///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: ziptimer.v
|
// Filename: ziptimer.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose: A lighter weight implementation of the Zip Timer.
|
// Purpose: A lighter weight implementation of the Zip Timer.
|
//
|
//
|
// Interface:
|
// Interface:
|
// Two options:
|
// Two options:
|
// 1. One combined register for both control and value, and ...
|
// 1. One combined register for both control and value, and ...
|
// The reload value is set any time the timer data value is "set".
|
// The reload value is set any time the timer data value is "set".
|
// Reading the register returns the timer value. Controls are
|
// Reading the register returns the timer value. Controls are
|
// set so that writing a value to the timer automatically starts
|
// set so that writing a value to the timer automatically starts
|
// it counting down.
|
// it counting down.
|
// 2. Two registers, one for control one for value.
|
// 2. Two registers, one for control one for value.
|
// The control register would have the reload value in it.
|
// The control register would have the reload value in it.
|
// On the clock when the interface is set to zero the interrupt is set.
|
// On the clock when the interface is set to zero the interrupt is set.
|
// Hence setting the timer to zero will disable the timer without
|
// Hence setting the timer to zero will disable the timer without
|
// setting any interrupts. Thus setting it to five will count
|
// setting any interrupts. Thus setting it to five will count
|
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
|
// 5 clocks: 5, 4, 3, 2, 1, Interrupt.
|
//
|
//
|
//
|
//
|
// Control bits:
|
// Control bits:
|
// (Start_n/Stop. This bit has been dropped. Writing to this
|
// (Start_n/Stop. This bit has been dropped. Writing to this
|
// timer any value but zero starts it. Writing a zero
|
// timer any value but zero starts it. Writing a zero
|
// clears and stops it.)
|
// clears and stops it.)
|
// AutoReload. If set, then on reset the timer automatically
|
// AutoReload. If set, then on reset the timer automatically
|
// loads the last set value and starts over. This is
|
// loads the last set value and starts over. This is
|
// useful for distinguishing between a one-time interrupt
|
// useful for distinguishing between a one-time interrupt
|
// timer, and a repetitive interval timer.
|
// timer, and a repetitive interval timer.
|
// (INTEN. Interrupt enable--reaching zero always creates an
|
// (INTEN. Interrupt enable--reaching zero always creates an
|
// interrupt, so this control bit isn't needed. The
|
// interrupt, so this control bit isn't needed. The
|
// interrupt controller can be used to mask the interrupt.)
|
// interrupt controller can be used to mask the interrupt.)
|
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
|
// (COUNT-DOWN/UP: This timer is *only* a count-down timer.
|
// There is no means of setting it to count up.)
|
// There is no means of setting it to count up.)
|
// WatchDog
|
// WatchDog
|
// This timer can be implemented as a watchdog timer simply by
|
// This timer can be implemented as a watchdog timer simply by
|
// connecting the interrupt line to the reset line of the CPU.
|
// connecting the interrupt line to the reset line of the CPU.
|
// When the timer then expires, it will trigger a CPU reset.
|
// When the timer then expires, it will trigger a CPU reset.
|
//
|
//
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Tecnology, LLC
|
// Gisselquist Tecnology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
module ziptimer(i_clk, i_rst, i_ce,
|
module ziptimer(i_clk, i_rst, i_ce,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_int);
|
o_int);
|
parameter BW = 32, VW = (BW-1);
|
parameter BW = 32, VW = (BW-1);
|
input i_clk, i_rst, i_ce;
|
input i_clk, i_rst, i_ce;
|
// Wishbone inputs
|
// Wishbone inputs
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input [(BW-1):0] i_wb_data;
|
input [(BW-1):0] i_wb_data;
|
// Wishbone outputs
|
// Wishbone outputs
|
output reg o_wb_ack;
|
output reg o_wb_ack;
|
output wire o_wb_stall;
|
output wire o_wb_stall;
|
output wire [(BW-1):0] o_wb_data;
|
output wire [(BW-1):0] o_wb_data;
|
// Interrupt line
|
// Interrupt line
|
output reg o_int;
|
output reg o_int;
|
|
|
reg r_auto_reload, r_running;
|
reg r_auto_reload, r_running;
|
reg [(VW-1):0] r_reload_value;
|
reg [(VW-1):0] r_reload_value;
|
|
|
wire wb_write;
|
wire wb_write;
|
assign wb_write = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
|
assign wb_write = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we));
|
|
|
initial r_running = 1'b0;
|
initial r_running = 1'b0;
|
initial r_auto_reload = 1'b0;
|
initial r_auto_reload = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_rst)
|
if (i_rst)
|
r_running <= 1'b0;
|
r_running <= 1'b0;
|
else if (wb_write)
|
else if (wb_write)
|
r_running <= (|i_wb_data[(VW-1):0]);
|
r_running <= (|i_wb_data[(VW-1):0]);
|
else if ((o_int)&&(~r_auto_reload))
|
else if ((o_int)&&(~r_auto_reload))
|
r_running <= 1'b0;
|
r_running <= 1'b0;
|
|
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (wb_write)
|
if (wb_write)
|
r_auto_reload <= (i_wb_data[(BW-1)]);
|
r_auto_reload <= (i_wb_data[(BW-1)]);
|
|
|
// If setting auto-reload mode, and the value to other
|
// If setting auto-reload mode, and the value to other
|
// than zero, set the auto-reload value
|
// than zero, set the auto-reload value
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((wb_write)&&(i_wb_data[(BW-1)])&&(|i_wb_data[(VW-1):0]))
|
if ((wb_write)&&(i_wb_data[(BW-1)])&&(|i_wb_data[(VW-1):0]))
|
r_reload_value <= i_wb_data[(VW-1):0];
|
r_reload_value <= i_wb_data[(VW-1):0];
|
|
|
|
|
reg [(VW-1):0] r_value;
|
reg [(VW-1):0] r_value;
|
initial r_value = 0;
|
initial r_value = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (wb_write)
|
if (wb_write)
|
r_value <= i_wb_data[(VW-1):0];
|
r_value <= i_wb_data[(VW-1):0];
|
else if ((r_running)&&(i_ce)&&(~o_int))
|
else if ((r_running)&&(i_ce)&&(~o_int))
|
r_value <= r_value - 1;
|
r_value <= r_value + {(VW){1'b1}}; // r_value - 1;
|
else if ((r_running)&&(r_auto_reload)&&(o_int))
|
else if ((r_running)&&(r_auto_reload)&&(o_int))
|
r_value <= r_reload_value;
|
r_value <= r_reload_value;
|
|
|
// Set the interrupt on our last tick.
|
// Set the interrupt on our last tick.
|
initial o_int = 1'b0;
|
initial o_int = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_ce)
|
if (i_ce)
|
o_int <= (r_running)&&(r_value == { {(VW-1){1'b0}}, 1'b1 });
|
o_int <= (r_running)&&(r_value == { {(VW-1){1'b0}}, 1'b1 });
|
else
|
else
|
o_int <= 1'b0;
|
o_int <= 1'b0;
|
|
|
initial o_wb_ack = 1'b0;
|
initial o_wb_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
assign o_wb_stall = 1'b0;
|
assign o_wb_stall = 1'b0;
|
|
|
assign o_wb_data = { r_auto_reload, r_value };
|
assign o_wb_data = { r_auto_reload, r_value };
|
|
|
endmodule
|
endmodule
|
|
|