A-780 CPU
User's Guide

An FPGA project recreating the Z80

© 2014 Goran Devic

12/14/2014

A-780 CPU User’s Guide

Revision History

Revision

2014-12-14 1.0 Initial revision

BaltazarStudios.com Page 1

A-780 CPU User’s Guide

Table of Contents

REVISION HISTOIY .iiiiiiiiiiiiiteee ettt ettt e e e ettt e e e e e e sttt e e e e e e s e abbbeeeeeeeesaassbaaeeeeeeesannsnaaaeeessnnan 1
T ageTe [V AT] o HUUT T PP URTOPPTOTOUPRI 3
L Co) (= Tot DT =Tot o] VAN A (U [o1 (U1 = PP PPPPPPPPPPPPRY 4
ENVIFONMENT Looiiiiiii et a e b e e s a e e e s b e e e ssbaeeesas 5
STIMUIATION 1.ttt et e b e s b e s ae e s at e st e e bt e b e e s be e s aeesae e et e e bt e abeesanesanesabeebeennes 6
MOAUIE SIMUIGTIONS ...ttt sttt e st e e st e s bt e e sabeesbeeesabeesbbeesabeesaseeesabeens 6
TOP-1EVEI SIMUIGLIONS «..eeiii ettt e e et e e e s e e e s sabee e e eeabeeeeseabaeeeesaseeeeenarenas 9
V=T g1 Tor- Y d o] TR OO O T T PP U PR PP P TOTOTUPPRO 11
FUSE TOSTS ittt e st e e s e e e s a e e s senre e e s snee 11
Selected FUNCLIONAT EESES. ..o ittt ettt b e s bttt e st e sbeesaeesaneeas 12
Z80 ASSEMDBIY [EVEI TESESvviiiiiiie ettt et e e et e e e e e bee e e e e ba e e e et ae e e esabeeeeeebeeeeeanreeeeennreeas 13
00 ettt ettt ettt ettt ettt h bt e ettt e ht e e et e e e be e e s a b e e e he e e aee e e beeeahte e et eeebee e e beeehaeeaareesbeeenares 14
PLA ChECKET TOOI ...ttt ettt ettt ettt ettt et st e sa bt e st e e sab e e sabtesabeesabeeesabeesabeeenteesaneeenanes 14
AFAUINO TOOIS ..ttt s bt e s bt sa e et e e bt e sbeesaeesabesabeeabe e beeabeeemeeeneeeneean 17
LN =Y = = 1 o o RS 18
T LT = Tol T OO O OO PRU PP PRSP 19
Y- TaaY o LI g aY o1 (=T a1t 0] = 4 o 3 PUPPPRNt 20
Y1007] L= o 1 S PP UPR 20
Yo Tol Y A QY o T=Tox { ¥ 1o PP 21
F AN 1YY o Tl =Te I o] o1 [of- SR URRRN 23
MOIfYiNg The A-Z80 CPU......ooiiiiieee ettt ettt e ee it e e e et e e e e ebte e e e ebteeeeebteeaeastseaeasteseesssaeassassenassnes 23

BaltazarStudios.com Page 2

A-780 CPU User’s Guide

Introduction

A-Z80 is a conceptual implementation of the venerable Zilog® Z80 processor targeted to synthesize and
run on a modern FPGA device. It differs from the existing Z80 implementations in that it is designed
from the ground-up through the schematics and low-level gates.

This design is capable of mimicking the actual Z80 CPU and it illustrates its inner workings.

The A-Z80 implementation strives to be internally structurally identical to the original Z80. Using this
approach the model achieves a full cycle accuracy and has identical behavior for all documented and
undocumented features ") not by explicitly hard-coding them but by mimicking their actual design.

Various Zilog Z80 references are widely available so the CPU, its instructions and behavior will not be
covered in this document.

This document focuses on the structure and mechanics of working with the A-Z80 project; it should help
you understand it and incorporate it into your designs.

You can read more about the conception and implementation of the A-Z80 on its home website:
www.baltazarstudios.com .

BaltazarStudios.com Page 3

http://www.baltazarstudios.com/

A-780 CPU User’s Guide

Project Directory Structure

A-Z80 project can be downloaded at OPENCORES as a SVN repo http://opencores.org/project,a-z80 and
also on Bitbucket: https://bitbucket.org/gdevic/a-z80 .

The following table describes its hierarchical directory structure:

Directory Sub-directory Description

cpu Contains all core files of the A-Z80 CPU
alu Arithmetical and Logical Unit files
bus Various bus-related files
control Control unit files
registers Register block files
toplevel A-Z80 top level interfaces and projects

docs Documentation and schematic images

host Two implementations using the A-Z80 on Altera DE1 FPGA
basic Basic computer containing UART mainly for testing and verification
zxspectrum Sinclair ZX Spectrum implementation

resources General project resources and scripts

tools Building and testing utilities and misc. files
Arduino Software for Arduino Mega dongle to interface with a Z80
dongle Dongle and simulation scripts and golden files
z80_pla_checker Windows utility to test and create A-Z80 PLA tables
zmac Z80 test and verification assembler files

BaltazarStudios.com Page 4

http://opencores.org/project,a-z80
https://bitbucket.org/gdevic/a-z80

A-780 CPU User’s Guide

Environment

A minimal set of tools needed to compile various parts of the project is:

e Altera Quartus Il Web Edition (Free)

e ModelSim (Altera edition) — needed only for module simulation (Free)

e Python 2.7 — needed only to change and compile CPU modules. All necessary files needed to
include A-Z80 sources in your own project are included (Free)

e Microsoft Visual Studio 2010 SP1 — needed only to recompile the z80 pla_checker tool yourself.
This is normally not needed since the sources and precompiled executable are checked in with
the project.

This project is developed and tested on a Windows 7 OS. Your mileage may vary on Linux.

All designs are tested on an Altera FPGA DE1 board:
http://www.altera.com/education/univ/materials/boards/del/unv-del-board.html

This particular board has a Cyclone Il EP2C20F484C7 FPGA alongside a number of useful peripherals
including a 512 KB SRAM bank, PS/2 keyboard, UART and a VGA connector. Project can easily be ported
to similar boards since Verilog (and SystemVerilog) files that comprise A-Z80 and other add-on designs in
this package are synthesizable for other vendors (such as Xilinx) and their tool chains.

BaltazarStudios.com Page 5

http://www.altera.com/education/univ/materials/boards/de1/unv-de1-board.html

A-780 CPU User’s Guide

Simulation

Module simulations
If you start making any changes to the core A-Z80 files, you should run one or more simulations to verify
the correctness of your modifications.

Each module in the “cpu” directory contains a ModelSim simulation project that verifies the
functionality of one or more of its blocks. Before opening any project in ModelSim, run
“modelsim_setup.py” script located in the project root directory. That script will set up relative file
mappings to enable project to reside anywhere on your drive.

If you have installed and configured ModelSim correctly, double-clicking on any *.mpf file will open a
project in the ModelSim GUI.

This particular example will illustrate setting up and starting a simulation of a specific logic block in the
alu module.

Important: Before you can compile any simulation test bench, you need to create a library by typing
“vlib work” as shown:

M ModelSim ALTERA STARTER EDITION 10.1d - Custom Altera Version [=]]
File Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help
“ B-2@=2&! ¥ M H Layout [NoDesign e |
§ 1 Transcript H x| [Project - P;/Z80/cpuyalu/simulation/modelsim test_alu =—
Reading D:/Altera/13.8spl/modelsim_ase/tc J '1Name |StatJType |Ord4Modiﬁed
1/vsim/pref.tcl - Fold
OpenFile P:/Z88/cpu/alu/simulation/models = m'ft older
im/test_alu.mpF =] alu_prep_daa.v ? Verilog 3 12/121408:51:51 AM
Loading project test_alu ."_.\ alu_mux_3z.v ? Verilog 7 12/12{14 08:51:51 AM
ModelSim= vlib work ."_.\ test_prep_daa.sv ? SystemVerilog 9 121514 08:47:44 PM
."_.\ test_mux_3z.sv ? SystemVerilog 6 121514 08:47:44 PM
Modelsim= | M Testprep daa Simulation
M Testmux 3z Simulation
+H_] shifter Falder
*HC] alu Falder
+H_] ALU Complete Falder
.| |)
-] iy Library | project | 3
| |Project : test_alu |{No Design Loaded > |Fo|der Y
L

Next, select “Compile->Compile All” to compile all files that are part of a module simulation.

BaltazarStudios.com Page 6

A-780 CPU User’s Guide

ﬁ ModelSirm ALTERA STARTER EDITIONM 10.1d - Custom Altera Version
File Edit View Simulate Add Project Tools Layout Bookmarks Window Help

E o i 2 Compile.. M H Layout [NoDesign wl |
i Compile Options... - - - -

-\ Transcript — omp P Project - Pi/Z80/cpu/alu/simulation/modelsim/test_alu —

Reading D:/A cuctamc Link. ase/tc J '1Name |StatJT},'pe |Ord4Modiﬁed

1/vsim/pref.tc - - Fold

OpenFile P:/ . models = m'fc olaer

im/test_alu.mp Compile All | alu_prep_daa.v ? verilog 8 1212{1408:51:51 AM

Loading proj Compile Selected ."_.\ alu_mux_3z.v ? Verilog 7 12/12/14 08:51:51 AM

ModelSim:= v1il Compile Order L test_prep_daa.sv ® SystemVerlog 9 12/15/14 08:47:44 PM
- L test_mux_3z.sv P SystemVerlog & 12/15/14 08:47:44 PM

Compile Report...

MaodelSim:s M Test prep daa Simulation
Compile summary... M Testmux 3z Simulation

(+H_] shifter Folder

*H7] alu Folder

+H_] ALU Complete Falder

+] | Bl
~| ;Ii[Ll'brary (£ project | ke

| |Project : test_alu |<No Design Loaded =

I daa.
Iau;rep_aav y

Each project has one or more simulation configurations; each configuration tests a specific block of logic.
In addition, each configuration has its own wave file which you can load before you run a simulation.
Wave files are customized for a specific test and a handy way to quickly see all relevant signals.

In this example, we will run “Test prep daa” configuration. DAA is a Z80 instruction that adjusts
accumulator for a decimal operation. It requires calculating the adjustment addend based on the result
of a previous operation. Hence, this test is written to verify the correctness of that calculation.

Each test configuration is run by a main test bench file that is always written in a System Verilog
language with the extension *.sv. A file that runs the “Test prep daa” configuration is
“test_prep_daa.sv”.

Double-click on the “Test prep daa” configuration and your simulation should be loaded.

Open the wave window if it is not already visible and select File->Open to load a wave file as shown:

£E| Open Format | 2= |
I\.-./”\./I | .« alu » simulation » modelsim » v|&’|| Search modelsim ol
Organize MNew folder i= « ['@
. alu & Name Type Date moc
. db . -
. work File folder 12/15/201
simulation . ~
| wave_alu.de DO File 137157201
. modelsim . -
|| wave_core.do DO File 127127201
. work -
5 || wave_mux_3z.do DO File 12/15/201
| bus
|| wave_prep_daa.do DO File 12/12/201
control . - -
|| wave_shifter_core.dd® DO File 13/12/201
. registers) . N
A || wave_slice.do DO File 12/12/201
. toplevel £
. docs
host
| resources ~ 4 [1 - b
File name: wave_prep_daa.do - IMacro Files (*.do,*.tcl) ']
[Open l [Cancel l

BaltazarStudios.com Page 7

A-780 CPU User’s Guide

M ModelSim ALTERA STARTER EDITION 10.1d
File Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help

B-2l & RS - (7] J Layout [simulate w| ‘
i+ H A X (& sim - Default s H A x| |$2 Objects
"1Name |StatJType = '11nstance |Design unit
- misc Folder —-m test prep_daa test_prep_daa
.’_\. alu_prep_daa.v (Verilog ol #ublkx0=22 test_prep_daa
,\‘ alu_mux_3z.v " Verilog ++ .l alu_prep_daa_inst alu_prep_daa
.’_\. test_prep_daa.sv ,f Systen ;,—! std std
,‘ test_mux_3z.5v " Systen + 3l semaphore std high_eq_9_sig
M Testprep daa Simulat ol mailbox std
M Testmux 3z Simulat ++ 4l process std
[+H_7 shifter Folder | |g #vsim_capacity®
2HZ alu Folder j
| | 3 |
l;['l Library [Iﬁl Project I ﬂ2|
JA Transcript ——iii———= Hf x|
Loading work.alu_prep_daa j
do P:/I88/cpu/alu/simulation/model
sim/wave_prep_daa.do
WSIM 5= do r
Loading sv_std.std
Loading work.test_prep_daa
End of test

WSIM &
i Z‘ .| | S | —

| |Project: test_alu |Now: 1,700ns Delta: 1 |bestjrep_daa

A handy shortcut is provided to run a simulation: each ModelSim directory contains a small text file with
the name “r” that contains command “restart -f ; run -all”. Run, or rerun, a test simply by typing “do r”
as shown above.

After running this particular example, you should see a waveform of the DAA preparation block:

M Wave [} EIIEI

File Edit View Add Format Tools Boockmarks Window Help

£&| Wave - Default 4\)
ER= R R EE |
|t HF ol EEERNS WO | RQAARR

- Msgs

B4 low_sig [3:0] - R S P CH ¢ N R S /A R R N " -

B high_sig [3:0] | N S I CR N R S P R "N T - R S —
4 low_at_9_sig st1
4 high_gt_9_sig st1
#. high_eq_9_si 5t

i |
Lme Mo L7us
mle Cursor 1 L4us 3
(] 2] K 0| |
| 0 ns to 1700 ns | ftest_prep_daalow_sig [3:0] Y

BaltazarStudios.com Page 8

A-780 CPU User’s Guide

Although this was a very simple example, it illustrated a method of running a simulation and that can be
repeated on other configurations and modules. The pattern of configurations, files and waveform names
is the same.

Each main test bench file (like the “test_prep_daa.sv”) contains a set of assert() statements to verify the
signal correctness. These assert()s will fail and your simulation will stop if the signals take unexpected
values.

Most simulations run for the predetermined number of clocks. The exceptions are top-level simulations

(in the directory “cpu\toplevel\simulation\modelsim”) and a basic host simulation (in the directory
“host\basic\simulation\modelsim”). These simulations need to be stopped manually since they simply
continue to execute given Z80 executable code.

Top-level simulations

The two top-level simulations are designed to load an arbitrary Z80 assembly code and execute it. A
simple unidirectional UART model is provided for the Z80 software to write to the ModelSim console.
The UART model will simulate the behavior of a synthesized serial port. When the same design is
synthesized for the FPGA, the same Z80 code will write messages through a physical serial port.

Module Simulation project
Toplevel cpu\toplevel\simulation\modelsim\test_top.mpf
Basic host host\basic\simulation\modelsim\test_host.mpf

Those two simulation configurations can run any Z80 code, and several sample test sources can be
found in the directory “tools\zmac” along with the ZMAC assembler and a few batch scripts that
simplify compilation and the test setup. Z80 test files are roughly based on CP/M and have a BDOS style
text print interface.

Two MS DOS batch files are used to compile and run a test (you can also create and run your own tests
as well):

Batch file Description
tools\zmac\make_modelsim.bat Compiles and generates executable code for a ModelSim test at
“cpu\toplevel\simulation\modelsim\test_top.mpf”, for “test_top”
configuration.
tools\zmac\make_fpga.bat 1. Compiles and generates executable code in Intel HEX file
format to be included into the target FPGA data file for
basic host “host\basic\ host_board.qpf”
2. Also generates executable code for the basic host
ModelSim test at “host\basic\simulation\modelsim\
test_host.mpf”

BaltazarStudios.com Page 9

A-780 CPU User’s Guide

You can simply drag and drop an assembly source file (*.asm) onto one of those batch files and a batch
file will compile and copy the results into proper directories after which you only need to recompile a
relevant project.

For this example, we will compile and run a “Hello, world” test (“tools\zmac\hello_world.asm”).

Drag and drop “hello_world.asm” onto the “make_modelsim.bat” and start a top level simulation
(“test_top” configuration) in the ModelSim.

b @ B[100 us 3 ELENEYH & | ﬁJaﬂ»
tllacaaan| [T LW fmay || %

Shortly, you should see the output in the ModelSim console window.

After you see the text being written to the virtual UART device, you can stop the simulation.

£ 1 Transcript H e =]
[UART] =]

[UART]

[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART]
[UART] ,
[UART]

[UART]

[UART] W
[UART] W
[UART]
[UART]
[UART]
[UART]
[UART]

c 0OHHHEHDOIT

P R R T

H9500 55

BaltazarStudios.com Page 10

A-780 CPU User’s Guide

Verification

Fuse tests
Fuse is a set of tests to verify Z80 at the individual instruction level. Written for software emulator
designers, it contains a fairly complete set of input and output states for each instruction.

Files that are used in this verification are subset of the Fuse emulator source package:
http://fuse-emulator.sourceforge.net . You can find them in the “cpu\toplevel\fuse” directory.

The files describe individual instruction’s tests and need to be processed into a format that we can run —
which is Verilog. A Python script “cpu\toplevel\genfuse.py” generates Verilog test code for a selected
number of Fuse tests.

See that script file for more details on how to configure it before running.

When run, it creates “cpu\toplevel\test_fuse.i” include file.

// Automatically generated by genfuse.py
force dut.reg file .reg_gp we=0;

force dut.reg_control_.ctl reg sys we=0;
force dut.z80 top_ifc_n.fpga_reset=1;

force dut.instruction_reg_.ctl_ir_we=1;
force dut.instruction_reg .db=0;
#2 release dut.instruction_reg_.ctl_ir_we;
release dut.instruction_reg .db;
$fdisplay(f, "Testing opcode 00 NOP");

Once generated, this include file needs to be compiled with a ModelSim project file
“cpu\toplevel\simulation\modelsim\test_top.mpf” to run a set of tests. The test output will show in
the ModelSim window and the test will also create and write a file “fuse.result.txt”.

Hint: You can speed up Fuse simulation if you disable output to the wave window by typing:

| VSIM 108> nolog -all

The following command re-enables the output:

| VSIM 108> nolog -reset

BaltazarStudios.com Page 11

http://fuse-emulator.sourceforge.net/

A-780 CPU User’s Guide

1l Wave =@ ®

File Edt View Add
1| Wave - Defauit Hex|

2EH 8 $RBO2 [O-AE[| B Nk U uUE]| vERR]| B rtes B TeiunnEc WHe]tatizas
[N o o || Lt e 5| o963 ser[v H Qaqen“gl. B a2 %3

4400 s to 18us Now: 1,997,500 ns

Image 1 : Fuse tests in ModelSim

Results of Fuse tests are written in the file “fuse.result.txt”, one instruction per line:

Testing opcode 00 NOP
Testing opcode ed67 RRD
Testing opcode ed6f RLD
Testing opcode 81 ADD A,C
Testing opcode cb4l BIT o,C
Testing opcode cb93 RES 2,E

Selected functional tests
There are 3 tests that verify specific ALU operations by cross-checking the results run on a real Z80 with

the algorithm written in Python:

Test directory - 780 test file Description

tools\dongle\daa tools\zmac\test.daa.asm Execute DAA instruction for all values 0-255
tools\dongle\neg tools\zmac\test.neg.asm Execute NEG instruction for all values 0-255
tools\dongle\shc n/a Simulate SUB and SBC instructions

Python scripts run the Arduino Z80 dongle (described in the Tools section) and generate output files.
Those files are then compared with the output produced by another set of Python scripts (they
implement corresponding algorithms). Lastly, the same text files are compared with ModelSim

BaltazarStudios.com Page 12

A-780 CPU User’s Guide

simulation of those instructions and also by running the same executable on the Simple Host FPGA
implementation and capturing the UART output.

The “golden” files include values of flags and accumulator going into the instruction and the result after
the instruction has completed:

F:00 A:00 -> 00 F:44
F:00 A:01 -> 01 F:00
F:00 A:02 -> 02 F:00
F:00 A:03 -> 03 F:04
F:00 A:04 -> 04 F:00
F:00 A:05 -> 05 F:04
F:00 A:06 -> 06 F:04
F:00 A:07 -> 07 F:00

280 Assembly level tests
Folder “tools/zmac” contains several Z80 assembly level tests.

tools\zmac\hello_world.asm A mandatory “Hello, World”
tools\zmac\zexdoc.asm Tests documented Z80 instructions and flags
tools\zmac\zexall.asm Tests ALL Z80 instructions and flags (documented and undocumented)

While all of them can run in ModelSim, the last two are very comprehensive tests and should normally
be run only in the FPGA hardware in full speed mode.

“hello_world.asm” source is written to allow the test bench “cpu\toplevel\test_top.sv” to exercise
various interrupt modes. It contains interrupt handlers and logging for the test bench to run the
following cases:

e Inject a single or periodic NMI

e Inject a single or periodic INT

e Test response to the nWAIT signal
e Test response to the nBUSRQ signal
e Test resets

BaltazarStudios.com Page 13

A-780 CPU User’s Guide

Tools

PLA Checker Tool
PLA checker tool in “tools\z80_pla_checker” directory is a test utility to verify and create PLA code used
to statically decode Z80 instruction groups.

In addition to the C# source code, the Windows executable is also checked in so you don’t have to have
Microsoft Visual Studio IDE installed to use the tool.

Upon start, the PLA checker tool loads a number of files from the “resources” directory. That includes
the raw PLA table definition as reverse-engineered from an image of a Z80 die.

i "

o 780 PLA =n =R

File
Modifiers: IX0 D<1|NHALT|ALU|>{><|CB ED | s redo
PLA Checker Tool Copyright (C) 2814 Goran Devic "

This program comes with ABSOLUTELY NO WARRANTY

This is free software and you are welcome to redistribute it under certain conditions;
Loading PLA: ../../resources/ze@-pla.txt

Total 185 PLA lines

Loading opcode table: ../../resources‘\opcodes-xx.txt

Loading opcode table: ../../resources\opcodes-cb-xx.txt

Loading opcode table: ../../resources\opcodes-ed-xx.txt

Loading opcode table: ../../resources\opcodes-dd-xx.txt

Loading opcode table: ../../resources‘\opcodes-dd-cb.txt

p - Dump the content of the PLA table

p [#] - For a given PLA entry # (dec) show opcodes that trigger it
m [#] - Match opcode # (hex) with a PLA entry (or match @-FF)

g - Generate a verilog PLA module

t [#] <#» - Show opcode table in various ways

@ - Display number of PLA entries that trigger on each opcode

1 - For each opcode, display all PLA entry numbers that trigger

<#» - Add a * to opcodes for which the specified PLA entry triggers
g le1ee8... Query PLA table string
C - Clear the screen

The tool was invaluable in the development phase of the A-Z80 and maintain its value as a cross-checker
for the PLA code. Available commands are:

Cmd Description
hor? Help, list all commands.

p PLA table contains a set of modifiers and a gate-level logic array that ‘filters’ various instruction
opcode groups. This command shows you those groups.

BaltazarStudios.com Page 14

A-780 CPU User’s Guide

a5l 780 PLA E@
File
Modifiers: [0 I¥l |NHALT|ALU |xx|ce ED | cls redo

gx»> p "
Content of the PLA table:
...... 1 .11..11...1..... - 2 181exans 1dx/cpx/inx/outx brk
eeeal.. J1.11..1.11.1..1 - 1 1181181 EXH

..1.. .1.1.11..11..1.1 - 2 11181811 ex de,hl
wes.l.. .1.1...1.1.11..1 - 3 11x11181 IX/IY prefix
...... 1 1. 11 1.1.1 - 4 2lexx111 1d x,a/a,x

.1.1. 1 1 11 1..1 - E 11111821 1d sp,hl
=1 111818al jp hl

11..11.1.
4 j""““"d’ Mﬁm v By SR SRS

p# Given a PLA entry number (decimal), show opcodes that are activated by it
10>>> p 3
PLA Entry: 3 Modifier: XX, NHALT
DD => [3] IX/IY prefix
FD => [3] IX/IY prefix
m # This is a reverse-lookup that shows all PLA table entries that would activate a specific opcode
given as a hex number:
12>>> m 76
Opcode: 76
[58] 1d r,(hl)
[59] 1d (hl),r
[61] 1d r,r'
[95] halt
t Dumps the opcode table in several ways. One or two optional arguments are given which
restrict the table or show extra information including the number of PLA entries that trigger for
each opcode etc.
o 780PLA E==EE
File
Modifiers: IX0 IXL |NHALT | ALU XX |CB ED | cls redo
13»»» T -
e | . | [71 1d rr,nn | [2] | 9] inc/dec | [66] inc/dec | [2]
1 | [26] djnz e | [7] 1d rrynn | [2] | [9] inc/dec | [68] inc/dec | [2]
2 | [28] jr ss,e | [7] 1d rr,nn | [2] | [9] inc/dec | [66] inc/dec | [2]
3 | [48] jr ss,e | [7] 1d rr,nn | [2] | [9] inc/dec | [2] | [3]
4 | [61] 1d rpr® | [61] 1d ryr” | [61] 1d ryr® | [61] 1d rr® | [61] 1d ryrt | [61] 1d
5 | [62] 1d r,r* | [61] 1d r,r" | [61] 1d r,r" | [61] Md r,r* | [61] 1d r,r" | [&1] 1d
& | [61] 1d r,r* | [61] 1d r,r* | [61] 1d r,r" | [62] 1d rpr* | [61] 1d r,r" | [&1] 1d
7 | [2] | [2] | [2] I [2] | [2] | [2]
& | [e5] add/sub | [&5] addfsub | [65] add/sub | [&5] add/sub | [65] add/sub | [E65] ad:
g | [85] addi{sub ! EEEJ add/sub | [65] add/s | 5] add/sul | [65] add/sub | [&5] ad
=7 a W""di adgbsibmle P i Aol St oyl
q# Useful only while simulating the CPU design, this command decodes the actual PLA table string
which is a long sequence of binary digits (105 bits in total)
g Generates Verilog code that implements the PLA decode. The output of this command is used to

create “cpu\control\pla_decode.sv” source file which is at the core of the design.

BaltazarStudios.com Page 15

A-780 CPU User’s Guide

o= Z8B0 PLA
File
Modifiers: IX0 Dﬂ|NHALT|ALu|xx|n:B|ED cls redo

32xex g 1

medule pla_decode (opcode, prefix, pla);

input wire [&:8] prefix;
input wire [7:8] opcode;
gutput reg [184:8] pla;

always_comb
begin

if ({prefix[c:8], opcode[7:8]} ==? 1G'bXDOOON1_181exXexX) pla] @]=1"bl; else pla[@]=1"be
if ({prefix[e:8], opcode[7:8]} ==? 15°"DODOIK1XX_11811881) pla] 1]=1"bl; else pla[1]=1"b&
if ({prefix[e:e], opcode[7:8]} ==? 15'bXOOO{1x¥ 11181811} pla] 2]=1"bl; else pla[2]=1"ba
if ({prefix[c:@], opcode[7:8]} ==? 1G°"BXDOIK1XX_11x111e1) pla] 323]=1"bl; else pla[3]=1"b&
if ({prefix[e:8], opcode[7:8]} ==? 15000001 _@1exx111) pla] 4]=1"bl; else pla[4]=1"be
if ({prefix[&:8], opcode[7:8]} ==? 15'bXOOOMIWY 11111881} pla] 5]=1"bl; else pla[5]=1"b&
if ({prefix[e:e], opcode[7:8]} ==? 15°"DXDOIK1XX_111e1881) pla] 6&]=1"bl; else pla[&]=1"b&
if ({prefix[e:e], upigde[?:ﬁ]} ==7 15" 001 eexxeael) plal 1°b1; Eliﬁ af 7]=1g
“i:ii-- r ' . _ l;igv arﬂ]—

The image shows the start of the PLA decode module implemented in Verilog.

780 has several opcode tables and addressing modes selected either by a combination of instruction
prefix bytes (OxCB, OXED and IX/IY) or by the internal state (HALT, ALU,...)

PLA checker tool lets you set or unset any of these modifiers:

ol 780 PLA E=N(ECE ===
File
Modifiers: X0 ¥l |NHALT|ALU|KX|CE|ED cls redo

The modifier buttons directly correspond to modifiers in the PLA table and let you simulate the exact
PLA logic behavior as you are executing various tool dumps.

The tool keeps a history of commands that are typed in; a number displayed at the front of a prompt
“>>>" is a location in the history buffer. Pressing PgUp and PgDown selects a command from the history
buffer; ESC clears the command line.

BaltazarStudios.com Page 16

A-780 CPU User’s Guide

Arduino Tools

Directory “tools\Arduino\Z80_dongle” contains firmware for the Arduino Mega connected to a Zilog
280 through a custom dongle. This setup can be used to pace Z80 in a controlled way and to execute

individual instructions and monitor bus activity. You can read more about that dongle at
www.baltazarstudios.com.

It was heavily used to generate tables for the correct bus behavior. These tables and Python scripts to
create them are checked in the directory “tools\dongle”.

BaltazarStudios.com Page 17

http://www.baltazarstudios.com/

A-780 CPU User’s Guide

Integration

This section describes how to integrate the A-Z80 CPU into your own project.

The method is tested with Altera design tools (Quartus), but it should be relatively easy for someone
skilled in the art to use any other vendor (for example Xilinx).

The process of integration involves adding all relevant source files, and those are:

cpu/alu/alu_slice.v
cpu/alu/alu_shifter_core.v
cpu/alu/alu_select.v
cpu/alu/alu_prep_daa.v
cpu/alu/alu_mux_8.v
cpu/alu/alu_mux_4.v
cpu/alu/alu_mux_3z.v
cpu/alu/alu_mux_2z.v
cpu/alu/alu_mux_2.v
cpu/alu/alu_flags.v
cpu/alu/alu_core.v
cpu/alu/alu_control.v
cpu/alu/alu_bit_select.v
cpu/alu/alu.v

cpu/bus/bus_switch.sv
cpu/bus/inc_dec_2bit.v
cpu/bus/inc_dec.v
cpu/bus/data_switch_mask.v
cpu/bus/data_switch.v
cpu/bus/data_pins.v
cpu/bus/control_pins_n.v
cpu/bus/bus_control.v
cpu/bus/address_pins.v
cpu/bus/address_latch.v
cpu/bus/address_mux.v

cpu/control/sequencer.v
cpu/control/resets.v
cpu/control/ir.v
cpu/control/interrupts.v
cpu/control/decode_state.v
cpu/control/clk_delay.v
cpu/control/pin_control.v
cpu/control/pla_decode.sv
cpu/control/memory_ifc.v
cpu/control/execute.sv

cpu/registers/reg_latch.v
cpu/registers/reg_file.v
cpu/registers/reg_control.v

cpu/toplevel/z80 top_direct_n.sv

BaltazarStudios.com Page 18

A-780 CPU User’s Guide

In addition, two fully working sample implementations (basic host and zxspectrum) provide good
starting points.

Interface

The top-level file “cpu\toplevel\z80_top_direct_n.sv” exports the following interface:

module z80 top_direct_n(
output wire nM1,
output wire nMREQ,
output wire nIORQ,
output wire nRD,
output wire nhR,
output wire nRFSH,
output wire nHALT,
output wire nBUSACK,

input wire nWAIT,
input wire nINT,
input wire nNMI,
input wire nRESET,
input wire nBUSRQ,

input wire CLK,
output wire [15:0] A,
inout wire [7:0] D

)5

This pinout is 100% identical to the Zilog Z80 package. The interface implements Z80 bus timings and
features tri state buses. (While this is admittedly not optimal for an FPGA implementation, the goal of
the project was to mimic the actual Z80 silicon).

Your design should include all core files listed above and instantiate a “z80_top_direct_n” module.

BaltazarStudios.com Page 19

A-780 CPU User’s Guide

Sample Implementations

Two working implementations are included. They are both located in the “host” directory and use the
Altera DE1 FPGA development board.

Warning: The synthesis and fMax numbers as shown might vary depending on your tool version, applied
timing constraints and the exact configuration.

Simple host

A “basic host” board contains A-Z80 CPU, 16 KB RAM configured as single port Cyclone RAM cells and a
unidirectional implementation of the UART for the text output. Since the board’s architecture is so
simple, there is also a corresponding ModelSim configuration used in verification.

File Description

host\basic\host_board.qpf Quartus project file for FPGA
host\...\simulation\modelsim\ test_host.mpf ModelSim project file for simulation
host\basic\host_board_fpga.sv Top-level board source file for FPGA implementation
host\basic\ host_board_ModelSim.sv Top-level board source file for ModelSim board model
host\basic\test_host.sv ModelSim test bench for the simulation model

This host board can load and run any Z80 executable (for example, one of those in “tools\zmac”
directory). Programs can print to UART and, on a physical DE1 board, the text is seen through the
attached serial terminal. In the simulation environment the text is written in a ModelSim output
window. Error! Reference source not found. shows the output of the “tools\zmac\hello_world.asm”
being captured through the serial port.

£P COM3 - PuTTY = Bl %

Image 2: "Hello, World"

BaltazarStudios.com Page 20

A-780 CPU User’s Guide

This is a synthesis result of the simple host design on an Altera DE1 board:

Flow Status Successful - Tue Dec 16 00:50:47 2014
Quartus II 64-Bit Version 13.0.1 Build 232 06/12/2013 SP 1 5] Web Edition
Revision Mame host_de1
Top-evel Entity Mame host
Family Cydone II
Device EP2C20F434CT
Timing Models Final
Total logic elements 3,341 /18,752 (18 %)
Total combinational functions 3,246 [18,752 (17 %)
Dedicated logic reqisters 458 f 18,752 (2 %)
Total registers 453
Total pins 11/315(3 %)
Total virtual pins i
Total memary bits 131,072 [239,616 {55 %)
Embedded Multiplier 5-bit elements 0/52(0 %)
Total PLLs 1/4(25%)

Since the CPU CLK is derived from the pll_clk, the effective A-Z80 fMax for this compilation is 19.86 MHz.

F

Frnax Summary
Restricted Fmax Clod: Mame Mote
1 [i 19,86 MHz pll_clk
2 58.82 MHz 58.82 MHz CLOCK_50
3 90,43 MHz 90,43 MHz pll_|altpll_compaonent|plljdk[io]

Sinclair ZX Spectrum
This project fully implements a Sinclair ZX Spectrum 48K computer from the year 1982.

The model codes in Verilog all parts that make up that computer. Directory “host\zxspectrum\ula”
contains blocks (drivers) for the keyboard, video signal using the VGA, sound, RAM memory, clocks etc.

There are 2 system ROM images included in the “host\zxspectrum\rom” directory — the original ZX
Spectrum ROM and an improved, so-called “Gosh Wonderful” ROM — merged into a single image which
is to be flashed into the DE1’s flash memory starting at the address 0. Use a flash tool that came with
your DE1 board software to flash this data.

Image 3 shows a game “Manic Miner” being loaded through the audio line-in connector into the FPGA
board visible in the middle and a Kempston compatible joystick in the foreground.

BaltazarStudios.com Page 21

A-780 CPU User’s Guide

Image 3 : Sinclair ZX Spectrum on Altera DE1

This is a synthesis result of the ZX Spectrum host design on Altera DE1 board:

Flow Status
Quartus II 64-Bit Version
Revision Mame
Top-evel Entity Mame
Family
Device
Timing Models
Total logic elements
Total combinational functions
Dedicated logic reqisters
Total registers
Total pins
Total virtual pins
Total memory bits
Embedded Multiplier 5-bit elements
Total PLLs

Successful - Tue Dec 16 00:59:29 2014
13.0.1 Build 232 06/12/2013 SP 1 5] Web Edition
zuspectrum_board

zxspectrum_board

Cydone II

EP2C20F434CT

Final

3,592 /18,752 (20 %)

3,621/ 18,752 (19 %)

584, 18,752 (3 %)

584

148 / 315 (47 %)

0

131,072 [239,616 {55 %)
0/52{0%)

1/4(25%)

Although the computer runs at 3.5 MHz, the clk_cpu fMax for this compilation is 10.65 MHz.

Frnax Summary
Fmax Restricted Frax Clodk Mame
1 i0.69MHz 10.65MHz ck_cpu
2 69,29 MHz 69,29 MHz ula_|pll_Jaltpll_component|pll |ck[d]
3 76.88 MHz 76,88 MHz CLOCEK_24
4 1157.41 MHz 450,05 MHz ula_|pll_Jaltpll_component|pll |ck[1] limit e

BaltazarStudios.com

Page 22

A-780 CPU User’s Guide

Advanced Topics

Modifying the A-Z80 CPU

If you want to make a change to any instruction’s timing or a sequence of micro-operations, do it in the
file “cpu\control\Timings.xlsm”. This is a Microsoft Excel spreadsheet file that contains timing tables for
each instruction group. Vertical columns are operations on specific blocks. Instruction groups are listed
by the M and T-clocks providing the exact timing for each set of operations.

Micro-operations are represented by short tokens (for example, “PC” or “mr”, etc.) and defined in the
file “cpu\control\timing_macros.i”. In that file, every token is translated into one or more concrete
control signals or operations.

If you change the timing spreadsheet, export it into a TAB-delimited file. The spreadsheet contains a
macro to do that for you: click on the “Developer” menu and run Macros:

[W Timings.xlsm - Microsoft Excel(
m, Insert Page Layout Formulas Data Review View Developer am
K| Record Macro B = 29 b % Properties f)
] K & 5 RBK &

[=le -
o @ =& R

; 3 Ef Import eﬁ
—z ﬁ Use Relative References i i K - QJ View Code & Expansion Packs & t ==
Visual Macros i Add-Ins COM Insert Design X Source i Document
Basic £\ Macro Security Add-Ins v Mode # Run Dialog § Ref D3 Panel
Code Add-Ins Controls XML Modify

Running “CopyToCSV” macro will replace the existing CSV file which is ok: both are checked in although
one is generated from another.

(2]
Macro ' .
Macro name:

Step Into
Macros in: | All Open Workbooks lzl
Description

Next step is to create a Verilog file from those timings by running a python script
“cpu\control\genmatrix.py”. That script reads in the CSV file containing timing tables and generates
“exec_matrix.i” file that implements actual Verilog code to control the timings.

All Python scripts in this project can be run in-place without the need to specify any arguments.

If you change any schematic file and your change adds or removes global input or output signals, you
need to run two Python scripts to recreate global includes:

BaltazarStudios.com Page 23

A-780 CPU User’s Guide

“cpu\control\genref.py” — generates global include files using all exported module signals:

e ‘“exec_module.i” contains input/output definitions to be included in the module def.
e “exec_zero.i” contains Verilog code to set all input wires to zero.

“cpu\toplevel\genglobals.py” — generates a list of global wire defines:

e “globals.i” contains Verilog code that defines all global signal wires.

n u ” u

Quartus project files (*.gpf, *.gsf) in “cpu\alu”, “cpu\bus”, “cpu\contro

III

and “cpu\registers”
directories are non-functional and just conveniently hold sets of module files together. Quartus project
in the “cpu\toplevel” directory only contains a top-level schematic diagram and is also not functional.
They are only containers to hold files.

In order to compile a project, look in a sample project such is “host\basic\host_board.qpf”.

When modifying a schematic (most of the A-Z80 blocks are designed at the schematic level), open a
corresponding Quartus container project (for example, when modifying a schematic in the ALU block,
open “cpu\alu\test_alu.qpf”), change the schematics, compile it (to make sure it has no errors) and
then export it to both the Verilog equivalent and a symbol file, as shown below:

Edit View Project Assignments Processing Tools Window Help = Search altera.com @
d = b Y GO D r Y OO W

=]
k= open.. cul+o 28 x| |l Pzsojepulalufaly sice bdf [|

Close Ctrl+F4 N)
FRAUADES-O7TANNNDO »
(& Mew Project Wizard...
L‘ﬁ Open Project... Cirl+1

m

Save Project

Close Project

A Save Cirl45
Save As...
@ saveal Cirl+5hift+5
File Properties. .. “, IP Compone 4| p
| Create [Update 4 Create HDL Design File from Current File... ofmm—— | - - - - -
|| Export... Create Symbol Files for Current File Sl
Convert Programming Files... Create AHDL Indude Files for Current File P
&l Page Setup... Create Verilog Instantiation Template Files for Current File o
& PrintPreview Create VHDL Component Dedaration Files for Current File
llEh Print... Ctrl+P Create Design File from Selected Block. ..
Recent Files » Update Design File from Selected Block. ..
Recent Projects » Create SignalTap II File from Design Instance(s)
Create SignalTap II List File 18,110 0% 00:00:00
o (TS Al 4

Verilog code is used to compile with the rest of A-Z80 core files while symbol files are (at the moment)
optional but could be used in the future to create a schematic top-level.

BaltazarStudios.com Page 24

	Revision History
	Introduction
	Project Directory Structure
	Environment
	Simulation
	Module simulations
	Top-level simulations

	Verification
	Fuse tests
	Selected functional tests
	Z80 Assembly level tests

	Tools
	PLA Checker Tool
	Arduino Tools

	Integration
	Interface
	Sample Implementations
	Simple host
	Sinclair ZX Spectrum

	Advanced Topics
	Modifying the A-Z80 CPU

