////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: asmdata.cpp
|
// Filename: asmdata.cpp
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU core
|
//
|
//
|
// Purpose: Like asmdata.h, this contains necessary data structures for the
|
// Purpose: Like asmdata.h, this contains necessary data structures for the
|
// assembler. Specifically, in C/C++ fashion, this contains most
|
// assembler. Specifically, in C/C++ fashion, this contains most
|
// of the code for actually building such structures.
|
// of the code for actually building such structures.
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Tecnology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// You should have received a copy of the GNU General Public License along
|
// You should have received a copy of the GNU General Public License along
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// target there if the PDF file isn't present.) If not, see
|
// target there if the PDF file isn't present.) If not, see
|
// <http://www.gnu.org/licenses/> for a copy.
|
// <http://www.gnu.org/licenses/> for a copy.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
#include <stdlib.h>
|
#include <stdlib.h>
|
#include <assert.h>
|
#include <assert.h>
|
#include <string.h>
|
#include <string.h>
|
#include "asmdata.h"
|
#include "asmdata.h"
|
|
|
extern void yyerror(const char *str);
|
extern void yyerror(const char *str);
|
|
|
unsigned int ILINE::eval(const int lno) {
|
unsigned int ILINE::eval(const int lno) {
|
return (lno==0)?m_in:DEFAULT_LINE;
|
return (lno==0)?m_in:DEFAULT_LINE;
|
}
|
}
|
|
|
unsigned int VLINE::eval(const int lno) {
|
unsigned int VLINE::eval(const int lno) {
|
return DEFAULT_LINE;
|
return DEFAULT_LINE;
|
}
|
}
|
|
|
unsigned int DLINE::eval(const int lno) {
|
unsigned int DLINE::eval(const int lno) {
|
return (lno==0)?m_data:DEFAULT_LINE;
|
return (lno==0)?m_data:DEFAULT_LINE;
|
}
|
}
|
|
|
void LLINE::addline(ASMLINE *line) {
|
void LLINE::addline(ASMLINE *line) {
|
if (m_lines != NULL) {
|
if (m_lines != NULL) {
|
ASMLINE **nwlines = new ASMLINE *[m_nlines+1];
|
ASMLINE **nwlines = new ASMLINE *[m_nlines+1];
|
for(int i=0; i<m_nlines; i++)
|
for(int i=0; i<m_nlines; i++)
|
nwlines[i] = m_lines[i];
|
nwlines[i] = m_lines[i];
|
delete[] m_lines;
|
delete[] m_lines;
|
nwlines[m_nlines++] = line;
|
nwlines[m_nlines++] = line;
|
|
|
m_lines = nwlines;
|
m_lines = nwlines;
|
} else {
|
} else {
|
m_lines = new ASMLINE *[1];
|
m_lines = new ASMLINE *[1];
|
m_lines[m_nlines++] = line;
|
m_lines[m_nlines++] = line;
|
}
|
}
|
|
|
if (m_lineno > line->m_lineno)
|
if (m_lineno > line->m_lineno)
|
m_lineno = line->m_lineno;
|
m_lineno = line->m_lineno;
|
};
|
};
|
|
|
bool LLINE::isdefined(void) {
|
bool LLINE::isdefined(void) {
|
for(int i=0; i<m_nlines; i++)
|
for(int i=0; i<m_nlines; i++)
|
if (!m_lines[i]->isdefined())
|
if (!m_lines[i]->isdefined())
|
return false;
|
return false;
|
return true;
|
return true;
|
};
|
};
|
|
|
LLINE::~LLINE(void) {
|
LLINE::~LLINE(void) {
|
for(int i=0; i<m_nlines; i++)
|
for(int i=0; i<m_nlines; i++)
|
delete m_lines[i];
|
delete m_lines[i];
|
delete m_lines;
|
delete m_lines;
|
}
|
}
|
|
|
unsigned int LLINE::eval(const int lno) {
|
unsigned int LLINE::eval(const int lno) {
|
return (lno < m_nlines)?m_lines[lno]->eval(0) : DEFAULT_LINE;
|
return (lno < m_nlines)?m_lines[lno]->eval(0) : DEFAULT_LINE;
|
}
|
}
|
|
|
// int m_op; // An operator
|
// int m_op; // An operator
|
// AST *m_left, *m_right;
|
// AST *m_left, *m_right;
|
|
|
int AST_BRANCH::eval(void) {
|
int AST_BRANCH::eval(void) {
|
int lft = m_left->eval(), rht = m_right->eval();
|
int lft = m_left->eval(), rht = m_right->eval();
|
|
|
switch(m_op) {
|
switch(m_op) {
|
case '+': return lft + rht;
|
case '+': return lft + rht;
|
case '-': return lft - rht;
|
case '-': return lft - rht;
|
case '*': return lft * rht;
|
case '*': return lft * rht;
|
case '/': return lft / rht;
|
case '/': return lft / rht;
|
case '%': return lft % rht;
|
case '%': return lft % rht;
|
case '^': return lft ^ rht;
|
case '^': return lft ^ rht;
|
case '|': return lft | rht;
|
case '|': return lft | rht;
|
case '&': return lft & rht;
|
case '&': return lft & rht;
|
case '~': return ~lft;
|
case '~': return ~lft;
|
default: yyerror("Unknown operation"); return lft;
|
default: yyerror("Unknown operation"); return lft;
|
}
|
}
|
} void AST_BRANCH::reduce(void) {
|
} void AST_BRANCH::reduce(void) {
|
if ((m_left)&&(m_left->m_node_type != 'N')&&(m_left->isdefined())) {
|
if ((m_left)&&(m_left->m_node_type != 'N')&&(m_left->isdefined())) {
|
int val = m_left->eval();
|
int val = m_left->eval();
|
delete m_left;
|
delete m_left;
|
m_left = new AST_NUMBER(val);
|
m_left = new AST_NUMBER(val);
|
} else
|
} else
|
m_left->reduce();
|
m_left->reduce();
|
if ((m_right)&&(m_right->m_node_type != 'N')&&(m_right->isdefined())) {
|
if ((m_right)&&(m_right->m_node_type != 'N')&&(m_right->isdefined())) {
|
int val = m_right->eval();
|
int val = m_right->eval();
|
delete m_right;
|
delete m_right;
|
m_right = new AST_NUMBER(val);
|
m_right = new AST_NUMBER(val);
|
} else
|
} else
|
m_right->reduce();
|
m_right->reduce();
|
}
|
}
|
|
|
AST_IDENTIFIER::AST_IDENTIFIER(AST *ida, const char *idb) {
|
AST_IDENTIFIER::AST_IDENTIFIER(AST *ida, const char *idb) {
|
m_node_type = 'I';
|
m_node_type = 'I';
|
m_id = ((AST_IDENTIFIER*)ida)->m_id + "." + std::string(idb);
|
m_id = ((AST_IDENTIFIER*)ida)->m_id + "." + std::string(idb);
|
delete ida;
|
delete ida;
|
}
|
}
|
|
|
bool AST_IDENTIFIER::isdefined(void) {
|
bool AST_IDENTIFIER::isdefined(void) {
|
bool answer = stb_isdefined(m_id);
|
bool answer = stb_isdefined(m_id);
|
return answer;
|
return answer;
|
} int AST_IDENTIFIER::eval(void) {
|
} int AST_IDENTIFIER::eval(void) {
|
return stb_value(m_id);
|
return stb_value(m_id);
|
} void AST_IDENTIFIER::reduce(void) {}
|
} void AST_IDENTIFIER::reduce(void) {}
|
|
|
bool AST_LABEL::isdefined(void) {
|
bool AST_LABEL::isdefined(void) {
|
bool answer = stb_isdefined(m_label);
|
bool answer = stb_isdefined(m_label);
|
return answer;
|
return answer;
|
} int AST_LABEL::eval(void) {
|
} int AST_LABEL::eval(void) {
|
return stb_value(m_label);
|
return stb_value(m_label);
|
} void AST_LABEL::reduce(void) {}
|
} void AST_LABEL::reduce(void) {}
|
|
|
|
|
int AST_NUMBER::eval(void) {
|
int AST_NUMBER::eval(void) {
|
return m_val;
|
return m_val;
|
} void AST_NUMBER::reduce(void) {}
|
} void AST_NUMBER::reduce(void) {}
|
|
|
void OBJFILE::open(const char *fname) {
|
void OBJFILE::open(const char *fname) {
|
if ((m_fp != NULL)||(m_pc != 0l)) {
|
if ((m_fp != NULL)||(m_pc != 0l)) {
|
fprintf(stderr, "Error: Can only change file names at startup\n");
|
fprintf(stderr, "Error: Can only change file names at startup\n");
|
exit(-2);
|
exit(-2);
|
}
|
}
|
m_fp = fopen(fname, "w");
|
m_fp = fopen(fname, "w");
|
if (m_fp == NULL) {
|
if (m_fp == NULL) {
|
fprintf(stderr, "Cannot open %s for writing\n", fname);
|
fprintf(stderr, "Cannot open %s for writing\n", fname);
|
perror("O/S Err:");
|
perror("O/S Err:");
|
m_fp = fopen("/dev/null","w");
|
m_fp = fopen("/dev/null","w");
|
}
|
}
|
}
|
}
|
|
|
void OBJFILE::operator+=(ASMLINE *ln) {
|
void OBJFILE::operator+=(ASMLINE *ln) {
|
unsigned int buf[1];
|
unsigned int buf[1];
|
int nlines = ln->nlines();
|
int nlines = ln->nlines();
|
|
|
if (!ln->isdefined()) {
|
if (!ln->isdefined()) {
|
// fprintf(stderr, "%08x: Adding undefined line:\n", m_pc);
|
// fprintf(stderr, "%08x: Adding undefined line:\n", m_pc);
|
// ((TLINE *)ln)->dump(stderr);
|
// ((TLINE *)ln)->dump(stderr);
|
m_tbl.insert(m_tbl.end(), SAVED_ASMLINE(m_pc,ln));
|
m_tbl.insert(m_tbl.end(), SAVED_ASMLINE(m_pc,ln));
|
/*
|
/*
|
} else {
|
} else {
|
fprintf(stderr, "%08x: Adding to file:\n", m_pc);
|
fprintf(stderr, "%08x: Adding to file:\n", m_pc);
|
((TLINE *)ln)->dump(stderr);
|
((TLINE *)ln)->dump(stderr);
|
*/
|
*/
|
}
|
}
|
for(int i=0; i<nlines; i++) {
|
for(int i=0; i<nlines; i++) {
|
buf[0] = ln->eval(i);
|
buf[0] = ln->eval(i);
|
if (m_fp) fwrite(buf, sizeof(ZIPI), 1, m_fp);
|
if (m_fp) fwrite(buf, sizeof(ZIPI), 1, m_fp);
|
m_pc++;
|
m_pc++;
|
}
|
}
|
}
|
}
|
|
|
bool OBJFILE::reduce(void) {
|
bool OBJFILE::reduce(void) {
|
SVDTBL::iterator i;
|
SVDTBL::iterator i;
|
bool all_reduced = true;
|
bool all_reduced = true;
|
|
|
// printf("Checking for reductions\n");
|
// printf("Checking for reductions\n");
|
unsigned int tmp = m_pc;
|
unsigned int tmp = m_pc;
|
for(i=m_tbl.begin(); i != m_tbl.end(); i++) {
|
for(i=m_tbl.begin(); i != m_tbl.end(); i++) {
|
// printf("LINE %08x\n", i->m_pc);
|
// printf("LINE %08x\n", i->m_pc);
|
ASMLINE *ln = i->m_ln;
|
ASMLINE *ln = i->m_ln;
|
m_pc = i->m_pc;
|
m_pc = i->m_pc;
|
if (ln->isdefined()) {
|
if (ln->isdefined()) {
|
// printf("PC = 0x%08x reduces\n", i->m_pc);
|
// printf("PC = 0x%08x reduces\n", i->m_pc);
|
fseek(m_fp, sizeof(ZIPI)*i->m_pc, SEEK_SET);
|
fseek(m_fp, sizeof(ZIPI)*i->m_pc, SEEK_SET);
|
for(int k=0; k< ln->nlines(); k++) {
|
for(int k=0; k< ln->nlines(); k++) {
|
ZIPI buf[1];
|
ZIPI buf[1];
|
m_pc = i->m_pc+k;
|
m_pc = i->m_pc+k;
|
buf[0] = ln->eval(k);
|
buf[0] = ln->eval(k);
|
// printf("\t0x%08x -> %08x\n", i->m_pc+k,
|
// printf("\t0x%08x -> %08x\n", i->m_pc+k,
|
// buf[0]);
|
// buf[0]);
|
fwrite(buf, sizeof(ZIPI), 1, m_fp);
|
fwrite(buf, sizeof(ZIPI), 1, m_fp);
|
}
|
}
|
} else {
|
} else {
|
fprintf(stderr, "Line %d contains an undefined symbol: ", ln->m_lineno);
|
fprintf(stderr, "Line %d contains an undefined symbol: ", ln->m_lineno);
|
fprintf(stderr, "PC = 0x%08x isn\'t ready yet\n", i->m_pc);
|
fprintf(stderr, "PC = 0x%08x isn\'t ready yet\n", i->m_pc);
|
i->m_ln->dump(stderr);
|
i->m_ln->dump(stderr);
|
all_reduced = false;
|
all_reduced = false;
|
}
|
}
|
} m_pc = tmp;
|
} m_pc = tmp;
|
return all_reduced;
|
return all_reduced;
|
}
|
}
|
|
|
bool fitsin(const int v, const int b) {
|
bool fitsin(const int v, const int b) {
|
if (v>0)
|
if (v>0)
|
return (v < (1<<(b-1)));
|
return (v < (1<<(b-1)));
|
else
|
else
|
return (-v <= (1<<b));
|
return (-v <= (1<<b));
|
}
|
}
|
|
|
#define BLD_DUALOP(OP) \
|
#define BLD_DUALOP(OP) \
|
if (m_opa == zp.ZIP_Rnone) \
|
if (m_opa == zp.ZIP_Rnone) \
|
yyerror("Err: Dual Ops need a result register"); \
|
yyerror("Err: Dual Ops need a result register"); \
|
if (m_opb != zp.ZIP_Rnone) { \
|
if (m_opb != zp.ZIP_Rnone) { \
|
if(!fitsin(imm, 16)) \
|
if(!fitsin(imm, 14)) \
|
yyerror("16-bit: Immediate out of range"); \
|
yyerror("14-bit: Immediate out of range"); \
|
in = zp.OP(m_cond,imm,m_opb,m_opa); \
|
in = zp.OP(m_cond,imm,m_opb,m_opa); \
|
} else { \
|
} else { \
|
if(!fitsin(imm, 20)) \
|
if(!fitsin(imm, 18)) \
|
yyerror("20-bit: Immediate out of range"); \
|
yyerror("18-bit: Immediate out of range"); \
|
in = zp.OP(m_cond,imm,m_opa); \
|
in = zp.OP(m_cond,imm,m_opa); \
|
}
|
}
|
|
|
#define BLD_BRANCH(OP,CND) \
|
#define BLD_BRANCH(OP,CND) \
|
if (fitsin(offset, 16)) \
|
if (fitsin(offset, 13)) \
|
in = zp.OP(offset); \
|
in = zp.OP(offset); \
|
else if (fitsin(offset, 20)) \
|
else if (fitsin(offset, 18)) \
|
in = zp.op_add(zp.CND, offset, zp.ZIP_PC); \
|
in = zp.op_add(zp.CND, offset, zp.ZIP_PC); \
|
else { in = zp.OP(offset); yyerror("LONG JUMP NOT SUPPORTED"); }
|
else { in = zp.OP(offset); yyerror("LONG JUMP NOT SUPPORTED"); }
|
|
|
ASMLINE *TLINE::eval(void) {
|
ASMLINE *TLINE::eval(void) {
|
ZIPI in;
|
ZIPI in;
|
ZPARSER zp;
|
ZPARSER zp;
|
int offset = 0, imm = 0;
|
int offset = 0, imm = 0;
|
|
|
if (m_opcode != OP_MOV) {
|
if (m_opcode != OP_MOV) {
|
if ( ((m_opa!=zp.ZIP_Rnone)&&(m_opa > zp.ZIP_PC))
|
if ( ((m_opa!=zp.ZIP_Rnone)&&(m_opa > zp.ZIP_PC))
|
|| ((m_opb!=zp.ZIP_Rnone)&&(m_opb > zp.ZIP_PC)) )
|
|| ((m_opb!=zp.ZIP_Rnone)&&(m_opb > zp.ZIP_PC)) )
|
yyerror("Only move instructions can reference user regs");
|
yyerror("Only move instructions can reference user regs");
|
}
|
}
|
|
|
// Offset used in jumps
|
// Offset used in jumps
|
if (m_imm) {
|
if (m_imm) {
|
imm = m_imm->eval();
|
imm = m_imm->eval();
|
offset = imm-objcode.pc()-1;
|
offset = imm-objcode.pc()-1;
|
|
|
if (m_opb == zp.ZIP_PC)
|
if (m_opb == zp.ZIP_PC)
|
imm = offset;
|
imm = offset;
|
}
|
}
|
|
|
switch(m_opcode) {
|
switch(m_opcode) {
|
case OP_CMP:
|
case OP_CMP:
|
BLD_DUALOP(op_cmp)
|
BLD_DUALOP(op_cmp)
|
break;
|
break;
|
case OP_TST:
|
case OP_TST:
|
BLD_DUALOP(op_tst)
|
BLD_DUALOP(op_tst)
|
break;
|
break;
|
case OP_MOV:
|
case OP_MOV:
|
if ((m_opa == zp.ZIP_Rnone)||(m_opb == zp.ZIP_Rnone)) {
|
if ((m_opa == zp.ZIP_Rnone)||(m_opb == zp.ZIP_Rnone)) {
|
yyerror("Moves can only occurr between registers");
|
yyerror("Moves can only occurr between registers");
|
fprintf(stderr, "m_opa = %d, m_opb = %d\n", m_opa, m_opb);
|
fprintf(stderr, "m_opa = %d, m_opb = %d\n", m_opa, m_opb);
|
fprintf(stderr, "m_imm = %d\n", imm);
|
fprintf(stderr, "m_imm = %d\n", imm);
|
} else if (!fitsin(imm, 16))
|
} else if (!fitsin(imm, 13))
|
yyerror("Immediate overflow on move");
|
yyerror("Immediate overflow on move");
|
in = zp.op_mov(m_cond, imm, m_opb, m_opa);
|
in = zp.op_mov(m_cond, imm, m_opb, m_opa);
|
break;
|
break;
|
case OP_LDIHI:
|
case OP_LDIHI:
|
if ((imm & (-1<<16))!=0)
|
if ((imm & (-1<<16))!=0)
|
yyerror("16-bit Immediate out of range");
|
yyerror("16-bit Immediate out of range");
|
if (m_opb != zp.ZIP_Rnone)
|
if (m_opb != zp.ZIP_Rnone)
|
yyerror("LDIHI cannot accept OP-B registers");
|
yyerror("LDIHI cannot accept OP-B registers");
|
if (m_opa == zp.ZIP_Rnone)
|
if (m_opa == zp.ZIP_Rnone)
|
yyerror("LDIHI needs a register result");
|
yyerror("LDIHI needs a register result");
|
in = zp.op_ldihi(m_cond, imm, m_opa);
|
in = zp.op_ldihi(m_cond, imm, m_opa);
|
break;
|
break;
|
case OP_LDILO:
|
case OP_LDILO:
|
if ((imm & (-1<<16))!=0)
|
if ((imm & (-1<<16))!=0)
|
yyerror("16-bit Immediate out of range");
|
yyerror("16-bit Immediate out of range");
|
if (m_opb != zp.ZIP_Rnone)
|
if (m_opb != zp.ZIP_Rnone)
|
yyerror("LDIHI cannot accept OP-B registers");
|
yyerror("LDIHI cannot accept OP-B registers");
|
if (m_opa == zp.ZIP_Rnone)
|
if (m_opa == zp.ZIP_Rnone)
|
yyerror("LDIHI needs a register result");
|
yyerror("LDIHI needs a register result");
|
if ((imm & (-1<<16))!=0)
|
if ((imm & (-1<<16))!=0)
|
yyerror("16-bit Immediate out of range");
|
yyerror("16-bit Immediate out of range");
|
in = zp.op_ldilo(m_cond, imm, m_opa);
|
in = zp.op_ldilo(m_cond, imm, m_opa);
|
break;
|
break;
|
case OP_MPYU:
|
case OP_MPYU:
|
if ((m_opb == zp.ZIP_PC)||(m_opb == zp.ZIP_CC)
|
if ((m_opb == zp.ZIP_PC)||(m_opb == zp.ZIP_CC)
|
||(m_opa == zp.ZIP_PC)||(m_opa == zp.ZIP_CC))
|
||(m_opa == zp.ZIP_PC)||(m_opa == zp.ZIP_CC))
|
yyerror("MPYU does not support PC or CC register operands or results");
|
yyerror("MPYU does not support PC or CC register operands or results");
|
else if (m_opb == zp.ZIP_Rnone)
|
else if (m_opb == zp.ZIP_Rnone)
|
in = zp.op_mpyu(m_cond, imm, m_opa);
|
in = zp.op_mpyu(m_cond, imm, m_opa);
|
else
|
else
|
in = zp.op_mpyu(m_cond, imm, m_opb, m_opa);
|
in = zp.op_mpyu(m_cond, imm, m_opb, m_opa);
|
break;
|
break;
|
case OP_MPYS:
|
case OP_MPYS:
|
if ((m_opb == zp.ZIP_PC)||(m_opb == zp.ZIP_CC)
|
if ((m_opb == zp.ZIP_PC)||(m_opb == zp.ZIP_CC)
|
||(m_opa == zp.ZIP_PC)||(m_opa == zp.ZIP_CC))
|
||(m_opa == zp.ZIP_PC)||(m_opa == zp.ZIP_CC))
|
yyerror("MPYS does not support PC or CC register operands or results");
|
yyerror("MPYS does not support PC or CC register operands or results");
|
else if (m_opb == zp.ZIP_Rnone)
|
else if (m_opb == zp.ZIP_Rnone)
|
in = zp.op_mpys(m_cond, imm, m_opa);
|
in = zp.op_mpys(m_cond, imm, m_opa);
|
else
|
else
|
in = zp.op_mpys(m_cond, imm, m_opb, m_opa);
|
in = zp.op_mpys(m_cond, imm, m_opb, m_opa);
|
break;
|
break;
|
case OP_ROL:
|
case OP_ROL:
|
if (m_opa == zp.ZIP_Rnone)
|
if (m_opa == zp.ZIP_Rnone)
|
yyerror("ROL needs a register result");
|
yyerror("ROL needs a register result");
|
if (m_opb != zp.ZIP_Rnone)
|
if (m_opb != zp.ZIP_Rnone)
|
in = zp.op_rol(m_cond, imm, m_opb, m_opa);
|
in = zp.op_rol(m_cond, imm, m_opb, m_opa);
|
else
|
else
|
in = zp.op_rol(m_cond, imm, m_opa);
|
in = zp.op_rol(m_cond, imm, m_opa);
|
break;
|
break;
|
case OP_SUB:
|
case OP_SUB:
|
BLD_DUALOP(op_sub)
|
BLD_DUALOP(op_sub)
|
break;
|
break;
|
case OP_AND:
|
case OP_AND:
|
BLD_DUALOP(op_and)
|
BLD_DUALOP(op_and)
|
break;
|
break;
|
case OP_ADD:
|
case OP_ADD:
|
BLD_DUALOP(op_add)
|
BLD_DUALOP(op_add)
|
break;
|
break;
|
case OP_OR:
|
case OP_OR:
|
BLD_DUALOP(op_or)
|
BLD_DUALOP(op_or)
|
break;
|
break;
|
case OP_XOR:
|
case OP_XOR:
|
BLD_DUALOP(op_xor)
|
BLD_DUALOP(op_xor)
|
break;
|
break;
|
case OP_LSL:
|
case OP_LSL:
|
BLD_DUALOP(op_lsl)
|
BLD_DUALOP(op_lsl)
|
break;
|
break;
|
case OP_ASR:
|
case OP_ASR:
|
BLD_DUALOP(op_asr)
|
BLD_DUALOP(op_asr)
|
break;
|
break;
|
case OP_LSR:
|
case OP_LSR:
|
BLD_DUALOP(op_lsr)
|
BLD_DUALOP(op_lsr)
|
break;
|
break;
|
case OP_LOD:
|
case OP_LOD:
|
if (m_opb != zp.ZIP_Rnone)
|
if (m_opb != zp.ZIP_Rnone)
|
in = zp.op_lod(m_cond, imm, m_opb, m_opa);
|
in = zp.op_lod(m_cond, imm, m_opb, m_opa);
|
else
|
else
|
in = zp.op_lod(m_cond, imm, m_opa);
|
in = zp.op_lod(m_cond, imm, m_opa);
|
break;
|
break;
|
case OP_STO:
|
case OP_STO:
|
if (m_opb != zp.ZIP_Rnone)
|
if (m_opb != zp.ZIP_Rnone)
|
in = zp.op_sto(m_cond, m_opa, imm, m_opb);
|
in = zp.op_sto(m_cond, m_opa, imm, m_opb);
|
else
|
else
|
in = zp.op_sto(m_cond, m_opa, imm);
|
in = zp.op_sto(m_cond, m_opa, imm);
|
break;
|
break;
|
|
case OP_BREV:
|
|
BLD_DUALOP(op_brev);
|
|
break;
|
|
case OP_POPC:
|
|
BLD_DUALOP(op_popc);
|
|
break;
|
case OP_LDI:
|
case OP_LDI:
|
if ((!fitsin(imm, 24))||(m_cond != zp.ZIPC_ALWAYS)) {
|
if ((!fitsin(imm, 23))||(m_cond != zp.ZIPC_ALWAYS)) {
|
if (m_opa == zp.ZIP_PC)
|
if (m_opa == zp.ZIP_PC)
|
yyerror("Cannot LDI 32-bit addresses into PC register!");
|
yyerror("Cannot LDI 32-bit addresses into PC register!");
|
LLINE *lln = new LLINE;
|
LLINE *lln = new LLINE;
|
lln->addline(new ILINE(zp.op_ldihi(m_cond, (imm>>16)&0x0ffff, m_opa)));
|
lln->addline(new ILINE(zp.op_ldihi(m_cond, (imm>>16)&0x0ffff, m_opa)));
|
lln->addline(new ILINE(zp.op_ldilo(m_cond, imm&0x0ffff, m_opa)));
|
lln->addline(new ILINE(zp.op_ldilo(m_cond, imm&0x0ffff, m_opa)));
|
lln->m_lineno = m_lineno;
|
lln->m_lineno = m_lineno;
|
return lln;
|
return lln;
|
} else
|
} else
|
in = zp.op_ldi(imm, m_opa);
|
in = zp.op_ldi(imm, m_opa);
|
break;
|
break;
|
|
case OP_DIVU:
|
|
BLD_DUALOP(op_divu);
|
|
break;
|
|
case OP_DIVS:
|
|
BLD_DUALOP(op_divs);
|
|
break;
|
case OP_CLRF:
|
case OP_CLRF:
|
in = zp.op_clrf(m_cond, m_opb);
|
in = zp.op_clrf(m_cond, m_opb);
|
break;
|
break;
|
case OP_NOT:
|
case OP_NOT:
|
in = zp.op_not(m_cond, m_opb);
|
in = zp.op_not(m_cond, m_opb);
|
break;
|
break;
|
case OP_NEG:
|
case OP_NEG:
|
if (m_cond != zp.ZIPC_ALWAYS) {
|
if (m_cond != zp.ZIPC_ALWAYS) {
|
LLINE *lln = new LLINE;
|
LLINE *lln = new LLINE;
|
lln->addline(new ILINE(zp.op_mov(m_cond,-1,m_opb,m_opb)));
|
lln->addline(new ILINE(zp.op_mov(m_cond,-1,m_opb,m_opb)));
|
lln->addline(new ILINE(zp.op_not(m_cond,m_opb)));
|
lln->addline(new ILINE(zp.op_not(m_cond,m_opb)));
|
return lln;
|
return lln;
|
} else {
|
} else {
|
LLINE *lln = new LLINE;
|
LLINE *lln = new LLINE;
|
lln->addline(new ILINE(zp.op_not(m_opb)));
|
lln->addline(new ILINE(zp.op_not(m_opb)));
|
lln->addline(new ILINE(zp.op_add(1,m_opb)));
|
lln->addline(new ILINE(zp.op_add(1,m_opb)));
|
return lln;
|
return lln;
|
}break;
|
}break;
|
case OP_JMP:
|
case OP_JMP:
|
if (m_opb == zp.ZIP_Rnone) {
|
if (m_opb == zp.ZIP_Rnone) {
|
if (m_cond != zp.ZIPC_ALWAYS)
|
if (m_cond != zp.ZIPC_ALWAYS)
|
yyerror("JMP: Conditions are not allowed for absolute jumps.");
|
yyerror("JMP: Conditions are not allowed for absolute jumps.");
|
imm &= (1<<24)-1;
|
imm &= (1<<23)-1;
|
if (!fitsin(imm, 24))
|
if (!fitsin(imm, 23))
|
yyerror("JMP: Absolute jump address out of range");
|
yyerror("JMP: Absolute jump address out of range");
|
in = zp.op_ldi(imm, zp.ZIP_PC);
|
in = zp.op_ldi(imm, zp.ZIP_PC);
|
} else if (fitsin(imm,16)) {
|
} else if (fitsin(imm,13)) {
|
in = zp.op_mov(m_cond, imm, m_opb, zp.ZIP_PC);
|
in = zp.op_mov(m_cond, imm, m_opb, zp.ZIP_PC);
|
} else if (fitsin(imm,20))
|
} else if (fitsin(imm,18))
|
in = zp.op_add(m_cond, imm, m_opb, zp.ZIP_PC);
|
in = zp.op_add(m_cond, imm, m_opb, zp.ZIP_PC);
|
else
|
else
|
yyerror("JMP: Immediate out of range");
|
yyerror("JMP: Immediate out of range");
|
break;
|
break;
|
case OP_BRA:
|
case OP_BRA:
|
BLD_BRANCH(op_bra,ZIPC_ALWAYS)
|
BLD_BRANCH(op_bra,ZIPC_ALWAYS)
|
break;
|
break;
|
case OP_BZ:
|
case OP_BZ:
|
BLD_BRANCH(op_brz,ZIPC_Z)
|
BLD_BRANCH(op_brz,ZIPC_Z)
|
break;
|
break;
|
case OP_BNZ:
|
case OP_BNZ:
|
BLD_BRANCH(op_bnz,ZIPC_NZ)
|
BLD_BRANCH(op_bnz,ZIPC_NZ)
|
break;
|
break;
|
case OP_BGE:
|
case OP_BGE:
|
BLD_BRANCH(op_bge,ZIPC_GE)
|
BLD_BRANCH(op_bge,ZIPC_GE)
|
break;
|
break;
|
case OP_BGT:
|
case OP_BGT:
|
BLD_BRANCH(op_bgt,ZIPC_GT)
|
BLD_BRANCH(op_bgt,ZIPC_GT)
|
break;
|
break;
|
case OP_BLT:
|
case OP_BLT:
|
BLD_BRANCH(op_blt,ZIPC_LT)
|
BLD_BRANCH(op_blt,ZIPC_LT)
|
break;
|
break;
|
case OP_BRC:
|
case OP_BRC:
|
BLD_BRANCH(op_brc,ZIPC_C)
|
BLD_BRANCH(op_brc,ZIPC_C)
|
break;
|
break;
|
case OP_BRV:
|
case OP_BRV:
|
BLD_BRANCH(op_brv,ZIPC_V)
|
BLD_BRANCH(op_brv,ZIPC_V)
|
break;
|
break;
|
case OP_CLR:
|
case OP_CLR:
|
if((m_cond == zp.ZIPC_ALWAYS))
|
if((m_cond == zp.ZIPC_ALWAYS))
|
in = zp.op_clr(m_opb);
|
in = zp.op_clr(m_opb);
|
else
|
else
|
in = zp.op_clrf(m_cond, m_opb);
|
in = zp.op_clrf(m_cond, m_opb);
|
break;
|
break;
|
case OP_TRAP:
|
case OP_TRAP:
|
if((m_opb == zp.ZIP_Rnone)&&(m_cond == zp.ZIPC_ALWAYS))
|
if((m_opb == zp.ZIP_Rnone)&&(m_cond == zp.ZIPC_ALWAYS))
|
in = zp.op_ldi(imm, zp.ZIP_CC);
|
in = zp.op_ldi(imm, zp.ZIP_CC);
|
else if((m_opb == zp.ZIP_Rnone)&&((imm&0x0ffdf)==imm))
|
else if((m_opb == zp.ZIP_Rnone)&&((imm&0x0ffdf)==imm))
|
in = zp.op_ldilo(m_cond, imm & 0x0ffdf, zp.ZIP_CC);
|
in = zp.op_ldilo(m_cond, imm & 0x0ffdf, zp.ZIP_CC);
|
else if((m_opb != zp.ZIP_Rnone)&&(fitsin(imm, 16)))
|
else if((m_opb != zp.ZIP_Rnone)&&(fitsin(imm, 13)))
|
in = zp.op_mov(m_cond, imm, m_opb, zp.ZIP_CC);
|
in = zp.op_mov(m_cond, imm, m_opb, zp.ZIP_CC);
|
else {
|
else {
|
yyerror("Illegal trap!");
|
yyerror("Illegal trap!");
|
in = zp.op_trap(m_cond, 0);
|
in = zp.op_trap(m_cond, 0);
|
}
|
}
|
break;
|
break;
|
case OP_RETN: in = zp.op_retn(m_cond); break;
|
case OP_RETN: // yywarn("RETN opcode is deprecated");
|
|
in = zp.op_lod(m_cond, imm, m_opb, m_opa);
|
|
in = zp.op_lod(m_cond, -1, zp.ZIP_SP, zp.ZIP_PC);
|
|
break;
|
case OP_HALT: in = zp.op_halt(m_cond); break;
|
case OP_HALT: in = zp.op_halt(m_cond); break;
|
case OP_RTU: in = zp.op_rtu(m_cond); break;
|
case OP_RTU: in = zp.op_rtu(m_cond); break;
|
case OP_BUSY: in = zp.op_busy(m_cond); break;
|
case OP_BUSY: in = zp.op_busy(m_cond); break;
|
case OP_BREAK: in = zp.op_break(); break;
|
|
case OP_NOOP: in = zp.op_noop(); break;
|
case OP_NOOP: in = zp.op_noop(); break;
|
|
case OP_BREAK: in = zp.op_break(); break;
|
|
case OP_LOCK: in = zp.op_lock(); break;
|
// OP_LJMP:
|
// OP_LJMP:
|
case OP_NONE:
|
case OP_NONE:
|
default: { char ebuf[256]; sprintf(ebuf, "Unrecognized OP-Code, %d, NONE = %d, CLR=%d", m_opcode, OP_NONE, OP_CLR);
|
default: { char ebuf[256]; sprintf(ebuf, "Unrecognized OP-Code, %d, NONE = %d, CLR=%d", m_opcode, OP_NONE, OP_CLR);
|
yyerror(ebuf);
|
yyerror(ebuf);
|
in = zp.op_noop(); break;
|
in = zp.op_noop(); break;
|
}
|
}
|
}
|
}
|
ILINE *rs = new ILINE(in);
|
ILINE *rs = new ILINE(in);
|
rs->m_lineno = m_lineno;
|
rs->m_lineno = m_lineno;
|
}
|
}
|
|
|
int TLINE::nlines(void) {
|
int TLINE::nlines(void) {
|
if ((m_opcode == OP_LDI)&&( (!(m_imm->isdefined()))
|
if ((m_opcode == OP_LDI)&&( (!(m_imm->isdefined()))
|
|| (m_cond != ZPARSER::ZIPC_ALWAYS)
|
|| (m_cond != ZPARSER::ZIPC_ALWAYS)
|
|| (!fitsin(m_imm->eval(), 24)) )) {
|
|| (!fitsin(m_imm->eval(), 23)) )) {
|
return 2;
|
return 2;
|
}
|
}
|
return 1;
|
return 1;
|
}
|
}
|
|
|
unsigned int TLINE::eval(const int lno) {
|
unsigned int TLINE::eval(const int lno) {
|
if (!isdefined())
|
if (!isdefined())
|
return DEFAULT_LINE;
|
return DEFAULT_LINE;
|
else {
|
else {
|
ASMLINE *ln = this->eval();
|
ASMLINE *ln = this->eval();
|
unsigned int val = ln->eval(lno);
|
unsigned int val = ln->eval(lno);
|
delete ln;
|
delete ln;
|
return val;
|
return val;
|
}
|
}
|
}
|
}
|
|
|
void TLINE::dump(FILE *fp) {
|
void TLINE::dump(FILE *fp) {
|
if (m_state == 'V')
|
if (m_state == 'V')
|
fprintf(fp, "Void @%d\n", m_lineno);
|
fprintf(fp, "Void @%d\n", m_lineno);
|
else if (m_state != 'T')
|
else if (m_state != 'T')
|
fprintf(fp, "TLINE state != T (== %c)\n", m_state);
|
fprintf(fp, "TLINE state != T (== %c)\n", m_state);
|
else {
|
else {
|
fprintf(fp, "TLINE @%d\n", m_lineno);
|
fprintf(fp, "TLINE @%d\n", m_lineno);
|
switch(m_opcode) {
|
switch(m_opcode) {
|
case OP_CMP: fprintf(fp, "\tTLINE OP = CMP\n");
|
case OP_CMP: fprintf(fp, "\tTLINE OP = CMP\n");
|
break;
|
break;
|
case OP_TST: fprintf(fp, "\tTLINE OP = TST\n");
|
case OP_TST: fprintf(fp, "\tTLINE OP = TST\n");
|
break;
|
break;
|
case OP_MOV: fprintf(fp, "\tTLINE OP = MOV\n");
|
case OP_MOV: fprintf(fp, "\tTLINE OP = MOV\n");
|
break;
|
break;
|
case OP_LDIHI:fprintf(fp,"\tTLINE OP = LDIHI\n");
|
case OP_LDIHI:fprintf(fp,"\tTLINE OP = LDIHI\n");
|
break;
|
break;
|
case OP_LDILO:fprintf(fp,"\tTLINE OP = LDILO\n");
|
case OP_LDILO:fprintf(fp,"\tTLINE OP = LDILO\n");
|
break;
|
break;
|
case OP_MPYU: fprintf(fp,"\tTLINE OP = MPYU\n");
|
case OP_MPYU: fprintf(fp,"\tTLINE OP = MPYU\n");
|
break;
|
break;
|
case OP_MPYS: fprintf(fp,"\tTLINE OP = MPYS\n");
|
case OP_MPYS: fprintf(fp,"\tTLINE OP = MPYS\n");
|
break;
|
break;
|
case OP_ROL: fprintf(fp, "\tTLINE OP = ROL\n");
|
case OP_ROL: fprintf(fp, "\tTLINE OP = ROL\n");
|
break;
|
break;
|
case OP_SUB: fprintf(fp, "\tTLINE OP = SUB\n");
|
case OP_SUB: fprintf(fp, "\tTLINE OP = SUB\n");
|
break;
|
break;
|
case OP_AND: fprintf(fp, "\tTLINE OP = AND\n");
|
case OP_AND: fprintf(fp, "\tTLINE OP = AND\n");
|
break;
|
break;
|
case OP_ADD: fprintf(fp, "\tTLINE OP = ADD\n");
|
case OP_ADD: fprintf(fp, "\tTLINE OP = ADD\n");
|
break;
|
break;
|
case OP_OR: fprintf(fp, "\tTLINE OP = OR\n");
|
case OP_OR: fprintf(fp, "\tTLINE OP = OR\n");
|
break;
|
break;
|
case OP_XOR: fprintf(fp, "\tTLINE OP = XOR\n");
|
case OP_XOR: fprintf(fp, "\tTLINE OP = XOR\n");
|
break;
|
break;
|
case OP_LSL: fprintf(fp, "\tTLINE OP = LSL\n");
|
case OP_LSL: fprintf(fp, "\tTLINE OP = LSL\n");
|
break;
|
break;
|
case OP_ASR: fprintf(fp, "\tTLINE OP = ASR\n");
|
case OP_ASR: fprintf(fp, "\tTLINE OP = ASR\n");
|
break;
|
break;
|
case OP_LSR: fprintf(fp, "\tTLINE OP = LSR\n");
|
case OP_LSR: fprintf(fp, "\tTLINE OP = LSR\n");
|
break;
|
break;
|
case OP_LOD: fprintf(fp, "\tTLINE OP = LOD\n");
|
case OP_LOD: fprintf(fp, "\tTLINE OP = LOD\n");
|
break;
|
break;
|
case OP_STO: fprintf(fp, "\tTLINE OP = STO\n");
|
case OP_STO: fprintf(fp, "\tTLINE OP = STO\n");
|
break;
|
break;
|
case OP_LDI: fprintf(fp, "\tTLINE OP = LDI\n");
|
case OP_LDI: fprintf(fp, "\tTLINE OP = LDI\n");
|
break;
|
break;
|
case OP_CLRF: fprintf(fp, "\tTLINE OP = CLRF\n");
|
case OP_CLRF: fprintf(fp, "\tTLINE OP = CLRF\n");
|
break;
|
break;
|
case OP_NOT: fprintf(fp, "\tTLINE OP = NOT\n");
|
case OP_NOT: fprintf(fp, "\tTLINE OP = NOT\n");
|
break;
|
break;
|
case OP_JMP: fprintf(fp, "\tTLINE OP = JMP\n");
|
case OP_JMP: fprintf(fp, "\tTLINE OP = JMP\n");
|
break;
|
break;
|
case OP_BRA: fprintf(fp, "\tTLINE OP = BRA\n");
|
case OP_BRA: fprintf(fp, "\tTLINE OP = BRA\n");
|
break;
|
break;
|
case OP_BZ:
|
case OP_BZ:
|
case OP_BNZ:
|
case OP_BNZ:
|
case OP_BGE:
|
case OP_BGE:
|
case OP_BGT:
|
case OP_BGT:
|
case OP_BLT:
|
case OP_BLT:
|
case OP_BRC:
|
case OP_BRC:
|
case OP_BRV:
|
case OP_BRV:
|
fprintf(fp, "\tTLINE OP = BRA.C\n");
|
fprintf(fp, "\tTLINE OP = BRA.C\n");
|
break;
|
break;
|
case OP_CLR: fprintf(fp, "\tTLINE OP = CLR\n");
|
case OP_CLR: fprintf(fp, "\tTLINE OP = CLR\n");
|
break;
|
break;
|
case OP_NEG: fprintf(fp, "\tTLINE OP = NEG\n");
|
case OP_NEG: fprintf(fp, "\tTLINE OP = NEG\n");
|
break;
|
break;
|
case OP_TRAP: fprintf(fp, "\tTLINE OP = TRAP\n");
|
case OP_TRAP: fprintf(fp, "\tTLINE OP = TRAP\n");
|
break;
|
break;
|
case OP_HALT: fprintf(fp, "\tTLINE OP = HALT\n");
|
case OP_HALT: fprintf(fp, "\tTLINE OP = HALT\n");
|
break;
|
break;
|
case OP_RTU: fprintf(fp, "\tTLINE OP = RTU\n");
|
case OP_RTU: fprintf(fp, "\tTLINE OP = RTU\n");
|
break;
|
break;
|
case OP_BUSY: fprintf(fp, "\tTLINE OP = BUSY\n");
|
case OP_BUSY: fprintf(fp, "\tTLINE OP = BUSY\n");
|
break;
|
break;
|
case OP_BREAK: fprintf(fp, "\tTLINE OP = BREAK\n");
|
case OP_BREAK: fprintf(fp, "\tTLINE OP = BREAK\n");
|
break;
|
break;
|
case OP_NOOP: fprintf(fp, "\tTLINE OP = NOOP\n");
|
case OP_NOOP: fprintf(fp, "\tTLINE OP = NOOP\n");
|
|
case OP_LOCK: fprintf(fp, "\tTLINE OP = LOCK\n");
|
break;
|
break;
|
// OP_LJMP:
|
// OP_LJMP:
|
case OP_NONE:
|
case OP_NONE:
|
default:
|
default:
|
fprintf(fp, "\tTLINE OP = (Unrecognized, %d)\n", m_opcode);
|
fprintf(fp, "\tTLINE OP = (Unrecognized, %d)\n", m_opcode);
|
break;
|
break;
|
}
|
}
|
if (m_cond == 0)
|
if (m_cond == 0)
|
fprintf(fp, "\tTLINE COND = (Always)\n");
|
fprintf(fp, "\tTLINE COND = (Always)\n");
|
else
|
else
|
fprintf(fp, "\tTLINE COND = %s\n", zop_ccstr[m_cond&0x07]);
|
fprintf(fp, "\tTLINE COND = %s\n", zop_ccstr[m_cond&0x07]);
|
if (m_imm == NULL)
|
if (m_imm == NULL)
|
fprintf(fp, "\tTLINE imm = (NULL)\n");
|
fprintf(fp, "\tTLINE imm = (NULL)\n");
|
else if (!m_imm->isdefined()) {
|
else if (!m_imm->isdefined()) {
|
m_imm->reduce();
|
m_imm->reduce();
|
fprintf(fp, "\tTLINE imm = ");
|
fprintf(fp, "\tTLINE imm = ");
|
m_imm->dump(fp);
|
m_imm->dump(fp);
|
fprintf(fp, "\n");
|
fprintf(fp, "\n");
|
} else
|
} else
|
fprintf(fp, "\tTLINE imm = %d\n", m_imm->eval());
|
fprintf(fp, "\tTLINE imm = %d\n", m_imm->eval());
|
if (m_opb != ZPARSER::ZIP_Rnone)
|
if (m_opb != ZPARSER::ZIP_Rnone)
|
fprintf(fp, "\tTLINE opb = %d\n", m_opb);
|
fprintf(fp, "\tTLINE opb = %d\n", m_opb);
|
if (m_opa != ZPARSER::ZIP_Rnone)
|
if (m_opa != ZPARSER::ZIP_Rnone)
|
fprintf(fp, "\tTLINE opa = %d\n", m_opa);
|
fprintf(fp, "\tTLINE opa = %d\n", m_opa);
|
}
|
}
|
}
|
}
|
|
|
|
|
// Now, for our symbol table
|
// Now, for our symbol table
|
class SYMTABLE_ENTRY {
|
class SYMTABLE_ENTRY {
|
private:
|
private:
|
int m_recursion_check;
|
int m_recursion_check;
|
|
|
std::string &trim(std::string &s) {
|
std::string &trim(std::string &s) {
|
std::string::iterator ptr = s.end()-1;
|
std::string::iterator ptr = s.end()-1;
|
|
|
while((ptr >= s.begin())&&(isspace(*ptr)))
|
while((ptr >= s.begin())&&(isspace(*ptr)))
|
*ptr-- = '\0';
|
*ptr-- = '\0';
|
if (*ptr == ':')
|
if (*ptr == ':')
|
*ptr-- = '\0';
|
*ptr-- = '\0';
|
|
|
// printf("STORING: %s\n", s.c_str());
|
// printf("STORING: %s\n", s.c_str());
|
|
|
return s;
|
return s;
|
}
|
}
|
|
|
public:
|
public:
|
std::string m_name;
|
std::string m_name;
|
AST *m_value;
|
AST *m_value;
|
SYMTABLE_ENTRY(const char *str) : m_recursion_check(0), m_name(str), m_value(NULL) {
|
SYMTABLE_ENTRY(const char *str) : m_recursion_check(0), m_name(str), m_value(NULL) {
|
trim(m_name);
|
trim(m_name);
|
} SYMTABLE_ENTRY(const char *str, AST *v) : m_recursion_check(0), m_name(str), m_value(v) {
|
} SYMTABLE_ENTRY(const char *str, AST *v) : m_recursion_check(0), m_name(str), m_value(v) {
|
trim(m_name);
|
trim(m_name);
|
} ~SYMTABLE_ENTRY(void) {
|
} ~SYMTABLE_ENTRY(void) {
|
if (m_value)
|
if (m_value)
|
delete m_value;
|
delete m_value;
|
}
|
}
|
|
|
SYMTABLE_ENTRY &operator=(AST *new_value) {
|
SYMTABLE_ENTRY &operator=(AST *new_value) {
|
if (m_value)
|
if (m_value)
|
delete m_value;
|
delete m_value;
|
m_value = new_value;
|
m_value = new_value;
|
}
|
}
|
|
|
bool isdefined(void) {
|
bool isdefined(void) {
|
if (m_recursion_check > 0) {
|
if (m_recursion_check > 0) {
|
fprintf(stderr, "RECURSION DETECTED! Symbol: %s\n",
|
fprintf(stderr, "RECURSION DETECTED! Symbol: %s\n",
|
m_name.c_str());
|
m_name.c_str());
|
return false;
|
return false;
|
}
|
}
|
m_recursion_check = 1;
|
m_recursion_check = 1;
|
if (m_value->m_node_type != 'N')
|
if (m_value->m_node_type != 'N')
|
m_value->reduce();
|
m_value->reduce();
|
bool answer = m_value->isdefined();
|
bool answer = m_value->isdefined();
|
m_recursion_check = 0;
|
m_recursion_check = 0;
|
return answer;
|
return answer;
|
}
|
}
|
int val(void) {
|
int val(void) {
|
if ((m_value->isdefined())&&(m_value->m_node_type != 'N')) {
|
if ((m_value->isdefined())&&(m_value->m_node_type != 'N')) {
|
int v = m_value->eval();
|
int v = m_value->eval();
|
AST *tmp;
|
AST *tmp;
|
tmp = m_value;
|
tmp = m_value;
|
m_value = new AST_NUMBER(v);
|
m_value = new AST_NUMBER(v);
|
delete tmp;
|
delete tmp;
|
} return (m_value->eval());
|
} return (m_value->eval());
|
}
|
}
|
void dump(FILE *fp) { m_value->dump(fp); }
|
void dump(FILE *fp) { m_value->dump(fp); }
|
};
|
};
|
|
|
class SYMBOL_TABLE {
|
class SYMBOL_TABLE {
|
private:
|
private:
|
typedef SYMTABLE_ENTRY *TBLV;
|
typedef SYMTABLE_ENTRY *TBLV;
|
typedef std::list<TBLV> TBLT;
|
typedef std::list<TBLV> TBLT;
|
|
|
TBLT m_tbl;
|
TBLT m_tbl;
|
|
|
TBLT::iterator lookup(const char *str) {
|
TBLT::iterator lookup(const char *str) {
|
TBLT::iterator i = m_tbl.begin();
|
TBLT::iterator i = m_tbl.begin();
|
for(; (i!=m_tbl.end())&&(strcmp(str, (*i)->m_name.c_str())>0);
|
for(; (i!=m_tbl.end())&&(strcmp(str, (*i)->m_name.c_str())>0);
|
i++)
|
i++)
|
;
|
;
|
if ((i != m_tbl.end())&&(strcmp(str,(*i)->m_name.c_str())==0))
|
if ((i != m_tbl.end())&&(strcmp(str,(*i)->m_name.c_str())==0))
|
return i;
|
return i;
|
return m_tbl.end();
|
return m_tbl.end();
|
}
|
}
|
|
|
public:
|
public:
|
SYMBOL_TABLE(void) {}
|
SYMBOL_TABLE(void) {}
|
~SYMBOL_TABLE(void) {
|
~SYMBOL_TABLE(void) {
|
TBLT::iterator i = m_tbl.begin();
|
TBLT::iterator i = m_tbl.begin();
|
while(i != m_tbl.end()) {
|
while(i != m_tbl.end()) {
|
delete (*i);
|
delete (*i);
|
i = m_tbl.erase(i);
|
i = m_tbl.erase(i);
|
}
|
}
|
}
|
}
|
|
|
void define(const char *key, AST *value) {
|
void define(const char *key, AST *value) {
|
SYMTABLE_ENTRY *v = new SYMTABLE_ENTRY(key, value);
|
SYMTABLE_ENTRY *v = new SYMTABLE_ENTRY(key, value);
|
TBLT::iterator i = m_tbl.begin();
|
TBLT::iterator i = m_tbl.begin();
|
for(; (i!=m_tbl.end())&&(strcmp(key, (*i)->m_name.c_str())>0);
|
for(; (i!=m_tbl.end())&&(strcmp(key, (*i)->m_name.c_str())>0);
|
i++)
|
i++)
|
;
|
;
|
m_tbl.insert(i, v);
|
m_tbl.insert(i, v);
|
|
|
/*
|
/*
|
fprintf(stderr, "Defining: %s = ", key);
|
fprintf(stderr, "Defining: %s = ", key);
|
value->dump(stderr);
|
value->dump(stderr);
|
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
*/
|
*/
|
}
|
}
|
|
|
bool isdefined(const char *key) {
|
bool isdefined(const char *key) {
|
TBLT::iterator i = lookup(key);
|
TBLT::iterator i = lookup(key);
|
if (i == m_tbl.end()) {
|
if (i == m_tbl.end()) {
|
// fprintf(stderr, "%s is not in the symbol table\n", key);
|
// fprintf(stderr, "%s is not in the symbol table\n", key);
|
return false;
|
return false;
|
} else {
|
} else {
|
bool defined = (*i)->isdefined();
|
bool defined = (*i)->isdefined();
|
/*
|
/*
|
if (!defined) {
|
if (!defined) {
|
fprintf(stderr, "KEY: %s = ", key);
|
fprintf(stderr, "KEY: %s = ", key);
|
(*i)->dump(stderr);
|
(*i)->dump(stderr);
|
fprintf(stderr, " is not yet defined\n");
|
fprintf(stderr, " is not yet defined\n");
|
} */
|
} */
|
return (*i)->isdefined();
|
return (*i)->isdefined();
|
}
|
}
|
}
|
}
|
|
|
int value(const char *key) {
|
int value(const char *key) {
|
TBLT::iterator i = lookup(key);
|
TBLT::iterator i = lookup(key);
|
if (i == m_tbl.end())
|
if (i == m_tbl.end())
|
return 0;
|
return 0;
|
else
|
else
|
return (*i)->val();
|
return (*i)->val();
|
}
|
}
|
};
|
};
|
|
|
SYMBOL_TABLE *global_context = NULL, *file_context = NULL;
|
SYMBOL_TABLE *global_context = NULL, *file_context = NULL;
|
|
|
bool stb_isdefined(const char *key) {
|
bool stb_isdefined(const char *key) {
|
if ((file_context)&&(file_context->isdefined(key)))
|
if ((file_context)&&(file_context->isdefined(key)))
|
return true;
|
return true;
|
else
|
else
|
return global_context->isdefined(key);
|
return global_context->isdefined(key);
|
} int stb_value(const char *key) {
|
} int stb_value(const char *key) {
|
if ((file_context)&&(file_context->isdefined(key)))
|
if ((file_context)&&(file_context->isdefined(key)))
|
return file_context->value(key);
|
return file_context->value(key);
|
else
|
else
|
return global_context->value(key);
|
return global_context->value(key);
|
} void stb_define(const char *key, AST *value) {
|
} void stb_define(const char *key, AST *value) {
|
file_context->define(key, value);
|
file_context->define(key, value);
|
} void gbl_define(const char *key, AST *value) {
|
} void gbl_define(const char *key, AST *value) {
|
global_context->define(key, value);
|
global_context->define(key, value);
|
}
|
}
|
|
|
void create_new_context(void) {
|
void create_new_context(void) {
|
if (global_context == NULL)
|
if (global_context == NULL)
|
global_context = new SYMBOL_TABLE;
|
global_context = new SYMBOL_TABLE;
|
if (file_context != NULL)
|
if (file_context != NULL)
|
delete file_context;
|
delete file_context;
|
file_context = new SYMBOL_TABLE;
|
file_context = new SYMBOL_TABLE;
|
}
|
}
|
|
|
|
|
// Convenience functions for accessing the symbol table
|
// Convenience functions for accessing the symbol table
|
bool stb_isdefined(const std::string &key) {
|
bool stb_isdefined(const std::string &key) {
|
bool answer = stb_isdefined(key.c_str());
|
bool answer = stb_isdefined(key.c_str());
|
return answer;
|
return answer;
|
} int stb_value(const std::string &key) {
|
} int stb_value(const std::string &key) {
|
return stb_value(key.c_str());
|
return stb_value(key.c_str());
|
} void stb_define(const std::string &key, AST *value) {
|
} void stb_define(const std::string &key, AST *value) {
|
stb_define(key.c_str(), value);
|
stb_define(key.c_str(), value);
|
} void gbl_define(const std::string &key, AST *value) {
|
} void gbl_define(const std::string &key, AST *value) {
|
gbl_define(key.c_str(), value);
|
gbl_define(key.c_str(), value);
|
}
|
}
|
|
|
|
|
|
|