|
{32'hA8200000},
|
|
{32'hA8200000},
|
|
{32'h44003000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000}};
|
|
|
|
input [addr_width-1:0] adr;
|
parameter [0:1>>addr_width-1] data [data_width-1:0] = {
|
output reg [data_width-1:0] q;
|
{32'h18000000},
|
input clk;
|
{32'hA8200000},
|
|
{32'hA8200000},
|
|
{32'hA8200000},
|
|
{32'h44003000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000},
|
|
{32'h15000000}};
|
|
|
|
input [addr_width-1:0] adr;
|
|
output reg [data_width-1:0] q;
|
|
input clk;
|
|
|
always @ (posedge clk)
|
always @ (posedge clk)
|
q <= data[adr];
|
q <= data[adr];
|
|
|
endmodule
|
|
|
|
|
endmodule
|
|
*/
|
// Single port RAM
|
// Single port RAM
|
|
|
module vl_ram ( d, adr, we, q, clk);
|
module vl_ram ( d, adr, we, q, clk);
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(data_width-1):0] d;
|
input [(data_width-1):0] d;
|
input [(addr_width-1):0] adr;
|
input [(addr_width-1):0] adr;
|
input we;
|
input we;
|
output reg [(data_width-1):0] q;
|
output reg [(data_width-1):0] q;
|
input clk;
|
input clk;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0];
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0];
|
parameter init = 0;
|
parameter init = 0;
|
parameter memory_file = "vl_ram.vmem";
|
parameter memory_file = "vl_ram.vmem";
|
generate if (init) begin : init_mem
|
generate if (init) begin : init_mem
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, ram);
|
$readmemh(memory_file, ram);
|
end
|
end
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
always @ (posedge clk)
|
always @ (posedge clk)
|
begin
|
begin
|
if (we)
|
if (we)
|
ram[adr] <= d;
|
ram[adr] <= d;
|
q <= ram[adr];
|
q <= ram[adr];
|
end
|
end
|
|
|
endmodule
|
endmodule
|
|
|
module vl_ram_be ( d, adr, be, we, q, clk);
|
module vl_ram_be ( d, adr, be, we, q, clk);
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(data_width-1):0] d;
|
input [(data_width-1):0] d;
|
input [(addr_width-1):0] adr;
|
input [(addr_width-1):0] adr;
|
input [(addr_width/4)-1:0] be;
|
input [(addr_width/4)-1:0] be;
|
input we;
|
input we;
|
output reg [(data_width-1):0] q;
|
output reg [(data_width-1):0] q;
|
input clk;
|
input clk;
|
|
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0];
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0];
|
|
|
parameter init = 0;
|
parameter init = 0;
|
parameter memory_file = "vl_ram.vmem";
|
parameter memory_file = "vl_ram.vmem";
|
generate if (init) begin : init_mem
|
generate if (init) begin : init_mem
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, ram);
|
$readmemh(memory_file, ram);
|
end
|
end
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
genvar i;
|
genvar i;
|
generate for (i=0;i<addr_width/4;i=i+1) begin : be_ram
|
generate for (i=0;i<addr_width/4;i=i+1) begin : be_ram
|
always @ (posedge clk)
|
always @ (posedge clk)
|
if (we & be[i])
|
if (we & be[i])
|
ram[adr][(i+1)*8-1:i*8] <= d[(i+1)*8-1:i*8];
|
ram[adr][(i+1)*8-1:i*8] <= d[(i+1)*8-1:i*8];
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
always @ (posedge clk)
|
always @ (posedge clk)
|
q <= ram[adr];
|
q <= ram[adr];
|
|
|
endmodule
|
endmodule
|
|
|
|
|
// Dual port RAM
|
// Dual port RAM
|
|
|
// ACTEL FPGA should not use logic to handle rw collision
|
// ACTEL FPGA should not use logic to handle rw collision
|
`ifdef ACTEL
|
`ifdef ACTEL
|
`define SYN /*synthesis syn_ramstyle = "no_rw_check"*/
|
`define SYN /*synthesis syn_ramstyle = "no_rw_check"*/
|
`else
|
`else
|
`define SYN
|
`define SYN
|
`endif
|
`endif
|
|
|
module vl_dpram_1r1w ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
|
module vl_dpram_1r1w ( d_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(data_width-1):0] d_a;
|
input [(data_width-1):0] d_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_b;
|
input [(addr_width-1):0] adr_b;
|
input we_a;
|
input we_a;
|
output [(data_width-1):0] q_b;
|
output [(data_width-1):0] q_b;
|
input clk_a, clk_b;
|
input clk_a, clk_b;
|
reg [(addr_width-1):0] adr_b_reg;
|
reg [(addr_width-1):0] adr_b_reg;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
|
|
parameter init = 0;
|
parameter init = 0;
|
parameter memory_file = "vl_ram.vmem";
|
parameter memory_file = "vl_ram.vmem";
|
generate if (init) begin : init_mem
|
generate if (init) begin : init_mem
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, ram);
|
$readmemh(memory_file, ram);
|
end
|
end
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
always @ (posedge clk_a)
|
always @ (posedge clk_a)
|
if (we_a)
|
if (we_a)
|
ram[adr_a] <= d_a;
|
ram[adr_a] <= d_a;
|
always @ (posedge clk_b)
|
always @ (posedge clk_b)
|
adr_b_reg <= adr_b;
|
adr_b_reg <= adr_b;
|
assign q_b = ram[adr_b_reg];
|
assign q_b = ram[adr_b_reg];
|
endmodule
|
endmodule
|
|
|
module vl_dpram_2r1w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
|
module vl_dpram_2r1w ( d_a, q_a, adr_a, we_a, clk_a, q_b, adr_b, clk_b );
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(data_width-1):0] d_a;
|
input [(data_width-1):0] d_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_b;
|
input [(addr_width-1):0] adr_b;
|
input we_a;
|
input we_a;
|
output [(data_width-1):0] q_b;
|
output [(data_width-1):0] q_b;
|
output reg [(data_width-1):0] q_a;
|
output reg [(data_width-1):0] q_a;
|
input clk_a, clk_b;
|
input clk_a, clk_b;
|
reg [(data_width-1):0] q_b;
|
reg [(data_width-1):0] q_b;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
|
|
parameter init = 0;
|
parameter init = 0;
|
parameter memory_file = "vl_ram.vmem";
|
parameter memory_file = "vl_ram.vmem";
|
generate if (init) begin : init_mem
|
generate if (init) begin : init_mem
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, ram);
|
$readmemh(memory_file, ram);
|
end
|
end
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
always @ (posedge clk_a)
|
always @ (posedge clk_a)
|
begin
|
begin
|
q_a <= ram[adr_a];
|
q_a <= ram[adr_a];
|
if (we_a)
|
if (we_a)
|
ram[adr_a] <= d_a;
|
ram[adr_a] <= d_a;
|
end
|
end
|
always @ (posedge clk_b)
|
always @ (posedge clk_b)
|
q_b <= ram[adr_b];
|
q_b <= ram[adr_b];
|
endmodule
|
endmodule
|
|
|
module vl_dpram_2r2w ( d_a, q_a, adr_a, we_a, clk_a, d_b, q_b, adr_b, we_b, clk_b );
|
module vl_dpram_2r2w ( d_a, q_a, adr_a, we_a, clk_a, d_b, q_b, adr_b, we_b, clk_b );
|
parameter data_width = 32;
|
parameter data_width = 32;
|
parameter addr_width = 8;
|
parameter addr_width = 8;
|
input [(data_width-1):0] d_a;
|
input [(data_width-1):0] d_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_a;
|
input [(addr_width-1):0] adr_b;
|
input [(addr_width-1):0] adr_b;
|
input we_a;
|
input we_a;
|
output [(data_width-1):0] q_b;
|
output [(data_width-1):0] q_b;
|
input [(data_width-1):0] d_b;
|
input [(data_width-1):0] d_b;
|
output reg [(data_width-1):0] q_a;
|
output reg [(data_width-1):0] q_a;
|
input we_b;
|
input we_b;
|
input clk_a, clk_b;
|
input clk_a, clk_b;
|
reg [(data_width-1):0] q_b;
|
reg [(data_width-1):0] q_b;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
reg [data_width-1:0] ram [(1<<addr_width)-1:0] `SYN;
|
|
|
parameter init = 0;
|
parameter init = 0;
|
parameter memory_file = "vl_ram.vmem";
|
parameter memory_file = "vl_ram.vmem";
|
generate if (init) begin : init_mem
|
generate if (init) begin : init_mem
|
initial
|
initial
|
begin
|
begin
|
$readmemh(memory_file, ram);
|
$readmemh(memory_file, ram);
|
end
|
end
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
always @ (posedge clk_a)
|
always @ (posedge clk_a)
|
begin
|
begin
|
q_a <= ram[adr_a];
|
q_a <= ram[adr_a];
|
if (we_a)
|
if (we_a)
|
ram[adr_a] <= d_a;
|
ram[adr_a] <= d_a;
|
end
|
end
|
always @ (posedge clk_b)
|
always @ (posedge clk_b)
|
begin
|
begin
|
q_b <= ram[adr_b];
|
q_b <= ram[adr_b];
|
if (we_b)
|
if (we_b)
|
ram[adr_b] <= d_b;
|
ram[adr_b] <= d_b;
|
end
|
end
|
endmodule
|
endmodule
|
|
|
// Content addresable memory, CAM
|
// Content addresable memory, CAM
|
|
|
// FIFO
|
// FIFO
|
|
|
module vl_fifo_cmp_async ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst );
|
module vl_fifo_cmp_async ( wptr, rptr, fifo_empty, fifo_full, wclk, rclk, rst );
|
|
|
parameter addr_width = 4;
|
parameter addr_width = 4;
|
parameter N = addr_width-1;
|
parameter N = addr_width-1;
|
|
|
parameter Q1 = 2'b00;
|
parameter Q1 = 2'b00;
|
parameter Q2 = 2'b01;
|
parameter Q2 = 2'b01;
|
parameter Q3 = 2'b11;
|
parameter Q3 = 2'b11;
|
parameter Q4 = 2'b10;
|
parameter Q4 = 2'b10;
|
|
|
parameter going_empty = 1'b0;
|
parameter going_empty = 1'b0;
|
parameter going_full = 1'b1;
|
parameter going_full = 1'b1;
|
|
|
input [N:0] wptr, rptr;
|
input [N:0] wptr, rptr;
|
output reg fifo_empty;
|
output fifo_empty;
|
output fifo_full;
|
output fifo_full;
|
input wclk, rclk, rst;
|
input wclk, rclk, rst;
|
|
|
`ifndef GENERATE_DIRECTION_AS_LATCH
|
`ifndef GENERATE_DIRECTION_AS_LATCH
|
wire direction;
|
wire direction;
|
`endif
|
`endif
|
`ifdef GENERATE_DIRECTION_AS_LATCH
|
`ifdef GENERATE_DIRECTION_AS_LATCH
|
reg direction;
|
reg direction;
|
`endif
|
`endif
|
reg direction_set, direction_clr;
|
reg direction_set, direction_clr;
|
|
|
wire async_empty, async_full;
|
wire async_empty, async_full;
|
wire fifo_full2;
|
wire fifo_full2;
|
reg fifo_empty2;
|
wire fifo_empty2;
|
|
|
// direction_set
|
// direction_set
|
always @ (wptr[N:N-1] or rptr[N:N-1])
|
always @ (wptr[N:N-1] or rptr[N:N-1])
|
case ({wptr[N:N-1],rptr[N:N-1]})
|
case ({wptr[N:N-1],rptr[N:N-1]})
|
{Q1,Q2} : direction_set <= 1'b1;
|
{Q1,Q2} : direction_set <= 1'b1;
|
{Q2,Q3} : direction_set <= 1'b1;
|
{Q2,Q3} : direction_set <= 1'b1;
|
{Q3,Q4} : direction_set <= 1'b1;
|
{Q3,Q4} : direction_set <= 1'b1;
|
{Q4,Q1} : direction_set <= 1'b1;
|
{Q4,Q1} : direction_set <= 1'b1;
|
default : direction_set <= 1'b0;
|
default : direction_set <= 1'b0;
|
endcase
|
endcase
|
|
|
// direction_clear
|
// direction_clear
|
always @ (wptr[N:N-1] or rptr[N:N-1] or rst)
|
always @ (wptr[N:N-1] or rptr[N:N-1] or rst)
|
if (rst)
|
if (rst)
|
direction_clr <= 1'b1;
|
direction_clr <= 1'b1;
|
else
|
else
|
case ({wptr[N:N-1],rptr[N:N-1]})
|
case ({wptr[N:N-1],rptr[N:N-1]})
|
{Q2,Q1} : direction_clr <= 1'b1;
|
{Q2,Q1} : direction_clr <= 1'b1;
|
{Q3,Q2} : direction_clr <= 1'b1;
|
{Q3,Q2} : direction_clr <= 1'b1;
|
{Q4,Q3} : direction_clr <= 1'b1;
|
{Q4,Q3} : direction_clr <= 1'b1;
|
{Q1,Q4} : direction_clr <= 1'b1;
|
{Q1,Q4} : direction_clr <= 1'b1;
|
default : direction_clr <= 1'b0;
|
default : direction_clr <= 1'b0;
|
endcase
|
endcase
|
|
|
`ifndef GENERATE_DIRECTION_AS_LATCH
|
`ifndef GENERATE_DIRECTION_AS_LATCH
|
dff_sr dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction));
|
dff_sr dff_sr_dir( .aclr(direction_clr), .aset(direction_set), .clock(1'b1), .data(1'b1), .q(direction));
|
`endif
|
`endif
|
|
|
`ifdef GENERATE_DIRECTION_AS_LATCH
|
`ifdef GENERATE_DIRECTION_AS_LATCH
|
always @ (posedge direction_set or posedge direction_clr)
|
always @ (posedge direction_set or posedge direction_clr)
|
if (direction_clr)
|
if (direction_clr)
|
direction <= going_empty;
|
direction <= going_empty;
|
else
|
else
|
direction <= going_full;
|
direction <= going_full;
|
`endif
|
`endif
|
|
|
assign async_empty = (wptr == rptr) && (direction==going_empty);
|
assign async_empty = (wptr == rptr) && (direction==going_empty);
|
assign async_full = (wptr == rptr) && (direction==going_full);
|
assign async_full = (wptr == rptr) && (direction==going_full);
|
|
|
dff_sr dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2));
|
dff_sr dff_sr_empty0( .aclr(rst), .aset(async_full), .clock(wclk), .data(async_full), .q(fifo_full2));
|
dff_sr dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full));
|
dff_sr dff_sr_empty1( .aclr(rst), .aset(async_full), .clock(wclk), .data(fifo_full2), .q(fifo_full));
|
|
|
/*
|
/*
|
always @ (posedge wclk or posedge rst or posedge async_full)
|
always @ (posedge wclk or posedge rst or posedge async_full)
|
if (rst)
|
if (rst)
|
{fifo_full, fifo_full2} <= 2'b00;
|
{fifo_full, fifo_full2} <= 2'b00;
|
else if (async_full)
|
else if (async_full)
|
{fifo_full, fifo_full2} <= 2'b11;
|
{fifo_full, fifo_full2} <= 2'b11;
|
else
|
else
|
{fifo_full, fifo_full2} <= {fifo_full2, async_full};
|
{fifo_full, fifo_full2} <= {fifo_full2, async_full};
|
*/
|
*/
|
always @ (posedge rclk or posedge async_empty)
|
/* always @ (posedge rclk or posedge async_empty)
|
if (async_empty)
|
if (async_empty)
|
{fifo_empty, fifo_empty2} <= 2'b11;
|
{fifo_empty, fifo_empty2} <= 2'b11;
|
else
|
else
|
{fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty};
|
{fifo_empty,fifo_empty2} <= {fifo_empty2,async_empty}; */
|
|
dff # ( .reset_value(1'b1)) dff0 ( .d(async_empty), .q(fifo_empty2), .clk(rclk), .rst(async_empty));
|
|
dff # ( .reset_value(1'b1)) dff1 ( .d(fifo_empty2), .q(fifo_empty), .clk(rclk), .rst(async_empty));
|
|
|
endmodule // async_comp
|
endmodule // async_comp
|
|
|
module vl_fifo_1r1w_async (
|
module vl_fifo_1r1w_async (
|
d, wr, fifo_full, wr_clk, wr_rst,
|
d, wr, fifo_full, wr_clk, wr_rst,
|
q, rd, fifo_empty, rd_clk, rd_rst
|
q, rd, fifo_empty, rd_clk, rd_rst
|
);
|
);
|
|
|
parameter data_width = 18;
|
parameter data_width = 18;
|
parameter addr_width = 4;
|
parameter addr_width = 4;
|
|
|
// write side
|
// write side
|
input [data_width-1:0] d;
|
input [data_width-1:0] d;
|
input wr;
|
input wr;
|
output fifo_full;
|
output fifo_full;
|
input wr_clk;
|
input wr_clk;
|
input wr_rst;
|
input wr_rst;
|
// read side
|
// read side
|
output [data_width-1:0] q;
|
output [data_width-1:0] q;
|
input rd;
|
input rd;
|
output fifo_empty;
|
output fifo_empty;
|
input rd_clk;
|
input rd_clk;
|
input rd_rst;
|
input rd_rst;
|
|
|
wire [addr_width:1] wadr, wadr_bin, radr, radr_bin;
|
wire [addr_width:1] wadr, wadr_bin, radr, radr_bin;
|
|
|
vl_fifo_1r1w_async (
|
vl_fifo_1r1w_async (
|
d, wr, fifo_full, wr_clk, wr_rst,
|
d, wr, fifo_full, wr_clk, wr_rst,
|
q, rd, fifo_empty, rd_clk, rd_rst
|
q, rd, fifo_empty, rd_clk, rd_rst
|
);
|
);
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# ( .length(addr_width))
|
# ( .length(addr_width))
|
fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk));
|
fifo_wr_adr( .cke(wr), .q(wadr), .q_bin(wadr_bin), .rst(wr_rst), .clk(wr_clk));
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# (.length(addr_width))
|
# (.length(addr_width))
|
fifo_rd_adr( .cke(wr), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_rst));
|
fifo_rd_adr( .cke(wr), .q(radr), .q_bin(radr_bin), .rst(rd_rst), .clk(rd_rst));
|
|
|
vl_dpram_1r1w
|
vl_dpram_1r1w
|
# (.data_width(data_width), .addr_width(addr_width))
|
# (.data_width(data_width), .addr_width(addr_width))
|
dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk));
|
dpram ( .d_a(d), .adr_a(wadr_bin), .we_a(wr), .clk_a(wr_clk), .q_b(q), .adr_b(radr_bin), .clk_b(rd_clk));
|
|
|
vl_fifo_cmp_async
|
vl_fifo_cmp_async
|
# (.addr_width(addr_width))
|
# (.addr_width(addr_width))
|
cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) );
|
cmp ( .wptr(wadr), .rptr(radr), .fifo_empty(fifo_empty), .fifo_full(fifo_full), .wclk(wr_clk), .rclk(rd_clk), .rst(wr_rst) );
|
|
|
endmodule
|
endmodule
|
|
|
module vl_fifo_2r2w_async (
|
module vl_fifo_2r2w_async (
|
// a side
|
// a side
|
a_d, a_wr, a_fifo_full,
|
a_d, a_wr, a_fifo_full,
|
a_q, a_rd, a_fifo_empty,
|
a_q, a_rd, a_fifo_empty,
|
a_clk, a_rst,
|
a_clk, a_rst,
|
// b side
|
// b side
|
b_d, b_wr, b_fifo_full,
|
b_d, b_wr, b_fifo_full,
|
b_q, b_rd, b_fifo_empty,
|
b_q, b_rd, b_fifo_empty,
|
b_clk, b_rst
|
b_clk, b_rst
|
);
|
);
|
|
|
parameter data_width = 18;
|
parameter data_width = 18;
|
parameter addr_width = 4;
|
parameter addr_width = 4;
|
|
|
// a side
|
// a side
|
input [data_width-1:0] a_d;
|
input [data_width-1:0] a_d;
|
input a_wr;
|
input a_wr;
|
output a_fifo_full;
|
output a_fifo_full;
|
output [data_width-1:0] a_q;
|
output [data_width-1:0] a_q;
|
input a_rd;
|
input a_rd;
|
output a_fifo_empty;
|
output a_fifo_empty;
|
input a_clk;
|
input a_clk;
|
input a_rst;
|
input a_rst;
|
|
|
// b side
|
// b side
|
input [data_width-1:0] b_d;
|
input [data_width-1:0] b_d;
|
input b_wr;
|
input b_wr;
|
output b_fifo_full;
|
output b_fifo_full;
|
output [data_width-1:0] b_q;
|
output [data_width-1:0] b_q;
|
input b_rd;
|
input b_rd;
|
output b_fifo_empty;
|
output b_fifo_empty;
|
input b_clk;
|
input b_clk;
|
input b_rst;
|
input b_rst;
|
|
|
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
|
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
|
vl_fifo_1r1w_async_a (
|
vl_fifo_1r1w_async_a (
|
.d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst),
|
.d(a_d), .wr(a_wr), .fifo_full(a_fifo_full), .wr_clk(a_clk), .wr_rst(a_rst),
|
.q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst)
|
.q(b_q), .rd(b_rd), .fifo_empty(b_fifo_empty), .rd_clk(b_clk), .rd_rst(b_rst)
|
);
|
);
|
|
|
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
|
vl_fifo_1r1w_async # (.data_width(data_width), .addr_width(addr_width))
|
vl_fifo_1r1w_async_b (
|
vl_fifo_1r1w_async_b (
|
.d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst),
|
.d(b_d), .wr(b_wr), .fifo_full(b_fifo_full), .wr_clk(b_clk), .wr_rst(b_rst),
|
.q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst)
|
.q(a_q), .rd(a_rd), .fifo_empty(a_fifo_empty), .rd_clk(a_clk), .rd_rst(a_rst)
|
);
|
);
|
|
|
endmodule
|
endmodule
|
|
|
module vl_fifo_2r2w_async_simplex (
|
module vl_fifo_2r2w_async_simplex (
|
// a side
|
// a side
|
a_d, a_wr, a_fifo_full,
|
a_d, a_wr, a_fifo_full,
|
a_q, a_rd, a_fifo_empty,
|
a_q, a_rd, a_fifo_empty,
|
a_clk, a_rst,
|
a_clk, a_rst,
|
// b side
|
// b side
|
b_d, b_wr, b_fifo_full,
|
b_d, b_wr, b_fifo_full,
|
b_q, b_rd, b_fifo_empty,
|
b_q, b_rd, b_fifo_empty,
|
b_clk, b_rst
|
b_clk, b_rst
|
);
|
);
|
|
|
parameter data_width = 18;
|
parameter data_width = 18;
|
parameter addr_width = 4;
|
parameter addr_width = 4;
|
|
|
// a side
|
// a side
|
input [data_width-1:0] a_d;
|
input [data_width-1:0] a_d;
|
input a_wr;
|
input a_wr;
|
output a_fifo_full;
|
output a_fifo_full;
|
output [data_width-1:0] a_q;
|
output [data_width-1:0] a_q;
|
input a_rd;
|
input a_rd;
|
output a_fifo_empty;
|
output a_fifo_empty;
|
input a_clk;
|
input a_clk;
|
input a_rst;
|
input a_rst;
|
|
|
// b side
|
// b side
|
input [data_width-1:0] b_d;
|
input [data_width-1:0] b_d;
|
input b_wr;
|
input b_wr;
|
output b_fifo_full;
|
output b_fifo_full;
|
output [data_width-1:0] b_q;
|
output [data_width-1:0] b_q;
|
input b_rd;
|
input b_rd;
|
output b_fifo_empty;
|
output b_fifo_empty;
|
input b_clk;
|
input b_clk;
|
input b_rst;
|
input b_rst;
|
|
|
// adr_gen
|
// adr_gen
|
wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin;
|
wire [addr_width:1] a_wadr, a_wadr_bin, a_radr, a_radr_bin;
|
wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin;
|
wire [addr_width:1] b_wadr, b_wadr_bin, b_radr, b_radr_bin;
|
// dpram
|
// dpram
|
wire [addr_width:0] a_dpram_adr, b_dpram_adr;
|
wire [addr_width:0] a_dpram_adr, b_dpram_adr;
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# ( .length(addr_width))
|
# ( .length(addr_width))
|
fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk));
|
fifo_a_wr_adr( .cke(a_wr), .q(a_wadr), .q_bin(a_wadr_bin), .rst(a_rst), .clk(a_clk));
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# (.length(addr_width))
|
# (.length(addr_width))
|
fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk));
|
fifo_a_rd_adr( .cke(a_rd), .q(a_radr), .q_bin(a_radr_bin), .rst(a_rst), .clk(a_clk));
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# ( .length(addr_width))
|
# ( .length(addr_width))
|
fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk));
|
fifo_b_wr_adr( .cke(b_wr), .q(b_wadr), .q_bin(b_wadr_bin), .rst(b_rst), .clk(b_clk));
|
|
|
cnt_gray_ce_bin
|
cnt_gray_ce_bin
|
# (.length(addr_width))
|
# (.length(addr_width))
|
fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk));
|
fifo_b_rd_adr( .cke(b_rd), .q(b_radr), .q_bin(b_radr_bin), .rst(b_rst), .clk(b_clk));
|
|
|
// mux read or write adr to DPRAM
|
// mux read or write adr to DPRAM
|
assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin};
|
assign a_dpram_adr = (a_wr) ? {1'b0,a_wadr_bin} : {1'b1,a_radr_bin};
|
assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin};
|
assign b_dpram_adr = (b_wr) ? {1'b1,b_wadr_bin} : {1'b0,b_radr_bin};
|
|
|
vl_dpram_2r2w
|
vl_dpram_2r2w
|
# (.data_width(data_width), .addr_width(addr_width+1))
|
# (.data_width(data_width), .addr_width(addr_width+1))
|
dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk),
|
dpram ( .d_a(a_d), .q_a(a_q), .adr_a(a_dpram_adr), .we_a(a_wr), .clk_a(a_clk),
|
.d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk));
|
.d_b(b_d), .q_b(b_q), .adr_b(b_dpram_adr), .we_b(b_wr), .clk_b(b_clk));
|
|
|
vl_fifo_cmp_async
|
vl_fifo_cmp_async
|
# (.addr_width(addr_width))
|
# (.addr_width(addr_width))
|
cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) );
|
cmp1 ( .wptr(a_wadr), .rptr(b_radr), .fifo_empty(b_fifo_empty), .fifo_full(a_fifo_full), .wclk(a_clk), .rclk(b_clk), .rst(a_rst) );
|
|
|
vl_fifo_cmp_async
|
vl_fifo_cmp_async
|
# (.addr_width(addr_width))
|
# (.addr_width(addr_width))
|
cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) );
|
cmp2 ( .wptr(b_wadr), .rptr(a_radr), .fifo_empty(a_fifo_empty), .fifo_full(b_fifo_full), .wclk(b_clk), .rclk(a_clk), .rst(b_rst) );
|
|
|
endmodule
|
endmodule
|
|
|