Line 3... |
Line 3... |
// Filename: pfcache.v
|
// Filename: pfcache.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose: Keeping our CPU fed with instructions, at one per clock and
|
// Purpose: Keeping our CPU fed with instructions, at one per clock and
|
// with no stalls. An unusual feature of this cache is the
|
// with only a minimum number stalls. The entire cache may also
|
// requirement that the entire cache may be cleared (if necessary).
|
// be cleared (if necessary).
|
|
//
|
|
// This logic is driven by a couple realities:
|
|
// 1. It takes a clock to read from a block RAM address, and hence a clock
|
|
// to read from the cache.
|
|
// 2. It takes another clock to check that the tag matches
|
|
//
|
|
// Our goal will be to avoid this second check if at all possible.
|
|
// Hence, we'll test on the clock of any given request whether
|
|
// or not the request matches the last tag value, and on the next
|
|
// clock whether it new tag value (if it has changed). Hence,
|
|
// for anything found within the cache, there will be a one
|
|
// cycle delay on any branch.
|
|
//
|
|
//
|
|
// Address Words are separated into three components:
|
|
// [ Tag bits ] [ Cache line number ] [ Cache position w/in the line ]
|
|
//
|
|
// On any read from the cache, only the second two components are required.
|
|
// On any read from memory, the first two components will be fixed across
|
|
// the bus, and the third component will be adjusted from zero to its
|
|
// maximum value.
|
|
//
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
// Copyright (C) 2015-2019, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 35... |
Line 57... |
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
module pfcache(i_clk, i_rst, i_new_pc, i_clear_cache,
|
`default_nettype none
|
|
//
|
|
module pfcache(i_clk, i_reset, i_new_pc, i_clear_cache,
|
// i_early_branch, i_from_addr,
|
// i_early_branch, i_from_addr,
|
i_stall_n, i_pc, o_i, o_pc, o_v,
|
i_stall_n, i_pc, o_insn, o_pc, o_valid,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data,
|
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data,
|
i_wb_ack, i_wb_stall, i_wb_err, i_wb_data,
|
o_illegal);
|
o_illegal
|
parameter LGCACHELEN = 8, ADDRESS_WIDTH=24,
|
`ifdef NOT_YET_READY
|
LGLINES=5; // Log of the number of separate cache lines
|
, i_mmu_ack, i_mmu_we, i_mmu_paddr
|
localparam CACHELEN=(1<<LGCACHELEN); // Size of our cache memory
|
`endif
|
|
`ifdef FORMAL
|
|
, f_pc_wb
|
|
`endif
|
|
);
|
|
`ifdef FORMAL
|
|
parameter LGCACHELEN = 4, ADDRESS_WIDTH=30,
|
|
LGLINES=2; // Log of the number of separate cache lines
|
|
`else
|
|
parameter LGCACHELEN = 12, ADDRESS_WIDTH=30,
|
|
LGLINES=6; // Log of the number of separate cache lines
|
|
`endif
|
|
localparam CACHELEN=(1<<LGCACHELEN); //Wrd Size of our cache memory
|
localparam CW=LGCACHELEN; // Short hand for LGCACHELEN
|
localparam CW=LGCACHELEN; // Short hand for LGCACHELEN
|
localparam PW=LGCACHELEN-LGLINES; // Size of a cache line
|
localparam LS=LGCACHELEN-LGLINES; // Size of a cache line
|
localparam BUSW = 32; // Number of data lines on the bus
|
localparam BUSW = 32; // Number of data lines on the bus
|
localparam AW=ADDRESS_WIDTH; // Shorthand for ADDRESS_WIDTH
|
localparam AW=ADDRESS_WIDTH; // Shorthand for ADDRESS_WIDTH
|
input i_clk, i_rst, i_new_pc;
|
|
input i_clear_cache;
|
|
input i_stall_n;
|
|
input [(AW-1):0] i_pc;
|
|
output wire [(BUSW-1):0] o_i;
|
|
output wire [(AW-1):0] o_pc;
|
|
output wire o_v;
|
|
//
|
//
|
|
input wire i_clk, i_reset;
|
|
//
|
|
// The interface with the rest of the CPU
|
|
input wire i_new_pc;
|
|
input wire i_clear_cache;
|
|
input wire i_stall_n;
|
|
input wire [(AW+1):0] i_pc;
|
|
output wire [(BUSW-1):0] o_insn;
|
|
output wire [(AW+1):0] o_pc;
|
|
output wire o_valid;
|
|
//
|
|
// The wishbone bus interface
|
output reg o_wb_cyc, o_wb_stb;
|
output reg o_wb_cyc, o_wb_stb;
|
output wire o_wb_we;
|
output wire o_wb_we;
|
output reg [(AW-1):0] o_wb_addr;
|
output reg [(AW-1):0] o_wb_addr;
|
output wire [(BUSW-1):0] o_wb_data;
|
output wire [(BUSW-1):0] o_wb_data;
|
//
|
//
|
input i_wb_ack, i_wb_stall, i_wb_err;
|
input wire i_wb_ack, i_wb_stall, i_wb_err;
|
input [(BUSW-1):0] i_wb_data;
|
input wire [(BUSW-1):0] i_wb_data;
|
//
|
//
|
|
// o_illegal will be true if this instruction was the result of a
|
|
// bus error (This is also part of the CPU interface)
|
output reg o_illegal;
|
output reg o_illegal;
|
|
//
|
|
`ifdef NOT_YET_READY
|
|
input wire i_mmu_ack, i_mmu_we;
|
|
input wire [(PAW-1):0] i_mmu_paddr;
|
|
`endif
|
|
|
// Fixed bus outputs: we read from the bus only, never write.
|
// Fixed bus outputs: we read from the bus only, never write.
|
// Thus the output data is ... irrelevant and don't care. We set it
|
// Thus the output data is ... irrelevant and don't care. We set it
|
// to zero just to set it to something.
|
// to zero just to set it to something.
|
assign o_wb_we = 1'b0;
|
assign o_wb_we = 1'b0;
|
assign o_wb_data = 0;
|
assign o_wb_data = 0;
|
|
|
|
`ifdef NOT_YET_READY
|
|
// These wires will be used below as part of the cache invalidation
|
|
// routine, should the MMU be used. This allows us to snoop on the
|
|
// physical side of the MMU bus, and invalidate any results should
|
|
// we need to do so.
|
|
wire mmu_inval;
|
|
wire [(PAW-CW-1):0] mmu_mskaddr;
|
|
`endif
|
|
`ifdef FORMAL
|
|
output wire [AW-1:0] f_pc_wb;
|
|
assign f_pc_wb = i_pc[AW+1:2];
|
|
`endif
|
|
|
|
|
wire r_v;
|
wire r_v;
|
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
reg [(BUSW-1):0] cache [0:((1<<CW)-1)];
|
reg [(AW-CW-1):0] tags [0:((1<<(LGLINES))-1)];
|
reg [(AW-CW-1):0] cache_tags [0:((1<<(LGLINES))-1)];
|
reg [((1<<(LGLINES))-1):0] vmask;
|
reg [((1<<(LGLINES))-1):0] valid_mask;
|
|
|
reg [(AW-1):0] lastpc;
|
reg r_v_from_pc, r_v_from_last, r_new_request;
|
reg [(CW-1):0] rdaddr;
|
reg rvsrc;
|
|
wire w_v_from_pc, w_v_from_last;
|
|
reg [(AW+1):0] lastpc;
|
|
reg [(CW-1):0] wraddr;
|
reg [(AW-1):CW] tagvalipc, tagvallst;
|
reg [(AW-1):CW] tagvalipc, tagvallst;
|
wire [(AW-1):CW] tagval;
|
wire [(AW-1):CW] tagval;
|
wire [(AW-1):PW] lasttag;
|
wire [(AW-1):LS] lasttag;
|
reg illegal_valid;
|
reg illegal_valid;
|
reg [(AW-1):PW] illegal_cache;
|
reg [(AW-1):LS] illegal_cache;
|
|
|
// initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
// initial o_i = 32'h76_00_00_00; // A NOOP instruction
|
// initial o_pc = 0;
|
// initial o_pc = 0;
|
reg [(BUSW-1):0] r_pc_cache, r_last_cache;
|
reg [(BUSW-1):0] r_pc_cache, r_last_cache;
|
reg [(AW-1):0] r_pc, r_lastpc;
|
reg [(AW+1):0] r_pc, r_lastpc;
|
reg isrc;
|
reg isrc;
|
|
reg [1:0] delay;
|
|
reg svmask, last_ack, needload, last_addr,
|
|
bus_abort;
|
|
reg [(LGLINES-1):0] saddr;
|
|
|
|
wire w_advance;
|
|
assign w_advance = (i_new_pc)||((r_v)&&(i_stall_n));
|
|
|
|
/////////////////////////////////////////////////
|
|
//
|
|
// Read the instruction from the cache
|
|
//
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
|
// We'll read two values from the cache, the first is the value if
|
|
// i_pc contains the address we want, the second is the value we'd read
|
|
// if lastpc (i.e. $past(i_pc)) was the address we wanted.
|
|
initial r_pc = 0;
|
|
initial r_lastpc = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
// We don't have the logic to select what to read, we must
|
// We don't have the logic to select what to read, we must
|
// read both the value at i_pc and lastpc. cache[i_pc] is
|
// read both the value at i_pc and lastpc. cache[i_pc] is
|
// the value we return if the cache is good, cacne[lastpc] is
|
// the value we return if the last cache request was in the
|
// the value we return if we've been stalled, weren't valid,
|
// cache on the last clock, cacne[lastpc] is the value we
|
// or had to wait a clock or two. (Remember i_pc can't stop
|
// return if we've been stalled, weren't valid, or had to wait
|
// changing for a clock, so we need to keep track of the last
|
// a clock or two.
|
// one from before it stopped.)
|
//
|
//
|
// Part of the issue here is that i_pc is going to increment
|
// Here we keep track of which answer we want/need
|
// on this clock before we know whether or not the cache entry
|
isrc <= ((r_v)&&(i_stall_n))||(i_new_pc);
|
// we've just read is valid. We can't stop this. Hence, we
|
|
// need to read from the lastpc entry.
|
// Here we read both, and select which was write using isrc
|
//
|
// on the next clock.
|
//
|
r_pc_cache <= cache[i_pc[(CW-1):0]];
|
// Here we keep track of which answer we want/need.
|
r_last_cache <= cache[lastpc[(CW-1):0]];
|
// If we reported a valid value to the CPU on the last clock,
|
|
// and the CPU wasn't stalled, then we want to use i_pc.
|
|
// Likewise if the CPU gave us an i_new_pc request, then we'll
|
|
// want to return the value associated with reading the cache
|
|
// at i_pc.
|
|
isrc <= w_advance;
|
|
|
|
// Here we read both cache entries, at i_pc and lastpc.
|
|
// We'll select from among these cache possibilities on the
|
|
// next clock
|
|
r_pc_cache <= cache[i_pc[(CW+1):2]];
|
|
r_last_cache <= cache[lastpc[(CW+1):2]];
|
|
//
|
|
// Let's also register(delay) the r_pc and r_lastpc values
|
|
// for the next clock, so we can accurately report the address
|
|
// of the cache value we just looked up.
|
r_pc <= i_pc;
|
r_pc <= i_pc;
|
r_lastpc <= lastpc;
|
r_lastpc <= lastpc;
|
end
|
end
|
|
|
|
// On our next clock, our result with either be the registered i_pc
|
|
// value from the last clock (if isrc), otherwise r_lastpc
|
assign o_pc = (isrc) ? r_pc : r_lastpc;
|
assign o_pc = (isrc) ? r_pc : r_lastpc;
|
assign o_i = (isrc) ? r_pc_cache : r_last_cache;
|
// The same applies for determining what the next output instruction
|
|
// will be. We just read it in the last clock, now we just need to
|
|
// select between the two possibilities we just read.
|
|
assign o_insn= (isrc) ? r_pc_cache : r_last_cache;
|
|
|
reg tagsrc;
|
|
always @(posedge i_clk)
|
/////////////////////////////////////////////////
|
// It may be possible to recover a clock once the cache line
|
//
|
// has been filled, but our prior attempt to do so has lead
|
// Read the tag value associated with this tcache line
|
// to a race condition, so we keep this logic simple.
|
//
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
/////////////////////////////////////////////////
|
tagsrc <= 1'b1;
|
//
|
else
|
//
|
tagsrc <= 1'b0;
|
|
|
//
|
|
// Read the tag value associated with this i_pc value
|
initial tagvalipc = 0;
|
initial tagvalipc = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
tagvalipc <= tags[i_pc[(CW-1):PW]];
|
tagvalipc <= cache_tags[i_pc[(CW+1):LS+2]];
|
|
|
|
|
|
//
|
|
// Read the tag value associated with the lastpc value, from what
|
|
// i_pc was when we could not tell if this value was in our cache or
|
|
// not, or perhaps from when we determined that i was not in the cache.
|
initial tagvallst = 0;
|
initial tagvallst = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
tagvallst <= tags[lastpc[(CW-1):PW]];
|
tagvallst <= cache_tags[lastpc[(CW+1):LS+2]];
|
assign tagval = (tagsrc)?tagvalipc : tagvallst;
|
|
|
// Select from between these two values on the next clock
|
|
assign tagval = (isrc)?tagvalipc : tagvallst;
|
|
|
// i_pc will only increment when everything else isn't stalled, thus
|
// i_pc will only increment when everything else isn't stalled, thus
|
// we can set it without worrying about that. Doing this enables
|
// we can set it without worrying about that. Doing this enables
|
// us to work in spite of stalls. For example, if the next address
|
// us to work in spite of stalls. For example, if the next address
|
// isn't valid, but the decoder is stalled, get the next address
|
// isn't valid, but the decoder is stalled, get the next address
|
// anyway.
|
// anyway.
|
initial lastpc = 0;
|
initial lastpc = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (((r_v)&&(i_stall_n))||(i_clear_cache)||(i_new_pc))
|
if (w_advance)
|
lastpc <= i_pc;
|
lastpc <= i_pc;
|
|
|
assign lasttag = lastpc[(AW-1):PW];
|
assign lasttag = lastpc[(AW+1):LS+2];
|
|
|
wire w_v_from_pc, w_v_from_last;
|
|
assign w_v_from_pc = ((i_pc[(AW-1):PW] == lasttag)
|
|
&&(tagvalipc == i_pc[(AW-1):CW])
|
|
&&(vmask[i_pc[(CW-1):PW]]));
|
|
assign w_v_from_last = (
|
|
//(lastpc[(AW-1):PW] == lasttag)&&
|
|
(tagval == lastpc[(AW-1):CW])
|
|
&&(vmask[lastpc[(CW-1):PW]]));
|
|
|
|
reg [1:0] delay;
|
/////////////////////////////////////////////////
|
|
//
|
|
// Use the tag value to determine if our output instruction will be
|
|
// valid.
|
|
//
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
|
assign w_v_from_pc = ((i_pc[(AW+1):LS+2] == lasttag)
|
|
&&(tagval == i_pc[(AW+1):CW+2])
|
|
&&(valid_mask[i_pc[(CW+1):LS+2]]));
|
|
assign w_v_from_last = ((tagval == lastpc[(AW+1):CW+2])
|
|
&&(valid_mask[lastpc[(CW+1):LS+2]]));
|
|
|
initial delay = 2'h3;
|
initial delay = 2'h3;
|
reg rvsrc;
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache)||(i_new_pc)||((r_v)&&(i_stall_n)))
|
if ((i_reset)||(i_clear_cache)||(w_advance))
|
begin
|
begin
|
// r_v <= r_v_from_pc;
|
// Source our valid signal from i_pc
|
rvsrc <= 1'b1;
|
rvsrc <= 1'b1;
|
|
// Delay at least two clocks before declaring that
|
|
// we have an invalid result. This will give us time
|
|
// to check the tag value of what's in the cache.
|
delay <= 2'h2;
|
delay <= 2'h2;
|
end else if (~r_v) begin // Otherwise, r_v was true and we were
|
end else if ((!r_v)&&(!o_illegal)) begin
|
// stalled, hence only if ~r_v
|
// If we aren't sourcing our valid signal from the
|
|
// i_pc clock, then we are sourcing it from the
|
|
// lastpc clock (one clock later). If r_v still
|
|
// isn't valid, we may need to make a bus request.
|
|
// Apply our timer and timeout.
|
rvsrc <= 1'b0;
|
rvsrc <= 1'b0;
|
|
|
|
// Delay is two once the bus starts, in case the
|
|
// bus transaction needs to be restarted upon completion
|
|
// This might happen if, after we start loading the
|
|
// cache, we discover a branch. The cache load will
|
|
// still complete, but the branches address needs to be
|
|
// the onen we jump to. This may mean we need to load
|
|
// the cache twice.
|
if (o_wb_cyc)
|
if (o_wb_cyc)
|
delay <= 2'h2;
|
delay <= 2'h2;
|
else if (delay != 0)
|
else if (delay != 0)
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
delay <= delay + 2'b11; // i.e. delay -= 1;
|
|
end else begin
|
|
// After sourcing our output from i_pc, if it wasn't
|
|
// accepted, source the instruction from the lastpc valid
|
|
// determination instead
|
|
rvsrc <= 1'b0;
|
|
if (o_illegal)
|
|
delay <= 2'h2;
|
end
|
end
|
reg r_v_from_pc, r_v_from_last;
|
|
always @(posedge i_clk)
|
|
r_v_from_pc <= w_v_from_pc;
|
|
always @(posedge i_clk)
|
|
r_v_from_last <= w_v_from_last;
|
|
|
|
assign r_v = ((rvsrc)?(r_v_from_pc):(r_v_from_last));
|
wire w_invalidate_result;
|
assign o_v = (((rvsrc)?(r_v_from_pc):(r_v_from_last))
|
assign w_invalidate_result = (i_reset)||(i_clear_cache);
|
||((o_illegal)&&(~o_wb_cyc)))
|
|
&&(~i_new_pc)&&(~i_rst);
|
|
|
|
reg last_ack;
|
reg r_prior_illegal;
|
initial last_ack = 1'b0;
|
initial r_prior_illegal = 0;
|
|
initial r_new_request = 0;
|
|
initial r_v_from_pc = 0;
|
|
initial r_v_from_last = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
last_ack <= (o_wb_cyc)&&(
|
begin
|
(rdaddr[(PW-1):1]=={(PW-1){1'b1}})
|
r_new_request <= w_invalidate_result;
|
&&((rdaddr[0])||(i_wb_ack)));
|
r_v_from_pc <= (w_v_from_pc)&&(!w_invalidate_result)
|
|
&&(!o_illegal);
|
|
r_v_from_last <= (w_v_from_last)&&(!w_invalidate_result);
|
|
|
|
r_prior_illegal <= (o_wb_cyc)&&(i_wb_err);
|
|
end
|
|
|
|
// Now use rvsrc to determine which of the two valid flags we'll be
|
|
// using: r_v_from_pc (the i_pc address), or r_v_from_last (the lastpc
|
|
// address)
|
|
assign r_v = ((rvsrc)?(r_v_from_pc):(r_v_from_last))&&(!r_new_request);
|
|
assign o_valid = (((rvsrc)?(r_v_from_pc):(r_v_from_last))
|
|
||(o_illegal))
|
|
&&(!i_new_pc)&&(!r_prior_illegal);
|
|
|
reg needload;
|
/////////////////////////////////////////////////
|
|
//
|
|
// If the instruction isn't in our cache, then we need to load
|
|
// a new cache line from memory.
|
|
//
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
initial needload = 1'b0;
|
initial needload = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
needload <= ((~r_v)&&(delay==0)
|
if ((i_clear_cache)||(o_wb_cyc))
|
&&((tagvallst != lastpc[(AW-1):CW])
|
needload <= 1'b0;
|
||(~vmask[lastpc[(CW-1):PW]]))
|
else if ((w_advance)&&(!o_illegal))
|
&&((~illegal_valid)
|
needload <= 1'b0;
|
||(lastpc[(AW-1):PW] != illegal_cache)));
|
else
|
|
needload <= (delay==0)&&(!w_v_from_last)
|
|
// Prevent us from reloading an illegal address
|
|
// (i.e. one that produced a bus error) over and over
|
|
// and over again
|
|
&&((!illegal_valid)
|
|
||(lastpc[(AW+1):LS+2] != illegal_cache));
|
|
|
reg last_addr;
|
//
|
|
// Working from the rule that you want to keep complex logic out of
|
|
// a state machine if possible, we calculate a "last_stb" value one
|
|
// clock ahead of time. Hence, any time a request is accepted, if
|
|
// last_stb is also true we'll know we need to drop the strobe line,
|
|
// having finished requesting a complete cache line.
|
initial last_addr = 1'b0;
|
initial last_addr = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
last_addr <= (o_wb_cyc)&&(o_wb_addr[(PW-1):1] == {(PW-1){1'b1}})
|
if (!o_wb_cyc)
|
&&((~i_wb_stall)|(o_wb_addr[0]));
|
last_addr <= 1'b0;
|
|
else if ((o_wb_addr[(LS-1):1] == {(LS-1){1'b1}})
|
|
&&((!i_wb_stall)|(o_wb_addr[0])))
|
|
last_addr <= 1'b1;
|
|
|
|
//
|
|
// "last_ack" is almost identical to last_addr, save that this
|
|
// will be true on the same clock as the last acknowledgment from the
|
|
// bus. The state machine logic will use this to determine when to
|
|
// get off the bus and end the wishbone bus cycle.
|
|
initial last_ack = 1'b0;
|
|
always @(posedge i_clk)
|
|
last_ack <= (o_wb_cyc)&&(
|
|
(wraddr[(LS-1):1]=={(LS-1){1'b1}})
|
|
&&((wraddr[0])||(i_wb_ack)));
|
|
|
|
initial bus_abort = 1'b0;
|
|
always @(posedge i_clk)
|
|
if (!o_wb_cyc)
|
|
bus_abort <= 1'b0;
|
|
else if ((i_clear_cache)||(i_new_pc))
|
|
bus_abort <= 1'b1;
|
|
|
|
//
|
|
// Here's the difficult piece of state machine logic--the part that
|
|
// determines o_wb_cyc and o_wb_stb. We've already moved most of the
|
|
// complicated logic off of this statemachine, calculating it one cycle
|
|
// early. As a result, this is a fairly easy piece of logic.
|
initial o_wb_cyc = 1'b0;
|
initial o_wb_cyc = 1'b0;
|
initial o_wb_stb = 1'b0;
|
initial o_wb_stb = 1'b0;
|
initial o_wb_addr = {(AW){1'b0}};
|
|
initial rdaddr = 0;
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_reset)||(i_clear_cache))
|
begin
|
begin
|
o_wb_cyc <= 1'b0;
|
o_wb_cyc <= 1'b0;
|
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
end else if (o_wb_cyc)
|
end else if (o_wb_cyc)
|
begin
|
begin
|
if (i_wb_err)
|
if (i_wb_err)
|
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
else if ((o_wb_stb)&&(~i_wb_stall)&&(last_addr))
|
else if ((o_wb_stb)&&(!i_wb_stall)&&(last_addr))
|
o_wb_stb <= 1'b0;
|
o_wb_stb <= 1'b0;
|
|
|
if (((i_wb_ack)&&(last_ack))||(i_wb_err))
|
if (((i_wb_ack)&&(last_ack))||(i_wb_err))
|
o_wb_cyc <= 1'b0;
|
o_wb_cyc <= 1'b0;
|
|
|
// else if (rdaddr[(PW-1):1] == {(PW-1){1'b1}})
|
end else if ((needload)&&(!i_new_pc))
|
// tags[lastpc[(CW-1):PW]] <= lastpc[(AW-1):CW];
|
|
|
|
end else if (needload)
|
|
begin
|
begin
|
o_wb_cyc <= 1'b1;
|
o_wb_cyc <= 1'b1;
|
o_wb_stb <= 1'b1;
|
o_wb_stb <= 1'b1;
|
end
|
end
|
|
|
always @(posedge i_clk)
|
// If we are reading from this cache line, then once we get the first
|
if (o_wb_cyc) // &&(i_wb_ack)
|
// acknowledgement, this cache line has the new tag value
|
tags[o_wb_addr[(CW-1):PW]] <= o_wb_addr[(AW-1):CW];
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_wb_cyc)&&(i_wb_ack))
|
if ((o_wb_cyc)&&(i_wb_ack))
|
rdaddr <= rdaddr + 1;
|
cache_tags[o_wb_addr[(CW-1):LS]] <= o_wb_addr[(AW-1):CW];
|
else if (~o_wb_cyc)
|
|
rdaddr <= { lastpc[(CW-1):PW], {(PW){1'b0}} };
|
|
|
// On each acknowledgment, increment the address we use to write into
|
always @(posedge i_clk)
|
// our cache. Hence, this is the write address into our cache block
|
if ((o_wb_stb)&&(~i_wb_stall)&&(~last_addr))
|
// RAM.
|
o_wb_addr[(PW-1):0] <= o_wb_addr[(PW-1):0]+1;
|
initial wraddr = 0;
|
else if (~o_wb_cyc)
|
always @(posedge i_clk)
|
o_wb_addr <= { lastpc[(AW-1):PW], {(PW){1'b0}} };
|
if ((o_wb_cyc)&&(i_wb_ack)&&(!last_ack))
|
|
wraddr <= wraddr + 1'b1;
|
// Can't initialize an array, so leave cache uninitialized
|
else if (!o_wb_cyc)
|
// We'll also never get an ack without sys being active, so skip
|
wraddr <= { lastpc[(CW+1):LS+2], {(LS){1'b0}} };
|
// that check. Or rather, let's just use o_wb_cyc instead. This
|
|
// will work because multiple writes to the same address, ending with
|
//
|
// a valid write, aren't a problem.
|
// The wishbone request address. This has meaning anytime o_wb_stb
|
|
// is active, and needs to be incremented any time an address is
|
|
// accepted--WITH THE EXCEPTION OF THE LAST ADDRESS. We need to keep
|
|
// this steady for that last address, unless the last address returns
|
|
// a bus error. In that case, the whole cache line will be marked as
|
|
// invalid--but we'll need the value of this register to know how
|
|
// to do that propertly.
|
|
initial o_wb_addr = {(AW){1'b0}};
|
|
always @(posedge i_clk)
|
|
if ((o_wb_stb)&&(!i_wb_stall)&&(!last_addr))
|
|
o_wb_addr[(LS-1):0] <= o_wb_addr[(LS-1):0]+1'b1;
|
|
else if (!o_wb_cyc)
|
|
o_wb_addr <= { lastpc[(AW+1):LS+2], {(LS){1'b0}} };
|
|
|
|
// Since it is impossible to initialize an array, our cache will start
|
|
// up cache uninitialized. We'll also never get a valid ack without
|
|
// cyc being active, although we might get one on the clock after
|
|
// cyc was active--so we need to test and gate on whether o_wb_cyc
|
|
// is true.
|
|
//
|
|
// wraddr will advance forward on every clock cycle where ack is true,
|
|
// hence we don't need to check i_wb_ack here. This will work because
|
|
// multiple writes to the same address, ending with a valid write,
|
|
// will always yield the valid write's value only after our bus cycle
|
|
// is over.
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (o_wb_cyc) // &&(i_wb_ack)
|
if (o_wb_cyc)
|
cache[rdaddr] <= i_wb_data;
|
cache[wraddr] <= i_wb_data;
|
|
|
// VMask ... is a section loaded?
|
// VMask ... is a section loaded?
|
// Note "svmask". It's purpose is to delay the vmask setting by one
|
// Note "svmask". It's purpose is to delay the valid_mask setting by
|
// clock, so that we can insure the right value of the cache is loaded
|
// one clock, so that we can insure the right value of the cache is
|
// before declaring that the cache line is valid. Without this, the
|
// loaded before declaring that the cache line is valid. Without
|
// cache line would get read, and the instruction would read from the
|
// this, the cache line would get read, and the instruction would
|
// last cache line.
|
// read from the last cache line.
|
reg svmask;
|
initial valid_mask = 0;
|
initial vmask = 0;
|
|
initial svmask = 1'b0;
|
initial svmask = 1'b0;
|
reg [(LGLINES-1):0] saddr;
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_reset)||(i_clear_cache))
|
begin
|
begin
|
vmask <= 0;
|
valid_mask <= 0;
|
svmask<= 1'b0;
|
svmask<= 1'b0;
|
end
|
end else begin
|
else begin
|
svmask <= ((o_wb_cyc)&&(i_wb_ack)&&(last_ack)&&(!bus_abort));
|
svmask <= ((o_wb_cyc)&&(i_wb_ack)&&(last_ack));
|
|
|
|
if (svmask)
|
if (svmask)
|
vmask[saddr] <= 1'b1;
|
valid_mask[saddr] <= (!bus_abort);
|
if ((~o_wb_cyc)&&(needload))
|
if ((!o_wb_cyc)&&(needload))
|
vmask[lastpc[(CW-1):PW]] <= 1'b0;
|
valid_mask[lastpc[(CW+1):LS+2]] <= 1'b0;
|
|
`ifdef NOT_YET_READY
|
|
//
|
|
// MMU code
|
|
//
|
|
if (mmu_inval)
|
|
valid_mask[mmu_mskadr] <= 1'b0;
|
|
`endif
|
end
|
end
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_wb_cyc)&&(i_wb_ack))
|
if ((o_wb_cyc)&&(i_wb_ack))
|
saddr <= rdaddr[(CW-1):PW];
|
saddr <= wraddr[(CW-1):LS];
|
|
// MMU code
|
|
//
|
|
//
|
|
`ifdef NOT_YET_READY
|
|
parameter [0:0] USE_MMU = 1'b1;
|
|
generate if (USE_MMU)
|
|
begin
|
|
reg [(PAW-CW-1):0] ptag [0:((1<<(LGLINES))-1)];
|
|
reg mmu_pre_inval, r_mmu_inval;
|
|
reg [(PAW-CW-1):0] mmu_pre_tag, mmu_pre_padr;
|
|
reg [(CW-LS-1):0] r_mmu_mskadr;
|
|
|
|
initial mmu_pre_inval = 0;
|
|
initial mmu_pre_tag = 0;
|
|
initial mmu_pre_padr = 0;
|
|
initial mmu_pre2_inval = 0;
|
|
initial mmu_pre2_mskadr = 0;
|
|
|
|
always @(posedge i_clk)
|
|
if ((o_wb_cyc)&&(!last_addr)&&(i_mmu_ack))
|
|
ptag[i_mmu_paddr[(CW-1):LS]] <= i_mmu_paddr[(PAW-1):CW];
|
|
|
|
always @(posedge i_clk)
|
|
if (i_reset)
|
|
begin
|
|
mmu_pre_inval <= 0;
|
|
r_mmu_inval <= 0;
|
|
end else begin
|
|
mmu_pre_inval <= (i_mmu_ack)&&(i_mmu_we);
|
|
r_mmu_inval <= (mmu_pre_inval)&&(mmu_pre_inval)
|
|
&&(mmu_pre_tag == mmu_pre_paddr);
|
|
end
|
|
|
|
always @(posedge i_clk)
|
|
mmu_pre_tag <= ptag[i_mmu_paddr[(CW-1):LS]];
|
|
|
|
always @(posedge i_clk)
|
|
begin
|
|
mmu_pre_padr <= i_mmu_paddr[(PAW-1):CW];
|
|
|
|
r_mmu_mskadr <= mmu_pre_padr[(PAW-LS-1):(CW-LS)];
|
|
end
|
|
|
|
assign mmu_inval = r_mmu_inval;
|
|
assign mmu_mskadr = r_mmu_mskadr;
|
|
end else begin
|
|
assign mmu_inval = 0;
|
|
assign mmu_mskadr = 0;
|
|
end endgenerate
|
|
`endif
|
|
|
|
/////////////////////////////////////////////////
|
|
//
|
|
// Handle bus errors here. If a bus read request
|
|
// returns an error, then we'll mark the entire
|
|
// line as having a (valid) illegal value.
|
|
//
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
|
//
|
|
//
|
initial illegal_cache = 0;
|
initial illegal_cache = 0;
|
initial illegal_valid = 0;
|
initial illegal_valid = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache))
|
if ((i_reset)||(i_clear_cache))
|
begin
|
begin
|
illegal_cache <= 0;
|
illegal_cache <= 0;
|
illegal_valid <= 0;
|
illegal_valid <= 0;
|
end else if ((o_wb_cyc)&&(i_wb_err))
|
end else if ((o_wb_cyc)&&(i_wb_err))
|
begin
|
begin
|
illegal_cache <= o_wb_addr[(AW-1):PW];
|
illegal_cache <= o_wb_addr[(AW-1):LS];
|
illegal_valid <= 1'b1;
|
illegal_valid <= 1'b1;
|
end
|
end
|
|
|
initial o_illegal = 1'b0;
|
initial o_illegal = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_rst)||(i_clear_cache)||(o_wb_cyc))
|
if ((i_reset)||(i_clear_cache)||(i_new_pc))
|
|
o_illegal <= 1'b0;
|
|
else if ((o_illegal)||((o_valid)&&(i_stall_n)))
|
o_illegal <= 1'b0;
|
o_illegal <= 1'b0;
|
else
|
else
|
o_illegal <= (illegal_valid)
|
o_illegal <= (illegal_valid)
|
&&(illegal_cache == i_pc[(AW-1):PW]);
|
&&(illegal_cache == lastpc[(AW+1):LS+2]);
|
|
|
|
`ifdef FORMAL
|
|
//
|
|
//
|
|
// Generic setup
|
|
//
|
|
//
|
|
`ifdef PFCACHE
|
|
`define ASSUME assume
|
|
`else
|
|
`define ASSUME assert
|
|
`define STEP_CLOCK
|
|
`endif
|
|
|
|
// Keep track of a flag telling us whether or not $past()
|
|
// will return valid results
|
|
reg f_past_valid;
|
|
initial f_past_valid = 1'b0;
|
|
always @(posedge i_clk)
|
|
f_past_valid = 1'b1;
|
|
always @(*)
|
|
if (!f_past_valid)
|
|
`ASSUME(i_reset);
|
|
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
|
// Assumptions about our inputs
|
|
//
|
|
//
|
|
/////////////////////////////////////////////////
|
|
|
|
|
|
`ifdef PFCACHE
|
|
//
|
|
// Assume that resets, new-pc commands, and clear-cache commands
|
|
// are never more than pulses--one clock wide at most.
|
|
//
|
|
// It may be that the CPU treats us differently. We'll only assume
|
|
// our solver to this here.
|
|
always @(posedge i_clk)
|
|
if (!f_past_valid)
|
|
begin
|
|
if ($past(i_reset))
|
|
assume(!i_reset);
|
|
if ($past(i_new_pc))
|
|
assume(!i_new_pc);
|
|
if ($past(i_clear_cache))
|
|
assume(!i_clear_cache);
|
|
end
|
|
`endif
|
|
|
|
//
|
|
// Assume we start from a reset condition
|
|
initial `ASSUME(i_reset);
|
|
|
|
// Assume that any reset is either accompanied by a new address,
|
|
// or a new address immediately follows it.
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(i_reset)))
|
|
`ASSUME(i_new_pc);
|
|
//
|
|
// Let's make some assumptions about how long it takes our
|
|
// phantom bus and phantom CPU to respond.
|
|
//
|
|
// These delays need to be long enough to flush out any potential
|
|
// errors, yet still short enough that the formal method doesn't
|
|
// take forever to solve.
|
|
//
|
|
localparam F_CPU_DELAY = 4;
|
|
reg [4:0] f_cpu_delay;
|
|
|
|
// Now, let's repeat this bit but now looking at the delay the CPU
|
|
// takes to accept an instruction.
|
|
always @(posedge i_clk)
|
|
// If no instruction is ready, then keep our counter at zero
|
|
if ((!o_valid)||(i_stall_n))
|
|
f_cpu_delay <= 0;
|
|
else
|
|
// Otherwise, count the clocks the CPU takes to respond
|
|
f_cpu_delay <= f_cpu_delay + 1'b1;
|
|
|
|
`ifdef PFCACHE
|
|
always @(posedge i_clk)
|
|
assume(f_cpu_delay < F_CPU_DELAY);
|
|
`endif
|
|
|
|
always @(posedge i_clk)
|
|
if ($past(i_reset || i_clear_cache))
|
|
assume(i_stall_n);
|
|
else if ($past(i_stall_n && !o_valid))
|
|
assume(i_stall_n);
|
|
else if (i_new_pc)
|
|
assume(i_stall_n);
|
|
|
|
/////////////////////////////////////////////////
|
|
//
|
|
//
|
|
// Assertions about our outputs
|
|
//
|
|
//
|
|
/////////////////////////////////////////////////
|
|
|
|
localparam F_LGDEPTH=LS+1;
|
|
wire [(F_LGDEPTH-1):0] f_nreqs, f_nacks, f_outstanding;
|
|
|
|
fwb_master #(.AW(AW), .DW(BUSW), .F_LGDEPTH(F_LGDEPTH),
|
|
.F_MAX_STALL(2), .F_MAX_ACK_DELAY(3),
|
|
.F_MAX_REQUESTS(1<<LS), .F_OPT_SOURCE(1),
|
|
.F_OPT_RMW_BUS_OPTION(0),
|
|
.F_OPT_DISCONTINUOUS(0))
|
|
f_wbm(i_clk, i_reset,
|
|
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, 4'h0,
|
|
i_wb_ack, i_wb_stall, i_wb_data, i_wb_err,
|
|
f_nreqs, f_nacks, f_outstanding);
|
|
|
|
// writes are also illegal for a prefetch.
|
|
always @(posedge i_clk)
|
|
if (o_wb_stb)
|
|
assert(!o_wb_we);
|
|
|
|
always @(posedge i_clk)
|
|
begin
|
|
assert(f_nreqs <= (1<<LS));
|
|
if ((o_wb_cyc)&&(o_wb_stb))
|
|
assert(f_nreqs == o_wb_addr[(LS-1):0]);
|
|
if ((f_past_valid)&&($past(o_wb_cyc))
|
|
&&(!o_wb_stb)&&(!$past(i_wb_err || i_reset || i_clear_cache)))
|
|
assert(f_nreqs == (1<<LS));
|
|
end
|
|
|
|
always @(posedge i_clk)
|
|
if (f_past_valid)
|
|
begin
|
|
if ((!o_wb_cyc)&&($past(o_wb_cyc))&&(!$past(i_reset))
|
|
&&(!$past(i_clear_cache)) &&(!$past(i_wb_err)))
|
|
assert(f_nacks == (1<<LS));
|
|
else if (o_wb_cyc)
|
|
assert(f_nacks[(LS-1):0] == wraddr[(LS-1):0]);
|
|
end
|
|
|
|
// The last-ack line
|
|
always @(posedge i_clk)
|
|
if (o_wb_cyc)
|
|
assert(last_ack == (f_nacks == ((1<<LS)-1)));
|
|
|
|
// The valid line for whats being read
|
|
always @(posedge i_clk)
|
|
if (o_wb_cyc)
|
|
assert(!valid_mask[o_wb_addr[CW-1:LS]]);
|
|
|
|
always @(posedge i_clk)
|
|
if ((illegal_valid)&&(o_wb_cyc))
|
|
assert(o_wb_addr[AW-1:LS] != illegal_cache);
|
|
|
|
reg [((1<<(LGLINES))-1):0] f_past_valid_mask;
|
|
initial f_past_valid_mask = 0;
|
|
always @(posedge i_clk)
|
|
f_past_valid_mask = valid_mask;
|
|
|
|
always @(posedge i_clk)
|
|
if ((o_valid)&&($past(!o_valid || !o_illegal)))
|
|
assert((!o_wb_cyc)
|
|
||(o_wb_addr[AW-1:LS] != o_pc[AW+1:LS+2]));
|
|
always @(posedge i_clk)
|
|
if (illegal_valid)
|
|
begin
|
|
assert((!o_wb_cyc)
|
|
||(o_wb_addr[AW-1:LS] != illegal_cache));
|
|
|
|
// The illegal cache line should never be valid within our
|
|
// cache
|
|
assert((!valid_mask[illegal_cache[CW-1:LS]])
|
|
||(cache_tags[illegal_cache[CW-1:LS]]
|
|
!= illegal_cache[AW-1:CW]));
|
|
end
|
|
|
|
/////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
// Assertions about our return responses to the CPU
|
|
//
|
|
//
|
|
/////////////////////////////////////////////////////
|
|
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(o_wb_cyc)))
|
|
assert(o_wb_addr[(AW-1):LS] == $past(o_wb_addr[(AW-1):LS]));
|
|
|
|
// Consider it invalid to present the CPU with the same instruction
|
|
// twice in a row.
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(o_valid))&&($past(i_stall_n))&&(o_valid))
|
|
assert(o_pc != $past(o_pc));
|
|
|
|
always @(posedge i_clk)
|
|
if (o_valid)
|
|
begin
|
|
if (!o_illegal)
|
|
begin
|
|
assert(cache_tags[o_pc[(CW+1):LS+2]] == o_pc[(AW+1):CW+2]);
|
|
assert(valid_mask[o_pc[(CW+1):LS+2]] || (o_illegal));
|
|
assert(o_insn == cache[o_pc[(CW+1):2]]);
|
|
assert((!illegal_valid)
|
|
||((illegal_cache != o_pc[(AW+1):LS+2])));
|
|
end
|
|
|
|
assert(o_illegal == ($past(illegal_valid)
|
|
&&($past(illegal_cache)== o_pc[(AW+1):LS+2])));
|
|
end
|
|
|
|
always @(*)
|
|
begin
|
|
`ASSUME(i_pc[1:0] == 2'b00);
|
|
assert(o_pc[1:0] == 2'b00);
|
|
assert(r_pc[1:0] == 2'b00);
|
|
assert(r_lastpc[1:0] == 2'b00);
|
|
end
|
|
|
|
reg [(AW+1):0] f_next_pc;
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(!$past(i_reset)))
|
|
begin
|
|
if (isrc)
|
|
assert(lastpc == r_pc);
|
|
else
|
|
assert(lastpc + 4== r_pc);
|
|
end
|
|
|
|
always @(posedge i_clk)
|
|
if (i_new_pc)
|
|
f_next_pc <= { i_pc[AW+1:2] + 1'b1, 2'b00 };
|
|
else if ((i_stall_n)&&(r_v))
|
|
f_next_pc <= { i_pc[AW+1:2] + 1'b1, 2'b00 };
|
|
always @(*)
|
|
if (!i_new_pc)
|
|
`ASSUME(i_pc == f_next_pc);
|
|
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&(o_valid)&&($past(o_valid))
|
|
&&(!$past(i_reset))
|
|
&&(!$past(i_new_pc))
|
|
&&(!$past(i_stall_n))
|
|
&&(!o_illegal))
|
|
begin
|
|
assert(cache_tags[o_pc[(CW+1):LS+2]] == o_pc[(AW+1):CW+2]);
|
|
end
|
|
|
|
//
|
|
// If an instruction is accepted, we should *always* move on to another
|
|
// instruction. The only exception is following an i_new_pc (or
|
|
// other invalidator), at which point the next instruction should
|
|
// be invalid.
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(o_valid))&&($past(i_stall_n)))
|
|
begin
|
|
// Should always advance the instruction
|
|
assert((!o_valid)||(o_pc != $past(o_pc)));
|
|
end
|
|
|
|
//
|
|
// Once an instruction becomes valid, it should never become invalid
|
|
// unless there's been a request for a new instruction.
|
|
always @(posedge i_clk)
|
|
if ((f_past_valid)&&($past(!i_reset && !i_clear_cache && !i_new_pc))
|
|
&&($past(o_valid && !i_stall_n))
|
|
&&(!i_new_pc))
|
|
begin
|
|
if ((!$past(o_illegal))&&(!$past(o_wb_cyc && i_wb_err)))
|
|
begin
|
|
assert(o_valid);
|
|
assert($stable(o_illegal));
|
|
assert($stable(o_insn));
|
|
end else
|
|
assert((o_illegal)||(!o_valid));
|
|
end
|
|
`ifdef PFCACHE
|
|
/////////////////////////////////////////////////////
|
|
//
|
|
//
|
|
// Assertions associated with a response to a known
|
|
// address request
|
|
//
|
|
//
|
|
/////////////////////////////////////////////////////
|
|
|
|
|
|
(* anyconst *) reg [AW:0] f_const_addr;
|
|
(* anyconst *) reg [BUSW-1:0] f_const_insn;
|
|
|
|
wire f_this_pc, f_this_insn, f_this_data, f_this_line,
|
|
f_this_ack, f_this_tag; // f_this_addr;
|
|
assign f_this_pc = (o_pc == { f_const_addr[AW-1:0], 2'b00 });
|
|
// assign f_this_addr = (o_wb_addr == f_const_addr[AW-1:0] );
|
|
assign f_this_insn = (o_insn == f_const_insn);
|
|
assign f_this_data = (i_wb_data == f_const_insn);
|
|
assign f_this_line = (o_wb_addr[AW-1:LS] == f_const_addr[AW-1:LS]);
|
|
assign f_this_ack = (f_this_line)&&(f_nacks == f_const_addr[LS-1:0]);
|
|
assign f_this_tag = (tagval == f_const_addr[AW-1:CW]);
|
|
|
|
always @(posedge i_clk)
|
|
if ((o_valid)&&(f_this_pc)&&(!$past(o_illegal)))
|
|
begin
|
|
assert(o_illegal == f_const_addr[AW]);
|
|
if (!o_illegal)
|
|
begin
|
|
assert(f_this_insn);
|
|
assert(f_this_tag);
|
|
end
|
|
end
|
|
|
|
always @(*)
|
|
if ((valid_mask[f_const_addr[CW-1:LS]])
|
|
&&(cache_tags[f_const_addr[(CW-1):LS]]==f_const_addr[AW-1:CW]))
|
|
assert(f_const_insn == cache[f_const_addr[CW-1:0]]);
|
|
else if ((o_wb_cyc)&&(o_wb_addr[AW-1:LS] == f_const_addr[AW-1:LS])
|
|
&&(f_nacks > f_const_addr[LS-1:0]))
|
|
begin
|
|
assert(f_const_insn == cache[f_const_addr[CW-1:0]]);
|
|
end
|
|
|
|
always @(*)
|
|
if (o_wb_cyc)
|
|
assert(wraddr[CW-1:LS] == o_wb_addr[CW-1:LS]);
|
|
|
|
always @(*)
|
|
if (!f_const_addr[AW])
|
|
assert((!illegal_valid)
|
|
||(illegal_cache != f_const_addr[AW-1:LS]));
|
|
else
|
|
assert((cache_tags[f_const_addr[CW-1:LS]]!=f_const_addr[AW-1:CW])
|
|
||(!valid_mask[f_const_addr[CW-1:LS]]));
|
|
|
|
always @(*)
|
|
if ((f_this_line)&&(o_wb_cyc))
|
|
begin
|
|
if (f_const_addr[AW])
|
|
assume(!i_wb_ack);
|
|
else
|
|
assume(!i_wb_err);
|
|
|
|
if ((f_this_ack)&&(i_wb_ack))
|
|
assume(f_this_data);
|
|
end
|
|
|
|
always @(*)
|
|
if ((f_this_line)&&(!f_const_addr[AW]))
|
|
assume(!i_wb_err);
|
|
|
|
always @(*)
|
|
if (!f_const_addr[AW])
|
|
assume((!valid_mask[f_const_addr[CW-1:LS]])
|
|
||(cache_tags[f_const_addr[CW-1:LS]] != f_const_addr[AW-1:CW]));
|
|
`endif
|
|
|
|
//
|
|
//
|
|
// Cover properties
|
|
//
|
|
//
|
|
reg f_valid_legal;
|
|
always @(*)
|
|
f_valid_legal = o_valid && (!o_illegal);
|
|
always @(posedge i_clk) // Trace 0
|
|
cover((o_valid)&&( o_illegal));
|
|
always @(posedge i_clk) // Trace 1
|
|
cover(f_valid_legal);
|
|
always @(posedge i_clk) // Trace 2
|
|
cover((f_valid_legal)
|
|
&&($past(!o_valid && !i_new_pc))
|
|
&&($past(i_new_pc,2)));
|
|
always @(posedge i_clk) // Trace 3
|
|
cover((f_valid_legal)&&($past(i_stall_n))&&($past(i_new_pc)));
|
|
always @(posedge i_clk) // Trace 4
|
|
cover((f_valid_legal)&&($past(f_valid_legal && i_stall_n)));
|
|
always @(posedge i_clk) // Trace 5
|
|
cover((f_valid_legal)
|
|
&&($past(f_valid_legal && i_stall_n))
|
|
&&($past(f_valid_legal && i_stall_n,2))
|
|
&&($past(f_valid_legal && i_stall_n,3)));
|
|
always @(posedge i_clk) // Trace 6
|
|
cover((f_valid_legal)
|
|
&&($past(f_valid_legal && i_stall_n))
|
|
&&($past(f_valid_legal && i_stall_n,2))
|
|
&&($past(!o_illegal && i_stall_n && i_new_pc,3))
|
|
&&($past(f_valid_legal && i_stall_n,4))
|
|
&&($past(f_valid_legal && i_stall_n,5))
|
|
&&($past(f_valid_legal && i_stall_n,6)));
|
|
|
|
`endif // FORMAL
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|